文档库 最新最全的文档下载
当前位置:文档库 › 原子吸收光谱仪简介

原子吸收光谱仪简介

原子吸收光谱仪简介
原子吸收光谱仪简介

SOLAAR 969原子吸收光谱仪简介工作原理:当特征辐射通过原子蒸气时,基态原子就从入射辐射中吸收能量,由基态跃迁到激发态,发生共振吸收,产生原子吸收光谱。在一定的实验条件下,吸光度和试液中待测成分的浓度成正比。利用被测元素已知浓度的标准溶液对光的吸光度作比较,从而求得试样中被测元素的含量。本机配有两种原子化器:火焰(空气-乙炔焰)原子化、石墨炉原子化。原子吸收光谱仪主要用于碱金属、碱土金属、有色金属和黑色金属元素的定量分析。

仪器结构:原子吸收光谱仪主要包括5个部分:光源、原子化器、光学系统、信号检测与数据处理系统、背景校正系统,系统图如下:

目前大量用于煤样、废弃物、生物质以及燃烧过程中的排放物包括颗粒排放物(如飞灰、底灰)和烟气中Pb、Cr、Cd、Ni、Cu、Zn、K、Na、Ca、Mg、Fe、Mn等的测量。仪器灵敏度在ppm级以上,对少数元素可达ppb级。

应用领域:

1.不同粒径对痕量重金属分布的影响

<0.410

.67~0.410.67~1.31.3~2.32.3~3.43.4~4.74.7~6.46.4~9.39.3~15>15

--0

100200300400500600700800900100011001200130014001500

重金属含量(μ g / g )

粒径分布(μ m)

上图为循环流化床燃煤电站排放烟气中不同粒径颗粒物吸附的痕量金属含量对比

该图是将燃用石煤的循环流化床电站电除尘器前烟尘用冲击式分级装置收集,经酸溶消解后在原子吸收光谱仪得到的重金属含量分布图,可知重金属元素含量按递减规律依次为Cr 、Ni 、Cu 、Cd 。其中Cr 为难挥发金属,在粗颗粒中的含量较高Ni 、Cu 、Cd 为半挥发性金属元素,均有虽粒径减小而相对富集的趋势。

2.温度对重金属挥发特性的影响

本课题在大型焚烧炉的研究基础上,进一步通过小型管式反应炉研究了模拟生活垃圾焚烧过程中温度对重金属排放特性的影响,结果见图1。

因Hg的蒸发压力最高,因此由图可以看出Hg的挥发量最大;其次是Cd,可见Cd属于易挥发重金属,在垃圾焚烧过程主要以气态出现在烟气中,而在底渣中含量很少;而Zn和Pb在高温下的挥发量差不多,都为38%左右;重金属Ni和Cr属于难挥发重金属,挥发量随焚烧温度的增加而缓慢增加,但即使在高温焚烧下(900℃)最大挥发量也只有10%左右,可见在垃圾焚烧过程中,重金属Ni和Cr大部分是以固态形式残留在底渣中;重金属Cu在低温区属于难挥发重金属,挥发量与Ni和Cr相似,但在高温段,挥发量开始显著增加,挥发量与Zn和Pb相似。由于电厂垃圾焚烧中,焚烧温度大多在900℃,因此在垃圾焚烧中,Cu以气固两相出现,但主要为固相且大多分布在底灰中。

3.垃圾组分中氯对重金属发挥特性的影响

利用实验室小型管式反应炉,研究焚烧垃圾混合物通过添加有机氯(PVC)和无机氯(NaCl),在不同的反应温度下对重金属分布特性的影响。图2-3中仅

给出了600℃和900℃时,氯对重金属分布特性的影响。

从图2中可以看出,在600℃的焚烧温度下,无论是添加NaCl还是添加PVC,烟气中重金属含量普遍大于不添加氯的焚烧工况。焚烧垃圾中氯的存在对重金属Pb、Zn、Cd在烟气中含量的增加最为显著;而Cr在烟气中含量的增加比较小;对于Ni、Cu在烟气中含量几乎不变。PVC对重金属在烟气中分布特性的影响大于NaCl。从图3中也可看出与图2相似的规律,随着焚烧温度的增加,焚烧垃圾中氯的存在使烟气中重金属浓度进一步增加,即对重金属及其化合物的挥发性影响更加显著。而重金属Ni、Cu在900℃的焚烧温度下,添加NaCl和PVC使烟气中重金属浓度开始发生变化,尤其是Cu在烟气中含量增加稍大一些,而Ni增加的不是很显著。垃圾焚烧过程中氯的存在使重金属更易向飞灰或烟气中迁移,其原因可认为是氯的参与延迟了金属化合物的凝结过程,并且降低了露点温度。添加PVC比添加NaCl使烟气中重金属含量要高很多,因NaCl分子间的结合力大于PVC分子间的结合力,PVC易分解提供出更多的Cl。且焚烧温度越高,这个规律愈显著。这是由于高温焚烧本身就易增加金属及其化合物的挥发性,

图2有机氯和无机氯对重金属在烟气中分布的影响

(焚烧温度为600℃)

加之氯的存在使金属与其反应生成金属氯化物,而金属氯化态的蒸发压力通常都高于氧化态,因此更进一步增强了金属的挥发性,使烟气中重金属含量比低温焚烧下明显高很多。

图3有机氯和无机氯对重金属在烟气中分布的影响

(焚烧温度为900℃)

4. 不同飞灰重金属含量分析

从表1,我们可以看出,三种灰样的重金属含量浓度由大到小为:垃圾灰>煤与垃圾混烧灰>煤灰且垃圾灰中各种重金属浓度含量相应的比煤灰中重金属浓度含量高很多;垃圾焚烧后飞灰中重金属浓度含量最高的是Pb,其次是Cu、Cr,浓度含量最低的为Hg,但另外一方面飞灰中重金属含量多少受垃圾组分中重金属浓度含量的影响,也是重金属浓度含量变化的主要因素。煤与垃圾混烧灰中的重金属普遍低于垃圾焚烧灰,除了炉型不同外,部分原因可能是因为煤灰对垃圾灰中的重金属有吸附作用的缘故,当然这一特性有待于今后的研究证实。

从烟道残留灰的分析中我们可以看出,重金属Hg与其它几种重金属相比,相对含量(与除尘飞灰含量相比)比较高,这与重金属汞分压力低,易挥发的特性有关。逸出净化设备的尾气中灰颗粒直径通常很小,由挥发态的重金属及其种类组成,在烟囱内进一步降温凝结而成烟道残留灰,颜色呈淤泥状。由于组成这些的灰颗粒尺寸小且含汞量较高,因此烟道残留灰需慎重处理。

表1

金属种类灰样种类

重金属种类及含量(mg/kg)

Hg Pb Cu Cr

燃煤某300MW煤

粉炉

0.4879 27.87 79.87 114.61 某220t/d循环

流化床

0.5430 48.07 216.86 220.04

煤与垃圾烟残 4.3268 360.43 575.05 302.75 洗涤塔0.2536 272.67 406.55 164.93 百叶窗飞灰0.7725 241.07 349.92 234.36

垃圾某炉排炉8.4325 983.22 677.91 372.33 应用项目:

本仪器曾参与国家重点自然科学基金“垃圾洁净燃烧的关键基础研究的子课题-垃圾燃烧过程中重金属的迁移规律”的测量。

原子吸收光谱仪技术规格

原装进口原子吸收光谱仪技术规格 1. 工作条件 1.1 电源要求:230V (+5%~-10%),50/60 Hz;5000VA。 1.2 环境温度:+15℃~+35℃。 1.3 相对湿度:20~80%。 *2. 系统描述 台式设计原子吸收光谱仪,火焰、石墨炉一体机,全自动软件切换,切换后燃烧头和石墨管位置保持不变。 3. 光学系统和检测器技术指标 3.1 光学系统:实时双光束,1800线/mm,大面积平面光栅分光系统 *3.2波长范围:184-900nm 3.3狭缝:狭缝的宽度自动选择,狭缝的高度自动选择 *3.4检测器:全谱高灵敏度阵列式多象素点CCD固态检测器,含有内置式低噪声CMOS电荷放大器阵列。样品光束和参比光束同时检测,最大限度消除光学和电子噪声影响。 *3.5灯选择:8灯座,内置两种灯电源,可连接空心阴极灯和无极放电灯;通过软件由计算机控制灯的选择和自动准直,可自动识别灯名称和设定灯电流推荐值。 4. 火焰系统技术指标 *4.1火焰系统安全保护:安全联锁装置与燃烧头,雾化器/端盖,排液系统,废液桶液面高度,气体流量等联锁,防止在任何不当条件下点火,当监测不到火焰或任何锁定功能能激活时,联锁系统会自动关闭燃烧气体,以防万一。突然断电时,仪器会从任何操作方式按预设程序自动关机,确保安全。火焰有八个独立灯座。 4.2燃烧器系统:预混燃烧器可通过软件控制驱动装置自动换入样品室。火焰在光路中的准直,燃烧器的垂直,水平位置的调节完全自动化,并由软件控制自动进行位置最佳化。 4.3点火和熄火: 由计算机软件自动控制点火和熄火. 4.4燃烧系统:可调式通用型雾化器,高强度惰性材料预混室,全钛燃烧头 *4.5排液系统:排液系统前置以利于随时检测。 *4.6火焰AAS的灵敏度,5ppm Cu 吸光度大于0.9。测量方法按照中华人民共和国国家标准GB/T 21187-2007的4.5.2.1试验程序进行。 5. 石墨炉系统技术指标 5.1石墨炉:内、外气流由计算机分别单独控制。管外的保护气流防止石墨管被外部空气氧化。从而延长管子寿命,内部气流则将干燥和灰化步骤气化的基体成份清出管外。石墨炉的开、闭为计算机气动控制以便于石墨管的更换。石墨炉有八个独立灯座。 *5.2电源:石墨炉电源内置,整个仪器为一个整体。 *5.3温度控制:红外探头石墨管温度实时监控,具有电压补偿和石墨管电阻变化补偿功能。 *5.4石墨管:标准配置为一体化平台(STPF)热解涂层石墨管。 *5.5标配石墨炉加氧除碳炉内消解装置:在石墨炉灰化阶段软件可自动控制加氧时间和流量,对环境样品可直接进样。 5.6编程:可设置多达12步分析程序,每步均可按下列参数编程。

第四章原子吸收题解

习题 1 试述原子吸收光谱法分析的基本原理,并从原理、仪器基本结构和方法特点上比较原子发射光谱与原子吸收光谱的异同点。 2 试述原子吸收光谱法比原子发射光谱灵敏度高、准确度好的原因。 3 原子吸收光谱法中为什么要用锐线光源?试从空心阴极灯的结构及工作原理方面,简要说明使用空心阴极灯可以得到强度较大、谱线很窄的待测元素共振线的道理。 4 阐述下列术语的含义:灵敏度,检出线,特征浓度和特征质量。它们之间有什么关系,影响它们的因素是什么? 5 通常为何不用原子吸收光谱法进行定性分析?应用原子吸收光谱法进行定量分析的依据是什么? 6 简述光源调制的目的及其方法。 7 解释原子吸收光谱分析工作曲线弯曲的原因。并比较标准曲线法和标准加入法的特点。 8 解释下列名词: (1)原子吸收; (2)吸收线的半宽度; (3)自然宽度; (4)多普勒变宽; (5)压力变宽; (6)积分吸收; (7)峰值吸收; (8)光谱通带。 9 原子吸收光谱分析中存在哪些干扰?如何消除干扰? 10 比较火焰法与石墨炉原子化法的优缺点。 11 原子荧光产生的类型有哪些?各自的特点是什么? 12 比较原子荧光分析仪、原子发射光谱分析仪和原子吸收光谱分析仪三者之间的异同点。 13 已知钠的3p 和3s 间跃迁的两条发射线的平均波长为589.2 nm, 计算在原子化温度为2500K 时,处于 3p 激发态的钠原子数与基态原子数之比。 提示:在3s 和3p 能级分别有2个和6个量子状态,故 32 60 == p p j 解:处于 3p 激发态的钠原子数与基态原子数之比,由玻耳兹曼方程计算: kT E j j e p p N N ?-= kT c h j e p p λ-= 2500 1038.11058921000.31063.623710 343 6??????- ---=e 41069.1-?= 14 原子吸收光谱法测定某元素的灵敏度为0.01g mL -1 /1%A ,为使测量误差最小,需要得到0.436的吸收值,在此情况下待测溶液的浓度应为多少? 解:灵敏度表达式为: %1/0044.01-= gmL A c S μ 100.10044 .0436 .001.00044.0-=?=?= gmL A S c μ 15 原子吸收分光光度计三档狭缝调节,以光谱通带0.19, 0.38和1.9 nm 为标度,其所对应的狭缝宽度分别为0.1, 0.2和1.0 mm ,求该仪器色散元件的线色散率倒数;若单色仪

ZEEnit700 原子吸收光谱仪-特点介绍

ZEEnit700原子吸收光谱仪特点介绍 型号: ZEEnit700 产地: 德国 制造商:德国耶拿分析仪器股份公司 图:ZEEnit? 700 原子吸收光谱仪 应用范围: 可测定近70种金属元素。广泛的应用于地质矿产、环境保护、疾病控制、农牧渔业、食品安全、资源调查、生命科学等各个领域 AAS ZEEnit700显著的特点和优势: 1.原装德国卡尔蔡司光学系统----所有光学元件全部采用全球最为优秀的卡尔蔡司产 品。作为原子吸收分光光度计的核心部件——光通量不仅仅决定于光栅的刻线数,而且决定于光栅的有效面积。AAS ZEEnit700型原子吸收分光光度计的有效光栅面积及总有效刻线数:1800×54=97200条。同时光学系统采用紧凑型设计,全反射石英涂膜光学部件,整个光谱范围内具有最佳的光通量. 2.单光束/双光束微机控制自动切换技术---- ZEEnit700具有单/双光束自动切换技术, 单光束具有光通量大,灵敏度高,信噪比好的特点;而双光束则能克服元素灯引起的漂移,具有重现性好的特点.用户可根据需要选择单光束或双光束测量方式,如测量铜、铅、锰等元素时,由于元素灯较为稳定,而又要求较高的灵敏度,可选择单光束测量方式,当测定锌等元素,由于元素灯不稳定,可采用双光束测量,一台仪器具有两台仪器的特点; 3.独特的双原子化器设计----AAS ZEEnit 700型原子吸收光谱仪采取独特的双原子化器设 计,火焰与石墨炉之间切换无需任何机械移动,避免机械移动后光路重新调整、准直等. 4.全自动分析光谱仪----完全由微机自动控制的,目前市场上最紧凑的原子吸收光谱仪,仪器 可自动设定操作参数,自动调节燃烧头高度,自动调节气体流量和助/燃比, 自动进样,自动样品测量,自动样品稀释、浓缩,自动校正;强大的方法开发扩展能力,多元素序列分析操作,降低分析时间和运行成本。

原子吸收光谱仪

原子吸收光谱仪高效、精确、可靠 Agilent 200 系列原子吸收系统

2Agilent 240Z AA Agilent 240FS AA 原子吸收解决方案系列 –A gilent 240 AA 将灵活性和硬件的可靠性相结合,为预算有限的用户提供高性价比的高性能火焰/石墨炉/氢化物分析原子吸收仪器 –A gilent 240FS/280FS AA 是快速高效的火焰原子吸收系统,其快速序列式操作可将样品通量增加一倍,从而大幅降低运行成本。它们可以轻松地进行多元素分析,是食品与农业或任何高通量实验室的理想选择 –A gilent 240Z/280Z AA 塞曼石墨炉原子吸收 (GFAA) 系统高效而精确,提供优异的石墨炉性能和准确的背景校正 –A gilent Duo系统可以成倍提高您的工作效率,它能够真正实现火焰和石墨炉同时分析,没有转换延时 安捷伦 AA 系列具有高效、易用和极其可靠的特性。该系列产品具有适用于任何分析所需要的高性能,并且同样适用于重视可靠性和易用性的常规实验室。 高效、精确、可靠

3 Agilent 280FS AA Agilent 280Z AA 满足您的应用需求 安捷伦始终致力于为您的应用提供有效的解决方案。我们的各种技术、平台和专家指导可帮助您 获得成功。 FS 火焰原子吸收系统 240FS/280FS AA + SIPS 20铁、钾、镁和钠FAME (脂肪酸甲酯) 中的钠和钾(SIPS 配件提供自动校准常量元素 银和铂族元素240Z/280Z AA 纯工艺用水中的钠、钙和硅元素 铅、钴和镍 水和土壤中的有毒元素 (US EPA 方法 200.9)电子产品与塑料产品中的铅、镉和铬 (WEEE/RoHs)

2020年原子吸收光谱仪品牌比较

作者:空青山 作品编号:89964445889663Gd53022257782215002 时间:2020.12.13 原子吸收光谱仪品牌比较 国内市场上常见的原子吸收光谱仪品牌大概有二、三十种。进口厂商方面,包括PE、热电(原UNICAM)、瓦里安、耶拿、GBC(照生公司代理)、日本岛津、日立(天美公司代理)、美国利曼、威格拉斯以及加拿大AURORA(路易公司代理)等;国产厂商方面,主要有北京瑞利(原北二光)、普析通用、东西电子、上海精科(原上分厂)、科创海光、瀚时制作所、上海天美、北京华洋、博晖创新、上海光谱等。基本上涵盖了国内外主流的原子吸收光谱仪生产厂家。 2004年,中国原子吸收光谱仪市场的销售总量接近2000台,其中国产原子吸收光谱仪所占份额在70%以上。从产品性能上看,国产仪器已接近国外中档原子吸收水平,火焰原子吸收基本上已达到进口仪器水平,且价格便宜,具有很强的竞争力。与进口高档原子吸收光谱仪相比,国产仪器主要是在自动进样器、石墨管寿命、综合扣背景能力以及自动化程度等方面还存在着一定的技术差距,有待进一步提高。 就原子吸收市场占有量而言,进口厂商方面,来自美国的三家公司:PE、热电和瓦里安应该是排名在前三位的厂家。 据我们保守估计,这三家公司2004年的原子吸收销售量之和应该占到中国进口原子吸收光谱仪市场的五分之三。此外,德国耶拿和日本日立的原子吸收在中国市场的表现也不错,尤其是在某一行业或地区,如:耶拿在中国的地质行业,日立在中国的华南市场都有着不错的原子吸收市场占有率。国产厂商方面,普析通用已取代了北京瑞利,成为中国国产原子吸收光谱仪的最大供货商,紧随其后的是北京瑞利和另一家民营企业——东西电子。这三家原子吸收2004年的销售台数总和大致在900~1000台左右。此外,上海精科和科创海光在国产原子吸收市场上也占据了不小的份额。就原子吸收光谱仪产品而言,PE的 AA800、耶拿的ZEEnit700、热电的M6、瓦里安的AA280以及GBC的Avanta Ultra Z等可以称得上是进口高档原子吸收光谱仪的杰出代表。 可以说,当今原子吸收光谱仪上几乎所有最先进的技术在这一档次的仪器身上均不同程度地得到了体现。譬如:横向加热石墨炉技术、多功能石墨炉背景校正技术、火焰-石墨炉一体化设计(原子化器无需切换)、石墨炉可视技术、单/双光束自动切换、火焰快速序列式分析模式、固体进样技术、固态检测器等等。当然,这一档次的原子吸收仪器的价格也是比较昂贵的,平均价格大致在五万美金左右。在国产仪器方面,普析通用的TAS-990、东西电子的AA7003、北京瑞利的WFX-210、和瀚时制作所的CAAM—2001代表了国产原子吸收仪器发展的最高水平。这些仪器在一些主要技术指标方面(如:分辨率、基线稳定性、检出限等)已和国外同档次产品非常接近,同时也具有一些各自的特点。 TAS-990/986是国产目前唯一采用横向加热石墨炉技术的商品化原子吸收光谱仪;AA7003则将火焰原子化器和石墨炉原子化器固定在同一个可推拉平台上,通过推拉运动,在瞬间完成火焰/石墨炉的切换;WFX-210采用全新富氧火焰专利技术替代氧化—乙炔火焰分析高温元素,使火焰温度在2300℃-2900℃之间连续可调,对不同元素可选择最佳原子化温度条件;CAAM—2001

原子吸收光谱仪参数

原子吸收光谱仪配置及参数指标(约66万) 厂家:美国PE公司 型号:900T 1. 系统描述 火焰、石墨炉一体机原子吸收光谱仪,无须切换。 2. 光学系统和检测器 2.1实时双光束系统,全光纤光路;自动选择波长和峰值定位; 2.2波长范围:190-900nm ; 2.3光栅刻线密度:≥1800条/mm ; *2.4双闪耀波长:236nm及597nm;在整个紫外/可见区都有高的光强度; *2.5光栅有效刻线面积:≥60mm×60mm; 2.6光谱带宽:0.2、0.7、2.0nm,软件控制狭缝宽度和高度均可自动选择; 2.7灯架数:≥8灯灯架,无需转动灯,可连接空心阴极灯、无极放电灯,自动选 灯,自动准直,自动识别灯名称和设定灯电流推荐值; *2.8检测器:阵列式多象素点固态检测器,在紫外区和可见区都有最大的灵敏度,样品光束和参比光束同时检测。 3. 火焰系统 3.1气体控制:三路气体控制,全计算机控制和监视燃气、助燃气; 3.2安全保护:燃烧头识别,燃烧头安装,端盖安装,雾化器安装,水封,水位监控,火焰监控,高温监控,突然断电仪器会从任何操作方式按预设程序自动关机; 3.3燃烧器系统:全钛燃烧头,火焰在光路中自动准直,燃烧器的垂直、水平位置自动调节,任意角度转动,自动位置最佳化。 3.4燃烧系统:可调式通用型雾化器,耐腐蚀,带宝石喷嘴,Ryton材料预混室; 3.5点火方式:计算机控制自动点火; 3.6排液系统:排液系统前置以利于随时检测,确保安全。 4. 石墨炉系统 4.1气体控制:内、外气流由计算机单独控制,绝对分开,氩气消耗量<0.7L/min; 4.2电源:石墨炉电源内置,直流电加热。 *4.3温度控制:TTC真实温度控制,实时功率补偿;石墨炉温度准确度≤±10℃; 4.4石墨管:一体化弧型平台石墨管,可50uL大体积进样。

原子吸收光谱法的原理

原子吸收光谱法 原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法,是基于待测元素的基态原子蒸汽对其特征谱线的吸收,由特征谱线的特征性和谱线被减弱的程度对待测元素进行定性定量分析的一种仪器分析的方法。 中文名 原子吸收光谱法 外文名 Atomic Absorption Spectroscopy 光线围 紫外光和可见光 出现时间 上世纪50年代 简称 AAS 测定方法 标准曲线法、标准加入法 别名 原子吸收分光光度法 基本原理 原子吸收光谱法(AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,在线性围与被测元素的含量成正比: A=KC

式中K为常数;C为试样浓度;K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础 由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。AAS现已成为无机元素定量分析应用最广泛的一种分析方法。该法主要适用样品中微量及痕量组分分析。 原子吸收光谱法谱线轮廓 原子吸收光谱线并不是严格几何意义上的线,而是占据着有限的相当窄的频率或波长围,即有一定的宽度。原子吸收光谱的轮廓以原子吸收谱线的中心波长和半宽度来表征。中心波长由原子能级决定。半宽度是指在中心波长的地方,极大吸收系数一半处,吸收光谱线轮廓上两点之间的频率差或波长差。半宽度受到很多实验因素的影响。影响原子吸收谱线轮廓的两个主要因素: 1、多普勒变宽。多普勒宽度是由于原子热运动引起的。从物理学中已知,从一个运动着的

原子吸收光谱仪品牌比较

原子吸收光谱仪品牌比较-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

原子吸收光谱仪品牌比较 国内市场上常见的原子吸收光谱仪品牌大概有二、三十种。进口厂商方面,包括PE、热电(原UNICAM)、瓦里安、耶拿、GBC(照生公司代理)、日本岛津、日立(天美公司代理)、美国利曼、威格拉斯以及加拿大AURORA(路易公司代理)等;国产厂商方面,主要有北京瑞利(原北二光)、普析通用、东西电子、上海精科(原上分厂)、科创海光、瀚时制作所、上海天美、北京华洋、博晖创新、上海光谱等。基本上涵盖了国内外主流的原子吸收光谱仪生产厂家。 2004年,中国原子吸收光谱仪市场的销售总量接近2000台,其中国产原子吸收光谱仪所占份额在70%以上。从产品性能上看,国产仪器已接近国外中档原子吸收水平,火焰原子吸收基本上已达到进口仪器水平,且价格便宜,具有很强的竞争力。与进口高档原子吸收光谱仪相比,国产仪器主要是在自动进样器、石墨管寿命、综合扣背景能力以及自动化程度等方面还存在着一定的技术差距,有待进一步提高。 就原子吸收市场占有量而言,进口厂商方面,来自美国的三家公司:PE、热电和瓦里安应该是排名在前三位的厂家。 据我们保守估计,这三家公司2004年的原子吸收销售量之和应该占到中国进口原子吸收光谱仪市场的五分之三。此外,德国耶拿和日本日立的原子吸收在中国市场的表现也不错,尤其是在某一行业或地区,如:耶拿在中国的地质行业,日立在中国的华南市场都有着不错的原子吸收市场占有率。国产厂商方面,普析通用已取代了北京瑞利,成为中国国产原子吸收光谱仪的最大供货商,紧随其后的是北京瑞利和另一家民营企业——东西电子。这三家原子吸收2004年的销售台数总和大致在900~1000台左右。此外,上海精科和科创海光在国产原子吸收市场上也占据了不小的份额。就原子吸收光谱仪产品而言,PE的 AA800、耶拿的ZEEnit700、热电的M6、瓦里安的AA280以及GBC的Avanta Ultra Z等可以称得上是进口高档原子吸收光谱仪的杰出代表。 可以说,当今原子吸收光谱仪上几乎所有最先进的技术在这一档次的仪器身上均不同程度地得到了体现。譬如:横向加热石墨炉技术、多功能石墨炉背景校正技术、火焰-石墨炉一体化设计(原子化器无需切换)、石墨炉可视技术、单/双光束自动切换、火焰快速序列式分析模式、固体进样技术、固态检测器等等。当然,这一档次的原子吸收仪器的价格也是比较昂贵的,平均价格大致在五万美金左右。在国产仪器方面,普析通用的TAS-990、东西电子的 AA7003、北京瑞利的WFX-210、和瀚时制作所的CAAM—2001代表了国产原子吸收仪器发展的最高水平。这些仪器在一些主要技术指标方面(如:分辨率、基线稳定性、检出限等)已和国外同档次产品非常接近,同时也具有一些各自的特点。 TAS-990/986是国产目前唯一采用横向加热石墨炉技术的商品化原子吸收光谱仪;AA7003则将火焰原子化器和石墨炉原子化器固定在同一个可推拉平台上,通过推拉运动,在瞬间完成火焰/石墨炉的切换;WFX-210采用全新富氧火焰专利技术替代氧化—乙炔火焰分析高温元素,使火焰温度在2300℃-2900℃之间连续可调,对不同元素可选择最佳原子化温度条件;CAAM—2001则是以火焰原子吸收分析法为主、兼有流动注射氢化物原子吸收法(有内置流动注射氢化物发生器)、石墨炉原子吸收法、火焰发射法、可见/紫外溶液分子吸收法、流动注射在线富集法等多种功能的原子吸收光谱仪。价格方面,单火焰的国产原子吸收仪器的成交价格大致在 6~9万人民币,如果再配置石墨炉原子化器的话,成交价格则在10~15万人民币左右。(依具体配置不同而定 2

石墨炉原子吸收光谱仪

原子吸收光谱法 Atomic absorption spectrometry 各种元素的原子结构不同,不同元素的原子从基态激发至第一激发态时,吸收的能量也不同,所以各元素的共振线都不相同,而具有自身的特征性。原子吸收光谱的频率ν或波长λ,由产生吸收跃迁的两能级差ΔE决定: ΔE =hν=hc/λ 原理:利用物质的气态原子对特定波长的光的吸收来进行分析的方法。 原子吸收光谱线很窄,但并不是一条严格的理想几何线,而是占据着有限的、相当窄的频率或波长围,即谱线实际具有一定的宽度,具有一定的轮廓。 I0为入射光强 I为透射光强 ν0为中心频率 产生谱线宽度的因素 1.自然宽度:与原子发生能级间跃迁时激发态原子的有限寿命有关,其宽度约在10-5nm数量级; 2.多普勒变宽(热变宽) 3.压力变宽通常认为两个主要因素是多普勒变宽和压力变宽。

原子吸收光谱的测量 理论上:积分吸收与原子蒸气中吸收辐射的基态原子数成正比。 吸收系数Kν将随光源的辐射频率ν而改变,这是由于物质的原子对不同频率的光的吸收具有选择性。这是一种绝对测量方法,现在的分光装置无法实现。 长期以来无法解决的难题! 在频率O 处,吸收系数有一极大值K 0称为中心吸收系数(或峰值吸收系数)。在锐线光源半宽度围,可以认为原子的吸收系数为常数,并等于中心波长处的吸收系数。因为当采用锐线光源进行测量,则Δνe<Δνa ,由图可见,在辐射线宽度围,峰值吸收与积分吸收非常接近,可用峰值吸收代替积分吸收在锐线光源半宽度围,可以认为原子的吸收系数为常数,并等于中心波长处的吸收系数。 2 00πd v e K v N f KN mc +∞-∞ ==?

原子吸收光谱仪简介

SOLAAR 969原子吸收光谱仪简介工作原理:当特征辐射通过原子蒸气时,基态原子就从入射辐射中吸收能量,由基态跃迁到激发态,发生共振吸收,产生原子吸收光谱。在一定的实验条件下,吸光度和试液中待测成分的浓度成正比。利用被测元素已知浓度的标准溶液对光的吸光度作比较,从而求得试样中被测元素的含量。本机配有两种原子化器:火焰(空气-乙炔焰)原子化、石墨炉原子化。原子吸收光谱仪主要用于碱金属、碱土金属、有色金属和黑色金属元素的定量分析。 仪器结构:原子吸收光谱仪主要包括5个部分:光源、原子化器、光学系统、信号检测与数据处理系统、背景校正系统,系统图如下:

目前大量用于煤样、废弃物、生物质以及燃烧过程中的排放物包括颗粒排放物(如飞灰、底灰)和烟气中Pb、Cr、Cd、Ni、Cu、Zn、K、Na、Ca、Mg、Fe、Mn等的测量。仪器灵敏度在ppm级以上,对少数元素可达ppb级。 应用领域: 1.不同粒径对痕量重金属分布的影响

<0.410 .67~0.410.67~1.31.3~2.32.3~3.43.4~4.74.7~6.46.4~9.39.3~15>15 --0 100200300400500600700800900100011001200130014001500 重金属含量(μ g / g ) 粒径分布(μ m) 上图为循环流化床燃煤电站排放烟气中不同粒径颗粒物吸附的痕量金属含量对比 该图是将燃用石煤的循环流化床电站电除尘器前烟尘用冲击式分级装置收集,经酸溶消解后在原子吸收光谱仪得到的重金属含量分布图,可知重金属元素含量按递减规律依次为Cr 、Ni 、Cu 、Cd 。其中Cr 为难挥发金属,在粗颗粒中的含量较高Ni 、Cu 、Cd 为半挥发性金属元素,均有虽粒径减小而相对富集的趋势。

原子吸收光谱仪技术参数

原子吸收光谱仪技术参数 一、仪器系统 原子吸收光谱分析系统,包括火焰分析系统和石墨炉分析系统,可进行火焰发射、火焰吸收光谱分析和石墨炉原子吸收光谱分析。 二、操作环境 电源:AC 220V +/- 10%, 50/60Hz 环境温度:10-35℃ 环境湿度:20% - 80% 三、光谱仪主机系统 1、主机 ※火焰-塞曼石墨炉一体机,火焰-石墨炉无需机械切换,切换时无需拆卸自动进样器。 2、光学系统 1) ※光路结构:单光束/双光束自动切换,通过软件自动切换; 2) 波长范围:190-900nm; 3) ※光栅刻线密度:≥1800条/mm; 4) 光栅有效刻线面积:≥50×50 mm2; 5) 狭缝:0.2,0.5,0.8,1.2nm可调; 6) 波长设定:全自动检索,自动波长扫描; 7) 焦距:≥350mm; 8) 波长重复性:≤ +/- 0.3nm; 9) 仪器光谱分辨能力:Mn 279.5 –279.8之间峰谷与279.5nm 峰高之比≤30%; 10) 灯座:≥ 6灯座(全自动切换); 11) 灯电流设置:0-30mA,计算机自动设定;有下一灯预热和自动关灯功能; 12) 检测器:宽范围光电倍增管。 3、火焰分析系统 1) 燃烧头:10cm缝长,全钛金属材料,耐高盐耐腐蚀,带识别密码; 2) 燃烧头位置调整:高度自动调整,可旋转; 3) ※雾化器:撞击球外部可调,Pt/Rh中心管,耐腐蚀(可使用氢氟酸); 4) 气体控制:全自动计算机控制,流量自动优化; 5) 撞击球:可在点火状态下进行外部调节和优化最佳位置;

6) 安全系统:有完善的安全连锁系统,包括废液瓶液面传感器控制; 7) 点火方式:自动点火; 8) 代表元素检测指标: Cu:特征浓度≤ 0.035 mg/L 检出限≤ 0.005 mg/L RSD ≤ 0.5%。 4、火焰背景校正 1) ※背景校正方法:氘空心阴极灯,电子调谐; 2) 校正频率:300Hz; 3) 背景校正能力:优于2.5Abs。 5、石墨炉分析系统 1) 可升级为直接固体进样分析系统; 2) 系统配置:必须配备石墨炉自动进样器; 3) ※石墨炉加热方式:横向加热方式; 4) ※石墨炉工作温度:室温至3000℃;最大升温速率:≥2900℃/秒,可调; 5) 加热控温方式:全自动,自动温度校正; 6) 升温方式:阶梯升温、斜坡升温; 7) 石墨管:普通管、热解管、平台管和固体分析专用管多种可选; 8) 测定方式:峰高,峰面积任意选择和互换; 9) 代表元素检测指标: Cd:检出限≤ 0.01 ug/L (2ppb)RSD ≤ 2% 10) 保护气控制:计算机自动控制,内外气流分别单独控制; 11) 操作软件:可自动优化最佳灰化和原子化温度; 全自动仪器及附件控制,数据采集和 分析,多重任务,鼠标操作,自动设定菜单数据和校正方法,自动优化石墨炉操作参数,自检和自诊断功能。 6、石墨炉背景校正 1) 石墨炉背景校正方法:两种,交流塞曼效应与氘空心阴极灯背景校正,可切换; 2) ※磁场强度:0.1~1.0T连续可调,步进:0.1T; 3) 校正模式:2-磁场和3-磁场两种模式任意切换。 7、石墨炉自动进样器

原子吸收光谱仪900T作业指导书

一、安全使用注意事项 1、用气安全 1)、乙炔会爆炸,气路一定得检漏,与助燃气应单独存放,做到人走气关,不用气关;2)、打开气瓶时脸部不要正对表头,防止因表头质量问题导致人体的伤害; 3)、重新拆卸燃烧室后一定检查各个密封圈是否良好,尤其是雾化器处的密封圈。检查乙炔气路有否泄露。 2、强磁场 使用石墨炉时,当塞曼启动时,米的范围内有强磁场,因此,带有心脏起搏器的人要远离仪器,会被磁化的物件远离仪器。 二、火焰部分 1、开机 1)、开机前的准备工作 将空压机的插头插上,顺时针关闭空压机的放气钮,检查空气压力是否为350-400KPa(一定得等空气压力到达标准后才可开主机电源)。 2)、打开墙壁上的空气开关,打开电脑电源。 3)、打开主机电源,等主机初始化完毕后(约30秒),双击软件联机。 2、编辑方法(以Cu为例) 1)、点击,2)、点击,3)、元素选中Cu,点击,信号类型一般选择吸收,复杂样品选择吸收-背景。其余默认即可。 4)、点击,修改重复次数。其余参数默认。 5)、点击,一般选线性过原点。 6)、点击,输入空白,标准及浓度。7)、方法中的其余参数按照默认的即可。 8)、方法编辑完后,可以点击、,检查方法是否合适,如果不合适,按照提示修改方法。 9)、保存方法。依次点击,,。在名称处输入方法的名字,点击确定保存方法。 3、点灯 点击,出现图2-4-1(假设Cu灯放在3号位)。开/关:点亮/熄灭灯;灯3:将Cu灯点

亮且将仪器波长设置到处。是将灯扣背景的氘灯打开。国产灯需要手动输入灯元素符号和灯电流。 4、点火 1)、打开排风。 2)、打开乙炔气瓶,检查乙炔压力,保证主表大于(使用后的压力,使用前应比大很多),次级表压力位于90-100KPa。一定得检查乙炔有否漏气。 3)、点击,出现图2-5-1。检查安全互锁装置是否好。好,不好。不好时点击该红色区域将提示互锁原因。可能的原因有:A、燃烧头安装位置是否正确;B、雾化器安装位置是否正确;C、排放系统的水封、水满;D、乙炔压力是否合适;E、空气压力是否合适。 4)、点击点燃火焰(互锁装置好的时候才能点燃火焰)。检查火焰的高度及颜色有否异常。 5、测量数据 1)、分析前准备: A、点击, B、保存数据:点击中,在名称处输入结果的文件名,点击确定保存结 果。 2)、分析标样空白:吸入空白,点击分析空白。 3)、分析标样:吸入标样1,点击分析标样1。依次分析其余标样。标样分析完后,点击可以看标准曲线,标准曲线的相关系数应>才可。 4)、分析试样空白:吸入试样空白,点击分析试样空白,结果在中显示。 5)、分析试样:吸入试样1,点击分析试样1。依次分析其余试样,结果在中显示。

原子吸收参数

原子吸收光谱仪购置技术指标与要求 一、项目的具体参数和要求 1. 基本要求 1.1 能按国家标准分析方法定量测定食品、水、废水、土壤中等(常量、微量 或痕量)金属元素。 1.2火焰-塞曼石墨炉一体机,仪器具有全套安全连锁系统。自动监控燃烧头 类型、喷雾器系统、排液系统、燃烧系统、压力系统、温度系统、电系统,当任意部分出现异常或断电时自动连锁和关火。 2. 主要技术要求 2.1光学系统 2.1.1火焰法是“实时”双光束(同时检测样品和参比光束) 2.1.2波长范围:190 – 900 nm。 2.1.3★光栅密度:1800 条/毫米。 2.1.4★双闪耀波长:236 nm和597 nm。 2.1.5★光栅面积:64 × 72 mm。 2.1.6线性色散倒数:1.6 nm/mm。 2.1.7★光谱通带:0.2-2.0 nm,马达狭缝驱动自动狭缝选择(包括高和低高 度自动选择)。 2.2光源系统 ★2.2.1 8灯系统:全自动8灯灯架,有下一灯预热功能和自动关灯功能。 2.2.2 同时点灯数目:可同时点亮4个灯。 2.2.3 灯电流设置:计算机全自动控制。 2.2.4 灯电流范围:0–40 mA。 2.2.5 灯位置优化:全自动调节。 2.3★检测器:固态检测器 2.4石墨炉原子化器

2.4.1★石墨炉类型:横向加热石墨炉 2.4.2温度范围:室温到2600℃以上,增量10℃。最大升温速率:2600 C/秒,可调。 2.4.3最大气体流量:<0.7升/分。 2.4.4石墨炉打开和关闭:由软件指令气动式操作 2.4.5实际温度控制(TTC):自动功率补偿,原子化温度不受电压和石墨管电阻变化影响,温度保持稳定。 2.4.6★背景校正:使用一个调制的0.8特斯拉磁场的纵向交变塞曼效应背景校正。 2.4.7石墨炉加热电流:直流电,避免交流电周期影响,吸收峰更加平滑。2.4.8自动基线漂移校正(BOC):测量前自动零点校正,长时间测定基线稳定。 2.4.9冷却系统:自启动的循环热交换系统。 2.4.10石墨炉位置优化:由计算机自动控制。 2.4.11升温方式:阶梯升温、斜坡升温。 2.5火焰原子化器 2.5.1 气体控制:全计算机控制的燃气和助燃气监控。燃气和助燃气的全流量控制。 2.5.2 安全功能:安全联锁装置与燃烧头,雾化器/端盖,排液系统,废液桶液面高度,气体流量等联锁,防止在任何不当条件下点火。 2.5.3 燃烧系统:预混燃烧器可通过软件控制驱动装置自动换入样品室。 2.5.4 预混合室:一个高强度的惰性预混合室,可同时检测水溶液和有机溶液。 2.5.5 雾化器:Pt/Ir 合金毛细管与四氟乙烯喷嘴雾化器或可调节的耐腐蚀雾化器(由PEEK 材料制造)。 2.6 石墨炉自动进样器 2.6.1★样品数目:88 和 148。 2.6.2进样体积:1 到99微升,增量1微升。

PE原子吸收光谱仪原理

原子吸收光譜儀原理 一、 背景 現代科技包括自然科學、醫學、生物科技、環境及工業技術等發展,對物質成份分析的需求較之過去有明顯的改變。對於低濃度金屬的分析,除了所使用的分析儀器是否具有足夠的偵測靈敏度外,若無法有效的控制樣品基質所產生的干擾效應,將造成嚴重的分析誤差。本文將針對原子吸收光譜儀基本原理及PerkinElmer AAnalyst 800型單機多功能的設計(含火焰式及石墨爐式),是具高精準性及方便性的分析儀器。 二、 原理 原子吸收的過程是當基態原子吸收某些特定波長的能量由基態到激發態。根據Beer 定律,吸收值與濃度成正比關係,從標準溶液作出校正曲線後,再讀出未知溶液的濃度。而原子吸收光譜儀即是利用原子化器將樣品(A)原子化器後,吸收某一特定波長光,此光來自(B)燈管,再經過(C)光學系統分光經由單光器過濾僅有要測的波長光進入(D)偵測器,原子收光譜儀的基本構造如圖一所示。 A. 原子化器:原子化器有三種設計,有火焰式、石墨爐式及汞蒸氣氫化裝置。 (1) 火焰式燃燒系統之剖示圖,如圖二所示,在預混系 統內,樣品溶液被吸經霧化器霧化成小水滴進入混 合腔與燃料及氧化用氣體混合後,帶入燃燒頭,而樣品原子化即產生。在燃燒系統內有些重要因素須在霧化器部份考慮,為了提供最有效之霧化,以各種不同之樣品溶液,霧化器須為可調式的,而不鏽鋼為最常用的一種材質,但其缺點是樣品若含有高濃度之酸或其它腐蝕性氣體則會被腐蝕,若須為抗腐蝕之材質可用惰性塑料材質或Pt/Ir 之合金為宜。燃燒頭用鈦金屬組成可提供極高之熱阻抗及防腐蝕性。不之火焰或樣品條件須使用不同之燃燒頭,10公分長是用來做空氣乙炔之燃燒,而5公分長的用手作較高溫的笑氣乙炔燃燒。 (2) 石墨爐原子化器其基本構造如圖三所示,基本構造包含有金屬室、石墨爐及石墨管三部份。金屬室的功能在於提供高電流加熱裝置,石墨爐的功能為固定石墨管,而石墨管則為樣品的原子化裝置。石墨材質具有高電阻的特性,當瞬間通入大量電流時,藉由電熱的原理使得石墨管溫度迅速提昇,達到使樣品中待測元素原子化的高溫。為避免原子化器在加熱升溫的過程中,石墨材質與空氣中氧氣起氧化 Monochromator Detector Reference Beam Sample Beam Hollow Cathode Lamp Burner Rotating Chopper 圖一 原子吸收光譜儀的基本構造 預混式混合腔 霧化器 燃燒頭 Flow Spoiler Impack Bead 圖二 火焰式燃燒系統

原子吸收光谱仪

原子吸收光谱仪(AAS)测定自来水中镉的含量 1 实验仪器与试剂 本实验采用的是PE AA800,仪器主要包括光源,原子化器,分光系统,检测器以及信号处理系统,如图1所示。样品为添加了镉的自来水。 Cell 图1 原子吸收光谱仪结构 光源:作为光源要求发射的待测元素的锐线光谱有足够的强度、背景小、稳定性,一般采用空心阴极灯、无极放电灯.(这台仪器是空心阴极灯)原子化器:主要有石墨炉原子化器和火焰原子化器,火焰原子化器由喷雾器、预混合室、燃烧器三部分组成;石墨炉原子化器主要有普通石墨管(适用于低温(≤2000℃)原子化元素如银、镉、铅);热解石墨管(适用于低、中、高温(>2500℃)原子化元素)以及平台石墨管(适用于中、低温(≤2400℃)原子化元素)。 分光系统:由凹面反射镜、狭缝或色散元件组成,色散元件为棱镜或衍射光栅 检测系统:由检测器(光电倍增管)、放大器、对数转换器组成。 2 实验方法与原理 2.1仪器基本原理 原子吸收是指呈气态的原子对由同类原子辐射出的特征谱线所具有的吸收现象。当辐射投射到原子蒸气上时,如果辐射波长相应的能量等于原子由基态跃迁到激发态所需要的能量时,则会引起原子对辐射的吸收,产生吸收光谱。基态原子吸收了能量,最外层的电子产生跃迁,从低能态跃迁到激发态,通过检测辐射特征谱线光被减弱的程度来测定试样中待测元素的含量。

2.2仪器应用范围 石墨炉法可测定Ag,Al,As,Au,Ca,Cd,Co,Cr,Cs,Fe,Hg,In,K,La,Li,Mg,Mn,Pb等共56个元素,具有灵敏度高,检出限低,样品用量少,自动化程度高等特点。 火焰法分为空气—乙炔火焰和一氧化二氮—乙炔火焰,前者可测定Ag,As,Au,Mg,Mn,Na,Ni,Pb,Zn等共32个元素,具有安全,稳定,灵敏度高。后者可测定Al,B,Ba,Be,Dy,Er,Eu,Ga,Gd,La,Lu,Mo,N等共36个元素,具有温度高,化学干扰少,灵敏度较低等特点。 因原子吸收光谱仪的灵敏、准确、简便等特点,现已广泛用于冶金、地质、采矿、石油、轻工、农业、医药、卫生、食品及环境监测等方面的常量及微痕量元素分析。 3 实验步骤 称取样品0.500g于消解罐,加入6mL硝酸,2mL过氧化氢,置于微波消解仪中,加热程序为:10min温度升至130℃,保温5min;5min温度升至150℃,保温20min;降温20min,温度降至70℃左右,消解完毕。 从微波消解仪中取出消解罐,用去离子水转移至50mL烧杯中,盖上表面皿,电热板110℃加热赶酸,待液体剩余1~2mL,赶酸完毕,转入50mL容量瓶中,用去离子水冲洗烧杯,并稀释至刻度,摇匀备用,同时作试剂空白。 仪器参数为:Cd2+仪器测试条件:波长:228.8nm;灯电流:6mA:背景校正为塞曼效应。升温程序如表1: 表1石墨炉原子吸收测Cd2+升温程序表: 步骤温度/℃升温时间/s 保持时间/s 载气流量干燥1 110 1 30 250 干燥2 130 15 30 250 灰化500 10 20 250 原子化1500 0 5 0 除杂2450 1 3 250

原子吸收光谱仪使用规范

原子吸收光谱仪操作规范 1 型号及参数 1.1型号 PerkinElmer PinAAcle 900T 1.2参数 环境温度:20±2℃ 乙炔输出压力:0.1MPa 循环泵压力:0.25MPa 正空泵压力:0.4MPa 氩气压力:0.4MPa 2 操作规范 2.1 测量前的准备 把原子吸收所在屋子里的风机打开,接着将所要测试水样准备好,把所要测试元素灯装好,关好仪器门。 2.2 操作步骤 2.2.1火焰法操作步骤 2.2.1.1开机 2.2.1.1.1确保分光光度仪及其其他附件安装正确。 2.2.1.1.2确认环境温度要求正常,20±2℃。 2.2.1.1.3接通乙炔及其氩气气源,将乙炔及氩气气源调整到给出的推荐值。 2.2.1.1.4接通循环冷却水系统。

2.2.1.1.5接通计算机。 2.2.1.1.6装灯。 2.2.1.1.7打开面板上电源开关。 2.2.1.1.8双击电脑桌面上WinLab32 for AA软件进入工作界面。 2.2.1.2安装样品托盘 样品托盘可安装在仪器前方。如已经安装连接石墨炉自动进样器,请先将自动进样器移到仪器左侧。样品托盘有上、下两档可放置的位置。取出样品托盘,将废液管留在托盘凹槽里,将托盘支架装入位置;样品托盘安装到位,确保没有挤压到废液管。 2.2.1.3新方法建立 以铜为例建方法:点File、 New、 Method,进入New Method 对话框,选择Element CU点击OK。 2.2.1. 3.1在 Method Editor中设置测量参数。 2.2.1. 3.2设置积分时间和重复次数。 2.2.1. 3.3选择气体流量。 2.2.1. 3.4选择小数位数、有效数字和浓度单位。 2.2.1. 3.5设置空白Blank、校准浓度Standard、试剂空白Reagent blank. 2.2.1. 3.6保存新方法。File、Save As、Method. 2.2.1. 3.7建立样品信息文件。点File、New、Sample info file,进入Sample information editor对话框。 2.2.1. 3.8在Sample information editor对话框中,设置样品参数。如原溶液样品稀释10倍,在Aliquot Volume栏中输入1,在Diluted to Vol中

原子吸收光谱法的原理

原子吸收光谱法 原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法,就是基于待测元素的基态原子蒸汽对其特征谱线的吸收,由特征谱线的特征性与谱线被减弱的程度对待测元素进行定性定量分析的一种仪器分析的方法。 中文名 原子吸收光谱法 外文名 Atomic Absorption Spectroscopy 光线范围 紫外光与可见光 出现时间 上世纪50年代 简称 AAS 测定方法 标准曲线法、标准加入法 别名 原子吸收分光光度法 基本原理 原子吸收光谱法(AAS)就是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都就是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,在线性范围内与被测元素的含量成正比: A=KC 式中K为常数;C为试样浓度;K包含了所有的常数。此式就就是原子吸收光谱法进行定量分析的理论基础 由于原子能级就是量子化的,因此,在所有的情况下,原子对辐射的吸收都就是有选择性的。由于各元素的原子结构与外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。AAS现已成为无机元素定量分析应用最广泛的一种分析方法。该法主要适用样品中微量及痕量组分分析。

原子吸收光谱仪器型号特点

原子吸收光谱仪器型号特点 原子吸收光谱(atomic absortion spectrometry)简成AAS、又称为原子吸收分光光度(法)(atomic absortion spectrophotometry). AAS自身有一个发展过程,从1955年澳大利亚科学家A、walsh(威尔茨)发表AAS分析论文后,开创了火焰原子吸收光谱分析法(FAAS),其后1959年前苏联与∏BOB(L′VOV)李沃夫又创建石墨炉原子吸收法(GFAAS),1968年经过德国学者麦斯曼(H·MaSSMann)设计出第一台石墨炉原子吸收仪(GFAAS)或(HGA)随后经过W·slavin(斯拉文)博士等确认,形成现在的HGA仪,从1955年到现在走过50多年路程,经过不断改进和发展创新,AAS已成为现代分析测试重要手段之一。 近年来测定0.001-5.0%含量范围仪器种类很多,如UV-vis,ICP-AES,ICP-MS,XRF,AFS 等,这些仪器对AAS法具有挑战性,甚至有认“预言”AAS将被淘汰,但是,至今仍是一种无法代替的一种分析手段,由于光度法要预先分离干扰物,显色剂的选择要求较高,个别试剂靠进口应用不方便,极谱法存在Hg污染还待解决,其他光谱法大型仪器分析测定样品虽然快速,可多元素同时测定,成本较高,环境要求严,一般一台大型仪器都在10-30万美元,一般中小型企业经济能力承担过高,不适于购买。 目前,我国现有使用仪器(AAS),据不完全统计约2-4万台,每年产量已近1000多一台,国产仪器多是中档以下的,个别还在生产低档仪器,国外到我国销售一般是中档以上仪器,但为了据占中国市场,也推销中档以下产品,如PE公司AA100型,岛津公司6200型,澳大利亚GBC公司AA933型等。国产仪器在国内占有率为2/3(近80%)进口占有率约1/3(或30%以下),但产值远远超过中国厂商,中档以上仪器多在大专院校,科研机构,大企业。中档以下仪器多在中小型企业(如矿山、民营厂)到2008年止全国有AAS仪器公司(有知名度)约12家,国外在我国销售AAS仪器公司约8家(不包含2000年以前进入我国公司)

相关文档
相关文档 最新文档