文档库 最新最全的文档下载
当前位置:文档库 › 耐温抗盐AM-AA-SAS-St四元聚合物驱油剂的合成及性能评价

耐温抗盐AM-AA-SAS-St四元聚合物驱油剂的合成及性能评价

耐温抗盐AM-AA-SAS-St四元聚合物驱油剂的合成及性能评价
耐温抗盐AM-AA-SAS-St四元聚合物驱油剂的合成及性能评价

第十一章聚合物驱油动态特征及影响因素

第十一章聚合物驱动态特征及影响因素8886696 10.67.169.226 第一节聚合物驱动态变化特征 一、聚合物驱动态变化特征 1、注入压力和注入能力的变化 注入压力的变化是聚合物驱过程中最早显现的一个特征。由于增加了注入水的粘度,以及聚合物在油层孔隙中的吸附捕集,注入井周围油层的渗透率下降较快,导致注入初期注入压力上升较快,与注聚合物前相比最高上升2~5MPa。随着聚合物的注入,近井地带的聚合物吸附达到平衡,渗流阻力趋于稳定或缓慢上升。这表明,聚合物在油层中的传播能力好,不会发生堵塞问题。由此,可以早期判断聚合物与油层的配伍性及注入方案的合理性。转入后续注入顶替水驱替时,注人压力稍有下降,但仍比注聚合物前高1~3MPa,直到再稳定(图11-1)。 由于注入压力的升高,注入水粘度增加,渗流阻力增大,注入能力下降。初见效期比吸水指数下降较快,明显见效期比吸水指数保持平稳稍有降低,与注聚合物前相比约下降1/3~1/2。但后续注水突破油井后,比吸水指数逐步上升,至见效末期比吸水指数保持平稳或略有上升(图11-2)。 孤岛、孤东及胜一区聚合物驱试验测试资料同样也表明了这一规律,注聚合物溶液与注水时相比,启动压力上升,注人能力下降1/3左右。3个试验区启动压力平均上升1.67MPa左右,比吸水指数下降1/4或2/3(表11-1)。 图 11-1 孤岛油田中一区Ng3聚合物驱先导试验注入压力变化曲线

图 11-2 孤东油田七区西注聚合物扩大试验区比吸水指数变化曲线 表 11-1 先导试验注入井指示曲线测试结果对比 2、产液能力的变化 已经进行的聚合物驱矿场实施项目,一般都表现出在聚合物驱过程中油井流压降低、产液能力下降的现象。这是由于聚合物溶液注入地层以后,由于驱替剂粘度的增加,改善了水驱时不利的流度比,降低了驱油剂的流度,导致渗流阻力增大,使地层供液能力低于水驱供液能力。特别是在高含水阶段,由于油井含水降低,从而大幅度地降低产液指数。 孤岛油田中一区Ng3聚合物驱先导试验区中心井中11-Jll井的流动系数由注聚合物初期的7.45D·m/mPa·s)连续降至注聚合物结束时的1.94D·m/(mPa·s),采液指数由24.4m3/d·MPa)下降至4.93m3/(d·MPa)。 在聚合物驱替过程中,地层压力、油井流压、油井含水及原油脱气对产液指数的变化有明显的影响。在控制油井流压下采油时,在相同含水的情况下,随着地层压力不断恢复,产液指数则不断恢复;在控制地层压力下采油时,油井流压增加并不断恢复,则产液指数缓慢增加。 油井初始含水率也影响采液指数,在聚合物驱开始时,油井初始含水率越高,产液指数下降幅度越大。在相同的初始含水率条件下,油井含水率下降幅度越大,则产液指数下降幅度也越大。为了减小油井产液指数的下降,应当保持和提高地层压力,以保持较小的脱气指数,同时油井应加大机械采油强度,进一步降低流压。 3、产油能力和含水的变化 长期以来,人们认为聚合物驱只是所谓的“改善水驱”,不能导致油井含水大幅度下降,采油量明显增加,采收率只能提高2.5%。近年来,人们通过大量的矿场实践发现,在聚合物驱油过程中,随着宏观和微观波及体积的增加,也会类似微乳液驱那样,使原油富集,形成“油墙”从而使油井含水大幅度下降,产油量明显增加,并可大幅度提高采收率。

三次采油用聚丙烯酰胺综述

驱油用聚丙烯酰胺研究现状 前言: 随着经济的迅猛发展,世界对能源尤其是石油的需求量不断增加。因此,提高原油采收率日益成为国际上石油企业经营规划的一个重要部分。近年来,我国社会经济持续快速增长对汽油的需求量越来越大,而国内的石油供应却难以满足人们对石油日益增长的需求。石油对外的依存度进一步增大,已接近50%。并且国内各大油田经过一次、二次采油油田含水量不断提高,大部分已进入高含水期开采阶段,含水率已达到90%以上。针对二次采油后开采难度逐渐加大的现象进行三次采油是提高采油率的重要方法。三次采油是指在利用天然能量进行开采和传统的用人工增补能量( 注水、注气) 之后,利用物理的、化学的、生物的新技术进行尾矿采油的开发方式。主要通过注入化学物质、蒸汽、气( 混相) 或微生物等,从而改变驱替相和油水界面性质或原油物理性质。其中聚合物驱是三次采油的主要技术方法,驱油机理清楚,工艺相对简单,技术日趋成熟,是一项有效的提高采收率技术措施,自上世纪七、八十年代以来,国内的油田工作者对聚合物的合成及应用进行了大量的研究,某些领域目前已达到国际先进水平。 常用的驱油聚合物主要是部分水解的聚丙烯酰胺(PAM)及其衍生物。聚丙烯酰胺(Polyacrylamide,简称PAM)是丙烯酰胺(Acrylamide,简称AM)及其衍生物的均聚物和共聚物的统称。工业上凡有50%以上AM单体的聚合物统称为聚丙烯酰胺。PAM是一种线型水溶性高分子,是水溶性高分子化合物中应用最为广泛的品种之一。聚丙烯酰胺浓溶液与NaOH或NaCO3共水解可以合成部分水解聚丙烯酰胺(简称HPAM)(水解度在20%-60%为宜)。HPAM亲水性强,在淡水中,易与水形成氢键,易溶于水,水化后具有较大的水动力学体积。由于聚丙烯酰胺分子内羧酸钠基的电性相互排斥作用,使聚丙烯酰胺分子呈伸展状态,增黏能力很强。而在盐水中,由于聚丙烯酰胺分子内羧钠基的电性被屏蔽,聚丙烯酰胺分子呈卷曲状态。水解度(羧酸钠基含量越高)越大,聚丙烯酰胺在盐水中分子卷曲越严重,增黏能力越差。当聚丙烯酰胺水解度≤40%时,尽管聚丙烯酰胺分子卷曲非常严重,增黏能力大大下降,但不会出现沉淀现象。在硬水( Ca2+、Mg2+含量较高时)中,当聚丙烯酰胺水解度≥40%时,聚丙烯酰胺分子与钙、镁等多价离子结合,发生絮凝沉淀。事实上,此类聚合物自身存在的剪切变稀、高温分解、高温水解、遇盐降粘的缺点,严重影响了高温高盐油藏聚合物驱油效果及聚合物的使用效率,已经成为当前高温高盐油藏推广开展聚合物驱油的技术瓶颈。因此开发高粘度、耐高温、抗盐聚合物已经迫在眉睫。 目前,提高聚合物的耐温抗盐性能,主要以聚丙烯酰胺类聚合物为基础。从分子结构角度根据分子设计原理,提高高聚物耐温抗盐途径有:(1)制备超高分子质量聚丙烯酰胺;(2)在聚丙烯酰胺分子主链上引入刚性基团,或引入刚性侧基来增加高分子链的热稳定性;(3)引入具有耐温抗盐功能的结构单元;(4)合成分子中基团之间具有特殊缔合作用的功能基团;(5)制备特殊分子结构的聚合物也可以提高聚合物的抗温和耐盐性。该类聚合物主要包括:星型聚合物、梳型聚合物、嵌段聚合物、交联网络聚合物。 近年来,三次采油用耐温抗盐聚丙烯酰胺可分为三大方向,即超高分子量聚合物、聚合物的化学改性和多组元聚合物。其中化学改性聚合物又包括耐温抗盐单体改性聚合物、疏水单体改性聚合物、两性聚合物、复合型聚合物、特殊分子结构聚合物等几种类型。

高聚物结构与性能

1.聚合物表面改性 聚合物表面改性方法可以分为以下几种:化学改性、光化学改性、表面改性剂改性、力化学处理、火焰处理与热处理、偶联剂改性、辐照与等离子体表面改性。 (1)化学改性是通过化学手段对聚合物表面进行改性处理,其具体方法包括化学氧化法、化学浸蚀法、化学法表面接枝等。 化学氧化法是通过氧化反应改变聚合物表面活性。常用的氧化体系有:氯酸-硫酸系、高锰酸-硫酸系、无水铬酸-四氯乙烷系、铬酸-醋酸系、重铬酸-硫酸系及硫代硫酸铵-硝酸银系等,其中以后两种体系最为常用。 化学浸蚀法是用溶剂清洗可除去聚烯烃表面的弱边界层,例如通过用脱脂棉蘸取有机溶剂,反复擦拭聚合物表面多次等。 聚合物表面接枝,是通过在表面生长出一层新的有特殊性能的接枝聚合物层,从而达到显著的表面改性效果。 (2)光化学改性主要包括光照射反应、光接枝反应。 光照射反应是利用可见光或紫外光直接照射聚合物表面引起化学反应,如链裂解、交联和氧化等,从而提高了表面张力。 光接枝反应就是利用紫外光引发单体在聚合物表面进行的接枝反应。 (3)表面改性剂改性 采用将聚合物表面改性剂与聚合物共混的方式是一种简单的改性办法,它只需要在成型加工前将改性剂混到聚合物中,加工成型后,改性剂分子迁移到聚合物材料的表面,从而达到改善聚合物表面性能的目的。 (4)力化学处理是针对聚乙烯、聚丙烯等高分子材料而提出来的一种表面处理和粘接方法,该方法主要是对涂有胶的被粘材料表面进行摩擦,通过力化学作用,使胶黏剂分子与材料表面产生化学键结合,从而大大提高了接头的胶接强度。力化学粘接主要是通过外力作用下高分子键产生断裂而发生化学反应,包括力降解、力化学交联、力化学接枝和嵌段共聚等。(5)火焰处理就是在特别的灯头上,用可燃气体的热氧化焰对聚合物表面进行瞬时处理,使其表面发生氧化反应而达到表面改性的效果。热处理是将聚合物暴露在热空气中,使其表面氧化而引入含氧基团。 (6)偶联剂是一种同时具有能分别与无机物和有机物反应的两种性质不同官能团的低分子化合物。其分子结构最大的特点是分子中含有化学性质不相同的两个基团,一个基团的性质亲无机物,易于与无机物表面起化学反应;另一个基团亲有机物,能与聚合物起化学反应,生成化学键,或者能互相融合在一起。偶联剂主要包括硅烷偶联剂、钛酸酯偶联剂两大类,其作用机理同表面活性剂的改性机理相同。 (7)辐照改性是聚合物利用电离辐射(直接或间接的导致分子的激发和电离)来诱发一些物理化学变化,从而达到改性的目的。等离子体表面改性是通过适当选择形成等离子体的气体种类和等离子体化条件,对高分子表面层的化学结构或物理结构进行有目的的改性。2.哪些物质能形成液晶,判断、表征 形成液晶物质的条件: (1)具有刚性的分子结构。 (2)分子的长宽比。棒状分子长宽比>4左右的物质才能形成液晶态;盘状分子轴比<1/4左右的物质才能呈现液晶态。 (3)具有在液态下维持分子的某种有序排列所必需的凝聚力。这种凝聚力通常是与结构中的强极性基团、高度可极化基团、氢键等相联系的。 液晶相的判断:各种液晶相主要是通过它们各自的光学形态即织构来识别的,即在正交偏光显微镜下可观察到各种不同的由双折射产生的光学图像,这些图像是由“畴”和向错构成的。

聚合物结构与性能题目

《聚合物结构与性能》习题集考试为开卷考试,但只能带课本,不能带任何资料,就是希望大家完全掌握下列知识,做合格高分子专业研究生! 一、提高聚合物样品电镜下稳定性的方法 对样品进行支撑: 1.大目数电镜铜网,如 400目铜网; 2.无定型材料作支持膜:硝化纤维素(火棉胶),聚乙烯醇缩甲醛(PVF),或无定型碳;碳支持膜:通过真空蒸涂的办法,将碳沉积在光洁的载玻片或新剥离云母片表面,然后漂在蒸馏水表面,转移至铜网上。 二、提高聚合物样品成像衬度的方法有几个? (1)染色:将电子密度高的重金属原子渗入聚合物的某些区域通过提高其电子密度来增大衬度的。从最终效果上染色分正染色和负染色。从作用机制上染色分化学反应和物理渗透。从手段上分直接染色和间接染色。 最常用的染色剂有:四氧化锇(OsO4)、四氧化钌(RuO4) 四氧化锇(OsO4)染色:四氧化锇染色是利用其与-C=C-双键以及-OH和-NH2基团间的化学反应,使被染色的聚合物含有重金属锇,从而使图像的衬度提高。 四氧化钌(RuO4)染色:四氧化钌染色是利用其对不同聚合物或同一聚合物的不同部位(如晶区和非晶区)的不同渗透速率,使不同

聚合物或同一聚合物的不同部位含有不同量的重金属钌,从而使图像的衬度提高。 (2)晶粒方向: 为得到清晰的衬度,可调整晶体样品的取向,使得除透射电子束外,只出现一个很强的衍射束,一般称为双光束情况 (3)调整样品厚度; (4) 结构缺陷; (5)一次电子与二次电子相位 三、何为橡胶的高弹性?高弹性的本质是什么?什么化学结构和聚集态结构的高分子能够作为橡胶材料?请用应力应变曲线表达出橡胶、塑料、有机纤维三者的区别。 橡胶的高弹性:小应力下的大形变、外力除去后可以恢复; 高弹性的本质是熵弹性。橡胶弹性是由熵变引起的,在外力作用下,橡胶分子链由卷曲状态变为伸展状态,熵减小,当外力移去后,由于热运动,分子链自发地趋向熵增大的状态,分子链由伸展再回复卷曲状态,因而形变可逆。 具有橡胶弹性的化学结构条件: (1)由长分子链组成 (2)分子链必须有高度的柔性 (3)分子链必须结合在一个交联网络之中 第一个条件是熵弹性的本源;第二个条件是分子链迅速改变构想的可能;第三个条件保证了可恢复性,这是橡胶材料不同于单分子链之处。 (4)具有橡胶弹性的凝聚态结构:无定形态。(橡胶的聚集态是指很多生胶分子聚集在一起时分子链之间的几何排列方式和堆砌

发泡剂种类

发泡剂种类 (一)物理发泡剂。物理发泡剂种类较多,如脂肪烃、氯代烃、氟氯烃和二氧化碳气体等,自20世纪50年代,一氟三氯甲烷(CFC-11)作为聚氨酯首选的发泡剂被广泛应用,因其对大气臭氧层有破坏作用,为了保护地球生态环境,必须禁止使用CFCS类化合物。多年来国内外一直在寻找和开发理想的替代产品,替代发泡剂除考虑发泡剂本身的性质外,一般还需要对聚醚多元醇、匀泡剂、催化剂等原料进行适当调整与改善,使配方体系达到最优化,因此物理发泡剂的关键在于替代产品的开发与应用研究。到目前为止,对发泡剂CFC~11的替代主要有以下四种方案。 (1)二氧化碳发泡剂。二氧化碳发泡剂有两种,一种是异氰酸酯和水反应生成二氧化碳(水发泡)作为发泡剂,另一种是液体二氧化碳。水发泡与CFC-11相比优点在于,二氧化碳ODP(臭氧损耗值)为零,无毒、安全、不存在回收利用问题,不需要投资改造发泡设备;缺点是发泡过程中多元醇组份粘度较高,发泡压力与泡沫温度都较高,泡沫塑料与基材粘接性变差,尤其是硬泡产品的热导率高;由于二氧化碳从泡孔中扩散速度较快,而空气进入泡孔较慢,从而影响泡沫塑料尺寸稳定性,虽然可以通过改性有所改进,但是仍然不如CFC-11发泡材料。目前主要用于对绝热性要求不高的供热管道保温、包装泡沫塑料和农用泡沫塑料等领域;液体二氧化碳发泡优缺点与水发泡相同,目前主要用于聚氨酯软泡,用于硬泡可以克服水发泡增加了异氰酸酯的消耗量、泡沫塑料发脆和与基材粘接性差等缺点。但是液体发泡要对发泡机进行改进,液体二氧化碳储运费用增加,目前液体二氧化碳发泡技术尚在不断研究与发展之中。 (2)氢化氟氯烃发泡剂。氢化氟氯烃(HCFC)类发泡剂,分子中含有氢,化学特性不稳定,比较容易分解,因此其ODP要远远小于CFC-11,所以HCFC被当作CFC发泡剂第一代替代产品,在过渡时期内暂时使用,应尽可能在短时间内被无氯化合物所取代。目前欧盟、美国、日本禁止使用HCFC类发泡剂的时间为2004年底,我国截止使用年限为2030年。目前商业上可以替代CFC-11最成熟的产品为HCFC-14LB,它与多元醇和异氰酸酯的相溶性好,在不增加设备的条件下可以直接用HCFC-14LB代替CFC-11,在达到同样密度和相近的物理特性泡沫体时用量要少于CFC-11。HCFC-141B的缺陷在于原料价格较高,对某些ABS 和高抗冲击性聚苯乙烯具有溶解性,且其导热系数比CFC-11高,因此需要得到的泡沫体密度较高,才可以达到隔热效果。另外一类代替CFC-11的氢化氟氯烃产品为60:40的HCFC-22/HCFC-14LB混合物,这类混合物是工业生产中最常用的溶剂,生产技术成熟,价格适中,缺点在于HCFC-22/HCFC-141B体系在一般多元醇中的溶解度相对较低,加工含有HCFC-22的多元醇相对困难。另外HCFC-124的ODP值仅为HCFC-141B的1/5,允许使用年限更久,国外一些企业计划将其用于建筑和冰箱器具泡沫中,与较高成本的氢化氟烷烃(HFC)进行竞争。 (3)烃类发泡剂。用于聚氨酯发泡剂的烃类化合物主要是环戊烷,特别是环戊烷的硬泡体系具有导热系数较低和抗老化性能,ODP值为零等优点,常被用于冰箱、冷库和建筑的隔热保温等领域,已经成为我国硬泡CFC-11替代品的首选。另外以正丁烷、异丁烷作为辅助发泡剂,制备环戊烷聚氨酯硬泡必须解决以下两个问题,选用防爆设备解决环戊烷易燃、易爆的问题;采用一定措施如正戊烷、异戊烷与环戊烷一起使用,可以改善泡沫流动性,从而解决环戊烷在聚醚多元醇中溶解性差的问题。近年来我国环戊烷的生产开发取得较大进展,以乙烯裂解副产C5为原料,经过解聚、加氢等工艺可以获得高纯度环戊烷。北京化工研究院承担的“环戊烷产品开发”项目通过鉴定,目前国内吉林龙山化工厂、北京东方化工厂、南京红宝丽股份有限公司等已经成功建设环戊烷生产装置,并与国内多家著名的冰箱生产企业联合,为其提供环戊烷型组合聚醚用作发泡材料使用。( (4)氢化氟烷烃(HFC)发泡剂。HFC类化合物ODP值为零,在软质PU泡沫生产中是

发泡剂产品知识

发泡剂(发泡胶)产品知识 第一部分单组分硬质聚氨酯填缝剂 一、简介 聚氨酯填缝剂全称单组分聚氨酯泡沫填缝剂,俗称发泡剂、发泡胶;是气雾技 术和聚氨酯泡沫技术交叉结合的产物。它是一种将聚氨酯预聚物、发泡剂、催化剂等组分装填于耐压气雾罐中的特殊聚氨酯产品。当物料从气雾罐中喷出时,沫 状的聚氨酯物料会迅速膨胀并与空气或接触到的基体中的水分发生固化反应形成泡沫。固化后的泡沫弹性体具有填缝、粘结、密封、隔热、吸音等多种效果,是 一种环保节能、使用方便的建筑材料。可适用于密封堵漏、填空补缝、固定粘结,保温隔音,尤其适用于塑钢或铝合金门窗和墙体间的密封堵漏及防水。 二、固化反应 单组分硬质聚氨酯泡沫塑料的主要成分是预聚体,它是由异氰酸酯与聚醚反应而成,由于异氰酸酯过量,预聚体端基为异氰酸酯,作用是物料从罐中喷出,端基与空气或环境中的水分进行反应,固化后,即为硬质聚氨酯泡沫。 三、性能 一般表干时间在10分钟左右(室温20℃,相对湿度50%环境下,以下固化时间 也是在这个条件下),全干时间随环境温度和湿度而有所不同,一般情况下,夏季 全干时间约40-60min,冬季0℃左右则需要24小时或更长时间才能全干。在正 常使用条件下(并在其外表有覆盖层的情况下),估计其服务寿命不低于10年;在-10℃~80℃的温度范围内固化泡沫体均保持良好的弹性和粘结力。固化后的泡沫 具有填缝、粘结、密封等功能。阻燃型聚氨酯填缝剂能达到B和C级阻燃级别。 (1)外观气雾罐中为液体,喷出后为颜色均一的白色泡沫体,无未分散的颗粒、杂质。固化后为泡沫均匀的硬质塑料 (2)密度≥10kg/m (3)导热系数(35℃)≤0.05 (4)尽寸稳定性23C,48小时。≤5

【CN109880607A】一种二元驱油剂及其应用【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910229130.5 (22)申请日 2019.03.25 (71)申请人 大庆华理生物技术有限公司 地址 163000 黑龙江省大庆市红岗区南三 路21号 (72)发明人 李国军 刘长宇  (74)专利代理机构 大庆市远东专利商标事务所 23202 代理人 周英华 (51)Int.Cl. C09K 8/584(2006.01) C09K 8/588(2006.01) (54)发明名称 一种二元驱油剂及其应用 (57)摘要 本发明的一种二元驱油剂属于油田开发技 术领域,是由两性表面活性剂55~60份,水36~ 39份, 助溶剂1~5份,润湿剂2~6份制成;其配方体系,按重量百分比主要由以下组分组成:二元 驱油剂为0.025~0.4%、聚丙烯酰胺聚合物为0.05 ~0.25%、 余量水。本发明提供的二元驱油剂中,各组份在协同效应下,无需加入碱,可以改变润湿 性、降低油水界面张力至10-3mN/m数量级,从而 提高原油采收率。与传统的化学表活剂驱油体系 相比具有绿色环保、使用量小、水溶性好、价格低 廉等优点,并且其制备方法简便、切实可行,经济 效益显著, 生产过程中对环境无污染。权利要求书1页 说明书5页CN 109880607 A 2019.06.14 C N 109880607 A

1.一种二元驱油剂,其特征在于是由下列组份按重量份数制成:两性表面活性剂55~60份,水36~39份,助溶剂1~5份,润湿剂2~6份。 2.如权利要求1所述的一种二元驱油剂,其特征在于所述的两性表面活性剂为芥酸酰胺丙基甜菜碱、十八烷基羟基丙基磺基甜菜碱、椰油酰胺丙基甜菜碱或椰油酰胺丙基羟基磺基甜菜碱中一种或多种任意比例混合。 3.如权利要求1所述的一种二元驱油剂,其特征在于所述助溶剂为异丙醇、正丁醇中一种或两种任意比例混合。 4.如权利要求1所述的一种二元驱油剂,其特征在于润湿剂为卵磷脂、脂肪酸、烷基酚聚氧乙烯醚中一种或多种组份任意比例混合。 5.一种二元驱油剂在采油工艺中的配方体系,按重量百分比主要由以下组分组成: (1)二元驱油剂为0.025 ~0.4 %; (2)聚丙烯酰胺聚合物为0.05% ~0.25%; (3)余量水; 上述的聚丙烯酰胺聚合物,浓度为1200 mg/L,分子量为1000~1500万。 权 利 要 求 书1/1页 2 CN 109880607 A

结构与性能(聚合物部分)整理

高聚物结构与性能 一、高聚物的分子结构 概念: 1大分子(macromolecule);是由大量原子组成的,具有相对高的分子质量或分子重量 2聚合物分子(polymer molecule);也叫高聚物分子,通常简称为高分子,它意味着:(1) 这些部分是由相对低分子质量的分子衍生的单元(所谓的单体单元或链节);(2) 并且只有一种或少数几种链节;(3) 这些需要的链节多重重复重现 3星形大分子(star macromolecule);从一个公共的核伸出三个或多个臂(支链)的分子若从一个公共的核伸出三个或多个臂(支链)则称为星型高分子 则称为星型高分子 4共聚物(copolymer);由两种或两种以上不同单体经聚合反应而得的聚合物 5共聚物分子(copolymer molecule); 6构型(configuration);是指分子中通过化学键所固定的原子的空间排列 7构象(conformation);构象指一个分子中,不改变共价键结构,仅单键周围的原子放置所产生的空间排布(由于单键内旋转而产生的分子在空间的不同形态称为~) 8链段(macromolecular segments);高分子链上对应于伸直长度和柔性与该高分子链相同的自由连结链内一个统计单元的一段分子链 9高分子链的柔性(flexibility of polymer chain), 高分子链在绕单键内旋转自由度,内旋转可导致高分子链构象的变化,因为伴随着状态熵增大,自发地趋向于蜷曲状态,这种特性就称为高分子链柔性 10聚合度(degree of polymerization); 指聚合物大分子中重复结构单元的数目 11侧基(side group);连接在有机物碳链上的取代基 12端基(end group);聚合物分子链端的基团 13无规共聚物(random copolymer);具有Bernoullian序列统计的统计聚合物(聚合物中组成聚合物的结构单元呈无规排列) 14嵌段共聚物(block copolymer);由通过末端连接的均匀序列的嵌段组成的共聚物(聚合物由较长的一种结构单元链段和其它结构单元链段构成) 15统计共聚物(statistic copolymer);通过聚合反应的统计处理给出单体单元在共聚物分子中的序列 16交替共聚物(alternating copolymer)单体单元A和单体单元B在共聚物分子中交替分布

2010年聚合物结构分析习题

《聚合物结构分析》基础习题 。 第二章红外光谱 1、红外光谱试验中有哪几种制样方法?分别适应于哪种类型的样品?对于那些易于溶解 的聚合物可以采用哪一种制样方法?对于那些不容易溶解的热塑性聚合物可以采用哪一种制样方法?对于那些仅仅能在溶剂中溶胀的橡胶样品,可以采用哪一种制样方法? 对于粘稠的低聚物和黏合剂可以采用哪种方法制样? 2、红外光谱仪中常用的附件有哪些?各自的用途是什么? 3、红外光谱图的表示方法,即纵、横坐标分别表示什么? 4、记住书中表2-1中红外光谱中各种键的特征频率范围。 5、名词:红外光谱中基团的特征吸收峰和特征吸收频率,官能团区,指纹区,透过率,吸光度,红外二向色性,衰减全反射,光声效应 6、红外光谱图中,基团的特征频率和键力常数成___正比____,与折合质量成___反比____。 7、官能团区和指纹区的波数范围分别是1300-4000cm-1和400-1300cm-1。 9、论述影响吸收谱带位移的因素。 10、在红外谱图中C=O的伸缩振动谱带一般在1650-1900cm-1,该谱带通常是含C=O 聚合物的最强谱带;记住表2-2中C=O在不同分子中红外光谱图上对应的吸收谱带的位置。对于聚丙烯酸、聚丙烯酰胺、聚丙烯酸甲酯来说,按C=O的伸缩振动谱带波数高低,依次是聚丙烯酰胺、聚丙烯酸、聚丙烯酸甲酯。 12、为什么可以用红外光谱技术来判断两种聚合物的相容性?p14 13、对于伸缩振动,氢键会使基团的吸收频率下降,谱带变宽;对于弯曲振动,氢键会使基团的吸收频率升高,谱带变窄。

14、共轭效应会造成基团的吸收频率降低。 16、叙述傅立叶变换红外光谱仪工作原理。会画图2-7的原理图。 17、简述红外光谱定量分析的基础。p25 19、接枝共聚物和相应均聚物的共混物的红外谱图是相同的,可以用共混物模拟接枝共聚物。 22、如何用红外光谱鉴别(1)PMMA和PS;(2)PVC和PP;(3)环氧树脂和不饱和聚酯。 24、写出透过率和吸光度的定义式,并标明各符号意义。 第三章激光拉曼散射光谱法 2、与红外光谱相比,拉曼光谱有什么优缺点? 3、名词:拉曼散射,瑞利散射,斯托克斯线,反斯托克斯线,拉曼位移, 4、红外吸收的选择定则是分子振动时只有伴随有分子偶极矩发生变化的振动才能产生红外吸收;拉曼活性的选择定则是分子振动时只有伴随有分子极化度发生变化的振动才能产生红外吸收。 5、对多数吸收光谱,只有频率和强度两个基本参数,但对激光拉曼光谱还有一个重要参数,即去偏振度或退偏振比。 7、如果一个化合物的红外和拉曼光谱中没有波数相同的谱带,说明该化合物具有对称中心。 8、拉曼光谱在聚合物结构研究中有哪些应用? 第四章紫外光谱

2013年聚合物结构及性能测试试题集 2

《聚合物结构及性能测试》基础习题 第一篇波谱分析 第一章红外光谱 1、红外光谱试验中有哪几种制样方法?分别适应于哪种类型的样品?对于那些易于溶解 的聚合物可以采用哪一种制样方法?对于那些不容易溶解的热塑性聚合物可以采用哪一种制样方法?对于那些仅仅能在溶剂中溶胀的橡胶样品,可以采用哪一种制样方法? 对于粘稠的低聚物和黏合剂可以采用哪种方法制样? 2、红外光谱图的表示方法,即纵、横坐标分别表示什么? 3、记住书中红外光谱中各种键的特征频率范围。 6、红外光谱图中,基团的特征频率和键力常数成___正比____,与折合质量成___反比____。 7、官能团区和指纹区的波数范围分别是1300-4000cm-1和400-1300cm-1。 9、论述影响吸收谱带位移的因素。 10、在红外谱图中C=O的伸缩振动谱带一般在1650-1900cm-1,该谱带通常是含C=O 聚合物的最强谱带;对于聚丙烯酸、聚丙烯酰胺、聚丙烯酸甲酯来说,按C=O的伸缩振动谱带波数高低,依次是聚丙烯酰胺、聚丙烯酸、聚丙烯酸甲酯。 12、为什么可以用红外光谱技术来判断两种聚合物的相容性? 13、对于伸缩振动,氢键会使基团的吸收频率下降,谱带变宽;对于弯曲振动,氢键会使基团的吸收频率升高,谱带变窄。 14、共轭效应会造成基团的吸收频率降低。 16、接枝共聚物和相应均聚物的共混物的红外谱图是相同的,可以用共混物模拟接枝共聚物。 17、如何用红外光谱鉴别(1)PMMA和PS;(2)PVC和PP;(3)环氧树脂和不饱和聚酯。 19、写出透过率和吸光度的定义式,并标明各符号意义。 、问答题 1. 某化合物的红外谱图如下。试推测该化合物是否含有羰基 (C=O),苯环及双键 (=C=C=)?为什么? 2.简单说明下列化合物的红外吸收光谱有何不同? A. CH3-COO-CO-CH3 B. CH3-COO-CH3

高聚物结构与性能的关系

高聚物结构与性能的关系 1. 高聚物的结构 按研究单元的不同分类,高聚物结构可分为两大类:一类为高聚物的链结构,即分子内的结构,是研究一个分子链中原子或基团之间的几何排列;另一类为高聚物的分子聚集态结构,即分子间的结构,是研究单位体积内许多分子链之间的几何排列。对高聚物材料来说,链结构只是间接影响其性能,而分子聚集态结构才是直接影响其性能的因素。 1.1 高聚物链结构 高聚物的链结构包括近程结构和远程结构。近程结构是指结构单元的化学组成、立体异构、连接顺序、以及支化、交联等;远程结构是指高分子链的构象、分子量等。 高聚物链结构是决定高聚物基本性质的主要因素,各种高聚物由于链结构不同其性质则完全不同。例如,聚乙烯柔软容易结晶,聚苯乙烯硬而脆不能结晶;全同立构聚丙烯在常温下是固休,可以结晶,而无规立构聚丙烯在常温下则为粘稠的液体等。 1.2 高聚物的聚集态结构 高聚物的分子聚集态结构包括晶态、非晶态、液晶态、取向态等;高聚物的分子聚集态结构是在加工成型过程中形成的,是决定高聚物制品使用性能的主要因素。即使具有相同链结构的同一种高聚物,由于加工成型条件的不同,其成型品的使用性能就有很大差别。例如,结晶取向程度不同直接影响纤维和薄膜的力学性能;结晶大小和形态不同可影响塑料制品的耐冲击强度,开裂性能和透明性。 因此对高聚物材料来说,链结构只是间接影响其性能,而分子聚集态结构才是直接影响其性能的因素。研究高聚物分子聚集态结构的意义就在于了解高聚物分子聚集态结构的特征,形成条件及其与材料性能之间的关系,以便人为地控制加工成型条件得到具有预定结构和性能的材料,同时为高聚物材料的物理改性和材料设计建立科学基础。 2.高聚物结构与力学性能的关系 2.1链结构与力学性能的关系 不同的高聚物,有不同的分子结构,当然会显示出不同的材料性能出来。聚

发泡剂

将发泡剂按组成的成分划分类型,大至分为松香树脂类、合成表面活性剂类、蛋白质类、复合类、其它类,共5个类型。(1)松香树脂类泡沫混凝土砌块发泡剂(第一代发泡剂)这类发泡剂均是以松香作为主要原料制成,应用最早也最为普遍。松香的化学结构比较复杂,其中含有松香脂酸类、芳香烃类、芳香醇类、芳香醛类及其氧化物等,分子式可表示为C20H30O2。松香树脂发泡剂又名引气剂,它的主要品种有松香皂和松香热聚物两个。其最初均是作为混凝土砂浆引气剂来开发应用的,后来又扩展应用为泡沫混凝土的发泡剂。松香皂泡沫混凝土砌块发泡剂 1.松香皂简介因松香中具有羧基—COOH,加入碱以后,会产生皂化反应生成松香酸皂、故取名为松香皂。它的主要成分是松香酸钠,属于阴离子表面活性剂的范畴。松香皂是一种棕褐色透明状膏体,含水量约22%,加水稀释后为透明澄清液,不混浊,无沉淀,有松香特有的气味,PH值约8—10,表面张力约为(2.9~3.1)×10N/m。松香皂是上世纪30年代最先由美国研制开发的。我国从上世纪50年代起仿制生产松香皂,并应用于佛子岭、梅山、三门峡等大型混凝土水库大坝和一些港口工程,以微气孔来提高其抗渗性和抗冻性。当泡沫混凝土兴起后,它又开始作为发泡剂使用。 2.松香皂的生产方法松香皂是以松香为主料加入碱液和助剂,通过加热反应而制取的。其生产方法如下:①首先将碱液配成一定的浓度,这一浓度与反应能否顺利进行有关。它不是一个常数,而是由皂化系数来确定的。皂化系数是指1㎏松香所消耗的碱量。皂化1㎏松香所需的碱量可由

下式计算:(3—1)式中:m 碱用量; a 松香皂化系数 b 碱的纯度;k 碱的换算系数。②选取合乎技术要求的二级或三级松香,粉碎成粉末状,放在空气中氧化一段时间,待其颜色加深到一定程度(可凭经验)时便可使用。注意,松香并非品质等极越高越好,一级松香就不能使用。因为一级松香在100℃附近温度范围容易形成结晶而影响皂化反应。③将碱溶液加入反应釜,升温至90~100℃,在搅拌状态下慢慢加入松香粉末。在加入松香时容易起泡而爆沸,所以要注意观察,当要沸溢时可停止添加。当物料加完之后,可在搅拌状态下反应一定的时间,其反应时间的长短将决定松香酸钠的生成量。反应终点可通过反应液的外观来判断,方法是取出少量反应液,加入热水稀释,若溶液清彻透明无沉淀,即反应完全、可终止反应。最后,调整PH值8—10左右即为成品。④按上述方法生成的松香皂发泡倍数低、消泡快、性能不好,为提高其性能,可在反应时加入各种改性剂,以改善其发泡能力和稳泡性。也可以在反应结束后,在成品中加入改性剂,但效果不如在反应过程中加入。松香皂的主要技术性能见表3—1。表3—1 松香皂的技术性能 有效成 分PH值 发泡倍 数 1h泌 水量 (ml) 1h沉 降距 (㎜) 泡沫半 消 (min) 泡沫全 消(h) >70% 7~9 27~ 28 110~ 120 29~ 34 >40 min >5

几种常用聚乙烯的物理发泡剂使用的易沸液体的性能

常用聚乙烯的物理发泡剂使用的易沸液体的性能 几种常用聚乙烯的物理发泡剂使用的易沸液体的性能, 气态氮亦用于聚乙烯的发泡,但在树脂中溶解性差,一般情况下,限于在发泡倍率不高时使用。在树脂中溶入足以制得容重为0.32克/立方厘米的泡沫塑料的氮气,困难不大. 聚乙烯用的化学交联剂为有机边氧化物。有机过氧化物遇热分解,产生游离基团,在聚合物上形成游离基团的位置,引起聚合物交联。这些位置接着联合起来,形成新的链和交键。 聚乙烯泡沫塑料使用的典型交联剂有过氧化二特丁烷、过氧化二异丙苯、2,5—二甲基—2,5—二特丁基过氧化已烷、2,5—二甲基—2,5—二特丁基过氧化己炔和1,3—二特丁基过氧化异丙基苯等。 聚乙烯交联所需的时间,与过氧化物产生的游离基团的多少有关。过氧化物分解成游离基团的速率,决定于温度和它本身的结构。过氧化物引发剂的选择。取决于交联的速率和所要求的交联温度。过氧化物的这些特定的速率参数,必须与形成泡沫的加工条件相适应。过氧化物的分解速率以半衰期表示。半衰期就是二分之一过氧化物分解所需的时间。 半衰期1分钟时所需的温度,标志着过氧化物的性能。 从聚乙烯泡沫塑料原材料进行初步认知 从聚乙烯泡沫塑料原材料进行初步认知所有的聚乙烯泡沫塑料,几乎那是通过把发泡剂分散在聚合物中,使之产生蜂窝结构而形成的。因此,聚乙烯泡沫塑料的基本原材料是聚合物和发泡剂。此外,当然还有交联剂、成核剂、稳定剂、阻燃剂、颜料和填抖等。这里仅就聚合物、发泡剂和交联剂加以叙述。; 在存在一定的表面催化刘的情况下进行乙烯聚合。便产生基本直链的结构。直链聚乙烯是一种高分子量的正链烷烃。游离基引发的高压聚合,则产生文链的分子结构。直链和支链聚乙烯又分别称为低压和高压聚乙烯。两种聚乙烯都含有结晶区。直链结构的聚乙烯结晶度高,其中排列有序的直链结构越多,结晶度就越高。范围为60~90%;支链结构的聚乙烯,结晶度在35~75%之间。结晶度就是晶体<高聚物中所入的百分比,是一种重要的工艺指标。在不升温的情况下,聚乙烯的结晶区起着类似交键所起的作用——把分子链联在一起,阻滞塑料流动;另一方面,在非结晶区内,分子链容易在单键周围转动,赋于聚乙烯以较高的挠性。因此,直链聚乙烯的模量和熔点都高于支链聚乙烯。聚乙烯的密度是结晶度的标志,它与结晶度成正比。通常基本树脂的密度,或结晶度,或模量越低,制成泡沫照料的挠性就越好。 物理发泡剂 物理发泡剂主要是一些易沸的有机液体。为了不致在泡沫塑料的泡孔中凝聚,在标淮状态时最好呈气态。但如在加工条件下容易液化,则可以免去许多麻烦。树脂的发泡,是这些物理发泡剂从液态转变为气态的纳果。 选择化学发泡剂时,应当考虑的因素,在物理发泡剂的选择方面亦占重要地位。物理发泡剂应为无臭、无毒、无腐蚀性、不燃,气态的咽热稳定,化学上呈惰性,室温中蒸气压低,挥发性高,分子量低,比重高等等。泡沫塑料用购物理发泡剂大多数是脂族碳氢化合物和脂族碳氢化合物的卤素衍生物。卤化的碳氢化合物,具有作为发泡剂的许多理想的特性:不会爆炸,遇热稳定,大致无毒,化学上呈情性。二氯四氟乙烷、三氯氟下烷、三氯气氟乙烷等,

QSLCG+0022-2013+油溶性高温驱油剂技术要求

Q/ S LCG 胜利油田产品采购技术要求 Q/SLCG 0022—2013 油溶性高温驱油剂技术要求 2013-08-30 发布 2013-09-01 实施 胜利油田技术监督处 发布

Q/SLCG 0022-2013 前 言 本技术要求由胜利油田采油工程处与技术监督部门组织制定。 本技术要求在产品标准正式发布前作为产品采购及产品检验的依据, 相应的产品标准发 布后本技术要求自动废止,并按新产品标准进行采购和质量检验。 I

Q/SLCG 0022-2013 油溶性高温驱油剂技术要求 1 范围 本技术要求规定了油溶性高温驱油剂的技术指标、试验方法、检验规则、标志、包装、 运输、贮存、安全与环保要求。 本技术要求用于油溶性高温驱油剂的采购和质量检验。 2 规范性引用文件 下列文件对于本文件的引用是必不可少的。凡是注日期的引用文件,仅注日期的版本适 用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 261-2008 闪点的测定 宾斯基-马丁闭口杯法 GB/T 510-1983 石油产品凝点测定法 GB/T 4472-1984 化工产品密度、相对密度测定通则 GB/T 6680-2003 液体化工产品采样通则 SY/T 5672-1993 注蒸汽用高温起泡剂评定方法 3 技术指标 产品性能应符合表 1的要求。 表 1 技术指标 项目 指标 外观 均匀液体 ,g/cm 3 0.85~0.95 密度(25℃) 溶解性 溶于二甲苯 凝固点,℃ ≤-20 闭口闪点,℃ ≥40 提高管式模型蒸汽驱油效率 ≥12% 耐温能力(300℃,24h 处理后) ≥10% 提高管式模型蒸汽驱油效率 有机氯含量,% 0.0 4 试验方法 4.1 外观 在光线充足的条件下目测。 1

聚合物结构与性能

一、名词解释(5个) 聚合物分子(高聚物分子,通常简称为高分子):(1)这些部分是由相对低分子质量的分子衍生的单元(所谓的单体单元或链节) (2)并且只有一种或少数几种链节(3)这些需要的链节多重重复重现。 长周期:在纤维轴方向片晶和非晶能重复出现的最短距离,即片晶和非晶的平均厚度之和缚结分子:连结至少两个晶体的分子。 初期结晶:是指液态或气态初步形成晶体的过程 预先成核:晶核预先存在,成核速率与时间无关。 二、概念的区别与联系(4对) 1、微构象与宏构象 微构象:分子中的一小部分由于一个或数个键的内旋转所引起的构象。 宏构象:表示在单键周围的原子和原子基团的旋转产生的空间排列。 2、玻璃化转变温度与熔融温度 玻璃化转变温度:非晶态聚合物或部分结晶聚合物中非晶相发生玻璃化转变所对应的温度。熔融温度:晶体物质由固态向液态转变时固液两相共存的温度。 3. 应力与应变 应力:受力物体截面上内力的集度,即单位面积上的内力。 应变:物体内任一点因各种作用引起的相对变形。 4、质量结晶度与体积结晶度 质量结晶度:X-射线被高聚物中原子散射的强度与原子所处的状态无关,原子的聚集状态只决定衍射线的位置与形状,不影响总强度。因此可以认为非晶部分的质量与结晶部分的质量之比,等于非晶部分的衍射强度与结晶部分的衍射强度之比。即()。理论上,只要知道晶区和非晶区衍射的X射线的总强度,就可计算结晶度。在实际工作中,只能在一定的角度范围收集衍射强度数据,无法收集到样品衍射或散射X射线的总强度。这样,在所收集的数据中,晶区或非晶区对衍射强度的贡献可能偏高或偏低。所以,应加入比例常数即,,式中,K为比例常数。 体积结晶度:用X-射线衍射法体积结晶度。根据微原纤结构模型即可测得结晶度式中,D为晶片厚度,L为长周期。 三、球晶的光学性质与其内部结构的关系 在正交偏光显微镜下,球晶呈现特有的黑十字消光图像及明暗相间的消光环,其中黑十字消光图像反映的是球晶中晶片的径向生长,消光环反映的是球晶中晶片的扭曲生长。 四、什么是超分子结构?超分子结构参数有哪些?用简述或图示法说明用X-射线图确定超分子结构参数的基本依据。 答:超分子结构:高分子链之间通过强的或弱的相互作用所形成的聚集体。 结构参数:1.结晶度 2. 取向度 3 .晶粒尺寸 4.长周期 X-射线可测定质量结晶度和体积结晶度。 假设:X-射线被高聚物中原子散射的强度与原子所处的状态无关,原子的聚集状态只决定衍射线的位置与形状,不影响总强度。因此可以认为非晶部分的质量与结晶部分的质量之比,等于非晶部分的衍射强度与结晶部分的衍射强度之比。 理论上,只要知道晶区和非晶区衍射的X射线的总强度,就可根据上式计算结晶度。在实际工作中,只能在一定的角度范围收集衍射强度数据,无法收集到样品衍射或散射X射线的总强度。这样,在所收集的数据中,晶区或非晶区对衍射强度的贡献可能偏高或偏低。所以,

21聚合物材料的动态力学性能测试

实验15 聚合物材料的动态力学性能测试 在外力作用下,对样品的应变和应力关系随温度等条件的变化进行分析,即为动态力学分析。动态力学分析能得到聚合物的动态模量( E′)、损耗模量(E″)和力学损耗(tanδ)。这些物理量是决定聚合物使用特性的重要参数。同时,动态力学分析对聚合物分子运动状态的反应也十分灵敏,考察模量和力学损耗随温度、频率以及其他条件的变化的特性可得到聚合物结构和性能的许多信息,如阻尼特性、相结构及相转变、分子松弛过程、聚合反应动力学等。 1. 实验目的 (1)了解聚合物黏弹特性,学会从分子运动的角度来解释高聚物的动态力学行为。 (2)了解聚合物动态力学分析(DMA)原理和方法,学会使用动态力学分析仪测定多频率下聚合物动态力学温度谱。 2. 实验原理 高聚物是黏弹性材料之一,具有黏性和弹性固体的特性。它一方面像弹性材料具有贮存械能的特性,这种特性不消耗能量;另一方面,它又具有像非流体静应力状态下的黏液,会损耗能量而不能贮存能量。当高分子材料形变时,一部分能量变成位能,一部分能量变成热而损耗。能量的损耗可由力学阻尼或内摩擦生成的热得到证明。材料的内耗是很重要的,它不仅是性能的标志,而且也是确定它在工业上的应用和使用环境的条件。 如果一个外应力作用于一个弹性体,产生的应变正比于应力,根据虎克定律,比例常数就是该固体的弹性模量。形变时产生的能量由物体贮存起来,除去外力物体恢复原状,贮存的能量又释放出来。如果所用应力是一个周期性变化的力,产生的应变与应力同位相,过程也没有能量损耗。假如外应力作用于完全黏性的液体,液体产生永久形变,在这个过程中消耗的能量正比于液体的黏度,应变落后于应力90o,如图2-61(a)所示。聚合物对外力的响应是弹性和黏性两者兼有,这种黏弹性是由于外应力与分子链间相互作用,而分子链又倾向于排列成最低能量的构象。在周期性应力作用的情况下,这些分子重排跟不上应力变化,造成了应变落后于应力,而且使一部分能量损耗。图2-61(b)是典型的黏弹性材料对正弦应力的响应。正弦应变落后一个相位角。应力和应变可以用复数形式表示如下。 σ*=σ0exp(iωt) γ*=γ0 exp[i (ωt-δ) ] 式中,σ0和γ0为应力和应变的振幅;ω是角频率;i是虚数。用复数应力σ*除以复数形变γ*,便得到材料的复数模量。模量可能是拉伸模量和切变模量等,这取决于所用力的性质。为了方便起见,将复数模量分为两部分,一部分与应力同位相,另一部分与应力差一个90o 的相位角,如图2-61(c)所示。对于复数切变模量 E*=E′+i E″(2-60) 式中 E′=∣E*∣cosδ E″=∣E*∣sinδ 显然,与应力同位相的切变模量给出样品在最大形变时弹性贮存模量,而有相位差的切变模量代表在形变过程中消耗的能量。在一个完整周期应力作用内,所消耗的能量△W与所贮存能量W之比,即为黏弹性物体的特征量,叫做内耗。它与复数模量的直接关系为

相关文档
相关文档 最新文档