文档库 最新最全的文档下载
当前位置:文档库 › 量子信息与量子计算

量子信息与量子计算

关于量子信息与量子计算

量子计算是一种依照量子力学理论进行的新型计算,量子计算的基础原理以及重要量子算法为在计算速度上超越图灵机模型提供了可能。

量子计算(quantum computation) 的概念最早由IBM的科学家R. Landauer及C. Bennett于70年代提出,对于普通计算机运行时芯片会发热,极大地影响了芯片的集成度,科学家们想找到能有更高运算速度的计算机。

到了1994年,贝尔实验室的应用数学家P. Shor指出,相对于传统电子计算器,利用量子计算可以在更短的时间内将一个很大的整数分解成质因子的乘积。这个结论开启量子计算的一个新阶段:有别于传统计算法则的量子算法确实有其实用性,绝非科学家口袋中的戏法。自此之后,新的量子算法陆续的被提出来,而物理学家接下来所面临的重要的课题之一,就是如何去建造一部真正的量子计算器,来执行这些量子算法。许多量子系统都曾被点名作为量子计算器的基础架构,例如光子的偏振(photon polarization)、空腔量子电动力学、离子阱以及核磁共振(nuclear magnetic resonance, NMR)等等。以目前的技术来看,这其中以离子阱与核磁共振最具可行性。事实上,核磁共振已经在这场竞赛中先驰得点:以I. Chuang为首的IBM研究团队在2002年的春天,成功地在一个人工合成的分子中(内含7个量子位)利用NMR完成N =15的因子分解。

到底是什么导致量子如此高的计算能力呢?答案是量子的重叠与牵连原理的巨大作用。普通计算机中的2位寄存器在某一时间仅能存储4个二进制数(00、01、10、11)中的一个,而量子计算机中的2位量子位(qubit)寄存器可同时存储这四个数。量子位是量子计算的理论基石。在常规计算机中,信息单元用二进制的 1 个位来表示, 它不是处于“ 0” 态就是处于“ 1” 态. 在二进制量子计算机中, 信息单元称为量子位,它除了处于“ 0” 态或“ 1” 态外,还可处于叠加态(super posed state) . 叠加态是“ 0” 态和“ 1” 态的任意线性叠加,它既可以是“ 0” 态又可以是“ 1” 态, “ 0” 态和“ 1” 态各以一定的概率同时存在. 通过测量或与其它物体发生相互作用而呈现出“ 0” 态或“ 1” 态.任何两态的量子系统都可用来实现量子位, 例如氢原子中的电子的基态( ground state)和第 1 激发态( first excited state)、质子自旋在任意方向的+ 1/ 2 分量和- 1/ 2 分量、圆偏振光的左旋和右旋等。

一个量子系统包含若干粒子,这些粒子按照量子力学的规律运动,称此系统处于态空间的某种量子态.态空间由多个本征态( eigenstate ) ( 即基本的量子态)构成基本态空间可用Hilbert 空间( 线性复向量空间)来表述,即Hilbert 空间可以表述量子系统的各种可能的量子态.为了便于表示和运算, Dirac提出用符号x〉来表示量子态, x〉是一个列向量,称为ket ;它的共轭转置( conjugate transpose) 用〈x 表示,〈x 是一个行向量, 称为bra.一个量子位的叠加态可用二维Hilbert 空间( 即二维复向量空间)的单位向量〉来描述

无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。遗憾的是,在实际系统中量子相干性很难保持。在量子计算机中,量子比特不是一个孤立的系统,它会与外部环境发生相互作用,导致量子相干性的衰减,即消相干。因此,要使量子计算成为现实,一个核心问题就是克服消相

干。而量子编码是迄今发现的克服消相干最有效的方法。主要的几种量子编码方案是:量子纠错码、量子避错码和量子防错码。量子纠错码是经典纠错码的类比,是目前研究的最多的一类编码,其优点为适用范围广,缺点是效率不高。

把量子考虑成磁场中的电子。电子的旋转可能与磁场一致,称为上旋转状态,或者与磁场相反,称为下旋状态。通过提供脉冲能量使电子旋转从一种状态变为两种状态,例如从激光。让我们假设我们用一单位激光能量。但是假设我们仅用半单位的激光能量并完全消除外界对微粒的影响将会怎样呢?根据量子理论,微粒将进入重叠状态,即同时处于两种状态下,每一个量子比特呈现重叠状态0和1。因此量子计算机的计算数是2的n次方,n 是量子比特的位数。量子计算机如果有500个量子比特,就在每一步作2^500次运算。这是一个可怕的数,2^500比地球上已知的原子数还要多(这是真正的并行处理,当今的经典计算机,所谓的并行处理器仍然是一次只做一件事情)。但是这些微粒如何相互作用呢?他们通过量子牵连来做。

量子牵连:在某点上相互作用的微粒(像光子、电子)之间具有一种关系,能够成对的纠缠在一起,这一过程被称为相关性。知道了纠缠在一起的一个微粒的状态是上或下的话,它同伴的旋转是在其相反的方向上。令人惊奇的是,由于层叠现象,被测定的微粒没有单独的旋转方向,而是同时成对的处于上旋和下旋状态。被测微粒的旋转状态由测量时间和与其相关的微粒决定,其相关微粒同时处于相反的旋转方向。这一真实的现象(爱因斯坦称其为“一定距离之间的神奇行为”),至今没有任何恰当的理论可以解释,只是简单的被接受着。量子牵连就是无论来自同一系统的粒子之间有多远的距离都能同时相互作用(不受光速限制)。

加拿大量子计算公司D-Wave近日正式发布了全球第一款商用型量子计算机“D-Wave One”,量子电脑的梦想距离我们又近了一大步。D-Wave公司的口号就是——“Yes, you can have one.”。其实早在2007年初,D-Wave公司就展示了全球第一台商用实用型量子计算机“Orion”(猎户座),不过严格来说当时那套系统还算不上真正意义的量子计算机,只是能用一些量子力学方法解决问题的特殊用途机器。

D-Wave One量子处理器晶圆[1]D-Wave One量子计算机系

统[2]

时隔四年之后,D-Wave One终于脱胎换骨、正式登场。它采用了128-qubit(量子比特)的处理器,四倍于之前的原型机,理论运算速度已经远远超越现有任何超级电子计算机。不过呢,也别太兴奋,这个大家伙现在还只能处理经

过优化的特定任务,通用任务方面还远不是传统硅处理器的对手,而且编程方面也需要重新学习。D-Wave One在散热方面的要求也非常苛刻,必须由液氦全程保护,但这至少比原型机离不开接近绝对零度的液氮好多了。

最后就是价格,D-Wave One目前的售价高达10000000美元,也就是一千万美元。这绝对是天价中的天价了,不过也是新技术开端的必然,就像当初的第一台电子计算机ENIAC造价就有40万美元(二十世纪四十年代的40万美元)。

让我们耐心地期待量子计算未来的宏大发展!

量子信息与量子计算课程论文

半导体量子点的电子自旋相干和自旋操控 摘要:现在各国科学家都在努力希望实现量子计算机,而量子计算机需要一些重要的量子性质,其一是“量子相干性”。该文介绍了量子相干性,并简略介绍了半导体量子点中的电子的自旋相干性,简要探讨半导体量子点的电子自旋操控的方法 关键词:量子点自旋相干自旋调控 一﹑量子相干性 量子相干性,或者说“态之间的关联性”。其一是爱因斯坦和其合作者在1935年根据假想实验作出的一个预言。这个假想实验时这样的:高能加速器中,由能量生成的一个电子和一个正电子朝着相反的方向飞行,在没有人观测时,两者都处于向右和向左自旋的叠加态而进行观测时,如果观测到电子处于向右自旋的状态,那么正电子就一定处于向左自旋的状态。这是因为,正电子和电子本是通过能量无中生有而来,必须遵守守恒定律。这也就是说,“电子向右自旋”和“正电子向左自旋”的状态是相关联的,称作“量子相干性”。这种相干性只有用量子理论才能说明。 要在量子计算机中实现高效率的并行运算,就要用到量子相干性。彼此有关的量子比特串列,会作为一个整体动作。因此,只要对一个量子比特进行处理,影响就会立即传送到串列中多余的量子比特。这一特点,正是量子计算机能够进行高速运算的关键。 二﹑半导体量子点中的电子的自旋相干性

半导体中的电子电荷相干态已经由超快脉冲激光光谱进行了广 泛的研究。强的激光脉冲在半导体中产生了大量的电子和空穴,它们的动力学过程大致可分成3 个阶段: (1) 无碰撞或相干阶段。在这个阶段内,电子和空穴与光场之间产生了一个相干的耦合振荡,导致 了材料极化强度的振荡,类似于二能级系统的拉比跳跃。 (2) 位相弛豫阶段。在这个阶段内,电子和空穴都失去了它们的位相相干性,类 似于二能级系统的退相弛豫。 (3) 准热平衡阶段。由于电子- 声子相互作用,电子和空穴将能量传递给声子(晶格) ,它们分别弛豫到导 带和价带的顶部,形成准平衡状态。利用不同延迟时间的泵- 探束瞬态吸收光谱可以测量半导体中的退相弛豫时间。图1 是GaAs 三个激发载流子浓度下瞬态差分透射系数ΔT作为延迟时间的函数。 由图1 可见,有两个衰减过程;一个是快过程,另一个是慢过程。前者对应于位相弛豫,后者对应于准热平衡弛豫。实验测得GaAs中 的位相弛豫时间分别为30 ,19 ,13fs ,对应于由小到大三个载流子 浓度。这个位相弛豫时间是较小的,主要是由电子的谷间散射引起的。

《关于量子通信》非连续文本阅读练习及答案

阅读下面的文字,完成7~9题。 材料一: 日前,中国科学院在京召开新闻发布会对外宣布,“墨子号”量子科学实验卫星提前并圆满实现全部既定科学目标,为我国在未来继续引领世界量子通信研究奠定了坚实的基础。 通信安全是国家信息安全和人类经济社会生活的基本需求。千百年来,人们对于通信安全的追求从未停止。然而,基于计算复杂性的传统加密技术,在原理上存着着被破译的可能性,随着数学和计算能力的不断提升,经典密码被破译的可能性与日俱增。中国科学技术大学潘建伟教授说:“通过量子通信可以解决这个问题,把量子物理与信息技术相结合,用一种革命性的方式对信息进行编码、存储、传输和操纵,从而在确保信息安全、提高运算速度、提升测量精度等方面突破经典信息技术的瓶颈。” 量子通信主要研究内容包括量子密钥分发和量子隐形传态。量于密钥分发通过量子 态的传输,使遥远两地的用户可以共享无条件安全的密钥,利用该密钥对信息进行一次 一密的严格加密。这是目前人类唯一已知的不可窃听、不可破译的无条件安全的通信方式,量子通信的另一重要内客量子隐形传态,是利用量子纠缠特性,将物质的未知量子 态精确传递到遥远地点,而不用传递物质本身,通过隐形传输实现信息传递。(摘 编自吴月辉《“墨子号”,抢占量子科技创新制高点),《人民日报》2017年8月10日) 材料二: 潘建伟的导师安东·蔡林格说,潘建伟的团队在量子互联网的发展方面冲到了领先地位。量子互联网是由卫星和地面设备构成的能够在全球范围分享量子信息的网络。这将使不可破解的全球加密通信成为可能,同时也使我们可以开展一些新的控制远距离量子联系的实验。目前,潘建伟的团队计划发射第二颗卫星,他们还在中国的天宫二号空间站上进行着一项太空量子实验。潘建伟说,未来五年“还会取得很多精彩的成果,一个新的时代已经到来”。 潘建伟是一个有着无穷热情的乐观主义者。他低调地表达了自己的信心,称中国政府将会支持下一个宏伟计划——一项投资20亿美元的量子通信、量子计量和量子计算的五年计划,与此形成对照的是欧洲2016年宣布的旗舰项目,投资额为12亿美元。 (摘编自伊丽莎白·吉布尼《一位把量子通信带到太空又带回地球的物理学家》,《自然》2017年12月) 材料三: 日本《读卖新闻》5月2日报道:中国实验设施瞄准一流(记者:莳田一彦,船越翔)在中国南部广东省东莞市郊外的丘陵地带,中国刚刚建成了大型实施设施“中国散裂中子

量子计算和量子信息(量子计算部分,Nielsen等着)6

6.1 当x=0时有(2|0><0|-I )|x>=|0> 当x>0时有(2|0><0|-I )|x>=-|x> 所以2|0><0|-I I 即为相移算子 6.2 |φ><φ|=1/N Σ i =0 N?1Σ j =0 N?1|i><φ|-I )Σ k =0N?1 a k |k>=2/N Σi =0 N?1Σ j =0 N?1|i>-Σk =0 N?1a k |k> 而|i>,|j>,|k>都经过标准归一化,所以当|j>=|k>时,有|j>!=|k> 时,有|j>-Σ k =0 N?1a k |k>=Σ k =0 N?1[-a k +]|k> 其中=Σ k =0 N?1a k N 6.3 (此处为验证Grover 迭代能写成以下矩阵形式) |φ>=cos(θ/2)|α>+sin(θ/2)|β>写成向量形式为[cos(θ/2) sin(θ/2)]T 所以G|φ>= cos θ?sin θsin θ cos θ cos(θ/2)sin(θ/2) = cos(3θ/2) sin(3θ/2) =cos(3θ/2)|α>+sin(3θ/2)|β> 所以Grover 迭代能写成G= cos θ ?sin θsin θ cos θ 6.4 按照书上只有一解的过程,对于多解只能测量出所有解的和 6.5 6.6 (⊙为张量积符号 X 为PauliX 门, Z 为PauliZ 门) 框中的门可以表示为 (X ⊙X)(I ⊙H )(|0><0|⊙I+|1><1|⊙X )(I ⊙H)(X ⊙X) =X|0><0|X ⊙XHHX+X|1><1|X ⊙XHXHX(HXH=Z) =|1><1|⊙I +|0><0|⊙(-Z) =(I -|0><0|)⊙I +|0><0|⊙(I-2|0><0|)

量子信息小论文

量子信息 量子信息是量子力学与信息科学的巧妙结合。而量子信息的内容主要包括量子计算机与量子通讯两个部分。下图[1]生动地展示了量子信息与量子力学、信息科学间的错综复杂又富有逻辑的关系。 图1 量子力学与信息科学间的联系 量子计算机(quantum computer)是一种使用量子逻辑进行通用计算的设备。不同于电子计算机(传统电脑),量子计算用来存储数据的对象是量子比特(quantum qubit),它使用量子算法来进行数据操作。实际上,现在的计算机技术已经接近量子极限,量子计算机是一个新的发展方向。量子计算机具有巨大的信息携载量,在量子机和经典机中n个比特都可以表示2"个数。但在某一时刻,经典计算机只能表示其中的一个,而量子计算机可以同时表示所有的数的线性叠加。量子物理资源只需要经典计算机的对数多,即若经典机的需要为N,量子机的需要为log&N;经典平行计算时,每个计算机都在作不同的计算,而量子计算机的一个相同操作完成了不同的计算任务。以上两点便是量子计算机最大的特点。 早在1969年,史蒂芬·威斯纳最早提出“基于量子力学的计算设备”。而关于“基于量子力学的信息处理”的最早文章则是由亚历山大·豪勒夫(1973)、帕帕拉维斯基(1975)、罗马·印戈登(1976)和尤里·马尼(1980)发表。史蒂芬·威斯纳的文章发表于1983年。1980年代一系列的研究使得量子计算机的理论变得丰富起来。1982年,理查德·费曼(Feynman)在一个著名的演讲中提出利用量子体系实现通用计算的想法[3]。紧接着1985年大卫·杜斯(Deutsch)提出了量子图灵机模型[4]。人们研究量子计算机最初很

量子通信中的信息安全技术及比较

量子通信中的信息安全技术及比较 量子通信是近二十年发展起来的新型交叉学 科,是量子论和信息论相结合的新的研究领域。它主要是利用量子纠缠效应进行信息传 递,其研究主要涉及量子密码通信、量子远程传态和量子密集编码等等。而量子通信安全性是将保密通信建立在量子客观规律基础上的,是一个具有重要意义的研究课 题。 随着对数学难题求解的经典算法和量子算法的深入研 究,基于数学上计算复杂性的经典 安全通信面临着严峻的挑战。而经典计算机技术的飞速发展和量子计算机的实验进 展,导致 破译数学密码的难度逐渐降 低。与量子通信安全性相比,目前经典密码体制面临三个方面 的 威胁。首先,经典密码体制安全性是建立在没有严格证明的数学难题之 上。数学难题的突破必将给经典密码算法带来毁灭性打 击。其次,计算机科学的飞速发展导致其计算能力的快速 提高,始终冲击着经典密码。再次,量子计算理论的发展使得数学难题具有量子可解性。 在 1994年Shor提出了多项式时间内求解大数因子和离散对数的量子算法使得目前常用的基于 大数分解困难性提出的RSA公钥密码体制和ELGamal公钥密码体制受到极大威 胁。1998年, Grove提出了量子搜索算法,即在N个记录的无序数据库中搜索记录的时间复杂度为 对N开 平方根,可以提高量子计算机利用蛮力攻击方法破解经典密码的效率,使得经典密码体制 受 到威胁。仅仅因为量子计算机的应用仍处于初级阶 段,量子计算理论成果目前还没有影响经典密码体制系统的使用。但以量子力学为基础发展的安全通信是不可能被攻破的,它以量子力学为基础,利用系统所具有的量子性质,使得“一次一密”密码真正能应用于实际。量子 密码学的安全性是由“海森堡测不准原理”,或量子相干性以及“单量子不可克隆定理” 来 保证的,具有可证明的无条件安全性和对窃取者的可检测 性,完全可以对抗以量子计算机为 工具的密码破译。从而保证了密码本的绝对安全,也保证了加密信息的绝对安 全,故以量子 为载体的通信,具有以往经典通信所没有的安全优 势。 谈到量子安全通信就不得不介绍一下量子密码学。量子密码学的思想最早是由美 国人 S.Wiesner在1969年提出。后来 IBM的S.H.Bennett和Montreal大学的G.Brassard在此基础 上提出了量子密码学的概念,并于1984年提出了第一个量子密钥分发协议,简称议。1991年Ekert依据量子缠绕态而提出了一种基于EPR关联光子对的E91协议,BB84 1992 协 年 Bennet t 又进一步提出 了 B92量子密码协议。 一、量子密码保密通信的物理原理: 1、互补性以及测不准原理:在量子力学中具有互补性的两组物理量是指在进行观测时,对

量子信息与量子计算

关于量子信息与量子计算 量子计算是一种依照量子力学理论进行的新型计算,量子计算的基础原理以及重要量子算法为在计算速度上超越图灵机模型提供了可能。 量子计算(quantum computation) 的概念最早由IBM的科学家R. Landauer及C. Bennett于70年代提出,对于普通计算机运行时芯片会发热,极大地影响了芯片的集成度,科学家们想找到能有更高运算速度的计算机。 到了1994年,贝尔实验室的应用数学家P. Shor指出,相对于传统电子计算器,利用量子计算可以在更短的时间内将一个很大的整数分解成质因子的乘积。这个结论开启量子计算的一个新阶段:有别于传统计算法则的量子算法确实有其实用性,绝非科学家口袋中的戏法。自此之后,新的量子算法陆续的被提出来,而物理学家接下来所面临的重要的课题之一,就是如何去建造一部真正的量子计算器,来执行这些量子算法。许多量子系统都曾被点名作为量子计算器的基础架构,例如光子的偏振(photon polarization)、空腔量子电动力学、离子阱以及核磁共振(nuclear magnetic resonance, NMR)等等。以目前的技术来看,这其中以离子阱与核磁共振最具可行性。事实上,核磁共振已经在这场竞赛中先驰得点:以I. Chuang为首的IBM研究团队在2002年的春天,成功地在一个人工合成的分子中(内含7个量子位)利用NMR完成N =15的因子分解。 到底是什么导致量子如此高的计算能力呢?答案是量子的重叠与牵连原理的巨大作用。普通计算机中的2位寄存器在某一时间仅能存储4个二进制数(00、01、10、11)中的一个,而量子计算机中的2位量子位(qubit)寄存器可同时存储这四个数。量子位是量子计算的理论基石。在常规计算机中,信息单元用二进制的 1 个位来表示, 它不是处于“ 0” 态就是处于“ 1” 态. 在二进制量子计算机中, 信息单元称为量子位,它除了处于“ 0” 态或“ 1” 态外,还可处于叠加态(super posed state) . 叠加态是“ 0” 态和“ 1” 态的任意线性叠加,它既可以是“ 0” 态又可以是“ 1” 态, “ 0” 态和“ 1” 态各以一定的概率同时存在. 通过测量或与其它物体发生相互作用而呈现出“ 0” 态或“ 1” 态.任何两态的量子系统都可用来实现量子位, 例如氢原子中的电子的基态( ground state)和第 1 激发态( first excited state)、质子自旋在任意方向的+ 1/ 2 分量和- 1/ 2 分量、圆偏振光的左旋和右旋等。 一个量子系统包含若干粒子,这些粒子按照量子力学的规律运动,称此系统处于态空间的某种量子态.态空间由多个本征态( eigenstate ) ( 即基本的量子态)构成基本态空间可用Hilbert 空间( 线性复向量空间)来表述,即Hilbert 空间可以表述量子系统的各种可能的量子态.为了便于表示和运算, Dirac提出用符号x〉来表示量子态, x〉是一个列向量,称为ket ;它的共轭转置( conjugate transpose) 用〈x 表示,〈x 是一个行向量, 称为bra.一个量子位的叠加态可用二维Hilbert 空间( 即二维复向量空间)的单位向量〉来描述 无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。遗憾的是,在实际系统中量子相干性很难保持。在量子计算机中,量子比特不是一个孤立的系统,它会与外部环境发生相互作用,导致量子相干性的衰减,即消相干。因此,要使量子计算成为现实,一个核心问题就是克服消相

量子计算和量子逻辑门

1 引言 量子信息是量子物理与信息科学相融合的新兴交叉学科,它诞生于上个世纪80年代,在90年代中期引起国际学术界的巨大兴趣,受到西方各国的高度重视,得到迅速发展,迄今方兴未艾! 量子计算是量子信息的一个重要分支,近年来得到了人们广泛的关注。量子计算机是实现量子计算(quantum computation)的机器。量子计算和量子计算机概念起源于著名物理学家Richard Feynman,是他在1982年研究用经典计算机模拟量子力学系统时提出的。1985年,量子图灵机(Turing)的模型被David Deutsch提出,通过它的性质的研究,预言了量子计算机的潜在能力。由于量子计算机依赖于量子力学规律处理信息,所以它有着经典计算机永远不可逾越的巨大优势。量子计算机不但可以提供更多的比特以及更高的时钟速度,它还提供了一种基于量子原理的算法的全新计算方法[1]。量子计算机中的信息是用量子逻辑门来进行处理的。量子逻辑门是实现量子计算的基础。为了实现量子计算,也就是说构建量子计算机,必须选择与设计合适的物理体系并控制它以实现量子逻辑门。目前,已经有许多作为执行这些量子计算系统的逻辑门的方案被提出,而且其中许多方案已经实现。例如,离子阱[2]、腔量子电动力学[3]、核磁共振[4]、量子点[5]和基于Josephson结的超导体方案[6]等。 基于Alan Turing理论发展起来的现代计算机科学在近几十年中取得惊人的发展,计算机硬件能力在20世纪60年代后的几十年时间里以近似Moore定律成长。随着电路集成度的提高,进一步提高芯片集成度已极为困难。当集成电路的线宽在011μm以下时,电子的波动性质便明显地显现出来。这种波动性就是量子效应。为此,多数观察家预期Moore定律将在21世纪前二十年内结束,人们在考虑替代当前计算机的新途径。物理学方面,自Max Planck在1900年提出量子假说以来,量子力学给人类生活带来翻天

量子计算发展白皮书(2019年)

量子计算发展白皮书(2019年) 赛迪智库电子信息研究所 2019年9月

前言 量子信息技术可以突破现有信息技术的物理极限,在信息处理速度、信息容量、信息安全性、信息检测精度等方面均能够发挥极大作用,进而显著提升人类获取、传输和处理信息的能力,为未来信息社会的演进和发展提供强劲动力。当前,人类对量子信息技术的研究与应用主要包括量子计算、量子通信和量子测量等。其中,量子计算是一种基于量子力学的、颠覆式的计算模式,具有远超经典计算的强大计算能力,将在化学反应计算、材料设计、药物合成、密码破译、大数据分析和机器学习、军事气象等领域产生颠覆性影响。 近年来,一些国家以及企业纷纷加码布局量子计算,在相关领域的技术研究和应用不断提速。在此形势下,赛迪智库电子信息研究所编写了《量子计算发展白皮书(2019年)》,阐述了量子计算的基本内涵,系统梳理量子计算的技术路线及发展路线图,介绍了国内外发展态势,并提出了我国量子计算发展面临的挑战及相关对策建议。 如有商榷之处,欢迎大家批评指正。

目录 一、量子计算发展综述 (1) (一)量子计算的内涵 (1) (二)量子计算的发展背景与历程 (5) (三)量子计算的应用展望 (7) 二、量子计算技术与发展路线图 (9) (一)量子计算关键技术 (9) (二)量子计算的发展路线图 (16) 三、国际量子计算发展现状 (19) (一)主要国家的战略规划 (19) (二)量子计算的技术与产业进展 (22) 四、我国量子计算发展现状 (29) (一)我国的量子计算国家战略 (29) (二)我国量子计算的进展 (29) 五、我国量子计算发展面临的问题与挑战 (31) (一)关键技术研发仍属起步阶段,与国际水平存在差距 (31) (二)市场尚在培育阶段,技术和应用场景不成熟 (31) (三)国内企业参与度较低,缺乏全面战略布局 (32) (四)人才体系单一、集中,尚未形成全面培养体系 (32) 六、对策建议 (34) (一)加强前沿科技领域产业化布局 (34) (二)加大对关键核心领域的研发支持 (34) (三)完善对专业人才梯队建设的全面布局 (34) (四)积极构建量子计算应用生态体系 (35)

什么是量子通信技术

什么是量子通信技术? 它的过去,现在,未来如何? 量子通信是指利用量子纠缠效应进行信息传递的一种新型的通讯方式。量子通讯是近二十年发展起来的新型交叉学科,是量子论和信息论相结合的新的研究领域。量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等,近来这门学科已逐步从理论走向实验,并向实用化发展。高效安全的信息传输日益受到人们的关注。基于量子力学的基本原理,并因此成为国际上量子物理和信息科学的研究热点。主要包括量子通信和量子计算2个领域。量子通信主要研究量子密码、量子隐形传态、远距离量子通信的技术等等;量子计算主要研究量子计算机和适合于量子计算机的量子算法。 量子通信具有高效率和绝对安全等特点,是此刻国际量子物理和信息科学的研究热点。追溯量子通信的起源,还得从爱因斯坦的"幽灵"--量子纠缠的实证说起。 由于人们对纠缠态粒子之间的相互影响一直有所怀疑,几十年来,物理学家一直试图验证这种神奇特性是否真实。 1982年,法国物理学家艾伦·爱斯派克特(Alain Aspect)和他的小组成功地完成了一项实验,证实了微观粒子"量子纠缠"(quantum entanglement)的现象确实存在,这一结论对西方科学的主流世界观产生了重大的冲击。从笛卡儿、伽利略、牛顿以来,西方科学界主流思想认为,宇宙的组成部份相互独立,它们之间的相互作用受到时空的限制(即是局域化的)。量子纠缠证实了爱因斯坦的幽灵--超距作用(spooky action in a distance)的存在,它证实了任何两种物质之间,不管距离多远,都有可能相互影响,不受四维时空的约束,是非局域的(nonlocal),宇宙在冥冥之中存在深层次的内在联系。

量子计算发展现状的研究与应用

量子计算发展现状的研究与应用 (关亚琴11201131399276 西南大学) 摘要:本文对量子计算的最新研究方向进行了介绍,简述了量子计算和量子信息技术的重要应用领域。分析了量子计算机与经典计算机相比所具有的优点和目前制约量子计算机应用发展的主要因素,强调发展大规模的量子计算和实现强关联多系统的量子模拟,是当前量子计算的主流。文章主体部分主要介绍了量子计算机硬件研究方面的进展。最后展望了量子计算的未来发展趋势。 关键字:量子计算量子计算机量子算法

目录 1引言 (3) 2量子计算的研究进程 (4) 3量子计算机的优势 (5) 4量子计算的应用 (5) 4.1 保密通信 (5) 4.2 量子算法 (5) 4.3 量子计算机技术发展 (6) 4.4 量子计算机的优点 (6) 4.4.1 存储量大、速度高 (6) 4.4.2 可以实现量子平行态 (6) 4.5 量子计算机发展现状和未来趋势 (6) 4.5.1 量子计算机实现的技术障碍 (6) 4.5.2 量子计算机的现状 (7) 4.5.3 量子计算机的未来 (7) 5制约量子计算机发展的因素 (7) 6结语 (7) 7参考文献: (8)

1引言 众所周知,信息科学在推动人类社会文明进步和提高人类生活方面发挥着重大作用,然而,在人类迈入二十一世纪的今天,信息科学也面临着新的挑战。经典计算机随着电子元器件发展空间接近于极限值,其运算速度也将接近于极限值。另外,计算机能否实现不可破译?不可窃听的保密通信?这些问题都是近年来数学家和电子技术方面的专家们关注的主要课题。如今,随着量子理论和信息科学的相结合,为这些问题的解开辟了新的方向,从而也使得量子计算机成为了当今科研方面研究的热题。

量子通信基本原理及其发展

量子通信基本原理及其发展 量子通信(Quantum Teleportation)是指利用量子纠缠效应进行信息传递的一种新型的通讯方式。量子通信是20世纪80年代开始发展起来的新型交叉学科,是量子论和信息论相结合的新的研究领域。量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等,21世纪初,这门学科已逐步从理论走向实验,并向实用化发展。 量子通信又称量子隐形传送(QuantumTeleportation),“teleportation”一词是指一种无影无踪的传送过程。量子通信是由量子态携带信息的通信方式,它利用光子等基本粒子的量子纠缠原理实现保密通信过程。量子通信是一种全新通信方式,它传输的不再是经典信息而是量子态携带的量子信息,是未来量子通信网络的核心要素。 按照常理,信息的传播需要载体,而量子通信是不需要载体的信息传递。从物理学角度,可以这样来想象隐形传送的过程:先提取原物的所有信息,然后将这些信息传送到接收地点,接收者依据这些信息,选取与构成原物完全相同的基本单元(如:原子),制造出原物完美的复制品。 量子隐形传送所传输的是量子信息,它是量子通信最基本的过程。人们基于这个过程提出了实现量子因特网的构想。量子因特网是用量子通道来联络许多量子处理器,它可以同时实现量子信息的传输和处理。相比于经典因特网,量子因特网具有安全保密特性,可实现多端的分布计算,有效地降低通信复杂度等一系列优点。 量子通信是经典信息论和量子力学相结合的一门新兴交叉学科,与成熟的通信技术相比,量子通信具有巨大的优越性,具有保密性强、大容量、远距离传输等特点,是21世纪国际量子物理和信息科学的研究热点。 2 研究历史 1982年,法国物理学家艾伦·爱斯派克特(AlainAspect)和他的小组成功地完成了一项实验,证实了微观粒子“量子纠缠”(quantumentanglement)的现象确实存在,这一结论对西方科学的主流世界观产生了重大的冲击。从笛卡儿、伽利略、牛顿以来,西方科学界主流思想认为,宇宙的组成部份相互独立,它们之间的相互作用受到时空的限制(即是局域化的)。量子纠缠证实了爱因斯坦的幽灵——超距作用(spookyactioninadistance)的存在,它证实了任何两种物质之间,不管距离多远,都有可能相互影响,不受四维时空的约束,是非局域的(nonlocal),宇宙在冥冥之中存在深层次的内在联系。 在量子纠缠理论的基础上,1993年,美国科学家C.H.Bennett提出了量子通信(QuantumTeleportation)的概念。量子通信概念的提出,使爱因斯坦的“幽灵(Spooky)”——量子纠缠效益开始真正发挥其真正的威力。1993年,在贝内特提出量子 通信概念以后,6位来自不同国家的科学家,基于量子纠缠理论,提出了利用经典与量子相结合的方法实现量子隐形传送的方案,即将某个粒子的未知量子态传送到另一个地方,把另一个粒子制备到该量子态上,而原来的粒子仍留在原处,这就是量子通信最初的基本方案。量子隐形传态不仅在物理学领域对人们认识与揭示自然界的神秘规律具有重要意义,而且可以用量子态作为信息载体,通过量子态的传送完成大容量信息的传输,实现原则上不可破译的量子保密通信。 1997年,在奥地利留学的中国青年学者潘建伟与荷兰学者波密斯特等人合作,首次实 现了未知量子态的远程传输。这是国际上首次在实验上成功地将一个量子态从甲地的光子传送到乙地的光子上。实验中传输的只是表达量子信息的“状态”,作为信息载体的光子本身并不被传输。 为提高通信质量,科学家们还在减少干扰源方面努力。2006年,欧洲科学家让光子在 自由空间而不是光纤中完成了一次量子通信过程。通信在相距144公里的西班牙加纳利群岛

量子通信问与答

量子通信问与答 打个电话,会不会被窃听?通过网络传送一份保密文件,途中被他人窃取咋办……现代社会,信息安全面临的问题越来越多。 有没有一种不可破译的保密方式,能让传送的信息绝对安全可靠?近些年来,量子通信技术的飞跃发展正让梦想成为现实。 一问:什么是量子? 量子是光子、质子、中子、电子、介子等基本粒子的统称,是能量的最基本携带者 量子是物理世界里最小的、不可分割的基本单元,是能量的最基本携带者。它是光子、质子、中子、电子、介子等基本粒子的统称。可以说,整个世界都是由量子组成的。比如,日常生活中的光,就由大量光量子组成。 量子有不同于宏观物理世界的奇妙现象,其中最为著名的就是量子叠加和量子纠缠。 “量子世界跟宏观世界最大的区别,就是量子有多个可能状态的叠加态。”中科院量子信息与量子科技创新研究院、中国科学技术大学上海研究院副研究员B说,“这种现象在宏观世界里是存在不了也无法维持的。在宏观的经典世界里,1就是1,2就是2。而在微观的量子世界中,一个状态可以存在于1和2之间,它既不是1,也不是2,但它既是1,又是2。” “打个比方吧,这就好比孙悟空的分身术。一个孙悟空可以同时出现在多个地方,孙悟空的各个分身就像是他的叠加态。”中科院院士、中国科学技术大学教授A 解释道,“在日常生活中,一个人不可能同时出现在两个地方。但在量子世界里,作为一个微观的客体,它能够同时出现在许多地方。” 而所谓量子纠缠,也是量子叠加的一种表现,是指两个处在纠缠态的量子一旦分开,不论分开多远,如果对其中的一个粒子测量,另一个粒子就会立即发生变化,且是不需要时间的变化。 “这两个纠缠在一起的量子就好比是一对有心电感应的双胞胎,不管两人距离多远,千公里量级或者更远,只要当其中一个人的状态发生变化时,另一个人的状态也会跟着发生一样的变化。爱因斯坦称之为‘幽灵般的超距作用’。”A说,“量子纠缠所体现的这种非定域性是量子力学最神奇的现象之一。”

量子光学与量子信息

量子光学与量子信息 摘要:本文简要介绍量子光学及量子信息学科的研究内容及发展概况,侧重概述该领域的重要实验研究成果及应用前景。 关键词:量子光学量子信息应用前景 Quantum Optics and Quantum Information Abstract:This paper describes research in quantum optics and quantum information science and development overview, focusing on an overview of important experimental research and application prospects in this field. Key words:Quantum Optics Quantum Information Application Prospect 量子光学与量子信息是20世纪末期兴起的最具生命力的新兴学科,它们以不可替代的实验手段验证那些尚存争议的量子力学基本原理,从深层次上推动着物理学的发展。另一方面,将基本理论与操纵单量子的独特实验方法应用于信息处理,又开拓出实用性极强的量子信息新领领域。域。正由于此,这两门学科不仅吸引着世界众多理论与实验物理学家为之努力,得以日新月异地迅猛发展,而且它在通讯、信息处理及计算机科学中所显示出的令人震撼的具大潜力与优势,也引起各国金融界、工业界及政府部门的广泛关注。我国在国家科技部、教育部及国家自然科学基金委等部门的支持下,也开展了这一领域的研究,形成了一支以中青年为主的科研队伍,在理论与实验两方面都做出了一些重要的、具有创新性的贡献,获得国际同行的认可和好评。当前,量子光学与量子信息学科正处于取得重大突破的前夜,许多问题尚待探索,是极具挑战性的前沿科学研究。 1 量子光学 早在1900和1905年,普朗克和爱因斯坦就提出了光量子假说,并成功解释了黑体辐射谱分布与光电效应,确定了光具有波粒二象性的基本物理思想。然而,长期以来由于经典电磁辐射理论能完满地解释绝大多数物理光学实验现象,光的量子理论并未得到系统发展。直到20世70年代以后,随着激光与光电子技术的进步,一系列用经典理论无法解释的非经典光学效应逐步被实验观测,才形成了以量子化光场为基础的量子光学学科领域。 以光量子或称光子为基本能量单元的量子化光场遵循量子电动力学基本规律,严格地说只有用QED理论,才能解释迄今为止所观察到的所有光学现象。量子光学用量子电动力学理论研究光场的量子性和相干性,以及光与原子相互作用的量子力学效应。当前,量子光学中应用性较强的重要研究领域有:光场的量子噪声,光场与物质相互作用中的动量传递等。 1.1 光场的量子噪声 光场的量子噪声在光子学及其诸多的应用研究中占有重要的地位。量子噪声与光放大、光探测等物理过程紧密相关。若在光场的每一个模式中的光子数很大,则完全可用光的经典理论来描述,反之,若每一个模式中有一个或少数的光子时,就必须考虑量子噪声的影响。为了克服或消除量子噪声的影响,人们卓有成效地进行了诸多方面的研究。 (1)光场压缩态的产生和应用 随着认识的深人,人们已经发现有三类光:一是混沌光,它是自发辐射过程产生的光子构成的,给出的是最大噪声的光场;二是相干光即激光,具有很低的总噪声,并称之为真空噪声;三是由非线性过程产生的非经典光,如压缩光、光子数态光等。 由于压缩态中可以使光场的某个正交分量具有比相干态更小的量子噪声,因此,在光通信、高精度测量等诸多应用中可突破散粒噪声极限,具有极为重要的实际意义。 自1985年首次在实验中获得压缩光场的近十多年来,世界各国的有关实验室在光场压缩态的获得和探测等方面进行了卓有成效的研究工作,已实现了正交相位压缩、强度差压缩、

量子计算与量子计算机

量子计算与量子计算机 摘要 简述了量子计算机研究的背景,从量子计算机基础——量子计算入手,通过对比量子计算与经典计算,阐明了量子计算能更加高效解决一些问题的原理,简单介绍了当下能将量子计算成为实现的几种物理技术.介绍了近年来量子计算机的发展状况,在总结了量子计算机存在问题的基础上,探讨了今后的研究方向. 关键词量子计算量子算法量子逻辑门量子计算机

Abstract Describes the research background of quantum computer, quantum computer based quantum computing -- from the start, through the contrast of quantum computation and classical calculation, illustrates the principle of quantum computing can be more efficient to solve some problems, introduces the current can become several physical quantum computing technology. This paper introduces the development of quantum computers in recent years, and summarizes the existing problems in the future. Key words:quantum computation quantum algorithm quantum logic gate quantum computer

量子通信发展现状以及应用前景分析

西安电子科技大学通信工程学院 光纤通信大作业 系别:通信工程学院 专业:空间信息与数字技术 班级:011141 学生:赵琨 学号:0114027 任课教师:项水英

量子通信的发展以及应用前景分析 摘要:2007 年4 月2 日,国际上首个量子密码通信网络由中国科学家在北京测试运行成功。这是迄今为止国际公开报道的唯一无中转,可同时、任意互通的量子密码通信网络,标志着量子保密通信技术从点对点方式向网络化迈出了关键一步。这次实验的成功,为量子因特网的发展奠定了基础。文章阐述量子密码的产生、量子密码学的基本原理、该领域的实验研究及研究成果,最后指出量子密码通信将是保障未来网络通信安全的一种重要技术。 关键词:量子密码;量子密钥分配;量子信息学; Quantum Cryptography and Its Research Progress Abstract:China's first quantum cryptography network has been successfully tested in Beijing, the Chinese Academy of Sciences announced on April 2, 2007. It is the only fully- connected quantum network that could make simultaneous communications without any relay ever reported in the world, according to experts. The feat is a crucial step towards the practical usage of quantum cryptography from the point- to- point network. The success of this experiment, laid the foundation for the development of quantum Internet. This paper describes the generation of quantum cryptography, the basic principle of quantum cryptography in the field of experimental research and research results, and finally pointed out that quantum cryptography will be an important technology to protect the security of network communication. Key words: quantum cryptography; quantum key distribution; quantum information theory; quantum Internet 量子密码通信是一个新的迅速成长的领域,它牵涉许多不同的学科,如量子力学、量子光学、信息论、光学技术、电子技术及通信技术等。现在,美国、欧洲、日本、中国等国家都纷纷加入到有关的研究中,使与量子密码技术相关的实验进展迅速。量子密码的研究尤其是量子密钥分发已经逐步趋于实用,有着广阔的应用前景。 1量子的特性 量子力学:量子同时处在不同的状态,只是这些状态各自有不同的发生概率(量子叠加性),但是一旦被测量,状态就被确定(量子态的坍缩)。 2 量子秘钥的原理 1)基于两种共扼基的四态方案,其代表为BB84 协议 BB84 协议的原理是利用单光子量子信道中的测不准原理。Alice 每隔一定时间随机地从4 个光子极化态(0 ,π/ 4 ,π/ 2 ,3π/ 4) 中任意选取一个发送给Bob ,形成具有一定极化态的光子态序列,并记录每一个光子态对应的基矢类型(这个协议中有两种测量基矢:Rectilinear 型和Diagonal 型) 。 Bob 接到Alice 发送的信号后, 开始接收Alice 发送的光子态序列,Bob 为

《量子通信中的信息安全技术及比较》

量子通信中的信息安全技术及比较 量子,作为量子世界中最小的能量单位;通信,指人与人或人与自然之间通过某种行为或媒介进行的信息交流与传递;但是,当两者合二为一后,又会发生怎样的化学反应?又该给21世纪的科研界带来怎样的惊喜? 量子通信,是一种利用量子纠缠效应进行信息传递的新型的通讯方式。而量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等…… 2004年的6月3日,世界上第一个量子密码通信网络在美国马萨诸塞州剑桥城正式投入运行。这个由美国BBM技术公司研发的量子密码通信网络和现有的宽带网并没有太大的不同,也是采用普通光纤传输数据,并且与普通网络完全兼容;不同之处是该网络中传输的数据采用了量子密码技术进行加密。量子密码是利用量子存在状态作为信息加密、解密的密钥,其原理就是被爱因斯坦称为“神秘远距离活动”的量子纠缠态。在量子世界中,量子作为最小能量单位,存在着一种“纠缠”效应。而这种量子间的纠缠指的是两个或多个量子系统之间存在非定域、非经典的强关联。这种“纠缠”效应能够在两个完全相同的某量子态粒子之间建立某种联系,当其中一个的状态发生变化时,另一个也会发生相同的变化,而且这种变化与时间和空间无关。另外由于对粒子的任何测量都会导致其量子态的变化,所以同时这种变化时不可能被第三者所知获的。利用量子的纠缠效应,我们可以进行绝密和瞬时的通信。量子密码技术是一种截然不同的加密方法,是密码编制人员追求的最高境界。主要是利用两种不同状态的快速光脉冲 , 来以无法破译的密码传输信息。任何想测算和破译密钥的人,都会因改变量子状态而得到无意义的信息,而信息合法接收者也可以从量子态的改变而知道密钥曾被截获过。单量子态有两个特殊的脾气,使它能“守口如瓶”:一是根据量子不可克隆原理,未知的量子态不能被精确复制,所以人们不能像复制钥匙一样复制量子态;二是由于量子不确定性原理,任何试图对它“不轨”的举动,都会毁坏套在信息上的量子密钥“信封”,使盗贼自暴形迹。从理论上来说,用量子密码加密的通信不可能被窃听,安全程度极高。因此,量子密码通信是目前唯一被证明是绝对安全的保密通信。美国《商业周刊》把它列在了“改变人们未来生活的十大发明”的第三位。据美国权威机构估算,量子保密通信系统一旦商用,将形成高达10亿美元的市场。 1993年, 六位来自不同国家的科学家提出了利用经典与量子相结合的方法将一粒子的量子态传递给另一个粒子, 而此粒子仍留在原处, 称其为量子远程传态。目前的理论和实验

量子通信大作业

量子通信大作业

量子交换门 量子通信是研究利用量子手段传递和处理信息的技术。经过多年来的理论和实践探索,已经初步发展形成了可用的量子通信网络。与经典通信相比,建立在量子力学基本原理基础上的量子通信有很多优势,如传输信息的无条件安全性,通信的高效性等。 量子交换是构建量子多用户通信网络的关键技术,避免了每个通信终端全连接带来的复杂性,并大大所见了组网和维护成本,经典通信网络中有各种成熟的交换技术,但这些都不适合量子交换,量子交换有其自身的特点。由于量子态不可克隆定理的限制是的经典交换方法应用于量子交换有很多技术障碍,比如存储量子态而且要保持量子特性不变,还有量子态叠加性和纠缠性,因此寻找实现量子交换的新技术、新方法也是未来研究的热点。 目前常应用于实际的量子交换方法主要是空分交换,波分交换和基于量子Fredkin门的交换也是两种可行的方法。其中量子fredkin门的实现,包括线性光学方法、非线性光学方法,以及其他实现方法。 一、量子交换门实现中用到的一些线性光学器件 现在量子交换的研究主要基于光子,所以在这里先来介绍一下量子交换门中几种常用的光学器件。 1.相位片

其中一个重要的元件是相位片(phase shift ),是一个单入单出的元件,它会使光子的位相发生变化,一个特定的相位片带来的位相变化只与同一模式中的光子数有关。 2.分束器 另一个重要的光学元件是分束器,是一个双入双出的元件,光照在分束器上会有一部分透射一部分反射。分束器在线性光学量子信息处理中发挥着重要的作用。一般地,分束器有两个参数,θ和φ,其中θ2cos =T 和θ2sin =R 分别代表分束器的透射率和反射率,φ表示相对相位。Θ通常是由分束器本身决定的,而 φ是受分束器前后相位片或光路长度的影响,并不是固定的,因此我们一般计算的时候往往采取简单的形式,选取φ=-π/2(π、2),即使得1(2)路入射的光子反射后相位不变,而2(1)路入射的光子反射后相位变化π。特别的,在一些复杂的光路中,为了明确这两种不同的情况,往往在会发生相位变的分束器 ( beam splitter )的示意 相位片(phase shift )的示意图

量子密码与量子通信

龙源期刊网 https://www.wendangku.net/doc/5c12998307.html, 量子密码与量子通信 作者:孔洁 来源:《中国科技纵横》2019年第21期 摘要:量子密码不同于普通密码,是量子力学与经典密码学相互融合的产物。它的安全性由量子力学基本原理保证,与攻击者的计算能力无关。它的兴起对信息安全技术领域产生了非常重要的影响。本文介绍了量子密码与普通密码的区别,量子密钥分配方案的基本原理,量子密码协议以及量子通信的2种方法。 关键词:量子密码;量子密钥分发;协议;量子通信 中图分类号:TN918 文献标识码:A 文章编号:1671-2064(2019)21-0024-02 密碼学广泛应用于军事、金融、信息保密等领域。到目前为止,我们所用的文本、声音、图像等都是转换为0或1进行编码存储于计算机中。人们用计算机所处理的数据依然是基于比特的。因此我们将密码系统的实质归结为保护比特数据的安全。早期的密码学主要基于数学的复杂性,破解一个密码系统,相当于解决一个具有一定复杂的数学问题,这类利用数学复杂性而生成的密码学称为经典密码学,与之相对应的就是量子密码学。 量子密码学依赖物理学原理,无条件地确保信息的安全。它服从“一次一密”,每次向对方传送一个密钥,这个密钥要求是随机的,如果被外界探测到了,本次密钥就作废。 当用于编码的量子态被窃听,接收方所收到的量子态和发送方的量子态有所不同,这样就会导致其统计特性发生变化,从而被察觉。 1 量子密码协议 1.1 BB84协议 BB84量子密码协议是第一个量子密码通信协议,也是唯一被商业化实现的量子密钥分发协议。BB84协议的关键在于:双方选取了2组非正交编码基。窃听方无法获得一方传递给另一方的信息。接收方根据测量数据计算相应的误码率,如果误码率高于某个阙值,就终止本轮协议,重新开始分发新的随机密钥。如果能保证密钥长度尽可能的长,这种传递信息的方式与窃听者的破解能力没有任何关系,是无条件的。 1.2 B92协议 贝内特在1992年提出了B92协议,也就是量子密码分发协议。B92协议中使用2种量子状态。

相关文档
相关文档 最新文档