文档库 最新最全的文档下载
当前位置:文档库 › 双金属轴承材料表面黏结润滑涂层摩擦学性能研究

双金属轴承材料表面黏结润滑涂层摩擦学性能研究

 万方数据

 万方数据

 万方数据

 万方数据

 万方数据

减速器的润滑和密封

第六章 减速器的润滑和密封 6.1 减速器的润滑 减速器中齿轮、蜗轮、蜗杆等传动件以及轴承在工作时都需要良好的润滑。 6.1.1润滑方式的选择 1.少数低速(v<0.5m /s)小型减速器采用脂润滑外,绝大多数减速器的齿轮都采用油润滑。对于齿轮圆周速度v ≤12m /s 的齿轮传动可采用浸油润滑。即将齿轮浸入油中,当齿轮回转时粘在其上的油液被带到啮合区进行润滑,同时油池的油被甩上箱壁,有助散热。为避免浸油润滑的搅油功耗太大及保证轮齿啮合区的充分润滑,传动件浸入油中的深度不宜太深或太浅,一般浸油深度以浸油齿轮的一个齿高为适度,速度高的还可浅些(约为0.7倍齿高左右),但不应少于lOmm ;锥齿轮则应将整个齿宽(至少是半个齿宽)浸入油中。对于多级传动,为使各级传动的大齿轮都能浸入油中,低速级大齿轮浸油深度可允许大一些,当其圆周速度v =0.8~12m /s 时,可达1/6齿轮分度圆半径;当v<0.5~0.8m /s 时,可达l/6~l /3的分度圆半径。如果为使高速级的大齿轮浸油深度约为一齿高而导致低速级大齿轮的浸油深度超过上述范围时,可采取下列措施:低速级大齿轮浸油深度仍约为一个齿高,可将高速级齿轮采用带油轮蘸油润滑,带油轮常用塑料制成,宽度约为其啮合齿轮宽度的1/3~1/2,浸油深度约为0.7个齿高,但不小于1Omm ;也可把油池按高低速级隔开以及减速器箱体剖分面与底座倾斜。 蜗杆圆周速度v≤10m/s 的蜗杆减速器可以采用浸油润滑。当蜗杆下置时,油面高度约为浸入蜗杆螺纹的牙高,但一般不应超过支承蜗杆的滚动轴承的最低滚珠中心,以免增加功耗。但如果因满足后者而使蜗杆未能浸入油中(或浸油深度不足)时,则可在蜗杆轴两侧分别装上溅油轮,使其浸入油中,旋转时将右甩到蜗杆端面上,而后流入啮合区进行润滑。当蜗杆在上时,蜗轮浸入油中,其浸入深度以一个齿高(或超过齿高不多)为宜。 2.当齿轮圆周速度v>12m/s 或蜗杆圆周速度v>10m/s 时,则不宜采用浸油润滑,因为粘在齿轮上的油会被离心力甩出而送不到啮合区,而且搅动太甚会使油温升高、油起泡和氧化等降低润滑性能。此时宜用喷油润滑,即利用油泵(压力约0.05~0.3MPa)借助管子将润滑不高但工作条件相当繁重的重型减速器中和需要大量润滑油进行冷却的减速器中。由于喷油润滑需要专门的管路、滤油器、冷却及油量调节装置,因而费用较贵。对蜗杆减速器,当蜗杆圆周速度p≤4~5m /s 时,建议蜗杆置于下方(下置式);当v>5m /s 时,建议蜗杆置于上方(上置式)。 6.1.2润滑油粘度的选择 齿轮减速器的润滑油粘度可按高速级齿轮的圆周速度v 选取:v≤2.5m /s 可选用中极压齿轮油N320;v>2.5m /s 或循环润滑可选用中极压齿轮油N220。若工作环境温度低于0°C,使用润滑油须先加热到0°C 以上。 蜗杆减速器的润滑油粘度可按滑动速度s v 选择:s m v s /2 可选用N680极压油;s v >2m/s 可选用N220极压油.蜗杆上置的,粘度应增大30%。 6.1.3轴承的润滑

金属基复合材料的现状与展望

金属基复合材料的现状与 展望 学院:萍乡学院 专业:无机非金属材料 学号:13461001 姓名:蒋家桐

摘要综述了金属基复合材料的进展情况,重点阐述了颗粒增强金属基复合材料和金属基复合 涂层的进展,包括其性能、现有品种、制备工艺、应用情况. 同时报道了目前本领域研究存在的问 题,如:力学问题、界面问题、热疲劳问题,并在此基础上展望发展前景. 关键词颗粒增强金属基复合材料,复合涂层材料,界面,热疲劳,功能梯度材料 随着近代高新技术的发展,对材料不断提出多方面的性能要求,推动着材料向高比强度、高比刚度、高比韧性、耐高温、耐腐蚀、抗疲劳等多方面发展[1 ] . 复合材料的出现在很大程度上解决了材料当前面临的问题,推进了材料的进展.金属基复合材料(MMC) 是以金属、合金或金属间化合物为基体,含有增强成分的复合材料. 这种材料的主要目标是解决航空、航天等高技术领域提高用材强度、弹性模量和减轻重量的需要,它在60 年代末才有了较快的发展,是复合材料一个新的分支. 目前尚远不如高聚物复合材料那样成熟,但由于金属基复合材料比高聚物基复合材料耐温性有所提高,同时具有弹性模量高、韧性与耐冲击性好、对温度改变的敏感性很小、较高的导电性和导热性,以及无高分子复合材料常见的老化现象等特点,成为用于宇航、航空等尖端科技的理想结构材料. 1 进展情况 目前,金属基复合材料基本上可分为纤维增强和颗粒增强两大类,所用的基体包括Al , Mg ,Ti 等轻金属及其合金以及金属间化合物等,也有少量以钢、铜、镍、钴、铅等为基体. 增强 纤维主要有碳及石墨纤维、碳化硅纤维、硼纤维、氧化铝纤维等,增强颗粒有碳化硅、氧化铝、硼 化物和碳化物等. 用以上的各种基体和增强体虽可组成大量金属基复合材料的品种,但实际上 只有极少几种有应用前景,多数仍处在研究开发阶段,甚至也有不少品种目前尚看不到其应用 前景[2 ] . 1. 1 纤维增强金属基复合材料 纤维增强金属基复合材料,由于具有高温性能好、比强度、比模量高、导电、导热性好等优 点,而成为复合材料的主要类型. 1. 2 颗粒增强金属基复合材料 由于纤维增强金属基复合材料存在上述缺点,从而未能得以大规模工业应用,只有美国、 日本等少数发达国家用于军事工业. 为此,近年来国际上又将注意力逐渐转移到颗粒增强金属 基复合材料的研究上. 这一类金属基复合材料与纤维增强金属基复合材料相比制备工艺简单, 成本低,可采用常规金属加工设备来制造,这样有利于其开发和应用. 可见,颗粒增强金属基复 合材料是非常有发展前途的. 金属基颗粒复合材料通常是作为耐磨、耐热、耐蚀、高强度材料开发的,目前用于颗粒增强

浅谈滚动轴承的润滑

浅谈滚动轴承的润滑 | 浏览:1141 | 更新:2012-09-05 12:10 滚动轴承既有滚动摩擦也有滑动摩擦。滑动摩擦是由于滚动轴承在表面曲线上的偏差和负载下轴承变形造成的。随着速度和负荷的增加,滚动轴承的滑动摩擦增大。为了减少摩擦、磨损、降低温升、噪声,防止轴承和部件生锈,采用合理的润滑方式和正确地选用润滑剂,适宜地控制润滑剂数量对提高轴承寿命非常重要 方法/步骤 1、润滑的目的 滚动轴承的润滑目的是为了减少轴承内部摩擦及磨损,防止烧粘,其润滑效果如下: 1)减少摩擦及磨损 在构成轴承的套圈、滚动体及保持架的相互接触部分,防止金属接触,减少摩擦、磨损。 2)延长疲劳寿命 轴承的滚动体疲劳寿命,在旋转中,滚动接触面润滑良好,则延长。相反地,油粘度低,润滑油膜厚度不好,则缩短。 3)排除摩擦热、冷却 循环给油法等可以用油排出由摩擦产生的热量,或由外部传来的热,起到冷却的作用。防止轴承过热,防止润滑油自身老化。 4)其它 也有防止异物侵入轴承内部,或防止生锈、腐蚀的效果。 2、滚动轴承对润滑剂的要求

2.1、对润滑剂的基本要求 通常对润滑剂有如下各项基本要求: A、具有足够的润滑作用,即能降低轴承的摩擦并抑制轴承中有害的磨损过程,摩擦阻力要小,抗磨能力要大。 B、防止轴承发生锈蚀,本身也不致引起轴承组成零件(如铜保持架、橡胶密封件等)的腐蚀、变质或变形。 C、能在规定的工作温度上限和下限的范围内,始终保持必要的润滑性能,化学成分稳定,粘度变化不大。 D、在规定工作转速的上限和下限的范围内,都能建立起足够厚的油膜;本身清洁,不含杂质,消泡性良好。 E、在要求的工作期限内或库存期限内,物理性能和化学性能足够稳定,不致产生影响使用的品质降低。 F、维护,保养力求简便,附属装置尽可能少。 G、在满足上述技术要求的前提下,经济上力求节约。 2.2、对润滑剂的附加要求 A、有良好的冷却效果。 B、对所润滑的表面有很强的附着性,泄漏,滴落或甩散尽可能要少;水分离性好。 C、混入少许杂质(如水分等)不致影响其应有性能。 D、起到密封作用,能防止水或污物进入轴承。 E、不易传递振动或能减轻噪声。 F、能实行集中润滑。 2.3、对润滑剂的特殊要求 在特殊工况下,必须对润滑剂提出如下特殊要求: A、长寿命的要求要求润滑剂的使用寿命特别长。 B、低摩擦力矩的要求要求润滑剂的摩擦阻力很低。 C、耐高温的要求要求能耐250℃以上的高温。 D、耐低温的要求要求能耐—63℃以下的低温。 E、耐高真空的要求要求在高真空的条件下,不挥发,不散失,不变质,特别是在失重状态的高真空条件下。 F、无害性的要求 G、边界润滑特性好的要求 3、滚动轴承的润滑方式

自润滑轴承装 配 图

自润滑轴承装配图 安装注意事项: 1. 装配前应确保轴套、座孔表面无异物,座孔表面应尽可能光洁以免在装配时划伤。 2. 装配时可在轴套外表面适当涂上润滑油,帮助轴套较方便地安装,但不易过多以免在重载或往复运动时轴套会脱离出来。 3. 装配时应采用芯轴慢慢压入(建议使用油压机),禁止直接敲打轴套以免发生变形。 4. 座孔设计时如需采用易变形材料或座孔壁厚较薄时,请予以说明,以免压装时使座孔变形。 5. 为了使装配更简单且不会破坏耐磨层,轴的端面必须有倒角圆滑过度,轴的材质建议为轴承钢表面淬火处理 HRC45 ,表面粗糙度为 Rz2-3,表面也可镀硬铬。 6. 装配时有可能的话,请在轴表面涂上油脂以缩短轴套走合期。 轴套检验方式: 1. 外径:采用环规通(GO)与止(NO GO)方式,环规通端为外径最大尺寸,环规止端为外径最小尺寸。

2. 内径:将轴套压入基准孔( H7 中间值公差)用圆柱塞规检验轴套,塞规的通端为轴套内孔最小尺寸,塞规的止端为轴套内孔最大尺寸。一般卷制类轴套内孔的精度等级为 H9 。 3. 环规、塞规尺寸按 DIN1494 第一部分。 相关文章推荐: 1. 无油润滑轴承在铝锭铸造机的应用(文章来源:中国金属加工网) 2. 无油轴承带动模具行业革命(文章来源:中国建材网) 3. 自润滑轴承将会成为轴承行业主导产品(文章来源:中国轴承网) 4. 浅释缝机“固体润滑”(文章来源:中国纺织服装网) 5. 免维护系列滑动轴承、复合轴承、自润滑轴承、无油轴承的应用实例 安装注意事项: 1. 装配前应确保轴套、座孔表面无异物,座孔表面应尽可能光洁以免在装配时划伤。 2. 装配时可在轴套外表面适当涂上润滑油,帮助轴套较方便地安装,但不易过多以免在重载或往复运动时轴套会脱离出来。 3. 装配时应采用芯轴慢慢压入(建议使用油压机),禁止直接敲打轴套以免发生变形。 4. 座孔设计时如需采用易变形材料或座孔壁厚较薄时,请予以说明,以免压装时使座孔变形。 5. 为了使装配更简单且不会破坏耐磨层,轴的端面必须有倒角圆滑过度,轴的材质建议为轴承钢表面淬火处理 HRC45 ,表面粗糙度为 Rz2-3,表面也可镀硬铬。 6. 装配时有可能的话,请在轴表面涂上油脂以缩短轴套走合期。 轴套检验方式: 1. 外径:采用环规通(GO)与止(NO GO)方式,环规通端为外径最大尺寸,环规止端为外径最小尺寸。 2. 内径:将轴套压入基准孔( H7 中间值公差)用圆柱塞规检验轴套,塞规的通端为轴套内孔最小尺寸,塞规的止端为轴套内孔最大尺寸。一般卷制类轴套内孔的精度等级为 H9 。 3. 环规、塞规尺寸按 DIN1494 第一部分。 公差配合的推荐与配合公差的推荐值 发布时间:2010-11-23 09:49:01 公差配合的推荐 滚动轴承内径和外径的公差均是国际标准化。 为了轴承的圆柱孔和圆柱形外径可以达到一定的过盈配合或间隙配合·轴 颈和轴承座孔合适的公差范围可以从ISO公差系统中选择。但在滚动轴承的应用中,只需要使用ISO某部分的公差等级。

金属基复合材料的研究进展

金属基复合材料的研究进展 姓名:@@@ 学号:@@@@ 学院:@@@@ 专业:@@@@

目录 1金属基复合材料发展史 (1) 2金属基复合材料的制造方法 (1) 2.1扩散法 (1) 2.1.1扩散粘结法 (1) 2.1.2无压力金属渗透法 (2) 2.1.3预制体压力浸渗法 (2) 2.2沉积法 (2) 2.2.1反应喷射沉积法(RAD) (2) 2.2.2溅射沉积法 (2) 2.2.3化学气象沉积法 (2) 2.3液相法 (2) 2.4熔体搅拌法 (3) 3金属基复合材料的应用概况 (3) 3.1金属基复合材料的范畴界定 (3) 3.2金属基复合材料全球市场概况 (3) 3.2.1MMCs在陆上运输领域的应用 (4) 3.2.2MMCs在电子/热控领域的应用 (4) 3.2.3MMCs在航空航天领域的应用 (5) 3.2.4MMCs在其它领域的应用 (5) 3.3中国的金属基复合材料研究现状 (7) 4金属基复合材料研究的前沿趋势 (7) 4.1金属基复合材料结构的优化 (7) 4.1.1多元/多尺度MMCs (8) 4.1.2微结构韧化MMCs (8) 4.1.3层状MMCs (8) 4.1.4泡沫MMCs (8) 4.1.5双连续/互穿网络MMCs (8) 4.2结构-功能一体化 (8) 4.2.1高效热管理MMCs (8) 4.2.2低膨胀MMCs (9) 4.2.3高阻尼MMCs (9) 4.3碳纳米管增强金属基纳米复合材料 (9) 5总结与展望 (9) 参考文献 (10)

金属基复合材料的研究进展 摘要:在过去的三十年里,金属基复合材料凭借其结构轻量化和优异的耐磨、热学和电学性能,逐渐在陆上运输(汽车和火车)、热管理、民航、工业和体育休闲产业等诸多领域实现商业化的应用,确立了作为新材料和新技术的地位。本文概述了金属基复合材料的发展历史和制造方法。并且在综述金属基复合材料的研究与应用现状的基础上,对其研究的前沿趋势进行了展望。 关键词:金属基复合材料;制造方法;性能;应用;前沿展望 金属基复合材料(MMCs),是在各金属材料基体内用多种不同复合工艺,加进增强体,以改进特定所需的机械物理性能。金属基复合材料在比强度、比钢度、导电性、耐磨性、减震性、热膨胀等多种机械物理性能方面比同性材料优异得多。因此,金属基复合材料在新兴高科技领域,宇航、航空、能源及民用机电工业、汽车、电机、电刷、仪器仪表中日益广泛应用。 1金属基复合材料发展史 近代金属基复合材料的研究始于1924年Schmit[1]关于铝/氧化铝粉末烧结的研究工作。在30年代,又出现了沉淀强化理论[2,3],并在以后的几十年中得到了很快地发展。到了60年代,金属基复合材料已经发展成为复合材料的一个新的分支。到了80年代,日本丰田公司首次将陶瓷纤维增强铝基复合材料用于制造柴油发动机活塞,从此金属基复合材料的研制与开发工作得到了飞快地发展。土耳其的S.Eroglu等用离子喷涂技术制得了NiCr-Al/MgO-ZrO2功能梯度涂层。目前,金属基复合材料已经引起有关部门的高度重视,特别是航空航天部门推进系统使用的材料,其性能已经接近了极限。因此,研制工作温度更高、比钢度、比强度大幅度增加的金属基复合材料,已经成为发展高性能材料的一个重要方向。1990年美国在航天推进系统中形成了3 250万美元的高级复合材料(主要为MMC)市场,年平均增长率为16%,远远高于高性能合金的年增长率[4]。到2000年,金属基复合材料的市场价值达到了1.5亿美元,国防/航空用金属基复合材料已占市场份额的80%[5]。预计到2005年市场对金属基复合材料的需求量将达161 t,平均年增长率为4.4%。 2金属基复合材料的制造方法 金属基复合材料的种类繁多,制造方法多样,但总体上可以归纳为4种生产方法。2.1扩散法 扩散法是将作为基本的金属粉末与裸露或有包覆层的纤维在一起压型和烧结,或在基体金属的薄箔之间置入增强剂进行冷压或热压制成金属基复合材料的方法[6]。 2.1.1扩散粘结法 这种方法常用于粉末冶金工业。对于颗粒、晶须等增强体可以采用成熟的粉末冶金法,即把增强体与金属粉末混合后冷压或热压烧结,也可以用热等压工艺。对于连续增强体比较复杂,需先将纤维进行表面涂层以改善它与金属的润湿性并起到阻碍与金属反应的作用,再浸入液态金属中制成复合丝,最后把复合丝排列并夹入金属薄片后热压烧结,对于难熔金属

滚动轴承的润滑方式

滚动轴承的润滑方式 摘要在工程机械中,轴承是一种必备品,我们几乎可以在所有的机械设备中看到它,其在机械产品中的地位不言而喻。因此作为一种耗损件,如何提高轴承的使用寿命一直是学者研究的重点,本文对轴承的润滑方式做了详细的分类,系统的阐释了在不同的工作条件下润滑方式的选择原则。最终使读者对轴承润滑的方式会进行针对性地选择、使用。 关键词滚动轴承;脂润滑;油润滑;润滑方式 滚动轴承是现代机器中广泛应用的部件之一,常用的滚动轴承大多已经标准化,并由专门工厂大量制造。 滚动轴承一般由内圈、外圈、滚动体和保持架四部分组成。为保证轴承安全可靠运转,在轴承工作时为尽量减少摩擦和磨损,避免轴承表面形成点蚀而造成失效,就要求对轴承进行润滑。滚动轴承润滑剂的选择主要取决于载荷、速度和温度等工作条件。滚动轴承常用的润滑方式可以分为油润滑和脂润滑两种,对于不同的工作条件,只有选择适宜的润滑方式,才能起到良好的润滑效果。 1 脂润滑 与润滑油相比,润滑脂具有粘附性好、不流失、不滴落、抗压性好、密封防尘好、抗腐蚀性好等特点。由于润滑脂不易泄露,所以脂润滑几乎是一种永久性润滑,尤其对于竖直或倾斜放置的机器,采用脂润滑能达到持续润滑的效果。但其主要缺点是相较油润滑的润滑阻力要大,功率损失大。并且不能对摩擦副起到很好的冷却作用。影响脂润滑选择的主要因素包括以下三个。 1.1 工作速度 工作速度是选择润滑脂的一个重要因素,该因素可用公式dn来衡量,式中d(mm)代表轴承内圈的直径,n(r/min)代表转速。对滚动轴承来说,润滑脂使用的dn值在0.3×106左右。 1.2 工作负荷 当轴承承受较大的负荷时,应该选择粘度高的润滑脂,即选用针入度小的润滑脂类型,这样润滑脂可以在接触面间形成良好的润滑油膜。随着轴承负荷的减少,润滑脂的黏度也应随之降低。 1.3 工作温度 脂润滑的选择同时受到工作温度的影响,温度的变化会引起轴承粘度的变化,进而影响其润滑性能。滚动轴承润滑脂的黏度一般不应低于20 mm2/s。在

轴承的摩擦与润滑外文翻译

本科生毕业设计专业外文翻译原文:Friction , Lubrication of Bearing 译文:轴承的摩擦与润滑 指导教师:王君莉职称:研究生 学生姓名:虞启志学号: 1102130221 专业:机械设计制造及其自动化 院(系):机电工程学院 2015年4月10日

Friction,Lubrication of Bearing In many of the problem thus far , the student has been asked to disregard or neglect friction . Actually , friction is present to some degree whenever two parts are in contact and move on each other. The term friction refers to the resistance of two or more parts to movement. Friction is harmful or valuable depending upon where it occurs. friction is necessary for fastening devices such as screws and rivets which depend upon friction to hold the fastener and the parts together. Belt drivers, brakes, and tires are additional applications where friction is necessary. The friction of moving parts in a machine is harmful because it reduces the mechanical advantage of the device. The heat produced by friction is lost energy because no work takes place. Also , greater power is required to overcome the increased friction. Heat is destructive in that it causes expansion. Expansion may cause a bearing or sliding surface to fit tighter. If a great enough pressure builds up because made from low temperature materials may melt. There are three types of friction which must be overcome in moving parts: (1)starting, (2)sliding, and(3)rolling. Starting friction is the friction between two solids that tend to resist movement. When two parts are at a state of rest, the surface irregularities of both parts tend to interlock and form a wedging action. To produce motion in these parts, the wedge-shaped peaks and valleys of the stationary surfaces must be made to slide out and over each other. The rougher the two surfaces, the greater is starting friction resulting from their movement . Since there is usually no fixed pattern between the peaks and valleys of two mating parts, the irregularities do not interlock once the parts are in motion but slide over each other. The friction of the two surfaces is known as sliding friction. As shown in figure ,starting friction is always greater than sliding friction . Rolling friction occurs when roller devces are subjected to tremendous stress which cause the parts to change shape or deform. Under these conditions, the material in front of a roller tends to pile up and forces the object to roll slightly uphill. This changing of shape , known as deformation, causes a movement of molecules. As a result ,heat is produced from the added energy required to keep the parts turning and overcome friction. The friction caused by the wedging action of surface irregularities can be overcome partly by the precision machining of the surfaces. However, even these smooth surfaces may require the use of a substance between them to reduce the friction still more. This substance is usually a lubricant which provides a fine, thin oil film. The film keeps the surfaces apart and prevents the cohesive forces of the surfaces from coming in close contact and producing heat . Another way to reduce friction is to use different materials for the bearing surfaces and rotating parts. This explains why bronze bearings, soft alloys, and copper and tin iolite bearings are used with both soft

金属基复合材料复习大纲(完整版)

金属基复合材料复习大纲 一.内生增强的金属基复材的特点. 答:1.增强体试从金属体中原位形核、长大的热力学稳定相,因此,增强体表面无污染,避免了与基体相容性不良的问题,且界面结合强度高。 2.通过合理选择反应元素(或化合物)的类型、成分及其反应性,可有效地控制原位生成增强体的种类、大小、分布和数量。 3.省去了增强体单位合成、处理和加入等工序,因此其工艺简单,成本较低。 4.从液态金属基体中原位形成增强体的工艺,可用铸造方法制备形状复杂、尺寸较大的近净成形构件。 5.在保证材料具有较好的韧性和高温性能的同时,可较大程度地提高材料的强度和弹性模量。 补:外加增强的金属基复材的特点:1.颗粒表面有污染;2.界面结合差;3.润湿性。 二.金属基复材的特点. 答:1.高比强度、高比模量;2.导热、导电性能;3.热膨胀系数小,尺寸稳定性好;4.良好的高温性能;5.耐磨性好;6.良好的疲劳性能和断裂韧度;7.不吸潮,不老化,气密性好。 三.增强体的作用. 答:传递作用承受力,提高金属基体的强度、模量、耐热性、耐磨性等性能。 四.金属基复材增强体应有的基本特性. 答:1.增强体具有能明显提高金属基体某种所需特性的性能;2.增强体应具有良好的化学稳定性;3.与金属有良好的浸润性。 五.选择增强体的原则. 答:1.力学性能:杨氏模量和塑性强度;2.物理性能:密度和热扩散系数;3.几何特性:形貌和尺寸;4.物理化学相容性;5.成本因素。 六.碳纤维制造的过程. 答:1.拉丝:可用湿法、干法或者熔融状态三种中任意一种方法进行; 2.牵伸:在室温以上,通常是在100~300℃范围内进行,W.Watt 首先发现结晶定向纤维的拉伸效应,而且这效应控制着最终纤维的模量; 3.稳定:通过400℃加热氧化的方法。这显著地降低所有的热失重,并因此保证高度石墨化和取得更好的性能。 4.碳化:在1000~2000℃范围内进行; 5.石墨化:在2000~3000℃范围内进行。 七.先驱体转化法工艺流程图. 答:二氯二甲基硅烷 脱氢 裂解 纺丝 不熔化处理 金属钠 缩合 重排 八.氧化铝纤维的制备. 答:1.淤浆法:以氧化铝粉末为主要原料,同时加入分散剂、流变助剂、烧结助剂,分散于水中,制成可纺浆料,经挤出成纤,再经干燥、烧结得到直径在200μm 左右的氧化铝纤维; 烧成 聚硅烷 聚碳硅烷 聚碳硅烷纤维 不熔化聚碳硅烷纤维 碳化烷纤维

机械毕业设计英文外文翻译582轴承的摩擦与润滑

外文文献的中文译文 轴承的摩擦与润滑 现在看来,有很多这种情况,许多学生在被问到关于摩擦的问题时,往往都没引起足够的重视,甚至是忽视它。实际上,摩擦从某种程度上说,存在于任何两个相接触并有相对运动趋势的部件之间。而摩擦这个词,本身就意味着,两个或两个以上部件的阻止相对运动趋势。 在一个机器中,运动部件的摩擦是有害的,因为它降低了机械对能量的充分利用。由它引起的热能是一种浪费的能量。因为不能用它做任何事情。还有,它还需要更大的动力来克服这种不断增大的摩擦。热能是有破坏性的。因为它产生了膨胀。而膨胀可以使得轴承或滑动表面之间的配合更紧密。如果因为膨胀导致了一个足够大的积压力,那么,这个轴承就可能会卡死或密封死。另外,随着温度的升高,如果不是耐高温材料制造的轴承,就可能会损坏甚至融化。 在运动部件之间会发生很多摩擦,如 1.启动摩擦 2.滑动摩擦 3.转动摩擦。 启动摩擦是两个固体之间产生的倾向于组织其相对运动趋势的摩擦。当两个固体处于静止状态时,这两个零件表面的不平度倾向于相互嵌入,形成楔入作用,为了使这些部件“动”起来。这些静止部件的凹谷和尖峰必须整理光滑,而且能相互抵消。这两个表面之间越不光滑,由运动造成的启动摩擦(最大静摩擦力)就会越大。 因为,通常来说,在两个相互配合的部件之间,其表面不平度没有固定的图形。一旦运动部件运动起来,便有了规律可循,滑动就可以实现这一点。两个运动部件之间的摩擦就叫做滑动摩擦。启动摩擦通常都稍大于滑动摩擦。 转动摩擦一般发生在转动部件和设备上,这些设备“抵触”极大的外作用力,当然这种外力会导致部件的变形和性能的改变。在这种情况下,转动件的材料趋向于堆积并且强迫运动部件缓慢运动,这种改变就是通常所说的形变。可以使分子运动。当然,最终的结果是,这种额外的能量产生了热能,这是必需的。因为它可以保证运动部件的运动和克服摩擦力。 由运动部件的表面不平度的楔入作用引起的摩擦可以被部分的克服,那就需要靠两表面之间的润滑。但是,即使是非常光滑的两个表面之间也可能需要一种物质,这种物质就是通常所说的润滑剂,它可以提供一个比较好的、比较薄的油膜。这个油膜使两

电机轴承润滑脂性能与原理及应用

电机轴承润滑脂的工作原理和方法 电机轴承的润滑是依靠润滑脂内的三维纤维网状结构在剪切作用下被拉断时被析出的润滑油在轴承的转动元件,轴承和轴承座圈上形成一层润滑膜而起润滑作用的当新装的润滑脂的轴承开始转动时,润滑脂首先从转动元件上被甩出,并快速的在轴承盖的腔内循环,冷却。随后润滑脂又从旋转的轴承座圈外侧切入到转动元件上,紧贴着转动元件表面上的那部分脂在剪切作用下拉断了纤维网状结构,使少量析出的润滑油在转动元件和座圈表面形成一层润滑莫。其余的部分的润滑脂仍然保持完好的纤维网状结构,起了冷却和密封作用。 在轴承刚开始转动时,润滑脂的湍动产生摩擦热,使轴承温度上升到一个最大值,然后随着不断的剪切作用析出润滑油,在轴承的转动元件,轴承座和轴承座圈上形成一层润滑莫之后,这种摩擦热又逐渐减少,同时不断从转动元件甩出到轴承盖空腔内的润滑脂又起到了良好的冷却作用。从而使轴承温度逐渐下降,趋近于一个平衡值。由以上电机轴承润滑脂的工作原理可以看出,润滑脂在电机轴承内不是依靠润滑脂粘附在金属表面上起润滑作用的,而象液体般在轴承盖的空腔内不断的循环流动,即不断的从转动的元件上甩出到空腔内,又不断的从轴承盖空腔返回到转动元件上,从而反复的剪切和冷却、即保证了轴承不发生异常温升,现代高级机电部轴承用润滑脂必须能保证按这个工作原理在轴承内运行。 电机轴承内填充的润滑脂量应该是保持在轴承盖内全部空腔的1/3,留下2/3的空间,从而保证有足够的空间让从转自元件上甩出的润滑脂充分冷却后返回到转自元件上,达到控制温升的目的。同时要注意填充量不可过少,因为润滑脂填充量过少将使从转动元件上甩出的润滑脂无法从轴承盖内返回到转动元件上,从而造成润滑不足。 名片:润滑脂,稠厚的油脂状半固体。用于机械摩擦部分,起润滑和密封作用。也用于金属面,起填充空隙和防锈作用。主要有矿物油和稠化剤调制而成。根据稠化剂可分为皂基脂和非皂基脂两类。皂基脂的稠化剂常用锂、钠、钙、锌等金属皂,也用钾、钡、铅、铝等金属皂,非皂基脂的稠化剂用石墨、炭黑、石棉,根据用途可分为通用润滑脂和专用润滑脂,前者用于一般机械零件,后者用于拖拉机、铁路机车、船舶机械、石油钻井机械、阀门等。主要质量指标是滴点、针入度、灰分、水分等。用来评定润滑脂胶体稳定性的指标为分油实验、滚动轴承性能试验等。滚筒实验是测试滚压作用下稠度变化的试验方法。流动实验是评价在低温下润滑脂可泵送性的试验方法。抗水淋性试验是评价对水林析出的抵抗能力的试验方法。胶体安定性是润滑脂在使用和储存中保持胶体稳定,液体矿物油不从脂中析出的性能。机械安定性是表示润滑脂在机械工作条件下抵抗稠度变化的性能。滚珠轴承扭矩实验是评价润滑脂低温性能的一种试验方法。 润滑脂是将稠化剂分散于液体润滑剂中所组成的一种稳定的固体或半固体产品,其中可以加入旨在改善润滑脂某种特性的添加剂或填料。润滑脂可在常温下附着于垂直表面不流失,并能在敞开或密封不良的摩擦部位工作,具有其他润滑剂所不可替代的特点。因此,在汽车和工程机械上的许多部位都是用润滑脂作为润滑材料,即我们常说的机用黄油。 润滑脂主要由稠化剂、基础油、添加剂三部分组成。一般润滑脂中稠化剂含量约为10%-20%,基础油含量约为75%-90%,添加剂及填料的含量在5%以下。 1基础油 基础油是润滑脂分散体系中的分散介质,它对润滑脂的性能有较大影响,一般润滑脂多采用中等粘度及高粘度的石油润滑油作为基础油,也有一些为适应在苛刻条件下工作的机械润滑及密封的需要,采用合成润滑油作为基础油,如酯类油、聚泣-烯烃油、硅油、等。 2稠化剂 稠化剂是润滑脂的重要组成部分,稠化剂分散在基础油中并形成润滑脂的结构骨架,使基础油被吸附和固定在结构骨架中。润滑脂的抗水性及耐热性主要由稠化剂所决定。用于

金属基复合材料综述

金属基复合材料综述 专业: 学号: 姓名: 时间:

金属基复合材料综述 摘要:新材料的研究、发展与应用一直是当代高新技术的重要内容之一。其中复合材料,特别是金属基复合材料在新材料技术领域中占有重要的地位。金属基复合材料对促进世界各国军用和民用领域的高科技现代化,起到了至关重要的作用,因此倍受人们重视。本文概述了金属基复合材料的发展历史及研究现状,对金属基复合材料的分类、性能、应用、制备方法、等进行了综述,提出了金属基复合材料研究中存在的问题,探讨了金属基复合材料的发展趋势。 关键词:金属基复合材料;分类;性能;应用;制备;发展趋势 Abstract: The research development and application of new composites are one of the important matters in modern high science and technology. This paper summarizes the met al matrix composites and the development history of the present situation and the classific ation of the metal matrix composites, performance, application and preparation methods, w as reviewed, and put forward the metal matrix composites the problems existing in the res earch, discusses the metal matrix composites trend of development. Keywords: Metal matrix composites; Classification; Performance; Application; Preparation; Development trend. 1.引言 复合材料是继天然材料,加工材料和合成材料之后发展起来的新一代材料。按通常的说法,复合材料是指两种或两种以上不同性质的单一材料,通过不同的复合方法所得到的宏观多相材料。随着现代科学技术的迅猛发展,对材料性能的要求日益提高。常希望复合材料即具有良好的综合性能,又具有某些特殊性能。金属基复合材料是近年来迅速发展起来的高性能材料之一,对促进世界各国军用和民用领域的高科技现代化,起到了至关重要的作用。相信随着科学技术的不断发展,新的制造方法的出现,高性能增强物价格的不断降低,金属基复合材料在各方面将有越来越广阔的应用前景。

滚动轴承润滑剂的作用和性能

滚动轴承润滑剂的作用和性能 1.轴承润滑剂的主要作用 (1)减少相对运动金属表面之间的摩擦和磨损,在摩擦表面形成油膜,增大零件接触承载面积,减小接触应力,延长轴承的接触疲劳寿命; (2)润滑剂具有防锈、防腐蚀、防尘和密封性能; (3)油润滑具有散热作用,可带走轴承运转中产生的磨损颗粒或侵人的污染物; (4)具有一定的减振作用。 2.润滑油的性能质量指标 (1)黏度 润滑油的私度可以定性的定义为其内部层与层之间相互移动或流动的阻力,它是润滑油 最重要的一项性能指标,决定着轴承润滑油膜的承载能力。 (2)黏度指数 黏度指数表示温度改变对润滑油黏度的影响程度。油品的黏度指数越大,粘温特性越好, 黏温特性是指a度随温度变化的性能,其值越大说明a度受温度变化的影响越小。 (3)水分 水分是润滑油中水分的比例。水分过多会使润滑油乳化变质,丧失润滑性能。一般润滑油中水分应控制在3%以下。 除了黏度和黏度指数外,还有闪点与燃点、酸性、凝点和炭分等润滑性能质量指标。 3.润滑脂的性能质量指标 (1)针入度 润滑脂在外力作用下抵抗变形的能力称为稠度。稠度采用针人度或锥人度来度量。针入度越小说明润滑脂的稠度越大、脂的硬度越高、流动性越差。 (2)滴点 润滑脂按规定的加热条件加热,其在滴点计的脂杯中滴落下第一滴油时的温度。润滑脂的滴点确定了脂的工作温度(或耐热性),一般润滑脂的工作温度应低于滴点20℃以上。 (3)极压性能 极压性能是润滑脂承受重载荷作用时在金属表面上维持完整油膜的能力。

(4)机械稳定性 润滑脂在承受机械作用时抵抗稠度改变的能力称为机械稳定性。润滑脂在机械力长期作用下,稠度将会下降,严重时会变成液体而丧失润滑脂特有的性能。 (5)氧化安定性 润滑脂在贮存和使用过程中抵抗氧化的能力称为氧化安定性。润滑脂氧化后将使基础油的黏度变大、稠度变小、滴点下降.而丧失润滑作用。轴承工作温度升高会加快润滑脂的氧化。 4.添加剂 一般基础油很难满足摩擦副润滑的综合性能要求,因此,为了提高油品的使用性能,必须在基础油中加人一定量对润滑剂性能改善起重要作用的物质即添加剂,以适应各种特殊工作条件的需要。添加剂的作用主要有: (1)提高基础油的油性和极压性,增加润滑油或脂的工作能力; (2)延缓润滑油或脂受环境影响老化变质,提高使用寿命; (3)改善润滑油或脂的物理性能,如降低凝点、消除泡沫、提高钻度等; (4)保护零件表面不受燃油腐蚀或其燃烧产物的污染。 5.稠化剂 稠化剂的作用主要是为了保持润滑脂呈半固体状态,而润滑脂的一些性能也是由稠化剂来决定,如润滑脂的使用温度、机械稳定性、耐热性、耐水性等性能主要取决于稠化剂的性能。 使用不同的稠化剂,润滑脂的性能也不同。稠化剂有金属皂基和非皂基之分,金属皂基如铿、钠、钙、钡、铝等,非皂基如硅胶、膨胀润土、尿素等。 6.润滑剂性能比较 用于轴承的润滑剂有许多种,但性能各异,使用的工作条件也不同。因此,在选择润滑剂时,应了解润滑剂的主要性能指标及它们在性能上的差异,从中选出符合使用要求的润滑剂。

金属基复合材料知识讲解

金属基复合材料

1、复合材料的定义和分类是什么? 定义:是由两种或多种不同类型、不同性质、不同相材料,运用适当的方法,将其组合成具有整体结构、性能优异的一类新型材料体系。 分类:按用途可分为:功能复合材料和结构复合材料。结构复合材料占了绝大多数。 按基体材料类型分类可分为:聚合物基复合材料、金属基复合材料、无机非金属基复合材料(包括陶瓷基复合材料、水泥基复合材料、玻璃基复合材料)按增强材料形态可分为:纤维增强复合材料(包括连续纤维和不连续纤维)、颗粒增强复合材料、片材增强复合材料、层叠式复合材料。 3、金属基复合材料增强体的特性及分类有哪些? 增强物是金属基复合材料的重要组成部分,具有以下特性:1)能明显提高金属基体某种所需特性:高的比强度、比模量、高导热性、耐热性、耐磨性、低热膨胀性等,以便赋予金属基体某种所需的特性和综合性能;2)具有良好的化学稳定性:在金属基复合材料制备和使用过程中其组织结构和性能不发生明显的变化和退化;3)有良好的浸润性:与金属有良好的浸润性,或通过表面处理能与金属良好浸润,基体良好复合和分布均匀。此外,增强物的成本也是应考虑的一个重要因素。分类:纤维类增强体(如:连续长纤维、短纤维)、颗粒类增强体、晶须类增强体、其它增强体(如:金属丝)。 4、金属基复合材料基体的选择原则有哪些? 1)、金属基复合材料的使用要求;2)、金属基复合材料组成的特点;3)、基体金属与增强物的相容性。 5、金属基复合材料如何设计?

复合材料设计问题要求确定增强体的几何特征(连续纤维、颗粒等)、基体材料、增强材料和增强体的微观结构以及增强体的体积分数。一般来说,复合材料及结构设计大体上可分为如下步骤:1)对环境与负载的要求:机械负载、热应力、潮湿环境 2)选择材料:基体材料、增强材料、几何形状 3)成型方法、工艺、过程优化设计 4)复合材料响应:应力场、温度场等、设计变量优化 5)损伤及破坏分析:强度准则、损伤机理、破坏过程 6、金属基复合材料制造中的关键技术问题有哪些? 1)加工温度高,在高温下易发生不利的化学反应。在加工过程中,为了确保基体的浸润性和流动性,需要采用很高的加工温度(往往接近或高于基体的熔点)。在高温下,基体与增强材料易发生界面反应,有时会发生氧化生成有害的反应产物。这些反应往往会对增强材料造成损害,形成过强结合界面。过强结合界面会使材料产生早期低应力破坏。高温下反应产物通常呈脆性,会成为复合材料整体破坏的裂纹源。因此控制复合材料的加工温度是一项关键技 术。 2)增强材料与基体浸润性差是金属基复合材料制造的又一关键技术,绝大多数的金属基复合材料如:碳/铝、碳/镁、碳化硅/铝、氧化铝/铜等,基体对增强材料浸润性差,有时根本不发生润湿现象。 3)按结构设计需求,使增强材料按所需方向均匀地分布于基体中也是金属基复合材料制造中的关键技术之一。增强材料的种类较多,如短纤维、晶须、颗粒等,也有直径较粗的单丝,直径较细的纤维束等。在尺寸形态、理化性能上也有很大差异,使其均匀地、或按设计强度的需要分布比较困难。 7、金属基复合材料的成形加工技术有哪些? 1)铸造成型,按增强材料和金属液体的混合方式不同可分为搅拌铸造成型、正压铸造成型、铸造成型。2)塑性

润滑与密封

润滑与密封 一、传动零件的润滑 1.齿轮传动润滑 υ≤12m/s ,采用浸油润滑,齿轮齿顶到油池底面距离不应小于(30—50)mm ,大齿轮浸油应超过1个全齿高,采用全损耗系统用油L-AN32。 2.滚动轴承的润滑 轴承内径圆周速度v<2m/s ,脂润滑,选用滚动轴承脂ZGN69-2 二、减速器密封 1、机座、机盖厚度、凸缘厚度 ,由于采用铸造,计算值若大于8mm ,按实际值圆整,若计算出小于8mm ,厚度可取8mm 。 2、为保证机盖与机座连接处密封,联接凸缘应有足够的宽度,联接表面应精创, 其表面粗糙度为?3 .6。凸缘联接螺栓间距,一般150—200mm ,均匀布置 。 3、由于凸缘式轴承端盖易于调整轴向游隙,轴承两端采用凸缘式端盖。由于采用脂润滑,轴端采用间隙密封。 4、由于1、2、3轴与轴承接触处的线速度s m v 10<,所以采用毡圈密封。 箱体结构的设计 1、减速器的箱体采用铸造(HT200)制成,采用剖分式结构为了保证齿轮配合质 量,大端盖分机体采用67 is H 配合. 2、机体有足够的刚度,在机体为加肋,外轮廓为长方形,增强了轴承座刚度 3、机体结构有良好的工艺性。铸件壁厚为10,圆角半径为R=3。机体外型简单,拔模方便. 4、对附件设计 A 视孔盖和窥视孔 在机盖顶部开有窥视孔,能看到 传动零件齿合区的位置,并有足够的空间,以便于能伸入进行操作,窥视孔有盖板,机体上开窥视孔与凸缘一块,有便于机械加工出支承盖板的表面并用垫片加强密封,盖板用铸铁制成,用M6紧固 B 油螺塞: 放油孔位于油池最底处,并安排在减速器不与其他部件靠近的一侧,以便放油,放油孔用螺塞堵住,因此油孔处的机体外壁应凸起一块,由机械加工成螺塞头部的支承面,并加封油圈加以密封。 C 油标: 油标位在便于观察减速器油面及油面稳定之处。油标安置的部位不能太低,以防油进入油标座孔而溢出。 D 通气孔: 由于减速器运转时,机体内温度升高,气压增大,为便于排气,在机盖顶部的窥视孔改上安装通气器,以便达到体内为压力平衡.

相关文档