文档库 最新最全的文档下载
当前位置:文档库 › 零序电流式漏电保护工作原理(精)

零序电流式漏电保护工作原理(精)

零序电流式漏电保护工作原理(精)
零序电流式漏电保护工作原理(精)

零序电流式漏电保护的工作原理一、零序电流式漏电保护的元件组成:

由断路器 DW 、零序电流互感器 LLH 、整流桥 D 以及漏电保护继电器 J 构成。

二、工作原理:

零序电流保护的基本原理是基于基尔霍夫电流定律:流入电路中任一节点的复电流的代数和等于零, 也就是 Ia+Ib+Ic=0。在线路与电气设备正常的情况下, 各相电流的矢量和等于零, 因此, 零序电流互感器 LLH 二次侧绕组无信号输出,漏电保护继电器 J 不吸合,漏电保护继电器常闭触点 J1不断开,断路器 DW 不吸合,主电路中断路器的脱扣器 DW1不动作。线路正常供电。

当线路中出现漏电故障时, 三相线路中的某一相与大地构成一个回路,回路中有漏电电流流过,这样零序电流互感器 LLH 中就有一个感应电压,通过整流桥 D 整流,得到一个直流电,当直流电流达到漏电保护继电器 J 动作电流时, 漏电保护继电器 J 吸合, 漏电保护继电器 J 的常闭触点 J1打开,断路器 DW 失电,断路器的脱扣器

DW1动作,切断电源,从而实现了漏电保护。

可以从以下常见原因中查找漏电故障:

1电缆和电气设备是否长期过负荷运转,使绝缘老化,形成漏电

2 运行中的电气设备是否受潮或进水, 使对地绝缘电阻降低而漏电

3 电缆的接头是否存在质量不高、接头不牢, 运行或移动时松脱

形成漏电

4 设备内部是否随意增加电气元件, 使电气距离减少, 因放电形成漏电。

5 电缆是否受机械损伤或受潮、进水使绝缘损坏而漏电

6 电气设备是否遗留其他导电物体, 使电源某相碰壳而形成漏电

7 电气设备是否接线错误造成漏电

8 电缆是否由于反复弯曲使芯线部分折断, 刺破电缆的绝缘而形成漏电

9 电气设备是否在操作时产生弧光放电而造成漏电

10 电气设备在维修时,是否由于送停电错误,带电操作或工作不慎,造成人身触电而漏电。

漏电开关的漏电保护原理

漏电开关的漏电保护原理 漏电保护器的工作原理是: 将漏电保护器安装在线路中,一次线圈与电网的线路相连接,二次线圈与漏电保护器中的脱扣器连接。 当用电设备正常运行时,线路中电流呈平衡状态,互感器中电流矢量之和为零(电流是有方向的矢量,如按流出的方向为“+”,返回方向为“-”,在互感器中往返的电流大小相等,方向相反,正负相互抵销)。由于一次线圈中没有剩余电流,所以不会感应二次线圈,漏电保护器的开关装置处于闭合状态运行。 当设备外壳发生漏电并有人触及时,则在故障点产生分流,此漏电电流经人体—大地—工作接地,返回变压器中性点(并未经电流互感器),致使互感器申流入、流出的电流出现了不平衡(电流矢量之和不为零),一次线圈申产生剩余电流。因此,便会感应二次线圈,当这个电流值达到该漏电保护器限定的动作电流值时,自动开关脱扣,切断电源。

漏电保护开关的动作原理是:在一个铁芯上有两个组:一个输入电流绕组和一个输出电流绕组,当无漏电时,输入电流和输出电流相等,在铁芯上二磁通的矢量和为零,就不会在第三个绕组上感应出电势,否则第三绕组上就会感应电压形成,经放大去推动执行机构,使开关跳闸。 在上述UPS前面加漏电保护开关,尽管UPS无漏电现象,但由于各次谐波在铁芯中形成的磁通矢量和由于铁芯的磁滞作用而不能为零,于是就出现了类似漏电的假象,使漏电保护器频繁跳闸。

漏电将火线零线同时穿过一个O型磁环作为初级,次级用N匝输出去推动一个电磁机构,电磁机构动作则脱扣.原理是正常情况下火线和零线上的电流流进等于流出,所以感应出来的次级电压也为零,当火线或零线有一根线对地有接地电阻或短路,则火线和零线上的电流出现电压差,通过次级感应出来,当到一定的差值就推动电磁机构脱开主回路.

零序保护原理

零序保护原理 零序电流与零序保护定义是什么呢?通过下面这篇简短的文章我们了解一下。 什么是零序电流 在正常的三相三线电路中,三相电流的相量和等于零,即Ia+Ib+Ic=0。如果在三相三线中接入一个电流互感器,这时感应电流为零。当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流,即零序电流)。三项电流的向量和不等于零,所产生的电流即为零序电流。 如何检测零序电流 当存在零序电流时,电流互感器二次线圈中就有一个感应电流,此电流加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,若大于动作电流,则使灵敏继电器动作,作用于执行元件跳闸。这里所接的互感器称为零序电流互感器。 图1 零序电流互感器 零序电流的危害 零序电流是由三相不平衡带来的,三相不平衡的危害非常多,下面列举两个三相不平衡的危害: 1、增加变压器损耗 假设变压器的三相损耗分别为:Qa=Ia2 R、Qb= Ib2 R 、Qc =Ic2 R,式中Ia、Ib、Ic分别为变压器二次负荷相电流,R为变压器的相电阻。则变压器的损耗表达式如下: Qa+Qb+Qc≥3√〔(Ia2 R)(Ib2 R)(Ic2 R)〕 由此可知,变压器的在负荷不变的情况下,当Ia=Ib=Ic时,即三相负荷达到平衡时,变压器的损耗最小。当存在零序电流时,三相负荷不平衡,增大变压器损耗。而当不平衡严重时,变压器损耗过大,会加速变压器的老化甚至烧毁。 2、增加高压线路的损耗 设高压线路每相的电流为I,其功率损耗为:ΔP1 = 3I2R,在最大不平衡时,高压对应相为1.5I,另外两相都为0.75 I,功率损耗为: ΔP2 = 2(0.75I)2R+(1.5I)2R = 3.375I2R =1.125(3I2R)即高压线路上电能损耗增加12.5%。 零序保护 在大短路电流接地系统中发生接地故障后,就有零序电流、零序电压和零序功率出现,利用这些电气量(比如零序电流)构成保护接地短路的继电保护装置统称为零序保护。

2三段式电流保护的整定及计算

2三段式电流保护的整定计算 1、瞬时电流速断保护 整定计算原则:躲开本条线路末端最大短路电流 整定计算公式: 式中: Iact——继电器动作电流 Kc——保护的接线系数 IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。 K1rel——可靠系数,一般取1.2~1.3。 I1op1——保护动作电流的一次侧数值。 nTA——保护安装处电流互感器的变比。 灵敏系数校验:

式中: X1— —线 路的 单位 阻抗, 一般 0.4Ω /KM; Xsmax ——系统最大短路阻抗。 要求最小保护范围不得低于15%~20%线路全长,才允许使用。 2、限时电流速断保护 整定计算原则: 不超出相邻下一元件的瞬时速断保护范围。所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。故: 式中: KⅡrel——限时速断保护可靠系数,一般取1.1~1.2; △t——时限级差,一般取0.5S; 灵敏度校验:

规程要求: 3、定时限过电流保护 定时限过电流保护一般是作为后备保护使用。要求作为本线路主保护的后备 以及相邻线路或元件的远后备。 动作电流按躲过最大负荷 电流整定。 式中: KⅢrel——可靠系数,一般 取1.15~1.25; Krel——电流继电器返回系数,一般取0.85~0.95; Kss——电动机自起动系数,一般取1.5~3.0; 动作时间按阶梯原则递推。 灵敏度分别按近后备和远后备进行计算。 式中: Ikmin——保护区末端短路时,流经保护的最小短路电流。即:最小运行方式下,两相相间短路电流。 要求:作近后备使用时,Ksen≥1.3~1.5 作远后备使用时,Ksen≥1.2

漏电保护器的工作原理

一、漏电保护器的工作原理 目前建筑施工现场应用最广泛的是电流型漏电保护器,该漏电保护器是由零序电流(压)互感器、漏电放大器、脱扣机构、主开关、试验按钮等五部分组成。以采用三相四线漏电保护器为例,在三相四线电网中,三相四线合成电流关系为:IU+IV+IW+IN=0四线穿人零序电流互感器,合成电流为零,互感器二次侧无电流流动,所以磁通为零,剩余电流动作保护装置不动作。当有人遭到电击时,应有电流IR从相线经人体流入大地回到变压器中性点,形成闭合路。再加上正常运行的三相低压电网漏电所产生的剩余电流。此时,通过零序电流互感器一次侧的电流是IU+IV+IW+IN=I∑Z+IR在I∑Z+IR的电流作用下,零序电流互感器的铁芯有了磁通,其二次侧就感应出电流,即有了信号,此信号经放大,回到执行元件上,便可切断供电回路,使用电者得到保护。 二、施工现场漏电保护器误动作的原因 (一)外界干扰 施工现场临时用电的漏电保护器受外界干扰是造成其误动作及拒动作的原因之一。而外界干扰又分为电压干扰、负荷故障电流干扰及周围气候及环境影响等多种因素干扰。 1. 电压干扰 (1)雷电过电压 雷击时正逆变换过程引起的过电压,通过架空线路、绝缘电线、电缆和电气设备的对地电容,产生对地泄漏电流,足以使剩余电流保护器发生误动作,甚至直接损坏。 (2)中性点位移过压中性点过电压过高时将造成保护器的电源及电子电路的损坏;过低时会引起电磁开关因吸跳动率不足而拒动。 2. 线路和用电设备干扰 (1)施工现场有的照明线路乱拉乱接现象很严重,导线老化、线路和用电设备绝缘电阻低、泄漏大、甚至接地,致使保护器频繁动作或不能投入运行。 (2)由于漏电开关输出端中性线绝缘不良,接地接零保护安装保护器时电源侧中性点未接地。发生触电时,保护器被旁路而使灵敏度下降或拒动。 (3)线路排列混乱,当大型设备起动时瞬时大电流会使线路与大地间产生分路电容,而当电流恢复正常时,电容放电而使漏电开关误动作。 (4)户外施工用一台漏电保护器控制多个回路时,多个微小的漏电流积累在一起,就可能引起剩余电流保护器动作。 3. 环境条件干扰 剩余电流保护器受环境条件变化的影响,主要是指使用环境条件恶化,如夏季出现的高温,雨水季节出现的潮湿,或保护器附近安装有强烈振动冲击的电器机械设备,或受到腐蚀性气体的侵蚀,使保护器的电子元件电磁线圈或机构等元件产生锈蚀、霉断,以致引起保护器的误动作或拒动作。 (二)漏电开关安装接线错误 漏电保护器在安装中,往往因接线错误或安装方式与线路结构不相适应而引起误动作、拒动作或达不到最佳效果: 1. 使用单相负载,而中性线未穿过漏电保护器。当接通单相负载,漏电开关就动作; 2. 中性线穿过漏电保护器后,直接接地或通过用电设备接地,漏电保护器将保护跳闸; 3. 中性线穿过漏电保护器后,同其他漏电保护器的中性线或其他没有装设漏电保护器的中性线连在一起。 4. 三相负载如电动机一般不接中性线,使用四芯电缆,其中有一芯应接PE保护线和电动机外壳,但在一些情况下,这根PE保护线接在了中性线上,实际上是把中性线通过电

零序电流及方向

零序电流及方向保护 一、零序电流方向保护的基本原理; 1、基本原理; 零序电流保护: 在正常运行时没有零序电流,只有在接地短路时才有零序电流。 并且流过保护的零序电流大小反应了短路点的远近; 当短路点越近时,保护动作越快,短路点越远保护动作得越慢。 输电线路零序电流保护是反应输电线路一端零序电流的保护。反应输电线路一端电气量变化的保护由于无法区分本线路末端短路和相邻线路始端的短路,为了在相邻线路始端短路不越级跳闸。 所以反应输电线路一端电气量弯化的保护都要做成多段式保护。零序电流一段的任务: 保护本线路的一部分。它的定值按躲过本线路末端(实质是躲过相邻线路始端)接地短路时流过保护的最大零序电流整定(其他整定条件姑且不论)。 零序电流二段的任务: 能以较短的延时尽可能地切除本线路范围内的故障。 零序电流三段的任务: 应可靠保护本线路的全长,在本线路末端金属性接地短路时有一定的灵敏系数。 零序电流四段的任务:

起可靠的后备作用。第四段的定值应不大于300A,用它保护本线路的高阻接地短路。在110KV的线路上,零序电流保护中的第四段还应作为相邻线路保护的后备。 零序电流保护只能用来保护接地故障,所以对于两相不接地的短路和三相短路不能起到保护作用。另外零序一段保护范围受运行方式的影响也较大,有时可能保护范围缩得很小,这一点比同样保护接地故障的接地距离一段要逊色得多。但是零序电流保护的最后一段——零序过电流保护,由于很灵敏,保护过渡电阻的能力很强,这一点又比接地距离第三段强; 所以,现在有一些高压电网中有线路纵联保护,又配有保护接地短路的三段式的接地距离保护,并有双重化的保护配置,所以,生产一种保护装置的型号,把零序电流保护的第一段省略而只配零序电流保护二、三段; 零序电流保护中: 零序电流的大小与中性点接地的变压器的多少有很大关系。 零序方向继电器的原理、实现方法、性能评述: 零序方向继电器的最基本思想是比较零序电压的零序电流的相位来区分正、反方向的接地短路。 零序电流以母线流向被保护线路的方向为其正方向。 如果系统中各元件零序阻抗的阻抗角为80°,正方向短路时,零序电压超前零序电流的角度为:-100°,反方向短路时,零序电压超前零序电流的角度为80°;ARG表示的幅角,是分子相量超前分母相量

三段式零序电流保护(精)

实习(实训报告 实习(实训名称:电力系统继电保护课程设计学院: 专业、班级: 指导教师: 报告人: 学号: 时间: 2017年 1月 5日 目录 1设计题 目 ...............................................................................................................................3 2分

析设计要求 (4) 2.1设计规定 (5) 2.2本线路保护 计 .......................................................................................................................6 2.3 系统等效电路图.............................................................................. . (7) 3三段式零序电流保护整定计 算 ............................................................................................8 3.1 三段式零序电流保护中的原则 ...........................................................................................9 3.2 M侧保护 1零序电流保护Ⅰ段整定 (10) 3.3 N侧保护 1零序电流保护Ⅰ段整 定 (11) 4 零序电流保护评 价 ..............................................................................................................12 4.1原理与内容………………………………………………… . …………………………… .13 4.2零序电流保护的优缺点………………………………………………………………… ..13 5 总 结 (1) 4 参考文 献 .......................................................................................................................................... 15 1设计题目 如图 1所示为双电源网络中,已知线路的阻抗km X /4. 01Ω=, km X /4. 10Ω=,两侧系统等值电源的参数:

段式电流保护的整定及计算

2三段式电流保护的整定计算1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流 整定计算公式: 式中: Iact——继电器动作电流 Kc——保护的接线系数 IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。 K1rel——可靠系数,一般取~。 I1op1——保护动作电流的一次侧数值。 nTA——保护安装处电流互感器的变比。 灵敏系数校验: 式中: X1——线路的单位阻抗,一般Ω/KM; Xsmax——系统最大短路阻抗。 要求最小保护范围不得低于15%~20%线路全长,才允许使用。 2、限时电流速断保护

整定 计算 原则: 不超 出相 邻下 一元 件的 瞬时 速断 保护 范围。 所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。故: 式中: KⅡrel——限时速断保护可靠系数,一般取~; △t——时限级差,一般取; 灵敏度校验: 规程要求: 3、定时限过电流保护 定时限过电流保护一般是作为后备保护使用。要求作为本线路主保护的后备 以及相邻线路或元件的远后备。 动作电流按躲过最大负荷电流整定。

式中: KⅢrel——可靠系数,一般 取~; Krel——电流继电器返回 系数,一般取~; Kss——电动机自起动系 数,一般取~; 动作时间按阶梯原则递推。灵敏度分别按近后备和远后备进行计算。 式中: Ikmin——保护区末端短路时,流经保护的最小短路电流。即:最小运行方式下,两相相间短路电流。 要求:作近后备使用时,Ksen≥~ 作远后备使用时,Ksen≥ 注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端; 4、三段式电流保护整定计算实例 如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。已知:1)线路AB长20km,线路BC长30km,线路电抗每公里欧姆;2)变电所B、C中变压器连接组别为Y,d11,且在变压器上装设差动保护;3)线路AB的最大传输功率为,功率因数,自起动系数取;4)T1变压器归算至被保护线路电压等级的阻抗为28欧;5)系统最大电抗欧,系统最小电抗欧。试对AB线路的保护进行整定计算并校验其灵敏度。 解: (1)短路电流计算

断路器和漏电保护器的区别

断路器<又名空气开关它是有灭弧装置的简称空开>它是一种有开关作用,又能进行自动保护低压配电电器.其作用相当于刀开关.熔断器.热继电器等电气元件的组合主要是用来短路和过载保护的.一般分1P<就是只有一根火线进入空开零线在公共端上>1 P加N<就是火线和零线同进入空开不过是零线是常闭的不管它跳不跳闸接线时千万别搞错了!>或是2P 的<就是火线和零线同进入空开二者都是常开跳闸时同时断开>. 3P或4P等.工作原理简单的来说就一句话那就是任何电器在工作时都会发热.且发热程度与功率成正比. 漏电保护器<又名剩余电流动作保护器简称RC D>可以分为以下三种: 第一不带过载.短路保护.仅有漏电保护的RCD.也称为漏电开关. 第二带过载保护.短路保护和漏电保护的RCD.也称为漏电断路器. 第三没有过载.短路保护功能.也不直接分合电路,仅有漏电报警作用的RCD.也称为漏电继电器.一般用于不断电的重要场所.其原理为利用RCD的零序电流互感器来检测.捕捉漏电,触电等接地故障电流.并使其脱扣器动作切断电源.根据其分断反应时间可分为高灵敏度.

中灵敏度和低灵敏度.工作原理为i<火线电流>+i<零线电流>=ix=0.或i

单相漏电保护器的工作原理

图片: 图片: 图片: 图片: loudiɑn bɑohuqi 漏电保护器(卷名:电工) residual current operated protective devices

防止触电和漏电的安全保护电器。全称漏电电流动作保护器。俗称漏电开关。漏电保护器从60年代进入实用阶段以来,大大地减少了人身触电和电器设备的漏电事故,因此世界各国均十分重视漏电保护器的研究。随着技术与标准的不断发展和完善,漏电保护器的性能日益提高,不仅工业中,而且在日用电器中也得到普遍的应用。 分类漏电保护器按极数和线数分为单极二线式(1根火线,1根零线)、二极三线式(2根火线,1根零线)、三极三线式(3根火线)和三极四线式(3根火线,1根零线)。按动作灵敏度分为高灵敏度型、中灵敏度型、低灵敏度型。按动作时间分为瞬动式、延时式和反时限式。按结构又分为以下3种。①漏电保护断路器:带有保护断路器,可作为线路的短路保护开关。②漏电保护继电器:带有保护继电器,使用另外的主电路开关来分断主电路。③漏电保护插座:带有保护断路器,所接负载可通过插头插入。 工作原理用于单相电路的二线漏电保护器的原理结构见图1。其主要组成部分是主开关、检测漏电电流用互感器和脱扣器。由主开关输出的二根导线同时穿过环形铁心,再接至负载。主开关手动闭合后,漏电电流Id=0,此时穿过环形铁心上的主电路电流I1和I2大小相等、方向相反,I1+I2=0。在环形铁心中两电流分别产生的磁通Φ1与Φ2大小相等、方向相反。铁心中产生的合成磁通Φ1+Φ2=0,故互感器环形铁心上的另一个二次绕组回路没有感应电压,U2=0,脱扣器不动作。当发生漏电时,产生漏电电流Id,

第六节 变压器的零序电流保护

二、变电所多台变压器的零序电流保护

每台变压器都装有同样的零序电流保护,它是由电流元件和电压元件两部分组成。正常时零序电流及零序电压很小,零序电流继电器及零序电压继电器皆不动作,不会发出跳闸脉冲。发生接地故障时,出现零序电流及零序电压,当它们大于起动值后,零序电流继电器及零序电压继电器皆动作。电流继电器起动后,常开触点闭合,起动时间继电器KT1。时间继电器的瞬动触点闭合,给小母线A接通正电源,将正电源送至中性点不接地变压器的零序电流保护。不接地的变压器零序电流保护的零序电流继电器不会动作,常闭触点闭合。小母线A的正电源经零序电压继电器的常开触点、零序电流继电器的常闭触点起动有较短延时的时间继电器KT2经较短时限首先切除中性点不接地的变压器。若接地故障消失,零序电流消失,则接地变压器的零序电流保护的零序电流继电器返回,保护复归。。若接地故障没有消失,接地点在接地变压器处,零序电流继电器不返回,时间继电器KT1一直在起动状态,经过较长的延时KT1跳开中性点接地的变压器。 零序电流保护的整定计算: 动作电流: (1)与被保护侧母线引出线零序电流第三段保护在灵敏度上相配合,所以 (2)与中性点不接地变压器零序电压元件在灵敏度上相配合,以保证零序电压元件的灵敏度高于零序电流元件的灵敏度。 设零序电压元件的动作电压为U dz.0,则 U dz.0=3I0X0.T 零序电流元件的动作电流为 动作电压整定:按躲开正常运行时的最大不平衡零序电压进行整定。根据经验,零序电压继电器的动作电压一般为5V。当电压互感器的变比为nTV时,电压继电器的一次动作电压为 U dz.0=5n TV 变压器零序电流保护作为后备保护,其动作时限应比线路零序电流保护第三段动作时限长一个时限阶段。即 灵敏度校验:按保证远后备灵敏度满足要求进行校验 返回 第二节微机保护的硬件框图简介 微机保护硬件示意框图如下图所示。

漏电保护器的正确安装和使用方法

1.漏电保护器的选用、正确的接线方法及安装中注意事项 2009-03-03 22:29 摘要:漏电保护器是一种常用的具有安全保护功能的电器,本文介绍了如何正确选型、安装。 关键词:漏电保护器&安装方法&确保功能 前言目前我国工业与民用低压配电系统中,一般均采用接地和接零保护,也就是我们通常所说的TT和TN接地系统。这两种系统对供电安全保护起到了一定的作用,但由于TT和TN系统本身存在一定的缺陷和不足,在实际运行中仍有某些不安全因素,安装漏电保护器能弥补TT和TN系统的不足,是防止电击事故的有效措施之一,也是防止漏电引起电气火灾和电气设备损坏事故的技术措施,可以进一步提高供电的安全可靠性。因此,漏电保护器在低压配电系统中被广泛地采用。 1. 漏电保护器弥补TT和TN系统的不足,在TT系统中由于中性点不接地,当设备外壳漏电或人员触电时,通过人体的故障电流仅为低压电网的电容电流,其数值不足以引起首端保护装置动作,但对人体的安全已构成极大的危险,而安装漏电保护器能保证在人身触电的瞬间立即断开电源,既保证了人身安全,又从根本上消除了故障。在TN系统中主要存在以下弱点:①保护零线,由于截面小,容易折断,一旦零线断开,在设备漏电时,将使故障设备的外壳长期存在危险电压,其数值可高达220V;②当架空供电线路相线落到潮湿地区或接地的金属建筑物上,由于接地电阻很小,接地短路电流很大,在保护装置未动作之前,零线上就会产生较高电压,如果人体触及用电设备外壳时,就会受到电击;③在低压网络中,如果变压器中性点接地线发生断线,在三相负荷严重不平衡时,将使变压器中性点发生位移,这样将使中性点位移电压加到设备的外壳上,使非故障设备外壳出现危险电压,而导致人身触电;④当三相电源某相线和中性线接错时,就会使用电设备外壳直接接到相线上,如果人体触及用电设备外壳时,便会发生触电危险;⑤当路线绝缘损坏导致供电线路漏电时,由于短路电流不大,保护装置不能及时或需较长时间才能动作切断故障电路,此时,短路或漏电的地方就可能由热量集聚引起电气火灾事故,造成人身伤亡和经济损失。 2. 漏电保护器的选用 2.1 一定要选用获得中国电工产品认证委员会低压 电器认证证实验站的产品认证证书的漏电保护器,上面具有CCEE安全“长城”认证标志。 2.2 根据电气设备的供电方式选用不同的漏电保护器。2.2.1 单相220V电源供电的电气设备,应选用二极二线或单极二线式漏电保护器。 2.2.2 三相三线式380V电源供电的电气设备,应选用三极式漏电保护器。 2.2.3 三相四线式380V 电源供电的电气设备或单相设备与三相设备共用的电路,应选用三极四线或四极四线式漏电保护器。2.3 根据电气线路的正常泄漏电流,选择漏电保护器的额定漏电动作电流。 2.3.1 选择漏电保护器的额定漏电动作电流值时,应充分考虑到被保护线路和设备可能发生的正常漏电流值。 2.3.2 选用的漏电保护器的额定漏电不动作电流,应小于电气线路和设备的正常漏电电流的最大值的2倍。 2.4 漏电保护器的额定电压、额定电流、短路分断能力、额定漏电电流、分断时间应满足被保

6零序保护习题

零序保护 一、选择题 1、某变电站电压互感器的开口三角形侧B 相接反,则正常运行时,如一次侧运行电压为110KV ,开口三角形的输出为(C ) A :0V ; B :100V ; C :200V ; D :220V 2、由三只电流互感器组成的零序电流滤过器,在负荷电流对称的情况下有一组互感器二次侧断线,流过零序电流继电器的电流是(C )倍负荷电流。 A :3; B :2; C :1; D 。 3、在大接地电流系统中,故障电流中含有零序分量的故障类型是(C ) A :两相短路 B :三相短路 C :两相接地短路 D :与故障类型无关 4、接地故障时,零序电压与零序电压的相位关系取决于(C ) A :故障点过渡电阻的大小 B :系统容量的大小 C :相关元件的零序阻抗 D :相关元件的各序阻抗 5、在大接地电流系统中,线路发生接地故障时,保护安装处的零序电压(B ) A :距故障点越远越高 B :距故障点越近越高 C :与距离无关 D :距故障点越近越低 6、不灵敏零序I 段的主要功能是(C ) A :在全相运行情况下作为接地短路保护; B :作为相间短路保护; C :在非全相运行情况下作为接地短路保护; D :作为匝间短路保护。 7、在大接地电流系统中,线路始端发生两相金属性接地短路时,零序方向过流保护的方向元件将(B ) A :因短路相电压为零而拒动; B :因感受零序电压最大而灵敏动作; C :因短路零序电压为零而拒动; D :因感受零序电压最大而拒动。 8.在中性点非直接接地系统中,当发生B 相接地短路时,在电压互感器二次开口三角绕组两端的电压为(C )。 A.B E B.B E C.B E 3 9.在小电流接地系统中,某处发生单相接地时,母线电压互感器开口三角形的电压为(C )。 A.故障点距母线越近,电压越高 B.故障点距母线越近,电压越低

三段式电流保护和零序电流保护习题

三段式电流保护和零序电流保护习题 一、 简答题 1. 继电保护的基本任务和基本要求是什么,分别简述其内容。 2. 后备保护的作用是什么,何谓近后备保护和远后备保护。 3. 说明电流速断、限时电流速断联合工作时,依靠什么环节保证动作的选择性,依靠什么环节保证保护动作的灵敏性和速动性。 4. 功率方向继电器90度接线方式的主要优点。 5. 中性点不接地电网发生单相接地时有哪些特征。 6. 简述零序电流方向保护在接地保护中的作用。 二、计算题 1.如下图所示35kV 电网,图中阻抗是按37kV 归算的有名值,AB 线最大负荷9MW ,cos 0.9?=,自启动系数 1.3ss K =。各段保护可靠系数均取1.2(与变压器配合时取1.3),电流继电器返回系数为0.9,变压器负荷各自保护的动作时间为1s 。计算AB 线三段电流保护的整定值,并校验灵敏系数。 ~ S A B 6.39.4Ω Ω C 10Ω 30Ω 30Ω 12Ω 1 T 2 T D E 2. 如图所示35kV 单侧电源放射状网络,确定线路AB 的保护方案。变电所B 、C 中变压器连接组别为Y,d11,且在变压器上装设差动保护,线路A 、B 的最大传输功率为MW P 9max =,功率因数为9.0cos =?,系统中的发电机都装设了自动励磁调节器。自起动系数取1.3。 3. 网络如图所示,已知:线路AB(A 侧)和BC 均装有三段式电流保护, 它们的最大负荷电流分别为120A 和100A ,负荷的自起动系数均为1.8;线路AB 第Ⅱ段保护的延时允许大于1s ;可靠系数2.1,15.1,25.1===I I I I I I rel rel rel K K K ,

空气开关与漏电保护器的工作原理

漏电保护器原理: 所谓漏电就是流入的电流和流出的电流不等,意味着电路回路中有其它分支,可能是电流通过人体进入大地。根据这个原理设计漏电保护。漏电保护器接入端有“火”“零”两根线。如果“火”和“零”线流过的电流不等,那么感应线圈就会识别微小差别,并通过控制部分,迅速切断开关(跳闸)。保护漏电流在30mA 以下。 空气开关原理: 空气开关就是过载保护,当回路电流超过规定负载,空气开关自动短路(跳闸)。空气开关一般有单独“火”线接入保护,也有“火”“零”接入同时保护。 两者各自实现的功能不同,不能互相代替! 漏电保护器主要实现的是检测家庭供电回路中,有没有非正常电流。所谓非正常电流,指的是没有通过“火线→用电设备→零线”回路的电流,对于这种电流,保护器认为是漏电,它有可能是人触电造成的,也有可能是线路由于受潮对地漏电造成的。 如果上述非正常电流超过一定额度(通常阈值高为20mA)时,保护器就起控,断开供电回路。 保护器一定程度上减少了保护人触电的危险。 有的漏电保护器也有类似保险丝的功能,即总电流超过一定值时,保护器起起控。 但漏电保护器的起控,是通过控制某个开关断开来实现的,它不能保证在整个供电回路出现短路时开关触点还能断开。 而实现任何方式下电流超标时都能断开功能的,只有保险丝。 所以,即使在电力系统中,各种自动控制和保护装置,也不能完全取代保险丝(在电力系统中,称作断路器)。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解ABB断路器、施耐德断路器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.wendangku.net/doc/5314078201.html,/

零序电流保护课程设计

零序电流保护课程设计文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

电力系统继电保护课程设计 指导教师: XXXX 兰州交通大学自动化与电气工程学院 2012 年7 月 7日

1 设计原始资料 具体题目 系统接线图如下图,发电机以发电机-变压器组方式接入系统,开机方式为两侧各开1台机,变压器T6 1台运行。参数为: φ115/E = 1.G3 2.G35,X X ==Ω 1.G1 2.G15,X X ==Ω 1.T1 1.T45,X X ==Ω 0.T10.T415,X X ==Ω 1.T615,X =Ω 0.T620,X =Ω A-B 50(138%)km L =?+B-C 40km,L =线路阻 抗120.4/km,Z Z ==Ω 0 1.2/km,Z =Ω I rel 1.2,K =II rel 1.15K =。 系统接线图 试对1、2进行零序保护的设计。 要完成的内容 ⑴ 请画出所有元件全运行时三序等值网络图,并标注参数; ⑵ 分别求出1、2零序Ⅰ、Ⅱ、Ⅲ段的定值,并校验灵敏度; ⑶ 保护1、2零序Ⅰ、Ⅱ是否需要方向元件。 2 分析要设计的课题内容(保护方式的确定) 设计规程 继电保护装置应满足可靠性、选择性、灵敏性和速动性的要求,110~220kV 有效接地电力网线路,应按下列规定装设反应接地短路和相间短路的保护装置。 ⑴ 对于接地短路: ① 装设带方向和不带方向的阶段式零序电流保护; ② 零序电流保护不能满足要求时,可装设接地距离保护,并应装设一段或两段零序电流保护作为后备保护。 ⑵ 对于相间短路:

①单侧电源单回线路,应装设三相多段式电流或电压保护,如不能满足要求,则应装设距离保护; ②双侧电源线路宜装设阶段式距离保护。 本设计的保护配置 主保护配置 电力系统正常运行时是三相对称的,其零序、负序电流值理论上是零。多数的短路故障是不对称的,其零、负序电流电压会很大,利用故障的不对称性可以找到正常与故障的区别,并且这种差别是零与很大值得比较,差异更为明显。所以零序电流保护被广泛的应用在110kV及以上电压等级的电网中。 后备保护配置 距离保护是利用短路发生时电压、电流同时变化的特征,测量电压与电流的比值,该比值反应故障点到保护安装处的距离,如果短路点距离小于整定值,则保护装置动作。 在保护1、2、3和4处配备三段式距离保护,选用接地距离保护接线方式和相间距离保护接线方式。 3 短路电流及残压计算 等效电路的建立 将本题中的系统简化成三序电压等值网络,即正序网络如图1所示;负序网络如图2所示;零序网络,图3所示。

漏电保护器原理及接线图

漏电保护器原理及接线图

————————————————————————————————作者:————————————————————————————————日期:

漏电保护器原理及接线图 家装电路虽然有专业的电工师傅安装,不用我们操心,但是稍作了解家庭电路也是有必要的。就拿漏电保护器的接线图来说,人家拿张电路图给你看,也要大概看得懂些。对于没有太多专业电路知识的我们来说,确实有点难度,下面就随一起来学习下漏电保护器原理及接线图。 漏电保护器原理 漏电保护器由脱扣电路、过载保护器装置和漏电触发电路三部分组成。过载保护装置由双金属片构成的热元件EHl、EH2组成。将漏电保护器安装在线路中,一次线圈与电网的线路相连接,二次线圈与漏电保护器中的脱扣器连接。 当用电设备正常运行时,线路中电流呈平衡状态,互感器中电流

矢量之和为零(电流是有方向的矢量,如按流出的方向为“+”,返回方向为“-”,在互感器中往返的电流大小相等,方向相反,正负相互抵销)。由于一次线圈中没有剩余电流,所以不会感应二次线圈,漏电保护器的开关装置处于闭合状态运行。 当设备外壳发生漏电并有人触及时,则在故障点产生分流,此漏电电流经人体—大地—工作接地,返回变压器中性点(并未经电流互感器),致使互感器申流入、流出的电流出现了不平衡(电流矢量之和不为零),一次线圈申产生剩余电流。因此,便会感应二次线圈,当这个电流值达到该漏电保护器限定的动作电流值时,自动开关脱扣,切断电源。 漏电保护器接线图 漏电保护器的正确接线方式有一个系统叫TN,指的是配电网的低压中性点直接接地,电气设备外露可到店的部分通过保护线与该接地点连接。

中性点直接接地系统的零序电流保护汇总

第三章 中性点直接接地系统的零序电流保护 一、零序电流保护及其在系统中的作用 不对称短路的计算相当于在短路点增加了一个额外附加阻抗的三相短路如下: 可见零序电流的大小与系统运行方式有关。但零序电流在零序网罗中的分布只与零序网络的结构以及变压器中性点接地的数目和位置有关。 图3-31( b )为其短路计算的零序等效网络。 在零序等效网络中,零序电流看成是故障点F 出现一个零序电压U F0产生的,其方向取由母线流向故障点为正。零序电压的方向采用线路高于大地的电压为正。这样,A 母线的零序是电压表示为。 11)(oT o oA Z I U ??-= (3-48) 该处零序电压与零序电流之间的相位差是由Z 0T1的阻抗角决定的,与线路的零序阻抗无关,线路两端零序功率方向实际上都是由线路流向母线,与正序功率的方向相反

利用零序分量构成线路接地短路的继电保护装置,由于工作原理与结构简单,不受负荷电流影响,保护范围比较稳定,正确动作率高达97%等优点,在我国大接地电流系统的不同电压等级电网的线路上,广泛装设带方向性和不带方向性的多段式零序电流保护,作为反应接地短路的基本保护。 二、中性点直接接地系统变压器中性点接地原则 中性点直接接地系统发生接地短路时,线路上零序电流的大小和分布,主要决定于电网中线路的零序阻抗和中性点接地变压器的零序阻抗以及中性点接地变压器的数目和位置,对于变压器中性点接地的原则: (1)发电厂及变电站低压侧有电源的变压器,若变电站中只有单台变压器运行,其中性点应接地运行,以防止出现不接地系统的工频过电压。 (2)自耦变压器和有绝缘要求的其它变压器其中性点必须接地运行; (3)T接于线路上的变压器,以不接地运行为宜。当T接变压器低压侧有电源时,则应采取防止接地故障时产生工频过电压的措施,最好故障时将小电源解裂; (4)为防止操作过电压,在操作时应临时将变压器中性点接地,操作完毕后再将其断开。 (5)从保护的整定运行出发,还应做如下考虑:变压器中性点接地运行方式的安排,应尽量保持同一厂(站)内零序阻抗基本不变,如:有两台及以上变压器时,一般只将一台变压器中性点接地运行,当该变压器停运时,将另一台中性点不接地变压器中性点直接接地 运行,并把它们分别接于不同的母线上,当其中的一台中性点直接接地变压器停运时,将另

零序电流保护课程设计

电力系统继电保护课程设计 专业:电气工程及其自动化 班级:电气 XXX 姓名: XXXX 学号: XXXXXXXXX 指导教师: XXXX 兰州交通大学自动化与电气工程学院 2012 年7 月 7日

1 设计原始资料 1.1 具体题目 系统接线图如下图,发电机以发电机-变压器组方式接入系统,开机方式为两侧各开1台机,变压器T6 1台运行。参数为: φ115/E = 1.G3 2.G35,X X ==Ω 1.G1 2.G15,X X ==Ω 1.T1 1.T45, X X ==Ω 0.T10.T415,X X ==Ω 1.T615,X =Ω 0.T620,X =Ω A-B 50(138%)km L =?+B-C 40km,L =线路 阻抗120.4/km,Z Z ==Ω 0 1.2/km,Z =Ω I rel 1.2,K =II rel 1.15K =。 系统接线图 试对1、2进行零序保护的设计。 1.2 要完成的内容 ⑴ 请画出所有元件全运行时三序等值网络图,并标注参数; ⑵ 分别求出1、2零序Ⅰ、Ⅱ、Ⅲ段的定值,并校验灵敏度; ⑶ 保护1、2零序Ⅰ、Ⅱ是否需要方向元件。 2 分析要设计的课题内容(保护方式的确定) 2.1 设计规程 继电保护装置应满足可靠性、选择性、灵敏性和速动性的要求,110~220kV 有效接地电力网线路,应按下列规定装设反应接地短路和相间短路的保护装置。 ⑴ 对于接地短路: ① 装设带方向和不带方向的阶段式零序电流保护; ② 零序电流保护不能满足要求时,可装设接地距离保护,并应装设一段或两段零序电流保护作为后备保护。 ⑵ 对于相间短路:

漏电保护器的工作原理图解

漏电保护器的工作原理图解

————————————————————————————————作者:————————————————————————————————日期:

漏电保护器的工作原理图解 目前的单相漏电保护器有许多种型号,各不相同。 比如,常用的DZ第列的漏电保护器,开关断开时只断开相线,零线仍然通的。用万用表量一下就能知道。 漏电保护器,简称漏电开关,又叫漏电断路器,主要是用来在设备发生漏电故障时以及对有致命危险的人身触电保护,具有过载和短路保护功能,可用来保护线路或电动机的过载和短路,亦可在正常情况下作为线路的不频繁转换启动之用。 漏电保护器的工作原理是: 将漏电保护器安装在线路中,一次线圈与电网的线路相连接,二次线圈与漏电保护器中的脱扣器连接. 当用电设备正常运行时,线路中电流呈平衡状态,互感器中电流矢量之和为零(电流是有方向的矢量,如按流出的方向为“+”,返回方向为“-”,在互感器中往返的电流大小相等,方向相反,正负相互抵销).由于一次线圈中没有剩余电流,所以不会感应二次线圈,漏电保护器的开关装置处于闭合状态运行. 当设备外壳发生漏电并有人触及时,则在故障点产生分流,此漏电电流经人体—大地—工作接地,返回变压器中性点(并未经电流互感器),致使互感器申流入、流出的电流出现了不平衡(电流矢量之和不为零),

一次线圈申产生剩余电流.因此,便会感应二次线圈,当这个电流值达到该漏电保护器限定的动作电流值时,自动开关脱扣,切断电源。 (下附原理图) 漏电保护器可以按其保护功能、结构特征、安装方式、运行方式、极数和线数、动作灵敏度等分类,这里主要按其保护功能和用途分类进行叙述,一般可分为漏电保护继电器、漏电保护开关和漏电保护插座三种。 漏电保护继电器由零序互感器、脱扣器和输出信号的辅助接点组成。它可与大电流的自动开关配合,作为低压电网的总保护或主干路的漏电、接地或绝缘监视保护。 当主回路有漏电流时,由于辅助接点和主回路开关的分离脱扣器串联成一回路,因此辅助接点接通分离脱扣器而断开空气开关、交流接触器等,使其掉闸,切断主回路。辅助接点也可以接通声、光信号装置,发出漏电报警信号,反映线路的绝缘状况。其工作原理流程如下:

零序电流式漏电保护工作原理

零序电流式漏电保护的工作原理 一、零序电流式漏电保护的元件组成: 由断路器DW、零序电流互感器LLH、整流桥D以及漏电保护继电器J构成。 二、工作原理: 零序电流保护的基本原理是基于基尔霍夫电流定律:流入电路中任一节点的复电流的代数和等于零,也就是Ia+Ib+Ic=0。在线路与电气设备正常的情况下,各相电流的矢量和等于零,因此,零序电流互感器LLH二次侧绕组无信号输出,漏电保护继电器J不吸合,漏电保护继电器常闭触点J1不断开,断路器DW不吸合,主电路中断路器的脱扣器DW1不动作。线路正常供电。 当线路中出现漏电故障时,三相线路中的某一相与大地构成一个回路,回路中有漏电电流流过,这样零序电流互感器LLH中就有一个感应电压,通过整流桥D整流,得到一个直流电,当直流电流达到漏电保护继电器J动作电流时,漏电保护继电器J吸合,漏电保护继电器J的常闭触点J1打开,断路器DW失电,断路器的脱扣器DW1动作,切断电源,从而实现了漏电保护。 可以从以下常见原因中查找漏电故障: 1电缆和电气设备是否长期过负荷运转,使绝缘老化,形成漏电 2 运行中的电气设备是否受潮或进水,使对地绝缘电阻降低而漏电 3 电缆的接头是否存在质量不高、接头不牢,运行或移动时松脱

形成漏电 4 设备内部是否随意增加电气元件,使电气距离减少,因放电形成漏电。 5 电缆是否受机械损伤或受潮、进水使绝缘损坏而漏电 6 电气设备是否遗留其他导电物体,使电源某相碰壳而形成漏电 7 电气设备是否接线错误造成漏电 8 电缆是否由于反复弯曲使芯线部分折断,刺破电缆的绝缘而形成漏电 9 电气设备是否在操作时产生弧光放电而造成漏电 10 电气设备在维修时,是否由于送停电错误,带电操作或工作不慎,造成人身触电而漏电。

相关文档
相关文档 最新文档