文档库 最新最全的文档下载
当前位置:文档库 › 未来展望_FSI和BSI图像传感器技术

未来展望_FSI和BSI图像传感器技术

未来展望_FSI和BSI图像传感器技术
未来展望_FSI和BSI图像传感器技术

多传感器信息融合方法综述

万方数据

万方数据

万方数据

万方数据

万方数据

多传感器信息融合方法综述 作者:吴秋轩, 曹广益 作者单位:上海交通大学电子信息与电气工程学院,上海,200030 刊名: 机器人 英文刊名:ROBOT 年,卷(期):2003,25(z1) 被引用次数:2次 参考文献(5条) 1.周锐;申功勋;房建成基于信息融合的目标图像跟踪 1998(12) 2.张尧庭;桂劲松人工智能中的概率统计方法 1998 3.何友;王国宏;彭应宁多传感器信息融合 2000 4.罗志增;叶明Bayes方法的多感觉信息融合算法及其应用[期刊论文]-传感技术学报 2001(03) 5.张文修;吴伟业;梁吉业粗糙集理论与方法 2001 本文读者也读过(8条) 1.臧大进.严宏凤.王跃才.ZANG Da-jin.YAN Hong-feng.WANG Yue-cai多传感器信息融合技术综述[期刊论文]-工矿自动化2005(6) 2.多传感器信息融合及应用[期刊论文]-电子与信息学报2001,23(2) 3.赵小川.罗庆生.韩宝玲.ZHAO Xiao-chuan.LUO Qing-sheng.HAN Bao-ling机器人多传感器信息融合研究综述[期刊论文]-传感器与微系统2008,27(8) 4.范新南.苏丽媛.郭建甲.FAN Xin-nan.SU Li-yuan.GUO Jian-jia多传感器信息融合综述[期刊论文]-河海大学常州分校学报2005,19(1) 5.咸宝金.陈松涛智能移动机器人多传感器信息融合及应用研究[期刊论文]-宇航计测技术2010,30(2) 6.韩增奇.于俊杰.李宁霞.王朝阳信息融合技术综述[期刊论文]-情报杂志2010,29(z1) 7.肖斌多传感器信息融合及其在工业中的应用[学位论文]2008 8.丁伟.孙华.曾建辉.DING Wei.SUN Hua.ZENG Jian-hui基于多传感器信息融合的移动机器人导航综述[期刊论文]-传感器与微系统2006,25(7) 引证文献(2条) 1.武伟.郭三学基于多传感信息融合的轮胎气压监测系统[期刊论文]-轮胎工业 2006(5) 2.魏东.杨洋.李大寨.宗光华基于多传感器融合的机器人微深度环切[期刊论文]-传感器技术 2005(11) 本文链接:https://www.wendangku.net/doc/5214308125.html,/Periodical_jqr2003z1037.aspx

传感器尺寸换算方法

1英寸=2.54厘米 1/2.3英寸CCD相机传感器,对角线约1.1厘米。 宽:8.8mm;高:6.6mm。(近似值,仅供参考) 所谓的1/2.7,1/2.5,1/1.8,1/1.7,1/1.6,2/3等,里面的分子1是一个标准,分母越大,CCD越小。所以,你说的尺寸中2/3英寸是最大的,到底有多大呢? 衡量比例必须有一个标准,这个标准是沿用最早CCD应用在摄像机上的标准,指长 12.8mm×9.6mm的面积,其对角线为16mm,所以1就是指的对角线为16mm。 故可以计算出1/1.8英寸的ccd:(12.8/1.8)x(9.6/1.8)=7.11mm x 5.33mm 同理可以计算2/3英寸即1/1.5英寸的ccd:(12.8/1.5)x(9.6/1.5)=8.53mm x 6.4mm 有了这个标准,相信你自己就可以算出你关心的数码相机的CCD的长和宽了吧。 追问: 哥们这是怎么算的啊?是分母除以分子么? 回答: 是按照1/1英寸为标准的对角线为16mm,而长宽比是4:3,所以标准的长宽就是 12.8mm x 9.6mm。 所以别人对于数码相机的CCD大小,不需要写出具体的长、宽各是多少,而只需要给你个和标准之间差的倍数就可以了。 即1/1.8就是说标准去乘以这个系数,即长宽都乘以1/1.8就可以了。 小尺寸传感器的这种表示方式是指的对角线长度,但是不同长宽比面积是不同的,例如3:2和4:3的传感器面积,就算是同样的对角线长度面积也不同,长宽比越接近1:1面积越大 常见的1/1.63英寸传感器长宽是8.07×5.56毫米,面积是44.8692平方毫米 常见的1/2.3英寸传感器长宽是6.17×4.55毫米,面积是28.0735平方毫米 1/1.63英寸传感器面积大约1/2.3英寸传感器的1.6倍,性能差别还是比较明显的,画质差异肉眼明显可见 当然只看传感器面积也不能完全说明问题,还有像素多少问题,如果1/1.63传感器像素比1/2.3传感器高很多,可能单个像素点的宽度就差不多,那么性能也就差不多,所以单个像素点的宽度才是问题的核心 不过像1/1.63英寸这种数码相机中的大尺寸传感器,一般都是高端机型使用的,强调高画质,所以不会把像素做得太高,高像素小传感器是中低端卡片机用来忽悠不了解技术细节的消费者的 所谓的传感器尺寸是以对角线的尺寸来计算的, 比如1/1.63英寸, 它的尺寸就是对角线的长度为1/1.63 英寸, 不过这个对角线是包含了框架的尺寸的, 所以实际的有效感光部分要比它小一些. 然后传感器的长宽比例, 以对角线长度来标注的话都是4:3的, 这样你就可以计算出他们各自的实际尺寸了

多聚焦图像融合方法综述

多聚焦图像融合方法综述 摘要:本文概括了多聚焦图像融合的一些基本概念和相关知识。然后从空域和频域两方面将多聚焦图像融合方法分为两大块,并对这两块所包含的方法进行了简单介绍并对其中小波变换化法进行了详细地阐述。最后提出了一些图像融合方法的评价方法。 关键词:多聚焦图像融合;空域;频域;小波变换法;评价方法 1、引言 按数据融合的处理体系,数据融合可分为:信号级融合、像素级融合、特征级融合和符号级融合。图像融合是数据融合的一个重要分支,是20世纪70年代后期提出的概念。该技术综合了传感器、图像处理、信号处理、计算机和人工智能等现代高新技术。它在遥感图像处理、目标识别、医学、现代航天航空、机器人视觉等方面具有广阔的应用前景。 Pohl和Genderen将图像融合定义为:“图像融合是通过一种特定的方法将两幅或多幅图像合成一幅新图像”,其主要思想是采用一定的方法,把工作于不同波长范围、具有不同成像机理的各种成像传感器对同一场景成像的多幅图像信息合成一幅新的图像。 作为图像融合研究重要内容之一的多聚焦图像融合,是指把用同一个成像设备对某一场景通过改变焦距而得到的两幅或多幅图像中清晰的部分组合成一幅新的图像,便于人们观察或计算机处理。图像融合的方法大体可以分为像素级、特征级、决策级3中,其中,像素级的图像融合精度较高,能够提供其他融合方法所不具备的细节信息,多聚焦融合采用了像素级融合方法,它主要分为空域和频域两大块,即: (1)在空域中,主要是基于图像清晰部分的提取,有梯度差分法,分块法等,其优点是速度快、方法简单,不过融合精确度相对较低,边缘吃力粗糙; (2)在频域中,具有代表性的是分辨方法,其中有拉普拉斯金字塔算法、小波变换法等,多分辨率融合精度比较高,对位置信息的把握较好,不过算法比较复杂,处理速度比较慢。 2、空域中的图像融合 把图像f(x,y)看成一个二维函数,对其进行处理,它包含的算法有逻辑滤波器法、加权平均法、数学形态法、图像代数法、模拟退火法等。 2.1 逻辑滤波器法 最直观的融合方法是两个像素的值进行逻辑运算,如:两个像素的值均大于特定的门限值,

传感器的发展

传感器的发展 摘要 传感技术作为当今世界迅猛发展起来的技术之一,已经成为一个国家科学技术水平发展的重要标志。传感器朝着灵敏、精巧、适应性强、智能化、网络化方向发展。 全球的传感器市场在不断变化的创新之中呈现出快速增长的趋势。有关专家指出,传感器领域的主要技术将在现有基础上予以延伸和提高,各国将竞相加速新一代传感器的开发和产业化,竞争也将日益激烈。新技术的发展将重新定义未来的传感器市场,比如无线传感器、光纤传感器、智能传感器和金属氧化传感器等新型传感器的出现与市场份额的扩大。 一、传感器的定义 现如今,信息处理技术取得的进展以及微处理器和计算机技术的高速发展,都需要在传感器的开发方面有相应的进展。微处理器现在已经在测量和控制系统中得到了广泛的应用。随着这些系统能力的增强,作为信息采集系统的前端单元,传感器的作用越来越重要。传感器已成为自动化系统和机器人技术中的关键部件,作为系统中的一个结构组成,其重要性变得越来越明显。最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:InternationalElectrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的传感器”。传感器是传感器系统的一个组成部分,它是被测量信号输入的第一道关口。进入传感器的信号幅度是很小的,而且混杂有干扰信号和噪声。为了方便随后的处理过程,首先要将信号整形成具有最佳特性的波形,有时还需要将信号线性化,该工作是由放大器、滤波器以及其他一些模拟电路完成的。在某些情况下,这些电路的一部分是和传感器部件直接相邻的。成形后的信号随后转换成数字信号,并输入到微处理器。 传感器系统的性能主要取决于传感器,传感器把某种形式的能量转换成另一种形式的能量。有两类传感器:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源。.无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能传感器承担将某个对象或过程的特定特性转换成数量的工作。其“对象”可以是固体、液体或气体,而它们的状态可以是静态的,也可以是动态(即过程)的。对象特性被转换量化后可以通过多种方式检测。对象的特性可以是物理性质的,也可以是化学性质的。按照其工作原理,传感器将对象特性或状态参数转换成可测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示。各种物理效应和工作机理被用于制作不同功能的传感器。传感器可以直接接触被测量对象,也可以不接触。用于传感器的工作机制和效应类型不断增加,其包含的处理过程日益完善。因此常将传感器的功能与人类5大感觉器官相比拟:光敏传感器——视觉;声敏传感器——听觉;气敏传感器——嗅觉;化学传感器——味觉;压敏、温敏、流体传感器——触觉。虽然与当代的传感器相比,人类的感觉能力好得多,但也有一些传感器比人的感觉功能优越,例如人类没有能力感知紫外或红外线辐射,感

传感器原理复习提纲及详细知识点(2016)

传感器原理复习提纲第一章绪论 1.检测系统的组成。 2.传感器的定义及组成。 3. 传感器的分类。 4.什么是传感器的静态特性和动态特性。

5.列出传感器的静态特性指标,并明确各指标的含义。 x输入量,y输出量,a0零点输出,a1理论灵敏度,a2非线性项系数 灵敏度传感器在稳态下,输出的变化量与引起该变化量的输入变化量之比。 表征传感器对输入量变化的反应能力 线性传感器非线性传感器 迟滞正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。 产生迟滞的原因:由于传感器敏感元件材料的物理性质和机械另部件的缺陷 所造成的,如弹性敏感元件弹性滞后、运动部件摩擦、传动机构的间隙、 紧固件松动等。 线性度传感器的实际输入-输出曲线的线性程度。 4种典型特性曲线 非线性误差 % 100 max? ? ± = FS L Y L γ ,ΔLmax——最大非线性绝对误差,Y FS——满量程输出值。 直线拟合线性化:出发点→获得最小的非线性误差(最小二乘法:与校准曲线的残差平方和最小。) 例用最小二乘法求拟合直线。 设拟合直线y=kx+b 残差△i=yi-(kxi+b) k y x =?? % 100 2 max? ? = FS H Y H γ 最小 ∑? n i2

分别对k 和b 求一阶导数,并令其 =0,可求出b 和k 将k 和b 代入拟合直线方程,即可得到拟合直线,然后求出残差的最大值Lmax 即为非线性误差。 重复性 重复性是指传感器在输入量按同一方向作全量程连续多次变化时, 所得特性曲线不一致的程度。重复性误差属于随机误差,常用标准 差σ计算,也可用正反行程中最大重复差值计算,即 或 零点漂移 传感器无输入时,每隔一段时间进行读数,其输出偏离零值,即为零点漂移。 零漂=,式中ΔY0——最大零点偏差;Y FS ——满量程输出。 温度漂移 温度变化时,传感器输出量的偏移程度。一般以温度变化1度,输出最大偏差与满量程的百分比表示, 即温漂=Δmax ——输出最大偏差;ΔT ——温度变化值;YFS ——满量程输出。 6. 一阶特性的指标及相关计算。 一阶系统微分方程 τ:时间常数,k=1静态灵敏度 拉氏变换 )()()1(s X s Y s =+τ 传递函数 s s X s Y s H τ+= = 11 )()()( 频率响应函数 ωτ ωωωj j X j Y j H += = 11 )()()( 误差部分 7. 测量误差的相关概念及分类。 相关概念 (1)等精度测量(2)非等精度测量(3)真值(4)实际值(5)标称值(6)示值(7)测量误差 分类 系统误差 随机误差 粗大误差 %100)3~2(?± =FS R Y σ γ% 1002max ??± =FS R Y R γkx y dt dy =+τ

099多传感器航迹融合算法综述

第三届中国信息融合大会 中国 西安 2011.08 ———————————————————— 基金项目:航空基金项目,批准号:20090853013,西北工业大学校翱翔之星计划;西北工业大学基础研究基金:JC201015 多传感器航迹融合算法综述 张 伟,兰 华,杨 峰,梁 彦 (西北工业大学自动化学院,陕西 西安,710072) 摘 要:航迹融合是多传感器融合的一个重要组成部分,也是多传感器融合领域发展最快的方向之一。本文论述了航迹融合理论发展,以局部航迹估计误差的相关性为研究对象,详细讨论了几种主流航迹融合算法,包括简单凸组合、修正互协方差、不带反馈和带反馈的最优分布式融合、协方差交集、最优线性无偏估计以及自适应航迹融合等算法,分析并比较了各算法的特点、性能及应用。 关键词:多传感器;航迹融合;误差相关性 Approaches to Mutisensor Track-to-Track Fusion :A Survey ZHANG Wei, LAN Hua, YANG Feng, LIANG Yan (College of Automation, Northwestern Polytechnical University, Xi’an Shannxi 710072, P .R. China) Abstract : Track-to-track fusion is an important part of multisensor fusion and is also one of the most rapidly developing branches of the multisensor fusion field. Various mainstream track-to-track fusion algorithms, including covariance convex algorithm, Bar Shalom-Campo algorithm, optimal distributed fusion without feedback, optimal distributed fusion with feedback, covariance intersection algorithm, best linear unbiased estimation algorithm and adaptive fusion algorithm, are investigated in detail, according to the correlation between local estimate errors. The performance of various algorithms and the weaknesses and strengths of the approaches in the context of different applications are analyzed and compared in this paper. Keywords :Multisensor ; track-to-track fusion; error correlation 0引 言 在一个分布式多传感器环境中,每个传感器对于目标进行探测和跟踪的过程都是独立的,航迹关联关心的是如何判断从不同传感器获得的两条航迹是否对应于同一个目标。当确认两条航迹来自同一个目标后,接下来的问题是如何将这两条航迹的估计结果融合在一起,这就是航迹融合问题[1] 。 在航迹关联与航迹融合的问题中,由于参与融合的局部航迹之间存在误差相关性,从而使得航迹融合问题变得复杂。航迹融合中的误差相关性可以分为两类,一类是各局部状态估计之间由于共同的过程噪声、相关的量测噪声以及共同的先验估计而产生的 误差相关性;另一类是当融合中心具备记忆能力并存在多条传感器至融合中心的信息传播途径,局部状态(先验)估计与全局状态(先验)估计之间也存在有相关性[2]。因此,对局部航迹之间误差相关性的分析是航迹融合的基础和关键。在航迹融合的发展过程中,对误差相关性不同处理方式一直是航迹融合算法发展的主轴。 早期的航迹融合算法假设局部航迹之间的估计误差是独立的[3][4],文献[5,6]首次考虑了由于相同过程噪声所导致的航迹误差相关性,并且分别给出了两传感器的最优关联和融合算法,文献[7]首次给出了多传感器最优估计的方法。一般的航迹关联和融合算法都需要计算它们之间的互协方差矩阵,

利用CMOS图像传感器测试成像镜头MTF的实用方法

文章编号:100525630(2006)0620017206 利用CM O S 图像传感器 测试成像镜头M T F 的实用方法 Ξ 张文华,李湘宁 (上海理工大学,上海200093) 摘要:介绍了一种用C M O S 图像传感器测量镜头M T F 的实用方法及其实用实例。该 方法通过引入参考空间频率,利用在C M O S 图像传感器像面上,对被测空间频率与参考空 间频率的像素灰度值的读取,能够便捷并且比较准确地测定镜头的M T F 值。由于参考空间 频率的引入,大体消除了C M O S 图像传感器本身M T F 对测量结果的影响,从而使测量结 果更接近理论运算结果。 关键词:调制传递函数;C M O S 图像传感器;像素灰度值;参考空间频率 中图分类号:TN 402 文献标识码:A A practica l m ethod for m ea sur i ng m odula tion tran sfer function of optica l i m ag i ng syste m by usi ng C MOS i m ager sen sor ZH A N G W en 2hua ,L I X iang 2n ing (U n iversity of Shanghai fo r Science and T echno logy ,Shanghai 200093,Ch ina ) Abstract :T h is p ap er in troduces a p ractical m ethod fo r m easu ring m odu lati on tran sfer functi on (M T F )of an op tical i m aging system by u sing C M O S i m ager sen so r .T h is m ethod b rings in a new con 2cep ti on of reference frequency .B y reading the p ixel values w h ich reference frequency and tested frequen 2cy m ake on the C M O S i m ager sen so r th rough the op tical i m aging system ,th is m ethod can calcu late ou t the M T F of the op tical i m aging system p rom p tly and accu rately .T he reference frequency can eli m inate m o st of the i m p act C M O S i m ager sen so r itself m akes to the system M T F and therefo re m ake the M T F values m o re accu rate . Key words :m odu lati on tran sfer functi on (M T F );C M O S i m ager sen so r ;p ixel value ;reference fre 2quency 1 引 言 调制传递函数(m odu lati on tran sfer functi on ,M T F )是复函数光学传递函数(op tical tran sfer func 2ti on ,O T F )的模,由于其能客观地反映成像系统的频率响应特性,因此早已成为光学成像系统像质评价的重要指标[1]。在光学设计中用M T F 作为评价函数进行优化和像质评价已是常用的手段,但对于实际镜头的质量检测由于受到M T F 测试仪器设备条件的限制,因此实际应用并不广泛。使用C M O S (com p lem en 2 第28卷 第6期 2006年12月 光 学 仪 器O PT I CAL I N STRUM EN T S V o l .28,N o.6 D ecem ber,2006 Ξ收稿日期:2006201205 作者简介:张文华(19782),女,河南修武人,工程师,硕士研究生,主要从事光学工程方面的研究。

(完整版)传感器的目前现状与发展趋势综述

传感器的目前现状与发展趋势 吴伟 1106032008 材控2班 摘要:传感器是高度自动化系统乃至现代尖端技术必不可少的一个关键组成部分。传感器技术是世界各国竞相发展的高新技术,也是进入21 世纪以来优先发展的十大顶尖技术之一。传感器技术所涉及的知识领域非常广泛,其研究和发展也越来越多地和其他学科技术的发展紧密联系。本文首先介绍了传感器的基本知识和传感器技术的发展历史。之后,综述了近几年高端前沿的光电传感器技术和生物传感器技术的主要研究状况。最后,展望了现代传感器技术的发展和应用前景。 关键词:传感器技术;传感器;研究现状;趋势 引言 当今社会的发展,是信息化社会的发展。在信息时代,人们的社会活动将主要依靠对信息资源的开发及获取、传输与处理。而传感器是获取自然领域中信息的主要途径与手段,是现代科学的中枢神经系统。它是指那些对被测对象的某一确定的信息具有感受(或响应)与检出功能,并使之按照一定规律转换成与之对应的可输出信号的元器件或装置的总称。传感器处于研究对象与测控系统的接口位置,一切科学研究和生产过程所要获取的信息都要通过它转换为容易传输和处理的电信号。如果把计算机比喻为处理和识别信息的“大脑”,把通信系统比喻为传递信息的“神经系统”,那么传感器就是感知和获取信息的“感觉器官”。 传感器技术是现代科技的前沿技术,发展迅猛,同计算机技术与通信技术一起被称为信息技术的三大支柱,许多国家已将传感器技术列为与通信技术和计算机技术同等重要的位置。现代传感器技术具有巨大的应用潜力,拥有广泛的开发空间,发展前景十分广阔。 1 传感器的基本知识

1.1 传感器的定义和组成 广义地说,传感器是指将被测量转化为可感知或定量认识的信号的传感器。从狭义方面讲,感受被测量,并按一定规律将其转化为同种或别种性质的输出信号的装置。传感器一般由敏感元件、转换元件、测量电路和辅助电源四部分组成,其中敏感元件和转换元件可能合二为一,而有的传感器不需要辅助电源。 1.2 传感器技术的基本特性 在测试过程中,要求传感器能感受到被测量的变化并将其不失真地转换成容易测量的量。被测量有两种形式:一种是稳定的,称为静态信号;一种是随着时间变化的,称为动态信号。由于输入量的状态不同,传感器的输入特性也不同,因此,传感器的基本特性一般用静态特性和动态特性来描述。衡量传感器的静态特性指标有线性度、灵敏度、迟滞、重复性、分辨率和漂移等。影响传感器的动态特性主要是传感器的固有因素,如温度传感器的热惯性等,动态特性还与传感器输入量的变化形式有关。 2 传感器技术的发展历史与回顾 传感器技术是在20世纪的中期才刚刚问世的。在那时,与计算机技术和数字控制技术相比,传感技术的发展都落后于它们,不少先进的成果仍停留在实验研究阶段,并没有投入到实际生产与广泛应用中,转化率比较低。在国外,传感器技术主要是在各国不断发展与提高的工业化浪潮下诞生的,并在早期多用于国家级项目的科研研发以及各国军事技术、航空航天领域的试验研究。然而,随着各国机械工业、电子、计算机、自动化等相关信息化产业的迅猛发展,以日本和欧美等西方国家为代表的传感器研发及其相关技术产业的发展已在国际市场中逐步占有了重要的份额。 我国从20世纪60年代开始传感技术的研究与开发,经过从“六五”到“九五”的国家攻关,在传感器研究开发、设计、制造、可靠性改进等方面获得长足的进步,初步形成了传感器研究、开发、生产和应用的体系,并在数控机床攻关中取得了一批可喜的、为世界瞩目的发明专利与工况监控系统或仪器的成果。但从总体上讲,它还不能适应我国经济与科技的迅速发展,我国不少传感器、信号

传感器的发展史word资料10页

传感器的发展史 传感器的发展史2019-04-26 11:28传感器的发展史 这是本词条的历史版本,由diany于2009-09-18创建。1微型化(Micro) 为了能够与信息时代信息量激增、要求捕获和处理信息的能力日益增强的技术发展趋势保持一致,对于传感器性能指标(包括精确性、可靠性、灵敏性等)的要求越来越严格;与此同时,传感器系统的操作友好性亦被提上了议事日程,因此还要求传感器必须配有标准的输出模式;而传统的大体积弱功能传感器往往很难满足上述要求,所以它们已逐步被各种不同类型的高性能微型传感器所取代;后者主要由硅材料构成,具有体积小、重量轻、反应快、灵敏度高以及成本低等优点。 1.1由计算机辅助设计(CAD)技术和微机电系统(MEMS)技术引发的传感器微型化 目前,几乎所有的传感器都在由传统的结构化生产设计向基于计算机辅助设计(CAD)的模拟式工程化设计转变,从而使设计者们能够在较短的时间内设计出低成本、高性能的新型系统,这种设计手段的巨大转变在很大程度上推动着传感器系统以更快的速度向着能够满足科技发展需求的微型化的方向发展。 对于微机电系统(MEMS)的研究工作始于20世纪60年代,其研究范畴涉及材料科学、机械控制、加工与封装工艺、电子技术以及传感器和执行器等多种学科,是一个极具前景的新兴研究领域。MEMS的核心技术是研究微电子与微机械加工与封装技术的巧妙结合,期望能够由此而制造出体积小巧但功能强大的新型系统。经过几十年的发展,尤其最近十多年的研究与发展,MEMS技术已经显示出了巨大的生命力,此项技术的有效采用将信息系统的微型化、智能化、多功能化和可靠性水平提高到了一个新的高度。在当前技术水平下,微切削加工技术已经可以生产出来具有不同层次的3D微型结构,从而可以生产出体积非常微小的微型传感器敏感元件,象毒气传感器、离子传感器、光电探测器这样的以硅为主要构成材料的传感/探测器都装有极好的敏感元件。目前,这一类元器件已作为微型传感器的主要敏感元件被广泛应用于不同的研究领域中。 1.2微型传感器应用现状

数码相机常用感元件尺寸对照表

数码相机常用感光元件尺寸对照表 (2013-02-17 15:51:38) 转载▼ 标签: 分类:杂文 娱乐 随着数码技术的发展,出现了新的传感器画幅标准(如刚刚发布的尼康1系列V1/J1、索尼RX100都采用了1英寸的CX画幅),一些单反传感器的尺寸也悄悄的出现了“缩水”。比如当时的佳能30D的CMOS 是22.5×15mm,到了7D/60D变成了22.3×14.9mm,尼康D70s的CCD是23.7×15.6mm,到了D7000/5100变成了23.6×15.6mm。为了适应新的数码相机传感器的尺寸标准,特将目前最新型号数码相机/数码单反经常采用的成像传感器尺寸按比例制作成图片、表格进行对比。 数码相机的感光元件CCD/CMOS相当于传统相机的底片。家用小数码相机(DC)的CCD尺寸通常有1/2.5英寸、1/1.8英寸、2/3英寸等,它们有什么不同?这一尺寸会影响到数码相机的什么功能?

数码相机规格表中的CCD/CMOS一栏经常写着“1/2.5、1/1.8英寸CCD等。这里的“1/2.5英寸”就是CCD的尺寸,实际上就是CCD对角线的长度。不过,这里的1英寸并不等于25.4mm,而是1英吋CCD Size = 长12.8mm×宽9.6mm = 对角线为16mm之对应面积。也就是说1英寸相当于16mm。 因为在CCD/CMOS成像元件问世之前,电视摄像机中采用的是真空管成像元件,那时的传感器尺寸指的是真空管的外径,即包含了外层玻璃管的尺寸,1英吋真空管的内径(成像圆直径)为16mm,已经成了一种行业“规范”,因此,到了CCD/CMOS成像元件问世后,也就沿用了这个“规范”。 真空管影像传感器 有了固定单位的CCD 尺寸就不难了解余下CCD 尺寸比例定义了,例如: 1/2" CCD的对角线就是1"的一半为8mm,面积约为1/4,1/4" 就是1"的1/4,对角线长度即为4mm。 目前市面上消费型数码相机的数量几乎占掉了总产量的7成,这一类型的特色多是轻薄短小,使用感光器件的长宽比皆为4:3,并且清一色都是1" 以下的设计;比较常见的有:1/2.7"、1/2.5"、1/2.3"、1/1.8"、2/3"等。数码单反(DSLR)的CCD 或CMOS 因为所使用的长宽比由4:3改成3:2,就不以对角线“英吋”作为表达方式,而改为与135相机(底片尺寸36×24mm)相同的直接称呼,比这小一号的或称为APS (25.1×16.7mm)/APS-C 尺寸(23.7×15.6mm)也是同样的道理。为了补足APS-C 以下的CCD 尺寸空间,由日本Olympus 主导的4/3 系统(比一般消费型数码相机的1吋型CCD 再大上1/3 (22.5 ÷ 16mm)),但比例不是3:2 而是4:3 ,是故沿用“英吋”的称法,命名为4/3 或是1又1/3 。

多传感器图像融合算法研究开题报告汇总

毕业(设计)论文 开题报告 系别自动化系 专业自动化 班级 191102 学生姓名 学号 指导教师 报告日期 2015-3-30

毕业(设计)论文开题报告表 论文题目多传感器图像融合算法研究 学生姓名学号114434 指导教师 题目来源(划√)科研√生产□实验室□专题研究□ 论文类型(划√)设计□论文√其他□ 一、选题的意义 数字图像融合是将两个或者两个以上的传感器在同一时间(或不同时间)获取的关于某个具体场景的图像或者图像序列信息加以综合,以生成一个新的有关此场景的解释,而这个解释是从单一传感器获取的信息中无法得到的。图像融合的目的是减少不确定性,其作用包括:(1)图像增强。通过综合来自多传感器(或者单一传感器在不同时间)的图像,获得比原始图像清晰度更高的新图像。(2)特征提取。通过融合来自多传感器的图像更好地提取图像的特征,如线段,边缘等。(3)去噪。(4)目标识别与跟踪。(5)三维重构。 图像融合技术(Image Fusion Technology)作为多传感器信息融合的一个非常重要的分支——可视信息融合,近二十年来,引起了世界范围的广泛关注和研究。图像融合是一门综合了传感器技术、图像处理、信息处理、计算机和人工智能等多种学科的现代高新技术。图像融合的主要思想是采用一定的算法,把来自多个传感器的多幅图像综合成一幅新图像,使融合后的图像具有更高的可信度,较少的不确定性以及更好的可理解性,融合后的图像比原来的图像更加清晰可靠,易于分辨,最终得到在任何一幅单独的原始图像中无法表现的某些特征,可为分类识别系统提供更加完备的数据集。 图像融合的基本原理就是在对同一目标的采用不同传感器所获得的图像,或者同一传感器在不同时间、不同角度所获得的图像在经过像素级配准之后,利用其在信息表达上的互补性和冗余性,根据一定的融合法则合成一幅满足某种要求的新的图像。因此,图像融合的目的是充分利用多个待融合源图像中包含的冗余信息和互补信息,实现多幅源图像信息的综合,已达到人们的某种需要。 最近这些年来,在军事领域与民事领域的各种各样种类繁多的需求牵引之下,

CMOS图像传感器的基本原理及设计考虑.

CMOS图像传感器的基本原理及设计考虑 摘要:介绍CMOS图像传感器的基本原理、潜在优点、设计方法以及设计考虑。 关键词:互补型金属-氧化物-半导体图像传感器;无源像素传感器;有源像素传感器 1引言 20世纪70年代,CCD图像传感器和CMOS图像传感器同时起步。CCD图像传感器由于灵敏度高、噪声低,逐步成为图像传感器的主流。但由于工艺上的原因,敏感元件和信号处理电路不能集成在同一芯片上,造成由CCD图像传感器组装的摄像机体积大、功耗大。CMOS图像传感器以其体积小、功耗低在图像传感器市场上独树一帜。但最初市场上的CMOS图像传感器,一直没有摆脱光照灵敏度低和图像分辨率低的缺点,图像质量还无法与CCD图像传感器相比。 如果把CMOS图像传感器的光照灵敏度再提高5倍~10倍,把噪声进一步降低,CMOS 图像传感器的图像质量就可以达到或略微超过CCD图像传感器的水平,同时能保持体积小、重量轻、功耗低、集成度高、价位低等优点,如此,CMOS图像传感器取代CCD图像传感器就会成为事实。 由于CMOS图像传感器的应用,新一代图像系统的开发研制得到了极大的发展,并且随着经济规模的形成,其生产成本也得到降低。现在,CMOS图像传感器的画面质量也能与CCD图像传感器相媲美,这主要归功于图像传感器芯片设计的改进,以及亚微米和深亚微米级设计增加了像素内部的新功能。 实际上,更确切地说,CMOS图像传感器应当是一个图像系统。一个典型的CMOS图像传感器通常包含:一个图像传感器核心(是将离散信号电平多路传输到一个单一的输出,这与CCD图像传感器很相似),所有的时序逻辑、单一时钟及芯片内的可编程功能,比如增益调节、积分时间、窗口和模数转换器。事实上,当一位设计者购买了CMOS图像传感器后,他得到的是一个包括图像阵列逻辑寄存器、存储器、定时脉冲发生器和转换器在内的全部系统。与传统的CCD图像系统相比,把整个图像系统集成在一块芯片上不仅降低了功耗,而且具有重量较轻,占用空间减少以及总体价格更低的优点。 2基本原理 从某一方面来说,CMOS图像传感器在每个像素位置内都有一个放大器,这就使其

未来传感器的发展趋势

未来传感器的发展趋势 课程论文 论文题目:未来传感器的发展趋势学院: 专业: 姓名: 学号: 指导老师: 二零一二年五月六日

目录 中文摘要 (3) 英文摘要 (3) 一、引言 (4) 二、传感器的历史 (5) 三、未来传感器的发展趋势 (7) (一)未来传感器的特点 (7) (二)未来传感器的几大方向 (8) (三)几个热门的研究方向 (8) 四、结束语 (9)

摘要:在人类进入信息时代的今天,人们的一切社会活动都是以信息获取与信息转换为中心的,传感器作为信息获取与信息转换的重要手段,是信息科学最前端的一个阵地,是实现信息化的基础技术之一。在工程科学与技术领域里,可以认为:传感器是人体“五官”的工程模拟物。 当前,我国传感器产业正处于由传统型向新型传感器发展的关键阶段,它体现了新型传感器向微型化、多功能化、数字化、智能化、系统化和网络化发展的总趋势。我国在传感器生产产业化过程中,应该兼顾引进国外和自主创新两方面。在引进国外先进技术中,可以提高自己的技术,同时也满足了国内市场的需求,形成了传感器生产产业规模。发现新效应,开发新材料、新功能;研研究生物感官、开发仿生传感器等为主要寻求传感器技术发展的新途径。 关键词:信息获取信息转换信息化关键趋势 Abstract:In the information age in human today, people of all social activities are based on information acquisition and information conversion as the center, sensor information acquisition and information conversion as the important means of information science is the same a position, is the foundation to realize the information technical one. In the engineering science and technology field, can think: sensor is human body \"facial features,\" engineering simulation objects. At present, our country sensors from the traditional industry is in the key of the development of new sensors stage, it reflects the new sensor to miniaturization, muti_function change, digital, intelligent, systematic and network the general trend of development. Our country in the sensor in the process of industrialization of production, should give consideration to the introduction of foreign and independent innovation two aspects. In introducing foreign advanced technology, can improve their technology, but also meet the demand of the domestic market, formed the sensor manufacturing industry scale. Find new effects, the development of new materials, new function; Research on biological research, develop bionic sensors senses as the main seek sensor technology development new way. Keywords: information acquisition information conversion informatization key trend

桥堆型号与参数对照表

桥堆型号与参数对照表 力邦电磁炉故障代码 E1:无锅.每隔3秒一声短笛音报警.连续性分钟转入待机. E2:电源电压过低.两长三短笛音报警.响两次转入待机.(间隔5秒). E3:电源电压过高.两长四短笛音报警.间隔5秒响一次. E4:锅超温.三长三短笛音报警.响两次转入待机.(间隔5秒). E6:锅空烧.两长三短笛音报警.响两次转入待机.(间隔5秒). E0:IGBT超温.四长三短笛音报警.响两次转入待机.(间隔5秒). E7:TH开路(管温传感器).四长五短笛音报警.间隔5秒响一次. E8:TH短路(管温传感器).四长四短笛音报警.间隔5秒响一次. E9:锅传感器开路.三长五短笛音报警.间隔5秒响一次. EE:锅传感器短路.三长四短笛音报警.间隔5秒响一次. E5:VCE过高.无声.重新试探启动. 定时结束:响一长声转入待机. 无时基信号.灯不亮.响两秒停两秒.连续. 美联电磁炉自动保护出错屏显代码: E---0 输入电压过低] E---1 输入电压过高 E---2 IGBT温度传感器开路或温度过低保护 E---3 IGBT温度传感器短路或温度过高保护 E---4 灶面温度传感器开路或温度过低保护 E---5 灶面温度传感器短路或温度过高保护] 开机自动关机:机内超温保护. 澳柯玛电磁炉 数码管显示故障代码及排除故障 (无数码显示的电磁炉不在范围之内) 现象故障原因检修方法 显示E1 炉面温度超过235℃并持续3S 电磁炉炉面温度冷却后再开机 显示E2 IGBT温度超过85℃并持续3S 电磁炉内部温度冷却后再开机 显示E3 检测电流过大检测电压是否正常或负载是否过大 显示E4 输入电压过低调节电源电压或更换主控板 显示E5 输入电压过高调节电源电压或更换主控板 显示E6 炉面上热敏电阻短路检查线路或更换热敏电阻 显示E7 炉面上热敏电阻断路检查线路或更换热敏电阻 显示E8 IGBT处的热敏电阻短路检查线路或更换热敏电阻 显示E9 IGBT处的热敏电阻断路检查线路或更换热敏电阻 注:线路板为PD版本的机型,增加E0代码,缺少E5、E6、E9代码,E0表示内部故障,E4表示电源欠压/过压,E7表示炉面的热敏电阻断路/开路,E8表示IGBT处的热敏电阻短路/短路。数码管显示故障代码及排除故障 苏泊尔电磁炉常见故障代码

多传感器图像融合应用研究

原野林宏中国人民解放军61855 部队韩晓静中国人民解放军61741 部队 肖舟旻中国人民解放军重庆通信学院邢劭谦中国人民解放军61855 部队 【摘要】多传感器图像融合的应用表现在多个领域中,航空航天、军事、医疗,以及其他高新技术产业,图像融合条件下,多传感器能够将数字化信号反应在图像中,并把图像特征充分的发挥出来。经多维度、多测度空间处理,多源信息图像的应用功能会愈加丰富、多样,不仅图像的信号层、像素层、特征层能够有机的融合在一起,其还会展现出不同种类、风格的融合图像。 【关键词】多传感器图像融合影响因素应用研究 在光学、电子学、摄影技术,以及传感器技术、计算机技术的多重应用表现下,图像融合这一科研课题迅速发展起来。传感器作为一种检测装置,在信息测量、信号编辑方面拥有强大的功能优势,它不但能在复杂环境下接收图像信号,还能将多重信号一一过滤、整合在一起,形成融合型图像。 一、传感器图像融合技术分类 1、信号https://www.wendangku.net/doc/5214308125.html,层。传感器接收的是源信号,所以相对于信号层的图像融合,与其他种类相比,其图像质感、表现更好,因为首先信号的误差小、传感器信号处理能力强,微小、弱势的信号都可以被检测、处理到。信号层信号会混有随机噪声影响,该信号在估量过程会发生阶段性改变,因此需要精准确定、对比信号频率才行。 2、像素层。像素层图像代表的是不同程度的像素信息内容,与信号信息不同,它具有一定的特征性,多半以图像的形式展现出来。为了让图像能够最真实、细腻的传输信号,传感器会依靠滤波功能,对同种像素级的图像信息源进行映射处理,以谋求图像信息源在融合后产生交互影响,进而的形成丰富多元的融合图像。如果各传感器参加融合的图像具有不同分辨率,则需要在映射处理的基础上,对图像信号源进行细致、精密的对准和校对,从高到底像素级,一步步提取、融合图像信号源的各特征信息。 3、特征层。特征层体现在传感器信息数据的融合特征,与信号层和像素层存在某种联系,信号的原始特征、图像信息源的特征,都能够透过信息的“特殊含义”所展现出来,也就是说,在某特殊区域、特殊范围、特殊时间内,如果要求传感器信息融合处理,那么首当其冲的便会是特征层的信号内容,因为其在边界提取、同密度或同景深区域表示等方面存在较大差异,亦容易被发觉、应用。 二、多传感器图像融合应用研究 本文选择红外图像与可见光图像融合应用为研究对象,探索多传感器是如何实现图像融合的,红外信号具有感光、感温功能,在不同温度梯度环境中,红外图像所表现出来的信号内容是存在明显差异的。可见光图像与其相比,可以展现、表露出诸多图像上的信息细节,如:局部高度、表征状态,以及光感亮度等等。该项技术应用在军事领域,军人要在夜晚的环境中组织进攻,必博闻新闻须通过红外传感器探索、检测周边环境,在将其与可见光图像融合,展现夜晚环境下真实的地区环境状态,使军人犹如在白天作战。 为了进一步丰富红外图像与可见光图像的融合效果,技术人员选择了特征层图像融合技术,它首先利用红外传感器把周边环境的探索信号、内容搜集过来,再由滤波器、信号编辑器、图像处理装置,将其复制粘贴到传统可见光图像中,使检测到的信号发挥图像编辑、处理能力,通过信号的变化、编辑处理,使图像展现可变的几何图形、方向、位置,以及特征的时域范围情境状态。红外传感器检测到的图像数据是信号翻译过来的,所以准度较高,可达到中级,如果精度要求还有待提升,可通过提高红外传感器检索信号的频率和波长,提高图像数据的精度级别。此外,在把红外传感器中的众多图像信号进行压缩处理的过程中,可见光

相关文档