文档库 最新最全的文档下载
当前位置:文档库 › 细胞生物学名词解释

细胞生物学名词解释

细胞生物学名词解释
细胞生物学名词解释

1.细胞膜(Cell Membrane)/质膜(Plasma Membrane):细胞膜是指围在细胞质外

表面的一层薄膜,因而也称为质膜。其基本作用是保持细胞有相对独立和稳定的内环境,控制细胞内外物质、信息、能量的出入,同时还参与细胞的运动。

2.细胞核(nucleus):细胞核是真核生物中由双层单位膜包围核物质而形成的多态性结

构。是细胞遗传物质储存、DNA复制和RNA转录的场所,对细胞代谢、生长、分化及繁殖具有重要的调控作用,是细胞生命活动的调控中心。

3.细胞质(cytoplasm):细胞质是细胞膜包围的除核区外一切半透明、胶状、颗粒状物

质的总称。由细胞质基质、内膜系统、细胞骨架和包容物组成,是生命活动的主要场所。

4.膜性结构(membranous structure):膜性结构包括真核细胞结构中的细胞膜和膜性

细胞器(内质网、高尔基复合体、线粒体、细胞核、溶酶体和过氧物酶体等)

5.非膜性结构(non-membranous structure):包括真核细胞中的核糖体、中心体、

微管、微丝、核仁和染色质等。

6.单位膜(unit membrane):生物膜在电镜下观察所呈现的较为一致的3层结构,即

电子致密度高的内、外两层之间夹着厚约3.5nm的电子致密度较低的中间层。

7.生物膜(biological membrane):细胞膜和细胞内各种膜性结构统称为生物膜。

8.双亲媒性分子(amphipathic molecule):既亲水又疏水的分子被称为双亲媒性分子。

9.分子团(micelle)/双分子层(bilayer):由于细胞膜的三种主要脂质都有双亲媒性分子的

特点,因此在水相中都能够自发地以特殊方式排列起来——分子与分子相互聚拢,亲水头部暴露于水,疏水尾部则藏在内部。这样的排列可以形成2中构造:球形的分子团和双分子层。在细胞膜的双分子层中,2层分子的疏水尾部被亲水头部夹在中间。10.镶嵌蛋白(mosaic proteins)/整合蛋白(integral protein):是细胞膜功能的主要承担

者,占膜蛋白的70%~80%,可能是双亲媒性分子,可不同程度地嵌入脂双层分子中,其与膜的结合非常紧密。

11.边周蛋白(peripheral protein)/外在蛋白(extrinsic protein):是指以弱的静电键结

合于脂分子的头部极性区域或跨膜蛋白膜区域的蛋白。外周蛋白是水溶性的,可用离子溶液分离提取。

12.流动镶嵌模型(fluid mosaic model):磷脂分子以脂双分子层组成膜的主体;蛋白质或

嵌在脂双层表面,或嵌在其内部,或横跨整个脂双层;糖类附在膜外表面。细胞膜具有液晶态特性。

13.脂筏(lipid raft):脂筏指在以甘油磷脂为主体的生物膜上,胆固醇、鞘磷脂等形成相对

有序的脂相微区。该区域流动性较差,如同漂浮在脂质双分子层上的“脂筏”一样。脂筏中含有各种各样执行某些特定生物学功能的膜蛋白。

14.内膜系统(endomembrane system):细胞内结构、功能、发生上密切关联的所有

膜性细胞器。

15.内质网(endoplasmic reticulum, ER):有各种大小的管、泡吻合连接而成的网状结构,

多位于细胞核附近的细胞质内部区域。普遍存在于动植物细胞中,位置不局限于内质,也可以是分布在整个细胞质中。

16.粗面型内质网(rough endoplasmic reticulum, RER):RER呈扁平囊状,排列整齐,

膜围成的空间称为ER腔,依靠核糖体连接蛋白与核糖体的大亚基相连。与蛋白质合成修饰加工与转运有关。

17.滑面型内质网(smooth endoplasmic reticulum, SER):SER呈分支管状或小泡状,

无核糖体附着。是一种多功能的结构,在一些特化的细胞中含量比较丰富。

18.微粒体(microsome):密度梯度离心后内质网断裂而形成。仍保留内质网的基本特性,

是研究内质网极好的材料。

19.高尔基复合体(Golgi complex):几乎所有真核细胞中都可看到的一种网状结构。是由

一层单位包围而成的复杂的囊泡系统,由小泡、扁平囊、大泡三种基本形态组成。20.溶酶体(lysosome):溶酶体是由一层单位膜包围而成的囊泡状结构,内含多种酸性水解

酶,能分解内源性或外源性物质,被称为细胞内的消化器官。

21.过氧化物酶体(peroxisome):又常称微体,是一层单位膜包围而成的圆形小体,普遍存

在于真核细胞中。内含多种氧化酶,是细胞内糖、脂和氮的重要代谢部位。

22.小泡/囊泡(vesicle):聚集在GC的顺面一侧,由RER出芽生成,载有RER所合成的蛋

白质成分,运输到扁平囊中,并使扁平囊的膜结构和内容物不断地得到补充。

23.大泡(vacuole):多见于扁平囊的分泌面,可与之相连,因而也称分泌泡。一般是由扁平

囊的末端或分泌面局部呈小球状膨大而成的,带有扁平囊的分泌物质离去,在其中分泌物继续浓缩。

24.核被膜(Nuclear envelope):即核膜(nuclear membrane),是整个内膜系统的一部分。

核膜的产生是细胞区域化的结果,它将核物质围于一个相对稳定的环境,成为相对独立的系统。电镜下,核膜包括内、外两层膜,核周间隙,核孔复合体和核纤层。

25.被动运输(passive transport):指物质顺浓度梯度,从浓度高的一侧经细胞膜转向浓度

低的一侧,它不消耗细胞代谢的能量。

26.单纯扩散(simple diffusion):不消耗细胞代谢的能量,不需要专一性膜蛋白分子,只

要物质在膜的两侧保持一定的浓度差即可发生这种运输。

27.通道蛋白(channel protein):细胞膜中的一种贯穿膜全层的运输蛋白,在膜上形成许多

小孔,其亲水基团镶嵌在小孔的表面,小孔持续开放。水和一些大小适宜的分子及带电荷的溶质可经此小孔以单纯扩散的方式顺浓度进出细胞。

28.配体门控通道(ligand-gated channel):有的闸门通道仅在细胞外的配体与细胞表面

的受体结合时发生反应,引起通道蛋白构象发生变化,使闸门开放,这类闸门通道称为配体闸门通道。

29.电压门控通道(voltage-gated channel):有一些闸门通道只有在膜电位发生变化时才

开放,称电压闸门通道。

30.帮助扩散(facilitated diffusion):借助于细胞膜上的载体蛋白的构象变化而顺浓度梯

度的物质运输方式称为帮助扩散。

31.载体蛋白(carrier protein):载体蛋白是镶嵌于膜上的运输蛋白,具有高度的特异性。

其上有结合位点,能特异性地与某一种物质进行暂时性地可逆结合,从而运输该种物质。

32.主动运输(active transport):指物质从低浓度地一侧通过细胞膜向高浓度一侧地转运。

需要载体地参与和消耗代谢能。

33.Na+-K+泵(Na+-K+pump):具有ATP酶活性,有Na+与K+的结合位点,能够逆浓度梯

度向细胞两侧输送离子。

34.伴随运输(co-transport):氨基酸、糖类、部分离子等主动运输的驱动力来自离子浓度

梯度,但维持离子浓度梯度依赖于Na+-K+泵的主动运输。

35.囊泡运输(vesicular transport):大分子与颗粒性物质在跨膜转运过程中,先被质膜包

裹形成转运小囊泡,再进行转运,因此称为囊泡运输。

36.胞吞作用(endocytosis):被摄入的物质先被细胞膜逐渐包裹,然后内陷形成小泡,再

与细胞膜分离脱落进入细胞质,这个过程称为胞吞作用。

37.胞饮体(pinosome)/胞饮小泡(pinocytic vesicle):胞饮作用形成的囊泡称为胞饮体或

胞饮小泡。

38.胞饮作用(pinocytosis):细胞周围环境中的液体和小溶质分子先吸附在细胞表面,然后

通过该部位细胞膜下微丝的收缩作用,使膜凹陷,包围了液体物质,接着与膜分离、脱落形成直径<150nm的胞饮体或胞饮小泡进入细胞质内。

39.吞噬作用(phagocytosis):在特定细胞中发生,形成吞噬体或吞噬泡运输较大颗粒或大

分子复合物。

40.吞噬体(phagosome)/吞噬泡(phagocytic vesicle):吞噬作用形成的囊泡称为吞噬体

或吞噬泡

41.受体介导的胞吞作用(receptor-mediated endocytosis):大分子物质先和特异性受

体结合,膜内陷形成有衣小窝,继而形成有衣小泡进入细胞。

42.网格蛋白(clathrin):是一种高度稳定的纤维状蛋白,由1条重链和1条轻链组成的二

聚体,3个二聚体组成一个三角蛋白复合体。许多三角蛋白复合体交织在一起,形成一个具有五边形或六边形网格的篮网状结构。是有被小泡的衣被蛋白的一种。

43.胞吐作用(exocytosis):细胞内某些物质由膜包围形成小泡,从细胞内部逐步移到细胞

膜下方,小泡膜与质膜融合,最后把物质排出细胞外。

44.结构性分泌途径(constitutive exocytosis pathway):真核细胞中不断产生分泌蛋白。

它们合成之后立即包装入高尔基复合体的分泌囊泡中,然后被迅速带到细胞膜处排出,

这种分泌过程为结构性分泌途径。

45.调节性分泌途径(regulated exocytosis pathway):一些细胞所要分泌的蛋白或小分

子,贮存于特定的分泌囊泡中,只有当接受细胞外信息的刺激时,分泌囊泡才转移到细胞膜处,与其融合将囊泡中分泌物排出,这种分泌过程称为调节性分泌途径。

46.分选信号(sorting signals):蛋白质物质在细胞内的运输方式是由蛋白质分子上的分选

信号决定的。主要分为信号肽和信号斑这2种。

47.门控转运(gated transport):门控转运主要是指蛋白质分子及其形成的蛋白质颗粒通

过核孔(或核孔)复合体进出细胞核的蛋白质转运方式。

48.蛋白转位装置(protein translocator):非折叠的蛋白质通过蛋白转运装置直接穿越细

胞器膜进入细胞器内。

49.膜泡运输(vesicular transport):转运小泡从一个细胞器以出芽方式形成,小泡内含有

被运输的蛋白质,小泡膜上镶嵌有膜蛋白。当转运小泡达到靶细胞器即与其融合,将蛋白质从一个细胞器运送到另一个细胞器。

50.信号肽(signal peptide):存在于多肽链上的一段连续的氨基酸序列,可引导蛋白质定

位到内质网,线粒体和细胞核。

51.信号斑(signal patch):存在于完成折叠的蛋白质中,构成信号斑的信号序列之间可以

不相邻,折叠在一起构成蛋白质分选的信号。

52.分子伴侣(molecular chaperone):是指一类与其他蛋白的不稳定构象相结合并使之

稳定的蛋白,可以帮助实现转运及蛋白的折叠组装、降解。

53.信号假说(signal hypothesis):多肽链上的特殊氨基酸序列(信号肽)可指导蛋白质转

至内质网上合成。

54.信号识别颗粒(signal recognition particle):核糖体在内质网的定位与肽链的穿膜转

运还需依赖信号识别颗粒(SRP)及其在内质网膜上的受体及转运体蛋白。

55.起始转运信号(start-transfer signal):可溶性蛋白的氨基端信号肽可作为蛋白质穿膜

的起始转运信号,在整个穿膜过程中,信号肽始终保持与膜上的蛋白转位装置结合,其他部分则陆续穿过膜形成一个套环。当蛋白质的羧基端通过膜后,信号肽被信号肽酶切除,蛋白质被释放到内质网腔。

56.终止转运信号(stop-transfer signal):大多数膜蛋白除了1个或多个起始转运信号外,

还有1个终止转运信号。根据转运信号的位置和多少,在蛋白质合成过程中形成不同类型的膜蛋白。

57.核定位信号(nuclear localization signal, NLS):核质蛋白的C端有一个信号序列即核

定位信号,可引导蛋白质进入细胞核,入核后信号不切除。

58.动位蛋白(dynein):可分为胞质动位蛋白和鞭/纤毛动位蛋白。胞质动位蛋白由两条相同

的重链和一些轻链以及结合蛋白构成。借助于动位蛋白激活蛋白连接膜泡,还可以调节

动位蛋白的活性。鞭/纤毛动位蛋白中二联微管外臂的动位蛋白具有三个重链。

59.驱动蛋白(kinesin):可分别与微管和膜泡结合,沿微管运动,从而起到运输作用。

60.肌球蛋白(myosin):最早发现于肌肉组织,可利用ATP的水解导致构型的变化从而沿肌

动蛋白丝进行运动。

61.6-磷酸甘露糖(M6P):溶酶体水解酶的分拣信号。

62.膜流(membrane flow):由于细胞的胞吞、胞吐作用和ER、GC的物质合成、加工、

运输,使细胞膜发生移位、融合、重组,细胞内各膜性结构实现了相互联系和转移,使细胞构成了一个统一的整体,维持了活体细胞的动态平衡。

63.初级溶酶体(primary lysosome):只含没有活性的水解酶而没有底物的溶酶体为初级

溶酶体。

64.次级溶酶体(secondary lysosome):初级溶酶体与含有被水解底物的小泡融合后称为

次级溶酶体。

65.残余体(residual body):已经失去酶活性,仅留未消化的残渣的溶酶体,可通过胞吐作

用排出细胞,也可能留在细胞内逐年增多。

66.线粒体(mitochondrion):细胞分解代谢有机物并产生能量的场所。

67.线粒体外膜(mitochondrion outer membrane):线粒体的外层单位膜,二分之一为

膜脂,二分之一为蛋白质。外膜上镶嵌的蛋白质包括多种转运蛋白。标志酶为单胺氧化酶。

68.线粒体内膜(mitochondrial inner membrane):比外膜稍薄,也是一层单位膜,标志

酶为细胞色素氧化酶,缺乏胆固醇,富含心磷脂,通透性低。

69.膜间腔(intermembrane space):线粒体内外膜之间的空间称为膜间腔,标志酶为腺苷

酸激酶。

70.嵴(cristae):内膜上有大量向内腔突起的折叠形成嵴。

71.基粒(elementary particle):内膜(包括嵴)的内表面附着许多突出于内腔的颗粒,称

为基粒。

72.ATP合酶复合体(ATP synthase):线粒体内膜上的基粒头部具有酶活性,能催化ADP

磷酸化生成ATP。因此,基粒又称ATP合酶或ATP合酶复合体。

73.转位接触点(translocation contact site):线粒体内、外膜上存在着一些内膜与外膜相

互接触的地方。在这些地方,膜间隙变窄,称为转位接触点,是蛋白质转运的通道。

74.基质(matrix):线粒体内腔充满了电子密度较低的可溶性蛋白质和脂肪等成分,称为基

质。是氧化代谢的场所,其标志酶为苹果酸脱氢酶。

75.基质导入序列(matrix targeting sequence, MTS):输入到线粒体的蛋白质都在其N-

端具有一段基质导入序列,多带正电荷,可与线粒体内外膜上相应的受体相互识别并结合,完成转运后被信号肽酶切除,成为成熟蛋白。

76.膜间腔导入序列(intermembrane space-targeting sequence, ISTS):膜间腔蛋白

质如细胞色素c1和细胞色素b2的前体蛋白就分别携带有功能上相似,但氨基酸序列不完全相同的信号序列,称为膜间腔导入序列,能够引导前体蛋白进入膜间腔。

77.细胞骨架(cytoskeleton):细胞骨架是由细胞内蛋白质成分组成的一个复合的网架结构。

包括微管、微丝和中间丝。为真核细胞所特有,是活细胞的支撑结构,决定了细胞的形状并赋予其强度,而且在细胞多种多样的运动中发挥着重要作用。

78.核骨架(nuclear skeleton):即核基质,真核细胞核内的网络结构,指除核被膜、染色

质、核纤层及核仁以外的核内网架体系,对染色体的构建、DNA复制、RNA转录以及加工和运输都有重要作用。

79.原纤维(protofilaments):α、β-微管蛋白相间排列形成一条长链为原纤维。

80.微管蛋白(tubulin):微管蛋白呈球形,主要有α和β两种亚单位,一般以异二聚体形式存

在。

81.微管(microtubule):13条原纤维纵向排列而成的一条中空的圆柱状结构,主要成分是

微管蛋白和微管结合蛋白。

82.微管相关蛋白(microtubule-associated protein, MAP):结合在微管的表面,可以稳

定微管的结构,参与微管的装配。

83.单管(singlet):细胞中大部分微管都是单管,由13条原纤维换围而成,常分散于细胞

质中,或成束分布。

84.二联管(doublet):由A管和B管组成,其中A管与单管结构相同,B管有3条原纤维

与A管共有。

85.动态微管(dynamic microtubule):有的微管存在时间很短,发生快速组装和去组装,

称为动态微管。

86.稳定微管(stable microtubule):有的微管存在时间相对较长,称为稳定微管。

87.微管组织中心(microtubule organizing center, MTOC):MTOC包括中心体、基体

和着丝点等。它们提供了微管组装所需要的核心。在微管装配过程中起到重要作用。

88.中心外周物质(pericentriolar material, PCM):微管由中心外周物质中发射生长出来。

89.微丝(microfilament):由肌动蛋白组成的直径约7nm的骨架纤维,又称肌动蛋白纤维

(actin filament),在细胞运动和形态维持中发挥极其重要的作用。

90.中间丝(intermediate filament):简称中丝,直径介于微管和微丝之间,由不同的蛋白

质组成,是空心纤维结构。具有组织特异性,其种类、成分、结构和功能都比较复杂。

中间丝的结构极其稳定。

91.马达蛋白(motor protein):马达蛋白能水解ATP获得能量,沿着微丝或微管移动。与

微丝有关的马达蛋白是肌球蛋白,而与微管有关的马达蛋白有驱动蛋白和动位蛋白。92.胞质流动(cytoplasmic streaming):对于细胞的营养代谢具有重要作用,能够不断地

分配各种营养物和代谢物,使它们在细胞内均匀分布。该过程由肌动蛋白和肌球蛋白相互作用而引起。

93.轴突运输(axonal transport):神经细胞中核糖体只存在于胞体和树突中,在轴突和轴

突末梢没有蛋白质的合成,所以蛋白质和膜性成分必须在细胞体中合成,然后运输到轴突;同样,部分物质也会沿轴突运回胞体。

94.核仁(nucleolus):细胞核内由特定染色体上的核仁组织区缔合成的结构,是细胞内合成

rRNA,装配核糖体亚基的部位。

95.染色质(chromatin):染色质是指细胞核内能被碱性染料着色的物质,是遗传信息的载

体,在细胞周期的不同时相表现不同的状态。

96.核周间隙(perinuclear space):两层核膜之间有20~40nm的透明间隙,称之为核周间

隙,也称位核周隙。内含有多种蛋白质和酶及离子等不定形物质。其宽度随细胞类型、细胞功能状态而改变。

97.核孔(nuclear pore):内外膜在许多处相互融合连同,在这些地方形成了内外相通的核

孔,是细胞核与细胞质间物质交流的通道。

98.核纤层(nuclear lamina):内层核膜靠核质的一侧有一层由纤层蛋白组成的纤维状网络

结构,称为核纤层,能保持核膜的形态与核孔复合体的位置,还可以和染色体结合提供附着点。

99.纤层蛋白(lamins):核纤层蛋白是组成核纤层的主要成分。分为A、B、C三种。A型核

纤层蛋白主要与染色体结合;B型核纤层蛋白主要与内膜核被膜上的整合蛋白结合;C 型核纤层蛋白是A型核纤层蛋白同一转录产物的不同剪切体。

100.核小体(nucleosome):染色质的基本结构单位,其组装收核质蛋白和N1蛋白的调节。101.常染色质(euchromatin):常染色质是指间期核中处于伸展状态,螺旋话程度低,用碱性染料染色浅而均匀的染色质。

102.异染色质(heterochromatin):异染色质是指间期核中,螺旋化程度高,处于凝缩状态,用碱性染料染色时着色较深的染色质,一般是转录不活跃或无转录活性,与组蛋白紧密连接的DNA分子,主要分布在核的边缘或围绕在核仁的周围。

103.着丝粒(centromere):着丝粒位于主缢痕的中央部位,染色质螺旋化程度低,DNA含量少,由高度重复的异染色质组成,是中期染色单体连接在一起的特殊部位。

104.主缢痕(primary constriction):着丝粒处的染色质内凹,称为主缢痕。

105.动粒(kinetochore):又称着丝点,是在主缢痕处两条染色单体的外侧表层部位的特殊结构,是由着丝粒蛋白在有丝分裂间期特别装配起来的附着于主缢痕外侧的圆盘状结构。

内层与着丝粒结合,外层与动粒微管结合。

106.副缢痕(secondary constriction)/核仁组织区(nucleolar organizing region, NOR):某些染色体除主缢痕外的另一处凹陷,染色较浅。该处的染色质有缔合核仁的作

用,故又称为核仁组织区。

107.端粒(telomere):指染色体末端的特化部位,由6个碱基的重复序列和端粒结合蛋白组成,构成真核生物染色体的“末端保护帽”,维持染色体结构的稳定性。

108.核型(karyotype):核型是指一个体细胞中全部中期染色体的总和,包括染色体的数目、大小和形态特征。

109.细胞外基质(extracellular matrix, ECM):由细胞合成并分泌到胞外,分布在细胞表面或细胞之间的大分子,主要是一些多糖和蛋白或蛋白聚糖及各种纤维。这些物质构成复杂的网状结构,支持并连接组织结构,调节组织的发生和细胞的生理活动。

110.蛋白聚糖(proteoglycans, PG):蛋白聚糖是由核心蛋白质的丝氨酸残基与氨基聚糖共价结合的产物。

111.氨基聚糖(Glycosaminoglycan, GAG):氨基聚糖是由重复二糖单位(氨基己糖和糖醛酸)构成的无分支长链多糖。

112.透明质酸(hyaluronic acid, HA):唯一不含硫酸基的氨基聚糖。由单纯的葡萄糖醛酸和乙酰氨基葡萄糖二糖结构单位重复排列聚合而成,结构相对简单。因此被认为是细胞外基质氨基聚糖的原始形式。

113.胶原(collagen):是动物体内分布最广、含量最丰富、种类最多的纤维蛋白家族。胶原和弹性蛋白赋予细胞外基质一定的强度和韧性。分布在体内各种器官和组织,是细胞外基质的框架结构。

114.前胶原(procollagen):带有前肽的3股螺旋胶原分子称为前胶原。被分泌囊泡运到细胞外,由细胞外的两种特异性前胶原肽酶分别水解C、N两端的前肽结构序列,最终形成原胶原。

115.弹性蛋白(elastin):弹性蛋白纤维网络赋予组织以弹性。是构成细胞外基质中弹性网络结构的主要组成成分。由2种类型短肽段交替排列而成。

116.纤粘连蛋白(fibronectin, FN):纤粘连蛋白是一种高分子的非胶原蛋白。分为可溶型FN 和不可溶型FN。均有相似的亚单位组成。

117.层粘连蛋白(laminin, LN):层粘连蛋白也是一种大型的糖蛋白,含糖量很高,是糖链结构最复杂的糖蛋白。是胚胎发育中出现最早的细胞外基质成分,与IV型胶原一起构成基底膜。由一条重链和2条轻链借二硫键交联而成,呈“十”字型。

118.基膜(basement membrane):又称“基板”,是细胞外基质特化而成一种柔软、坚韧的网膜结构。有五种蛋白成分(IV型胶原、层粘连蛋白、内联蛋白、渗滤素、核心蛋白多糖)。对组织结构起支持保护作用,调节细胞的运动、分化、增殖,同时连接了上皮组织和结缔组织,还起到分子筛的作用。

119.信号传导(signal transduction):通过信号分子与受体的相互作用实现对细胞的生命活动进行调节的过程称为细胞信号传导。

120.胞外信号/配体(ligand):信号有多种不同的形式,多数情况下细胞间的信号依赖胞间信号分子。

121.受体(receptor):细胞膜上或细胞内具有特定功能的蛋白质,能接受外界信号并将其转化为细胞内的一系列生化反应,引起细胞结构或功能的改变。

122.膜受体(membrane receptor):细胞膜上的受体,多为糖蛋白。有单体型受体和复合型受体之分。

123.胞内受体(intracellular receptor):细胞内的受体,可分为胞质受体和核受体。其配体多位脂溶性小分子甾体类激素,此外还有甲状腺类激素和维生素D等。

124.受体酪氨酸激酶(receptor tyrosine kinase, RTK):胞内的RTK往往受第二信使的调控,被激活后使底物蛋白磷酸化,胞膜上的RTK是跨膜整合蛋白,兼具受体作用。位于细胞外部分为配体结合区,识别并结合配体;朝向细胞内的部分有激酶活性。

125.自体磷酸化(autophosphorylation):与配体结合后发生构象改变,RTK发生自体磷酸化,形成SH2结合位点,能够结合并激活带有SH2结构域的蛋白质。

126.蛋白激酶(protein kinase):能将磷酸基团转移到底物特定的氨基酸残基(ser/thr/tyr)上,使蛋白质磷酸化,从而改变蛋白构象、促进或阻碍与底物的结合。

127.cAMP依赖性蛋白激酶A(cAMP dependent protein kinase, PKA):可以被cAMP 特异性活化

128.蛋白磷酸酶(protein phosphatase):蛋白磷酸酶能将蛋白质底物的磷酸基团去除,即通过水解磷酸单酯将底物分子上的磷酸基团去除,并生成磷酸根离子和自由的羟基。129.蛋白质磷酸化(phosphorylation)/去磷酸化(dephosphorylation)

130.衔接蛋白(adaptor protein):一般不具有酶活性,而是起到一个结构枢纽的作用。131.鸟苷酸结合蛋白(guanine nucleotide-binding protein):可与鸟苷酸结合的蛋白的总称,具有GTP酶活性。

132.G蛋白偶联受体(G-protein-coupled receptor):由一条多肽链构成,由7个跨膜的α螺旋区;N端朝向胞外,C端朝向胞内;N端有糖基化位点,C端的第三袢环和C端有磷酸化位点。能够识别胞外信号,使自身结果改变,与G蛋白作用,由G蛋白调节底物蛋白活性,在细胞内传递信号。

133.腺苷酸环化酶(adenylate cyclase, AC):G蛋白的效应蛋白,位于细胞膜上,跨膜12次。催化结构域在胞质面,Mg2+或Mn2+存在的条件下可催化ATP生成cAMP。134.cAMP反应元件结合蛋白(cAMP responsive element binding protein, CREB):PKA在被cAMP结合激活后,其被PKA磷酸化后,激活并结合特定基因的CRE区,调节基因表达。

135.磷脂酶C(phospholipase C, PLC) /4,5-二磷酸酯酰肌醇(phosphatidylinositol4,5-biphosphate, PIP2)/ 甘油二脂(diacylglycel,DAG)

136.蛋白激酶C(protein kinase C, PKC):有广泛分布的具有单一肽链的蛋白质,有1个亲水性的催化活性中心和1个膜结合区。未受外界信号刺激的细胞中,它分布在细胞质中,非活性结构;当细胞膜受体与相应外界信号结合,PIP2水解产生DAG时,PKA转位到质膜内表面,由DAG活化,增加对Ca2+的亲和力,进而能够使底物磷酸化。137.Ca2+-钙调蛋白(calmodulin, CaM):CaM为钙结合蛋白,有4个Ca2+结合位点,结合钙离子后可发生构象改变,形成的Ca2-CaM复合物具有活性,磷酸化蛋白质的丝氨酸/苏氨酸,激活蛋白激酶或磷酸酶。+

138.鸟苷酸环化酶(guanylate cyclase, GC):可分解GTP成为cGMP作为第二信使。GC 一般有胞膜结合型和可溶型两种存在形式。

139.一氧化氮合酶(NO synthase, NOS):由Ca2-CaM激活,以精氨酸为底物,催化生成NO和瓜氨酸,细胞释放NO。

140.cGMP依赖性蛋白激酶G(cGMP dependent protein kinase, PKG):由cGMP作为第二信使活化,可作用于底物蛋白,在不同细胞中产生不同反应。

141.细胞增殖(cell proliferation):细胞通过生长和分裂获得具有与母细胞相同遗传特征的子代细胞,从而使细胞数目成倍增加的过程。是细胞生命活动的一种体现,使生命得以延续。

142.细胞分裂(cell division):细胞以分裂的方式进行增殖。

143.有丝分裂(mitosis):高等生物细胞最主要的增殖方式是有丝分裂。特点是有纺锤体染色体出现,子染色体被平均分配到子细胞。

144.减数分裂(meiosis):又称成熟分裂,是有性生殖形成生殖细胞的分裂方式。染色体被复制一次而细胞连续分裂两次。

145.细胞增殖周期(cell generation cycle)/细胞周期(cell cycle):从亲代细胞分裂结束到子代细胞分裂结束所经历的间隔时期称细胞增殖周期。

146.分裂间期(interphase):细胞的生长期,光镜下细胞形态特征无明显变化,此时细胞合成胞质内物质和核内DNA复制。

147.G1期(gap1):从有丝分裂完成到DNA复制之前的间隙时间。

148.S期(DNA synthesis phase):指DNA复制的时期。

149.G2期(gap2):指DNA复制完成到有丝分裂开始之前的一段时间。

150.M期:细胞分裂开始到结束。

151.限制点(restriction point):正常细胞的G1期有某些特殊的调节点,起到控制细胞增殖周期开关作用的,被称为限制点。R点起到了控制细胞增殖周期开和关的“阀门”作用。

决定了细胞是继续增殖还是进入静息(G0)状态。

152.细胞分裂周期基因(cell division cycle gene, CDC):可编码多种调控细胞周期运行的蛋白质。Cdc28基因可编码CDK蛋白,对细胞周期的启动,即细胞能否通过R点很关

键,因此也被成为启动基因(start gene)。

153.周期蛋白依赖性激酶(cyclin-dependent kinase, CDK):属于丝氨酸/苏氨酸蛋白激酶家族,可特定的细胞周期被激活后,磷酸化相应的底物,从而引发后续事件的发生。其功能的实现依赖于周期蛋白。

154.周期蛋白(cyclin):这类蛋白其含量在细胞周期中呈周期性变化,其能与CDK蛋白形成复合物,能使CDK发挥激酶活性。

155.S期活化因子(S phase activator, SPF):G1期和S期交界时期形成的复合物成为S期活化因子,可促进一系列与DNA复制有关的蛋白的磷酸化,启动DNA复制。

156.成熟促进因子(maturation promoting factor, MPF):M期细胞质中存在某种成分能使间期细胞核提前进入M期。是调节细胞进入M期所必需的蛋白质激酶,由一个催化亚基和一个调节亚基组成的异二聚体。催化亚基具有激酶活性,调节亚基则选择所作用的底物。

157.前期(prophase):主要特征是染色质凝集、核膜崩解、核仁消失和纺锤体形成。158.中期(metaphase):指从核膜消失到有丝分裂器形成的全过程。染色体排列到赤道板上,两边牵引力平衡。

159.后期(anaphase):姐妹染色单体分开并移向两极,当子染色体到达两极后,这一时期结束。

160.末期(telophase):从子染色体到达两极,至形成两个新细胞为止。

161.生长因子(growth factor):一大类与细胞增殖有关的多肽类信号物质,具有较强的组织特异性。大部分具有促进细胞增殖的功能,少数兼具双重调节作用,能促进一类细胞的增殖,而抑制另一类细胞。

162.早反应基因(early response gene):基因的转录在几分钟内便可被GF诱导,且不被蛋白质合成抑制剂阻断。因为所需的转录因子已经存在于G0期细胞中,通过修饰而被激活。许多其编码的蛋白质是迟反应基因所必需的转录因子。

163.迟反应基因(delayed response gene):编码各种周期蛋白、CDK2、CDK4及另一类转录因子E2F。

164.CDK活化激酶(CDK activating kinase, CAK):CDK的激活需要与细胞周期蛋白结合并在CDK活化激酶的作用下被磷酸化。

165.检查点(check point):检查点机制在细胞周期的运行中的进行严格监控,当DNA发生损伤,复制不完全或纺锤体形成不正常,周期将被阻断。

166.细胞分化(cell differentiation):在个体发育过程中,受精卵产生的同源细胞在形态结构、生理功能、生化特征等方面逐渐发生稳定性差异的过程称为细胞分化。

167.决定(determination):通常细胞在发生可识别的形态变化之前,细胞内部已经发生了变化,确定了未来的发育命运。即一群细胞或胚胎的某一区域只能向某一特定方向分化

的状态。

168.细胞的全能性(cell totipotency):指单个细胞在一定条件下增殖、分化、发育成为完整个体的能力。

169.全能性细胞(totipotent cell):具有全能性这种能力的细胞成为全能性细胞。

170.多能细胞(pluripotent cell):胚胎形成三胚层之后,各胚层在分化潜能上开始出现一定的局限性,倾向于只发育为本胚层的组织器官,但仍具有发育成多种表型的能力,此时的细胞称为多能细胞。

171.单能细胞(unipotent cell):经过器官发生,各种组织、细胞的发育命运最终决定,在形态上特化,功能上专一化,成为单能细胞。

172.稳定型单能(unipotency):胚胎发育过程中逐渐由全能局限为多能,最终成为稳定型单能的趋向,是细胞分化的普遍规律。

173.基因差异性表达(differential expression)/选择性转录:分化的本质是不同基因差异性表达的结果,即多细胞生物在个体发育过程中,其基因组DNA并不完全表达,而是按照一定的时空顺序,在不同细胞和同一细胞的不同发育阶段发生差异表达。

174.管家基因(housekeeping gene):在各类细胞的任何时间内都可以表达,是维持细胞最低限度功能所不可缺少的基因,对细胞分化只起协助作用。

175.奢侈基因(luxury gene):与各种分化细胞的特殊性状有直接关系的基因。丧失此类基因对细胞的生存并无直接影响。只在特定的分化细胞中表达并受时期的限制。

176.管家蛋白(housekeeping protein):管家基因编码的产物,是维持细胞生命活动所必需的蛋白。

177.奢侈蛋白(luxury protein):奢侈基因编码的产物。

178.同源异型框基因(homeobox gene):基因中存在共同的180bp的DNA片段,该片段被称为同源异型框,编码高度同源的60个氨基酸,凡是含有同源异型基因序列的基因均称为同源框基因,表达的蛋白称为同源域蛋白,作为转录因子调控基因转录。179.全能干细胞(totipotent stem cell):具有受精卵全能性的细胞,可分化为胚胎和胎盘滋养层细胞,进一步分化形成完整的个体。

180.多能干细胞(pluripotent stem cell):受精9天后,这些细胞经数次分裂发育成囊胚,囊胚具有外层细胞和内细胞团。虽然内细胞团可以形成每一种组织,但它不能形成完整的胎儿。因此被称为多能干细胞。

181.专能干细胞(multipotent stem cell):多能干细胞进一步特化产生具有特殊功能的细胞群体,即专能干细胞。

182.单能干细胞(unipotent stem cell):单能干细胞分化潜能最低,仅能产生一种类型细胞。183.胚胎干细胞(embryonicstem cell, ESC):从早期囊胚内细胞团经体外培养、分离、克隆得到的具有发育多能性的细胞。

184.内细胞团(inner cell mass, ICM):在人胚胎发育的囊胚期,囊胚中心的腔称为囊胚腔,腔内有已分化成三个胚层了的内细胞团。

185.生殖干细胞(germline stem cell):源自早期胎儿原始生殖嵴的干细胞。

186.成体干细胞(adultstem cell):组织和器官特异性干细胞。

187.过渡放大细胞(transit amplifying cell):为介于干细胞和分化细胞之间的过渡细胞,分裂较快,经若干次分裂后产生分化细胞,起作用是可以通过较少的干细胞产生较多的分化细胞。

188.对称分裂(symmetry division):干细胞分裂产生同类型细胞,如两个子细胞都是干细胞或都是分化细胞。

189.不对成分裂(asymmetry division):干细胞分裂产生不同类型细胞,如两个子细胞中一个是干细胞,另一个是分化细胞。

190.转分化(transdifferentiation):一种组织类型的干细胞,在适当条件下分化成另一组织类型的细胞。

191.去分化(dedifferentiation):干细胞向其前体细胞的逆向转化。

192.干细胞龛(stem cell niche):一系列的干细胞与细胞外所有物质共同构成的细胞生长的微环境。是干细胞维持自我更新和分化潜能的重要场所。

193.胚胎阶段特异性抗原(stage-specific embryonic antigen, SSEA):胚胎干细胞特异性的基因产物。

194.诱导多能干细胞(induced pluripotent stem cells):将一部分多能性相关基因导入已分化细胞中,可能获得多能干细胞系,称之为诱导多能干细胞。

195.衰老(aging, senescence):又称老化,通常指在正常状况下生物发育成熟后,随年龄增加,自身功能减退,内环境稳定能力与应激能力下降,结构、组分逐步退行性变,趋向死亡,不可逆转的现象。

196.程序性细胞死亡(programmed cell death, PCD):过去一直强调细胞凋亡是由遗传基因决定或参与的程序化过程,所以也称为程序性细胞死亡。但现在发现任何细胞死亡形式都有基因所编码的蛋白质信号通路参与,彼此间都可能存在信号调控上的某种联系,细胞死亡的形式也不是固定不变的。

197.坏死(necrosis):极端的物理、化学或其他眼中的病理性因素诱发的细胞死亡,是一种病理性死亡。

198.坏死凋亡(necroptosis):细胞坏死时也有信号参与,RIP3可能时决定TNF-α诱导的细胞坏死的关键蛋白。被视为机体对外界病理性刺激做出的反应,细胞通过自身的死亡并通过炎症反应来消除病理性刺激对机体的影响。

199.凋亡(apoptosis):细胞凋亡是在生物进化过程中形成的,由基因控制的、自主的、有序的细胞死亡方式。

200.凋亡小体(apoptotic body):细胞膜结构不断出芽、脱落,形成数个大小不等的由膜包裹结构,称为凋亡小体,内可含细胞质、细胞器和核碎片,有的不含核碎片。

201.Caspase:是Ced-3的同源物,是引起细胞凋亡的关键酶,共同特点是富含半胱氨酸,C端同源区存在半胱氨酸激活位点,被激活后能特异地切割靶蛋白的天冬氨酸残基后的肽键。

202.细胞自噬(autophagy):通过膜包绕隔离受损的或功能退化的细胞器及某些蛋白质和大分子物质,与溶酶体融合并水解膜内成分的现象。

203.前自噬体(preautophagosome):即将发生自噬的细胞胞质中出现大量游离的膜性结构,称为前自噬体。

204.自噬体(autophagosome):前自噬泡逐渐发展成为由双层膜结构形成的空泡,其中包裹着退变的细胞器和部分细胞质。

205.自噬溶酶体(autophagolysosome):自噬体的外膜与溶酶体膜融合,内膜及其包裹的物质进入溶酶体腔,被溶酶体中的酶水解。这种吞噬了细胞内成分的溶酶体即自噬溶酶体。

206.巨自噬(macroautophagy):通过形成双层膜包绕错误折叠和聚集的蛋白质病原体、非必需氨基酸等并与溶酶体融合降解,是真核细胞最普遍的自噬方式。

207.微自噬(microautophagy):没有自噬膜的形成过程,通过溶酶体膜内陷或外凸包绕胞质及其内容物进入溶酶体进行降解。

208.分子伴侣介导的自噬(chaperone-mediated autophagy, CMA):是一种高度选择的自噬方式,热休克蛋白HSC70特异性识别并结合含有KFERQ(Lys-Phe-Glu-Arg-Gln)的五肽片段的蛋白,并通过LAMP2A相互作用而将目的蛋白转运,如溶酶体内降解。209.溶酶体膜相关蛋白2A(lysosomal-associated membrane protein 2A, LAMP2A)\

动物学名词解释和简答题

第十四章脊索动物门(Chordata) 一、名词解释 1. 脊索:介于消化道和背神经管之间,起支持体轴作用的一条棒状结构,来源于胚胎期的原肠背壁。部由泡状细胞构成,外围以结缔组织鞘,坚韧而有弹性。低等脊索动物脊索终生存在或仅见于幼体时期。高等脊索动物只在胚胎期出现,发育完全时被分节的骨质脊柱取代。 2. 背神经管:位于脊索动物脊索背面的中空管状的中枢神经系统。由胚体背中部的外胚层下陷卷褶形成。脊椎动物的神经管前端膨大为脑,脑后部分形成脊髓。 3. 咽鳃裂:低等脊索动物在消化道前端的咽部两侧有一系列左右成对排列、数目不等的裂孔,直接开口于体表或以一个共同的开口间接的与外界相通,这些裂孔即咽鳃裂。低等种类终生存在并附生布满血管的鳃,作为呼吸器官,陆栖种类仅在胚胎期或幼体期出现。 4. 尾索动物:脊索动物中最低级的类群之一。脊索和背神经管仅存于幼体的尾部,成体退化消失。身体包在胶质或近似植物纤维的被囊中,故又称被囊动物。 5. 逆行变态:在变态过程中,幼体的尾连同部的脊索和尾肌萎缩消失,神经管退化成一个神经节,感觉器官消失。咽部扩大,鳃裂数目增加,脏位置发生改变,形成被囊。经过变态,失去了一些重要构造,形体变得更为简单,这种变态方式即逆行变态。 6. 小肾囊:尾索动物在肠附近的具有排泄机能的细胞,含有尿酸结晶。 7. 头索动物:终生具有发达脊索、背神经管和咽鳃裂等特征的无头鱼形脊索动物。脊索不但终生保留,并延伸至背神经管的前方,故称头索动物。 8. 脑眼:位于鱼神经管两侧的黑色小点,是鱼的光线感受器。每个脑眼由一个感光细胞和一个色素细胞构成,可通过半透明的体壁,起到感光作用。 9. 背板和柱:海鞘、鱼等原索动物咽腔壁背、腹的中央各有一条沟状结构,分别成为背板和柱。沟有腺细胞和纤毛细胞;背板、柱上下相对,在咽前端以围咽沟相连。腺细胞分泌黏液使沉入柱的食物粘聚成团,借助于纤毛的摆动,将食物团从柱向前推行,经围咽沟沿背板进入食道、胃、肠进行消化。 10. 无头类:头索动物身体呈鱼形,体节分明,脊索终生保留,并延伸至背神经管的前方,头部不明显,缺乏真正的头和脑,故称为无头类。 11. 有头类:脊椎动物亚门脊索只在胚胎发育阶段出现,后被脊柱所取代。脑和各种器官在身体前端集中,形成明显的头部,故称有头类。 12. 无颌类:圆口纲属于较低等的脊椎动物,缺乏用作主动捕食的上、下颌,又称无颌类。 13. 有颌类:包括脊椎动物中除了圆口纲物种外的所有类群。这些生物都具备了上、下颌,用于支持口部、加强动物主动摄食和消化能力。 14. 原索动物:尾索动物和头索动物两个亚门是脊椎动物中最低级的类群,合称为原索

细胞生物学名词解释

名词解释题 细胞:是生命体活动的基本单位。 原位杂交:确定特殊的核苷酸序列在上染色体或细胞中的位置的方法称为原位杂交 脂质体:根据磷脂分子可在水相中形成稳定的脂双层的趋势而制备的人工膜。单层脂分子铺展在水面上时,其极性端插入水相而非极性尾部面向空气界面,搅动后形成乳浊液,即形成极性端向外而非极性尾部在部的脂分子团或形成双层脂分子的球形脂质体。 主动运输:有载体介导的物质逆浓度梯度或电化学梯度由浓度低的一侧向高浓度的一侧进行跨膜转运的方式。此种转运的方式需要消耗能量。 转移序列:存在与新生肽连中使肽连终止转移的一段信号序列,可导致蛋白质锚定在膜的脂双层中。因终止转移信号作用而形成单次跨膜的蛋白质,那么该蛋白质在结构上只有一个终止转移信号序列,没有部转移信号,但在N端有一个信号序列作为起始转移信号。 P34cdc2/cdc28:是有芽殖或裂殖酵母cdc2/cdc28基因表达一种分子量为34X103细胞周期依赖的蛋白激酶。 细胞全能性:细胞经分裂和分化后仍具有产生完整有机体的潜能或特性 膜系统(endomembrane system): 指在结构、功能及发生上密切相关的,由膜围绕的细胞器或细胞结构,主要包括质网、高尔基体、溶酶体、过氧化物酶体、核膜、胞体和分泌泡等。 Caspase家族: Caspase活性位点是半胱氨酸(Cysteine),裂解靶蛋白位点是天冬氨酸残基后的肽键,因此称为Cysteine aspartic acic specific protease,即Caspase 细胞分化:在个体发育中,有一种相同的细胞类型经细胞分裂后逐渐在形态、结构、和功能上形成稳定性差异,产生不同的细胞类群的过程称细胞分化。或:由于基因选择性的表达各自特有的专一蛋白质而导致细胞形态、结构与功能的差异。 分泌型胞吐途径:真核细胞都从高尔基体反面管网区分泌的囊泡向质膜流动并与之融合的稳定过程。 细胞骨架:是由蛋白纤维交织而成的立体网架结构,它充满整个细胞质的空间,与外侧的细胞膜和侧的核膜存在一定的结构联系,以保持细胞特有的形状,并与细胞运动有关。(也可以这样回答:从广义上讲,细胞骨架包括细胞质骨架、细胞核骨架、细胞膜骨架和细胞外基质。从狭义上讲,细胞骨架即为细胞质骨架,包括微管、纤丝两大类纤维成分)。 膜的流动性:是生物膜的基本特征之一,包括膜脂的流动性和膜蛋白的流动性,膜脂的流动性主要是指脂分子的侧向运动。 钙粘素:属亲同性CAM,其作用依赖于Ca2+。钙粘素分子结构同源性很高,其胞外部分形成5个结构域,其中4个同源,均含Ca2+结合部位。决定钙粘素结合特异性的部位在靠N末端的一个结构域中,只要变更其中2个氨基酸残基即可使结合特异性由E-钙粘素转变为P-钙粘素。钙粘素分子的胞质部分是最高度保守的区域,参与信号转导。 接合素蛋白:它既能结合网格蛋白,又能识别跨膜受体胞质面的尾部肽信号,从而介导跨膜受体及其结合配体的选择性运输。

微生物名词解释大全

微生物名词解释大全 名词解释 1.质粒、附加体、粘粒、抗药性质粒、Ri质粒、Ti质粒 2.酵母、真酵母、假酵母、假丝酵母、菌丝、菌丝体、真菌丝、假菌丝、匍匐菌丝、假根 3菌落、菌苔、菌膜、糖被、粘液层、菌胶团、R型菌落、S型菌落、小(微)菌落 4.λ噬菌体、P1噬菌体、T2噬菌体、φX174噬菌体、SV40 5.菌索、菌核、子座、子实体、吸器、菌网、菌套、附着胞、附着枝、哈氏网 6.单倍体型、双倍体型、单双倍体型 7.种、菌株、型、品系、群、亚种、小种 8.支原体、衣原体、菌质体、原生质体、中体(质体、中间体)、类菌质体、类菌体、类囊体、立克次氏体、L型细菌、疵壁菌、球状体、包涵体 9培养基、天然培养基、合成培养基、半合成培养基、加富培养基、基本培养基、完全培养基、选择培养基、鉴别培养基、补充培养基、纯培养物、混合培养物、二元培养物 10微生物、细菌、放线菌、兰细菌、螺旋体、原生动物、粘菌、地衣、极端微生物、悉生生物、光合细菌、螺旋藻、古细菌、蛭弧菌、真菌、霉菌、酵母菌、蕈子、不可培养微生物、大肠菌群、大肠杆菌 11异形胞、异核体、胞壁质、假胞壁质、质壁空间、周质 12寄生、腐生、兼性寄生(腐生) 13溶源化(细胞)、非溶源化(细胞) 14好氧、厌氧、兼性厌氧 17免疫、免疫原性、免疫反应性、抗原、完全抗原、半抗原、抗原决定基、血清型反应、沉淀反应、凝集反应、补体结合(固定) 18菌丝、菌丝体、基内菌丝、气生菌丝、孢子丝、假菌丝、菌褶、菌环、菌托、子实体 19营养缺陷型、野生型、原养型、生长因子、耐药性因子、转化因子 20外毒素、内毒素、类毒素、抗毒素、肉毒素、伴孢晶体、δ—内毒素、苏云金素、β—外毒素 21胞囊、芽孢、营养细胞、有性孢子、无性孢子、游动孢子、不动孢子、内生孢子、分生孢子、厚垣孢子、节孢子、孢囊孢子、芽孢子、分生节孢子、粉孢子、卵孢子、接合孢子、担孢子、子囊孢子、 22自养微生物、异养微生物、化能有机型、化能无机型、光能有机型、光能无机型 23被动扩散、助长扩散、主动运输、基团转移、胞吞、胞吐 24菌根、外生菌根、内生菌根、V-A菌根、豆白红蛋白、根瘤素、哈蒂氏网、根际效应25.LPS、ELISA、BT、EM、PGPR、LB、PHB、MPN 26膜套、内膜系统、壁膜间隙 27活的非可培养状态 28 16s rRNA分析法、三域(原界)学说 29 鞭毛、菌毛、性菌毛、纤毛 30外显子、内含子、转座子、插入序列 31生长、繁殖、分化、发育、产能代谢、耗能代谢、物质代谢、能量代谢、合成代谢、分解代谢、初生代谢、次生代谢 32同宗结合、异宗结合、锁状联合、有性繁殖、无性繁殖、有性杂交、准性生殖、有性孢子、无性孢子、子囊果、子囊壳、闭囊壳、子囊盘、子座、分生孢子器、分生孢子座、分生孢子盘 33基因、基因型、基因组、假基因、基因盒、基因文库、基因工程、基因沉默、基因敲除、

微生物名词解释

微生物:一类肉眼看不到货看不清,必需借助光学显微镜或电子显微镜才能观察的微小生物的总称。 微生物学:研究微生物生命现象及生命活动规律的科学。 细胞膜:紧贴着细胞壁内侧,包裹着细胞质的一层柔软的富有弹性的半透性薄膜。细胞质:细胞膜内具有一定流动性的除原核以外所有透明的、颗粒状或胶体状物质的总合。 原核:又称核质体、拟核、核区等,是原核生物所特有的无核膜结构的原始细胞核。它只有DNA,不与组蛋白结合。 内含物:细胞质内的颗粒状、胶质样物质的总称。 异染颗粒:又称迂回体,最初是在迂回罗军中发现的被美兰或甲苯胺兰染成红紫色而得名,为五级偏磷酸的聚合物。 鞭毛:生长在某些细菌表面的常丝状、波曲的蛋白附属物,据运动功能。 芽胞:某些细菌在其生长发育后期在胞内形成的圆形或椭圆形,壁厚、质浓含水量低,抗逆性强的休眠构造。 荚膜:某些细胞表面包被着的一层具有固定层次的透明的胶状物质。 菌落由单个微生物细胞经过繁殖而在固体培养基表面形成的肉眼可见的微生物集落,在平板上的称菌落 菌苔:,菌落由单个微生物细胞经过繁殖而在固体培养基表面形成的肉眼可见的微生物集落,在斜面上的称菌苔。 质粒:质粒是细菌染色体以外的遗传物质,能独立复制,为共价闭合环状双链DNA,分子量比染色体小,每个菌体内有一个或几个质粒,它分散在细胞质中或附着在染色体上。 菌丝:丝状真菌的结构单元,是一条具有分枝的管形丝状体,外由细胞璧包被,里面充满原生质和细胞核。幼时无色,老后常呈各种不同的颜色。 13、菌丝体:菌丝在基质上或基质中不断伸长和分枝,并由许多菌丝连结在一起所组成的整个营养体称菌丝体。 14、革兰氏染色:丹麦科学家Gram十九世纪八十年代发明的一种细菌染色法。染色方法为:在一个已固定的细菌涂片上用结晶紫染色,再加媒染剂 ---碘液处理,使菌体着色,然后用乙醇脱色,最后用蕃红复染。显微镜下菌体呈紫色者为G+细菌,菌体呈红色者为G-细菌。 15、LPS:脂多糖,G-细菌细胞壁外层的主要组分由类脂A、核心多糖、O-特意侧链三部分构成。 16、DAP:二氨基苯二酸,G-细胞壁太聚糖中存在的一种特殊氨基酸。 17、PHB:聚 -羟基丁酸,某些细菌中存在的一种可作为碳源和能源储藏物质。 18、异型胞:丝状蓝细菌中存在的一种特殊细胞,缺乏PSII,可进行不产氧的光合作用,细胞透明,壁厚具有固氮能力。 19、核糖体:核糖核蛋白体是核糖核酸和蛋白质的大分子化合物,是多肽和蛋白质合成的场所。 20、16S rRNA:原核细胞核糖体小亚基中的一种核糖核酸分子,沉降系数为16 S,

动物学名词解释。

1、物种:分类基本单位,种是具有一定的形态结构和生理特性以及一定自然分布区的生物种群,种内个体间可以彼此交配和产生后代,不同种之间存在生殖隔离。 2、双名法:对每种生物采用两个拉丁词或拉丁化的词的方法进行命名,第一个词为属名,第二个词为种加词。 7、出芽生殖:在亲体的一定部位长出与自身体形相似的个体,称为芽体。以后芽体可以脱离亲体发育成新个体或不脱离亲体而形成群体的生殖方式。 8、卵生::由母体产出的是受精卵或未受精卵,未受精卵则需在体外受精(孤雌生殖除外)。子代的胚胎发育在外界环境条件下进行,胚胎发育时所需营养物质由卵内所贮存的卵黄供给。 9、胎生:从母体内产出的是幼体。子代胚胎发育时所需的营养物质由母体供给。 10、卵胎生:从母体内产出的也是幼体。幼体胚胎发育时所需的营养仍由卵内所贮存的卵黄供给,母体的输卵管或孵育室仅提供子代胚胎发育的场所。 11、伸缩泡:原生动物所具有的泡状细胞器,能通过收缩和舒张排出体内多余的水分,也有部分的排泄功能。 12、刺丝泡:草履虫等表膜之下的小杆状结构,有孔开口在表膜上,当动物遇到刺激时,射出其内容物,遇水成为细丝,一般认为有防御功能。 13、变形运动:变形虫在运动时,其体表任何部位都可形成伪足,虫体不断向伪足伸出的方向移动,这种现象叫做变形运动。 14、伪足:肉足动物的足不固定,身体伸出的部分即代表足,有运动和取食功能。 15、接合生殖:草履虫等原生动物特有的一种有性生殖方式。生殖时两个虫体口沟贴合,表膜溶解,通过小核的分裂和部分交换,最终产生8个新个体的复杂过程。 16、裂体生殖:又叫复分裂。既细胞核首先分裂成很多个,称为裂殖体,然后细胞质随着核而分裂,包在每个核的外边,形成很多的小个体,称为裂殖子。是一种高效的分裂生殖方式。 17、寄生:一种生物生活在另一种生物的体内或体表,从中获取营养,并对该生物有害。 18、终末宿主:寄生虫成虫或有性生殖时期所寄生的寄主。 19、中间宿主:寄生虫幼虫或无性生殖时期所寄生的寄主。 20、胚层逆转:在胚胎发育中,大分裂球在外,小分裂球在内,与般多细胞动物相反。 24、生物发生律:生物的个体发育史是系统发展史的简单而迅速的重演。 25、世代交替:在动物的生活史中,无性世代和有性世代有规律地交替出现的现象。 26、辐射对称:通过身体的中轴有多个切面将身体分为大致相等的两部分。 27、消化循环腔:腔肠动物体壁围绕的中央腔既有消化功能又有循环功能。 28、网状神经系统:腔肠动物的神经细胞突起相互交织成网状结构。这是动物界首次出现的神经系统类型。网状神经系统无神经中枢,神经传导不定向,神经传导速度慢。 29、皮肌囊:扁形动物等的体壁,由皮肤和肌肉组成。起保护等作用。 30、两侧对称:通过身体的中央轴只有一个切面将身体分为大致相等的两部分的体制类型。 31、实质组织:在涡虫等动物的表皮、肌肉与内部器官之间填满了由中胚层来的实质,疏松地相互连接在一起,形成网状,可贮存养分。 32、不完全的消化系统:扁形动物等低等动物的消化管只有口,没有肛门,消化效率不高,称为不完全的消化系统。 33、原肾管:扁形动物等的排泄系统类型。在虫体两侧有一对弯曲、多次分支的纵行排泄管,每一小分支细管的末端连着焰细胞。通过焰细胞收集多余的水分和液体废物,经排泄管由体背面的排泄孔排出体外。 34、梯式神经系统:扁形动物的神经系统类型。身体前端有“脑”的雏形,由“脑”发出两条腹神经索,腹神经索发出神经分支彼此连接并分布到身体各部。

细胞生物学名词解释

细胞生物学名词解释 1受体,配体:受体(receptor):存在于细胞膜上细胞内、能接受外界的信号,并将这一信号转化为细胞内的一系列生物化学反应,从而对细胞的结构或功能产生影响的蛋白质分子。 配体(ligand):受体所接受的外界信号,包括神经递质、激素、生长因子、光子、某些化学物质及其他细胞外信号。受体是细胞膜上的特殊蛋白分子,可以识别和选择性地与某些物质发生特异性结合反应,产生相应的生物效应.与之结合的相应的信息分子叫配体。 2. 细胞通讯,信号传导,信号转导,细胞识别: 细胞通讯:指一个细胞发出的信息通过介质传递到别一个细胞产生相应的反应。 信号传导:相当于是将上面细胞的刺激冲动传向下一个细胞,起着一种传递承接的作用,生化性质上没有什么改变。信号转导:指细胞通过胞膜或胞内受体感受信息分子的刺激,经细胞内信号转导系统转换,从而影响细胞生物学功能的过程。 细胞识别:是指细胞通过其表面的受体与胞外信号物质分子(配体)选择性地相互作用,从而导致胞内一系列生理生化变化,最终表现为细胞整体的生物学效应的过程。是细胞通讯的一个重要环节。

3. 分子伴侣:一类在序列上没有相关性但有共同功能的蛋白质,它们在细胞内帮助其他含多肽的结构完成正确的组装,而且在组装完毕后与之分离,不构成这些蛋白质结构执行功能时的组份。 4. 核孔复合体:在内外膜的融合处形成环状开口,直径为50~100nm,核孔构造复杂,含100种以上蛋白质,并与核纤层紧密结合。是选择性双向通道。功能是选择性的大分子出入(主动运输),酶、组蛋白、mRNA、tRNA等存在电位差,对离子的出入有一定的调节控制作用。 5. 常染色质,异染色质 : 在细胞核的大部分区域,染色质结构的折叠压缩程度比较小,即密度较低,进行细胞染色时着色较浅,这部分染色质称常染色质.着丝点部位的染色质丝,在细胞间期就折叠压缩的非常紧密,和细胞分裂时的染色体情况差不多,即密度较高,细胞染色时着色较深,这部分染色质称异染色质. 6. 核仁组织区:即rRNA序列区,它与细胞间期核仁形成有关,构成核仁的某一个或几个特定染色体片断。这一片段的DNA转录为rRNA, rRNA所在处。 7. 多聚核糖体:在蛋白质合成过程中,同一条mRNA分子能够同多个核糖体结合,同时合成若干条蛋白质多肽链,结合在同一条mRNA上的核糖体就称为多聚核糖体。 8. 紧密连接,粘着带,桥粒,间隙连接:

微生物学名词解释

微生物名词解释 1.微生物:是一切肉眼看不见或看不清的微小生物的总称。 2.微生物学:是在分子、细胞或群体水平上研究各类微小生物的形 态结构、生长繁殖、生理代谢、遗传变异、生态分布和分类进化 等生命活动的基本规律,并将其应用于工业发酵、医学卫生和生 物工程等领域的科学。 3.细菌:是一类细胞细短、结构简单、胞壁坚韧、多以二分裂方式 繁殖和水生性较强的原核生物。 4.细胞壁:位于细胞最外的一层厚实、坚韧的外被,主要成分为肽 聚糖,具有固定细胞外形和保护细胞不受损伤等多种生理功能。 5.原生质体:指在人为条件下,用溶菌酶除尽原有细胞壁或用青霉 素抑制新生细胞壁的合成后,所得到的仅有一层细胞膜包裹的圆 球状渗透敏感细胞。 6.细胞质:是指被细胞膜包围的除核区以外的一切半透明、胶体状、 颗粒状物质的总称。 7.核区:指原核生物所特有的无核膜包裹、无固定形态的原始细胞 核。(又称核质体、原核、拟核或核基因组) 8.糖被:包被于某些细菌细胞壁外的一层厚度不定的透明胶体物质。 9.荚膜:糖被的一种,包裹在细菌细胞壁外,有固定层次的胶黏物, 一般成分为多糖、少数为多肽或多糖与肽的复合物。 10.鞭毛:生长在某些细菌表面的长丝状、波曲的蛋白质附属物。(具 有运动功能) 11.芽孢:某些细菌在其生长发育后期,细胞内形成一个圆形或椭圆 形、厚壁、含水量低、抗逆性强的休眠构造,无繁殖功能。 12.孢囊:是一些固氮菌在外界缺乏营养的条件下,由整个营养细胞 外壁加厚、细胞失水而形成的一种抗干旱但不抗热的圆形休眠体。 不具繁殖功能。 13.伴孢晶体:少数芽孢杆菌,在形成芽孢的同时,会在芽孢旁形成 一颗菱形、方形或不规则形的碱溶性蛋白质晶体。 14.二分裂:一个细胞在其对称中心形成一隔膜,进而分裂成两个形 态、大小和构造完全相同的子细胞。 15.菌落:在适宜的培养条件下,微生物在固体培养基上以母细胞为 中心的一堆肉眼可见的,具有一定形态、构造等特征的子细胞集 团。 16.放线菌:是一类主要呈菌丝状生长和以孢子繁殖的陆生性较强的 原核生物。(属革兰氏阳性菌) 17.蓝细菌:一类进化历史悠久、革兰氏染色阴性、无鞭毛、含叶绿 素a、能进行产氧性光合作用的大型原核生物。(旧名蓝藻或蓝 绿藻) 18.支原体:是一类无细胞壁、介于独立生活和细胞内寄生生活间的 最小型原核生物。 19.立克次氏体:是一类专性寄生于真核细胞内的Gˉ原核生物。20.衣原体:是一类在真核细胞内营专性能量寄生的小型Gˉ原核生 物。 21.真核生物:是一大类细胞核具有核膜,能进行有丝分裂,细胞质 中存在线粒体或同时存在叶绿体等多种细胞器的生物。 22.酵母菌:泛指能发酵糖类的各种单细胞真菌。 23.霉菌:会引起物品霉变的真菌,通常指那些菌丝体较发达又不产 生大型肉质子实体结构的真菌。(丝状真菌的一个俗称) 24.菌丝体:当霉菌孢子落在适宜的基质上后,就发芽生长并产生菌 丝,由许多菌丝相互交织而成的菌丝集团。 25.养菌丝:匍匐生长于培养基内,吸收营养的菌丝。(也称基内菌 丝,较细、色浅) 26.气生菌丝:营养菌丝发育到一定阶段,伸向空间形成气生菌丝, 较粗、色深。 27.孢子丝:气生菌丝发育到一定阶段,其上可分化出形成孢子的菌 丝. 28.蕈菌:指那些能形成大型肉质子实体的真菌。(又称伞菌) 29.病毒:超显微的,无细胞结构,专性活细胞内寄生,活细胞外具 有一般化学大分子特征,一旦进入宿主细胞又具有生命特征。 30.一步生长曲线:定量描述烈性噬菌体生长规律的实验曲线。 31.温和噬菌体:侵入相应宿主细胞后,并不增殖,裂解,而与宿主 DNA复制而复制,此时细胞中找不到形态上可见的噬菌体。32.烈性噬菌体:凡在短时间内能连续完成吸附、侵入、增殖、成熟、 裂解这五个阶段而实现其繁殖的噬菌体。 33.噬菌斑:一个由无数噬菌体粒子构成的群体,透亮不长菌的小圆 斑,每一个噬菌斑是由一个噬菌体粒子形成的。 34.溶源性细胞:细胞中含有以原噬菌体状存在的温和噬菌体基因组 的细菌细胞。 35.亚病毒:凡在核酸和蛋白质两种成分中,只含其中之一的分子病 原体。 36.类病毒:一类只含RNA一种成分、专性寄生在活细胞内的分子病 原体。 37.拟病毒:一类包裹在真病毒粒中的有缺陷的类病毒。(也称类类 病毒、壳内类病毒或病毒卫星) 38.朊病毒:是一类不含核酸的传染性蛋白质分子。(又称“普利昂” 或蛋白侵染子) 39.生长因子:是一类调节微生物正常代谢所必需,但不能用简单的 碳、氮源自行合成的有机物。 40.营养类型:指根据微生物生长所需要的主要营养要素即能源和碳 源的不同,而划分的微生物类型。 41.光能无机营养型:是一类能以CO?作为唯一或主要碳源,以无机 物如H2、H2S、S等作为供氢体或电子供体,并利用光能进行生 长的微生物。(如藻类、蓝细菌和光合细菌)

微生物名词解释精华版

B 病原体:凡能引起传染病的各种微生物和其他生物。 包涵体:病毒在增值的过程中,常使寄主细胞内形成一种蛋白质性质的病变结构,当其聚集并使宿主细胞发生变异,形成具有一定形态,构造并能用光镜可以观察与识别的特殊群体。 鞭毛、菌毛、性毛。鞭毛:生长在某些细菌表面的长丝状。波曲的蛋白质附属物。菌毛:又称纤毛、伞毛、线毛或须毛,是一种长在细菌体表的纤细,中空、短直且数量较多的蛋白质类附属物,具有使菌体附着于物体表面的功能。性毛:又称性菌毛,构造和成分与菌毛相同,但比菌毛长,且每个细胞仅一至少数几根。一般见于G细菌的雄性菌株中,具有向雌性菌株传递物质的作用,有的还是RNA噬菌体的特异性吸附受体。 巴氏消毒法:是一种专用于牛奶、啤酒、果酒或酱油等不宜进行高温灭菌的液态风味食品或调料的低温消毒方法。 补充培养基:凡只能满足相应的营养缺陷型突变株生长需要的组合或半组合培养基。 C 超氧化物歧化酶:一种在较高浓度分子氧的条件下,才能生

长的具有完整呼吸链、以分子氧作为最终氢受体的活性物质,能消除生物体在新陈代谢过程中产生有害物质的酶。 传染:指外源或内源性病原体突破其宿主的三道免疫“防线”后,在宿主的特定部位定植、生长繁殖或产生酶及毒素,从而引起一系列病理生理的过程。 F 防腐:利用某种理化因素完全抑制霉腐微生物的生长繁殖,即通过制菌作用防止食品、生物制品等对象发生霉腐的措施。 附加体:某些质粒具有聚合体染色体发生螯合与脱离的功能,这类质粒称为附加体。 复壮:狭义的复壮仅是一种消极的措施,指的是在菌种已发生衰退的情况下,通过纯种分离和测定典型性状、生产性能等指标,从已衰退的群体中筛选出少数尚未退化的个体,以达到恢复原菌株固有性状的相应措施;广义的复壮则是一项积极的措施,即在菌种的典型特征或生产性状尚未衰退前,就经常有意识的采取纯种分离的生产性状的测定工作,以在 G 固化培养基:由液体培养基中加入适量凝固剂而形成的液体培养基。 共生:指两种生物共居在一起,相互分工合作、互相有利,相依

动物学名词解释

1. 脊索:介于消化道和背神经管之间,起支持体轴作用的一条棒状结构,来源于胚胎期的原肠背壁。内部由泡状细胞构成,外围以结缔组织鞘,坚韧而有弹性。低等脊索动物脊索终生存在或仅见于幼体时期。高等脊索动物只在胚胎期出现,发育完全时被分节的骨质脊柱取代。 2.背神经管:位于脊索动物脊索背面的中空管状的中枢神经系统。由胚体背中部的外胚层下陷卷褶形成。脊椎动物的神经管前端膨大为脑,脑后部分形成脊髓。 3. 咽鳃裂:低等脊索动物在消化道前端的咽部两侧有一系列左右成对排列、数目不等的裂孔,直接开口于体表或以一个共同的开口间接的与外界相通,这些裂孔即咽鳃裂。低等种类终生存在并附生布满血管的鳃,作为呼吸器官,陆栖种类仅在胚胎期或幼体期出现。 5.逆行变态:在变态过程中,幼体的尾连同内部的脊索和尾肌萎缩消失,神经管退化 成一个神经节,感觉器官消失。咽部扩大,鳃裂数目增加,内脏位置发生改变,形成被囊。 经过变态,失去了一些重要构造,形体变得更为简单,这种变态方式即逆行变态。 1.侧线系统:为鱼类特有的皮肤感觉器官,呈管状或沟状,埋于头骨内及体侧皮肤下 面,侧线管以侧线孔穿过头骨及鳞片,连接成与外界相通的侧线,感觉器位于侧线管内。 3.罗伦氏壶腹:为软骨鱼类所特有的由皮肤衍生的感觉器,是侧线管的变形构造,分布在头部的背腹面。由罗伦瓮、罗伦管和管孔三部分组成。为水流、水压、水温的感受器,也能感知电压。

16. 盾鳞:为软骨鱼类所特有,表皮和真皮共同形成的,由基板和棘两部分组成,基板埋藏于真皮中,大多呈菱形,基板底部有一孔,是神经和血管通入的地方;棘着生在基板上,露于皮肤外面,尖端朝向体后,外层覆以釉质,内层为齿质中央为髓腔。 18. 骨鳞:骨鳞为绝大多数硬骨鱼类所具有,由真皮形成。多为圆形或椭圆形,具弹性 的半透明薄骨板,骨鳞呈覆瓦状排列,前端插入真皮形成的鳞袋内,后端游离于表皮之下, 侧缘为相邻的鳞片所覆盖。骨鳞的结构为上下2层,上层为骨质层,下层柔软为纤维层。 32. 卵生:把成熟的卵直接产在体外,在体外进行发育的繁殖方式。如多数鱼类、鸟类。 33. 卵胎生:受精卵在雌性生殖管道内进行发育,但胚胎发育所需的营养物质依靠卵黄供给,与母体没有营养物质的联系,仅呼吸靠母体进行或母体提供部分水分和矿物质。如多数软骨鱼类。 44. 动脉球与动脉圆锥:腹大动脉基部扩大而成的球状结构,称为动脉球,与心脏的心 室相通,不能搏动,硬骨鱼类具有。动脉圆锥是软骨鱼类心脏的组成部分, 位于心室的前方,内有瓣膜,能有节律的搏动。 47. 单循环:血液在体内只有一条循环路线。血液从心脏压出经鳃完成气体交换后,不返回心脏,进入背大动脉,送至身体各处,离开器官组织的乏氧血沿静脉回流到心脏。

细胞生物学名词解释整理终版题库

名词解释 1. genome 基因组p235 某一个生物的细胞中储存于单倍染色体组中的总遗传信息,组成该生物的基因组 2. ribozyme 核酶p266 核酶是具有催化功能的RNA分子,是生物催化剂,可降解特异的mRNA序列。核酶又称核酸类酶、酶RNA、核酶类酶RNA。大多数核酶通过催化转磷酸酯和磷酸二酯键水解反应参与RNA自身剪切、加工过程。与一般的反义RNA相比,核酶具有较稳定的空间结构,不易受到RNA酶的攻击。更重要的是,核酶在切断mRNA后,又可从杂交链上解脱下来,重新结合和切割其它的mRNA分子。 3. signal molecule 信号分子p158 信号分子是细胞的信息载体,包括化学信号如各种激素,局部介质和神经递质以及各种物理信号比如声、光、电和温度变化。各种化学信号根据其化学性质通常可分为3类:1、气体性信号分子,包括NO、CO,可以自由扩散,进入细胞直接激活效应酶产生第二信使cGMP,参与体内众多生理过程。2、疏水性信号分子,这类亲脂性分子小、疏水性强,可穿过细胞质膜进入细胞,与细胞内和核受体结合形成激素-受体复合物,调节基因表达。3、亲水性信号分子,包括神经递质、局部介质和大多数蛋白类激素,他们不能透过靶细胞质膜,只能通过与靶细胞表面受体结合,经信号转换机制,在细胞内产生第二信使或激活蛋白激酶或蛋白磷酸酶的火星,引起细胞的应答反应。 4. house-keeping gene管家基因p319 管家基因是指所有细胞中均表达的一类基因,其产物是维持细胞基本生命活动所需要的,如糖酵解酶系基因等。这类基因一般在细胞周期S期的早期复制。分化细胞基因组所表达的基因大致可分为2中基本类型一类是管家基因,另外一类是组织特异性基因。 5. cis-acting elements顺式作用元件 存在于基因旁侧序列中能影响基因表达的序列。顺式作用元件包括启动子、增强子、调控序列和可诱导元件等,它们的作用是参与基因表达的调控。顺式作用元件本身不编码任何蛋白质,仅仅提供一个作用位点,要与反式作用因子相互作用而起作用。是指与结构基因串联的特定DNA序列,是转录因子的结合位点,它们通过与转录因子结合而调控基因转录的精确起始和转录效率。 6. epigenetics 表观遗传学p251(重新查!!!1) 表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因表达了可遗传的变化的一门遗传学分支学科。表观遗传的现象很多,已知的有DNA甲基化,基因组印记,母体效应,基因沉默,核仁显性,休眠转座子激活和RNA编辑等。是在基因组水平上对表观遗传学改变的研究。表观遗传现象包括DNA甲基化、RNA干扰、组织蛋白修饰等 7. Hayflick limitation Hayflick界线 Leonard Hayflick利用来自胚胎和成体的成纤维细胞进行体外培养,发现:胚胎的成纤维细胞分裂传代50次后开始衰退和死亡,相反,来自成年组织的成纤维细胞只能培养15~30代就开始死亡。Hayflick等还发现,动物体细胞在体外可传代的次数,与物种的寿命有关;细胞的分裂能力与个体的年龄有关,由于上述规律是Hayflick研究和发现的,故称为Hayflick 界线。关于细胞增殖能力和寿命是有限的观点。细胞,至少是培养的二倍体细胞,不是不死的,而是有一定的寿命;它们的增殖能力不是无限的,而是有一定的界限,这就是Hayflick 界线。 8. proto-oncogene原癌基因p312 原癌基因是细胞内与细胞增殖相关的基因,是维持机体正常生命活动所必须的,在进化上高等保守。当原癌基因的结构或调控区发生变异,基因产物增多或活性增强时,使细胞过度增

名词解释-环境工程微生物学

微生物:肉眼看不见的、必须自电子显微镜或光学显微镜下才能看见的所有微小生物的统称。 病毒:没有细胞结构,专性寄生在活的敏感宿主体内的超微小生物。他们只具有简单的独特结构,可通过细菌过滤器。 蛋白质衣壳:由一定数量的衣壳粒(由一种或几种多肽链折叠而成的蛋白质亚单位)按一定的排列组合构成的病毒外壳。 核酸内芯:即核糖核酸(RNA)和脱氧核糖核酸(DNA) 装配:借用宿主细胞的合成机构复制核酸,进而合成噬菌体的蛋白质,核酸和蛋白质聚集合成新的噬菌体。 毒性噬菌体:侵入宿主细胞后,随即引起宿主细胞裂解的噬菌体 温和噬菌体:不引起宿主细胞裂解的噬菌体(当它侵入宿主细胞后,其核酸附着并整合在宿主染色体上,和宿主的核酸共同复制,宿主细胞不裂解而继续生长。) 溶原细胞:含有温和噬菌体核酸的宿主细胞(溶原性是遗传特性) 原噬菌体(或前噬菌体):溶原细胞内的温和噬菌体核酸 噬菌斑:原代或传代单层细胞被病毒感染后,一个个细胞被病毒蚀空成空斑(亦称蚀斑)。 PFU:病毒空斑单位——单位体积内含有病毒数:ηPFU=(n瓶内空斑平均数*病毒稀释度)/每瓶的病毒接种数 原核微生物:无核膜包被,只有称作核区的裸露DNA的原始微生物。 极端微生物(亦叫嗜极微生物):喜在极端恶劣环境中生活的微生物。组要包括嗜酸菌、嗜盐菌、嗜热菌、嗜冷菌及嗜压菌等。 细胞壁:包围在细菌体表最外层的、坚韧而有弹性的薄膜。 原生质体:包括细胞质膜(原生质膜)、细胞质及内含物、拟核。 细胞质膜:紧贴在细胞壁的内侧而包围细胞质的一层柔软而富有弹性的薄膜。是半渗透膜。 核糖体:原核微生物的核糖体是分散在细胞质中的亚微颗粒,是合成蛋白质的部位。 内含颗粒:细菌生长到成熟阶段,因营养过剩形成的一些贮藏颗粒。 荚膜:一些细菌在其细胞表面分泌的一种把细胞壁完全包围封住的黏性物质。 黏液层:有些细菌不产荚膜,其细胞表面仍可分泌黏性的多糖,疏松地附着在细菌细胞壁表面上,与外界没有明显边缘。 菌胶团:有些细菌由于其遗传特性决定,细菌之间按一定得排列方式互相黏集在一起,被一个公共荚膜包围形成一定形状的细菌集团。(一定要先形成荚膜、黏液层才能黏成菌胶团) 衣鞘:丝状体表面的黏液层或荚膜硬质化,形成一个透明空韧的空壳。(水生境中的丝状菌多数有衣鞘) 芽孢:某些细菌在它的生活史中某一个阶段或某些细菌在它遇到外界不良环境时,在其细胞内形成的一个内生孢子。(抗逆性休眠体,是细菌的分类鉴定依据之一) 鞭毛:由细胞质膜上的鞭毛基粒长出穿过细胞壁伸向体外的一条纤细的波浪状丝状物。 菌落:由一个细菌繁殖起来的,由无数细菌组成具有一定形态特征的细菌集团。 菌落特征:细菌在固体培养基上的培养特征。 光滑型菌落:具有荚膜,表面光滑、湿润、黏稠的菌落。 粗糙型菌落:不具有荚膜,表面干燥、皱褶、平坦的菌落。 菌苔:细菌在斜面培养基接种线上长成的一片密集的细菌群落。 真核微生物:有发育完好的细胞核,有高度分化的细胞器,进行有丝分裂的微生物。 原生动物:动物中最原始、最低等、结构最简单的单细胞动物。 全动性营养:全动性营养的原生动物以其他生物(如细菌、放线菌、酵母菌、霉菌、藻类、比自身小的原声动物和有机颗粒)为食。 植物性营养:有色素的原生动物,在有光照的条件下,吸收CO2和无机盐进行光合作用,合成有机物供自身营养。腐生性营养:某些无色鞭毛虫和寄生的原生动物,借助体表的原生质膜吸收环境和寄主中的可溶性有机物作为营养。胞囊:若环境条件变坏,如水干涸、水温、pH过高或过低,溶解氧不足,缺乏食物或排泄物积累过多,污水中的有机物浓度超过原生动物的适应能力等情况,都可使原生动物不能正常生活而形成胞囊。胞囊是抵抗不良环境的一种休眠体。 微型后生动物:原生动物以外的多细胞动物叫后生动物,有些后生动物形体微小,要借助光学显微镜看清,故称为后生动物。

动物学名词解释

名词解释 1.刺细胞:腔肠动物特有的,分布于体表皮肌细胞之间,以触手上为多。刺细胞内有刺丝囊,囊内有毒液和一盘旋的丝状管(刺丝):遇到刺激,囊内刺丝翻出,注射毒液或把外物缠卷,利于防御和捕食。 2.马氏管:由体壁昆虫的排泄气管,是着生于中肠与后肠交界处的细长的盲管,从周围血液中摄取离子、尿酸盐和毒素到管内,形成原始的尿液送入后肠。 3.书肺:为蛛形纲的呼吸器官。藏于腹部体表内陷所生的囊内,由许多叶状物重叠组成,各叶的内腔为血体腔,连接于腹窦。 4.书鳃:由足基部体壁向外折叠成书页状,有血管分布,为水生类鲎的呼吸器官。 5.胞饮(作用):变形虫除了能吞噬固体食物外,还能摄取一些液体物质,这种现象很像饮水一样,因此称为胞饮作用。 6.生物发生律:个体发育史是系统发育史的简单而迅速的重演。系统发育通过遗传决定个体发育,个体发育不仅简单重演系统发育,而且又能补充和丰富系统发育。 7.多态现象:同种动物存在形态结构和功能不同的两类或多类个体的现象。 8.物种:简称“种”。是生物分类的基本单位,是生物进化、发展过程中连续性与间断性的统一形式;种内个体在形态结构、生理生化及行为特征等方面基本相似;有性生物的种内异性个体可相互配育,种间有生殖隔离;并占有一定的自然分布区 9.世代交替现象:在生活史中无性与有性两个世代有规律地相互交替的现象。 10.开管式循环:在循环的过程中血液不是始终在血管里流动,而是要流出血管到器官与器官之间。例如:节肢动物,不因节肢折断而引起流血过多而死亡,是一种生活的适应。 11.闭管式循环:血液自始至终在封闭的血管中流动,血管之间由毛细血管连接,而不直接流到组织间隙之间去。 12.两侧对称:从扁形动物开始出现了两侧对称地体型,即通过动物体地中央轴,

细胞生物学名词解释

名词解释 Cell Biology:广泛采用现代生物学的实验技术和手段,应用分析和综合的方法,将细胞的整体活动水平,亚细胞水平和分子水平三方面的研究有机地结合起来,以动态的观点观察细胞和细胞器的结构和功能,以期最终阐明生命的基本规律。 脂筏(lipid raft)是质膜上富含胆固醇和鞘磷脂的微结构域(microdomain)。大小约70nm 左右,是一种动态结构,位于质膜的外小叶。 质膜主要由膜脂和膜蛋白组成,另外还有少量糖,主要以糖脂和糖蛋白的形式存在。 膜骨架membrane associated skeleton 细胞膜下与膜蛋白相连的由纤维蛋白组成的网架结构,它参与维持细胞膜的形状并协助质膜完成多种生理功能。 被动运输(passive transport):通过简单扩散或协助扩散实现物质由高浓度向低浓度方向的跨膜转运。动力来自物质的浓度梯度,不需要细胞提供代谢能量。 简单扩散(simple diffusion)疏水的小分子或小的不带电荷的极性分子的热运动可以使分子从膜的一侧通过细胞膜到另一侧,其结果是分子沿着浓度梯度降低的方向转运。因无需细胞提供能量,也没有膜蛋白的协助,故名。 协助扩散(facilitated diffusion) 小分子物质沿其浓度梯度(或电化学梯度)减小方向的跨膜运动,是由膜转运蛋白“协助”完成的。 主动运输active transport 由载体蛋白所介导的物质逆着浓度梯度或电化学梯度由低浓度侧到高浓度侧转运,需要供给能量。ATP直接供能、间接供能、光能。 协同运输(cotransport):由离子泵与载体蛋白协同作用,利用跨膜的离子浓度梯度或电化学梯度,使特定离子的顺梯度运动与被转运分子或离子的逆梯度运输相偶联。直接动力是膜两侧的离子浓度梯度。 胞吞作用:质膜内陷形成囊泡将外界大分子裹进并输入细胞的过程。 胞吐作用:与胞吞作用的顺序相反,将细胞内的分泌泡或其它某些膜泡中的物质通过细胞膜运出细胞的过程。 外膜(outer membrane):单位膜结构,厚约6nm。含40%的脂类和60%的蛋白质,具有孔蛋白(porin)构成的直径2-3nm的亲水通道,10KD以下的分子包括小型蛋白质可自由通过。内膜(inner membrane):厚约6-8nm。含100种以上的多肽,蛋白质和脂类的比例高于3:1。心磷脂含量高(达20%)、缺乏胆固醇,类似于细菌。 膜间隙(intermembrane space):内外膜之间的腔隙,延伸到嵴的轴心部。宽约6-8nm。其中含有许多可溶性酶类,底物和辅助因子。标志酶为腺苷酸激酶。 基质(matrix):内膜之内侧,类似胶状物,含有很多Pr.和脂类。三羧酸循环,脂肪酸和丙酮酸氧化的酶类都在其中。另外还有线粒体DNA、核糖体、tRNA、rRNA、DNA聚合酶、AA活化酶等。其标志酶为苹果酸脱氢酶。 外被(outerenvelop):双层膜,每层厚6~8nm,膜间隙为10~20nm。外膜通透性大,细胞质中大多数营养分子可自由进入膜间隙。内膜对物质透过的选择性比外膜强,其上有特殊载体称为转运体,可运载物质过膜。 类囊体(Thylakoid):在叶绿体基质中由单位膜所形成的封闭扁平小囊。 光合磷酸化:由光照所引起的电子传递与磷酸化作用相偶联而生成A TP的过程,称为photophosphorylation 细胞质膜系统(cytoplasmic membrane system):是指细胞内那些在生物发生上与质膜相关的细

动物学名词解释

滋养体:一般指原生动物摄取营养阶段,能活动、提供养料、生长和繁殖,是寄生原虫的寄生阶段。 包囊:不良环境下,原生动物虫体会分泌一种保护性胶质将自己包裹起来,形成包囊,对原生动物度过不良环境是一种很好的适应。 生物发生律:个体发育史是系统发育史的简单而迅速的重演。系统发育通过遗传决定个体发育,个体发育不仅简单重演系统发育,而且又能补充和丰富系统发育。 卵裂:卵裂是指受精卵的早期分裂。卵裂期内一个细胞或细胞核不断的快速分裂,将体积大的卵子细胞质分割成许多小的有核细胞的过程叫做卵裂。分为完全卵裂和不完全卵裂。 囊胚:卵裂的结果,分裂球行程中空的球状胚,称为囊胚。 原肠胚:胚胎由囊胚继续发育,由原始的单胚层细胞发展成具有双胚层或三胚层结构的胚胎,称原肠胚。 1头索动物:脊索和神经管纵横于全身的背部并终身保留,又称无头类 2原索动物:尾索动物和头索动物两个亚门是脊索动物中最低的类群,总称为原索动物 3脊索:背部起支持体轴作用的一条帮状结构介于消化管和神经管之间 4逆行变态:幼体结构复杂,成体结构简单。这种个体发育又复杂变态到简单变态的现象 5无头类:脊索动物中脑和感觉器官没有分化出来,因而没有明显的头部的类群 6頜口类:有頜的脊椎动物包括鱼类、两栖类、爬行类、鸟类、哺乳类 7有頜类:鱼纲和其他高等四足类脊椎动物合称为有颌类。 8咽腮裂:低等脊索动物在消化道前端的咽部两侧有一系列左右成对排列数目不等的裂孔,直接开口于 体表或以一共同的开口间接地与外界相通,这些裂孔就是咽腮裂。 9口索:口腔背面向前伸出一条短盲管 10尾索:脊索和背神经管仅存于幼体的尾部,成体退化或消失。 11双循环:在陆生脊椎动物中,鸟类和哺乳类的双循环是完全的双循环,即血流的全过程包括两条途 径。一条叫体循环—富氧血自左心室压出,流到身体各部,经气体交换后流回右心房;一条叫肺循环— 缺氧血由右心房入右心室,右心室收缩将血液压入肺,在肺进行气体交换后的富氧血又流回左心房。 12单循环:血液在全身循环一周只经过心脏一次 13不完全双循环:除了体循环外,心脏与肺之间出现了一个小的循环途径,但仅仅心房有隔而心室一 个,心脏中多氧血与缺氧血不能完全分开。 14闭鳔类:鳔与食管之间的鳔管退化消失,如鲈形目 15腮耙:着生在腮弓的内缘,为滤食器官。 16盾鳞:软骨鱼类特有,包括基板和鳞棘两部分有外胚层的釉质和中胚层的齿质共同形成与牙齿同源。 17硬鳞:只存在于少数硬骨鱼中即硬鳞鱼类,来源于真皮,鳞质坚硬,成行排列而不呈覆瓦状。 18骨鳞:是鱼鳞中最常见的一种,是真皮层的产物,仅见于硬骨鱼类。呈覆瓦状排列,顶区露出部分 的边缘呈现圆滑或带有齿突而被称为圆鳞和栉鳞。 19圆鳞:定区边缘呈圆形。 20栉鳞:顶区边缘有齿突 21韦伯氏器:鲤科鱼类的前三块脊椎的一部分变化成韦伯氏小骨,包括三角骨、间插骨、舟骨。三角 骨的后端和鳔壁相融,舟骨和內骨的围淋巴腔接触。 22侧线器官:是鱼类特有的感觉器官呈管状或沟状,埋于头骨内和体侧的皮肤下,侧线管以一系列侧 线孔穿过头骨及鳞片,连接成与外界相通的侧线存在于两栖纲的幼体。 23鳞式:被侧线管分支穿透的鳞片称为侧线鳞。侧线鳞数目、侧线上鳞和侧线下鳞通常以鳞式表示 24齿式:将哺乳动物单侧上下齿列的数目分别列于分数线上下方的表示方法。 25生殖洄游:从越冬或索饵场向产卵地的迁移,鱼类生殖腺发育成熟的一定时期内,沿着一定的路线 寻找产卵场所。 26卵生;雌雄成体经交配后雌虫产出受精卵,卵在体外发育成幼虫。

医学微生物名词解释大全

微生物名词解释 第1、2章细菌的形态结构与生理 microorganism微生物:存在于自然界形体微小,数量繁多,肉眼看不见,必须借助于光学显微镜或电子显微镜放大数百倍甚至上万倍,才能观察的一群微小低等生物体。 microbiology微生物学:用以研究微生物的分布、形态结构、生命活动(包括生理代谢、生长繁殖)、遗传与变异、在自然界的分布与环境相互作用以及控制它们的一门科学。 medical microbiology医学微生物学:主要研究与人类医学有关的病原微生物的生物学性状、对人体感染和致病的机理、特异性诊断方法以及预防和治疗感染性疾病的措施,以控制甚至消灭此类疾病为目的的一门科学。 代时:细菌分裂倍增的必须时间。 bacterium细胞壁:是包被于细菌细胞膜外的坚韧而富有弹性的膜状结构。 peptidoglucan or mucopeptide肽聚糖或粘肽:是原核细胞型微生物细胞壁的特有成分,主要由聚糖骨架、四肽侧链及肽链或肽键间交联桥构成。 lipoplysaccharide,LPS脂多糖:革兰阴性菌细胞壁外膜伸出的特殊结构,即细菌内毒素。由类脂A、核心多糖和特异多糖构成。 plasmid质粒:是细菌染色体外的遗传物质,结构为双链闭合环状DNA,带有遗传信息,具有自我复制功能。可使细菌获得某些特定性状,如耐药、毒力等。 capsule荚膜:某些细菌能分泌黏液状物质包围于细胞壁外,形成一层和菌体界限分明、不易着色的透明圈。主要由多糖组成,少数细菌为多肽。其主要的功能是抗吞噬作用,并具有抗原性。 flagella鞭毛:是从细菌细胞膜伸出于菌体外的细长弯曲的蛋白丝状物,是细菌的运动器官,见于革兰阴性菌、弧菌和螺菌。pipi菌毛:是存在于细菌表面,有蛋白质组成的纤细,短而直的毛状结构,只有用电子显微镜才能观察,多见于革兰阴性菌。 spone芽胞:某些细菌在一定条件下,在菌体内形成一个圆形或卵圆形的小体。见于革兰阳性菌,如需氧芽胞菌和厌氧芽胞杆菌。是细菌在不利环境下的休眠体,对外界环境抵抗力强。 L-form of bacterium细菌L型:有些细菌在某些体内外环境及抗生素等作用下,可部分或全部失去细胞壁,此现象首先由Lister研究发现,故称细菌L型。在适宜条件下,多数细菌L型可回复成原细菌型。 磷壁酸:为大多数革兰阳性菌细胞壁的特有成分,约占细菌细胞壁干重的20-40%,有2种,即壁磷壁酸和膜磷壁酸。

相关文档