文档库 最新最全的文档下载
当前位置:文档库 › 自治系统的稳定性分析

自治系统的稳定性分析

自治系统的稳定性分析
自治系统的稳定性分析

实验一--控制系统的稳定性分析

实验一--控制系统的稳定性分析

实验一控制系统的稳定性分 班级:光伏2班 姓名:王永强 学号:1200309067

实验一控制系统的稳定性分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响;

3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB中的tf2zp函数求出系统的零极点,或者利用root函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递 函数为 0.2( 2.5) () (0.5)(0.7)(3) s G s s s s s + = +++,用MATLAB编写 程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。 在MATLAB命令窗口写入程序代码如下:z=-2.5 p=[0,-0.5,-0.7,-3] k=1 Go=zpk(z,p,k)

Gc=feedback(Go,1) Gctf=tf(Gc) dc=Gctf.den dens=ploy2str(dc{1},'s') 运行结果如下: Gctf = s + 2.5 --------------------------------------- s^4 + 4.2 s^3 + 3.95 s^2 + 2.05 s + 2.5 Continuous-time transfer function. dens是系统的特征多项式,接着输入如下MATLAB程序代码: den=[1,4.2,3.95,1.25,0.5] p=roots(den)

实验四 控制系统的稳定性分析

西京学院实验教学教案实验课程:现代控制理论基础 课序: 4 教室:工程舫0B-14实验日期:2013-6-3、4、6 教师:万少松 一、实验名称:系统的稳定性及极点配置二、实验目的 1.巩固控制系统稳定性等基础知识;2.掌握利用系统特征根判断系统稳定性的方法;3.掌握利用李雅普诺夫第二法判断系统的稳定性的方法;4. 掌握利用状态反馈完成系统的极点配置;5.通过Matlab 编程,上机调试,掌握和验证所学控制系统的基本理论。三、实验所需设备及应用软件序号 型 号备 注1 计算机2Matlab 软件四、实验内容1. 利用特征根判断稳定性;2. 利用李雅普诺夫第二法判断系统的稳定性;3.状态反馈的极点配置;五、实验方法及步骤1.打开计算机,运行MATLAB 软件。2.将实验内容写入程序编辑窗口并运行。3.分析结果,写出实验报告。 语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器

一、利用特征根判断稳定性 用matlab 求取一个系统的特征根,可以有许多方法,如,,,()eig ()pzmap 2ss zp ,等。下面举例说明。 2tf zp roots 【例题1】已知一个系统传递函数为,试不同的方法分析闭环系统的稳定性。()G s 2(3)()(5)(6)(22)s G s s s s s += ++++解:num=[1,3]den=conv([1,2,2],conv([1,6],[1,5]))sys=tf(num,den)(1)() eig p=eig(sys)显示如下:p = -6.0000 -5.0000 -1.0000 + 1.0000i -1.0000 - 1.0000i 所有的根都具有负的实部,所以系统稳定。(2) ()pzmap pzmap(sys) 从绘出的零极点图可看见,系统的零极点都位于左半平面,系统稳定。(3)2()tf zp [z,p,k]=tf2zp(num,den) (4)()roots roots(den)【例题2】已知线性定常连续系统的状态方程为122122x x x x x ==- 试用特征值判据判断系统的稳定性。 解: A=[0,1;2,-1] eig(A)

性能稳定性分析

性能稳定性分析 1功角的具体含义。 电源电势的相角差,发电机q轴电势与无穷大系统电源电势之间的相角差。 电磁功率的大小与δ密切相关,故称δ为“功角”或“功率角”。电磁功率与功角的关系式被称为“功角特性”或“功率特性”。 功角δ除了表征系统的电磁关系之外,还表明了各发电机转子之间的相对空间位置。 2功角稳定及其分类。 电力系统稳态运行时,系统中所有同步发电机均同步运行,即功角δ是稳定值。系统在受到干扰后,如果发电机转子经过一段时间的运动变化后仍能恢复同步运行,即功角δ能达到一个稳定值,则系统就是功角稳定的,否则就是功角不稳定。 根据功角失稳的原因和发展过程,功角稳定可分为如下三类: 静态稳定(小干扰) 暂态稳定(大干扰) 动态稳定(长过程) 3电力系统静态稳定及其特点。 定义:指电力系统在某一正常运行状态下受到小干扰后,不发生自发振荡或非周期性失步,自动恢复到原始运行状态的能力。如果能,则认为系统在该正常运行状态下是静态稳定的。不能,则系统是静态失稳的。 特点:静态稳定研究的是电力系统在某一运行状态下受到微小干扰时的稳定性问题。系统是否能够维持静态稳定主要与系统在扰动发生前的原始运行状态有关,而与小干扰的大小、类型和地点无关。 4电力系统暂态稳定及其特点。 定义:指电力系统在某一正常运行状态下受到大干扰后,各同步发电机保持同步运行并过渡到新的或恢复到原来的稳态运行状态的能力。通常指第一或第二振荡周期不失步。如果能,则认为系统在该正常运行状态下该扰动下是暂态稳定的。不能,则系统是暂态失稳的。 特点:研究的是电力系统在某一运行状态下受到较大干扰时的稳定性问题。系统的暂态稳定性不仅与系统在扰动前的运行状态有关,而且与扰动的类型、地点及持续时间均有关。 作业2 5发电机组惯性时间常数的物理意义及其与系统惯性时间常数的关系。 表示在发电机组转子上加额定转矩后,转子从停顿状态转到额定转速时所经过的时间。TJ=TJG*SGN/SB 6例题6-1 (P152) (补充知识:当发电机出口断路器断开后,转子做匀加速旋转。汽轮发电机极对数p=1。额定频率为50Hz。要求列写每个公式的来源和意义。)题目:已知一汽轮发电机的惯性时间常数Tj=10S,若运行在输出额定功率状态,在t=0时其出口处突然断开。试计算(不计调速器作用) (1)经过多少时间其相对电角度(功角)δ=δ0+PAI.(δ0为断开钱的值)(2)在该时刻转子的转速。 解:(1)Tj=10S,三角M*=1,角加速度d2δ/dt2=三角M*W0/Tj=W0/10=31.4RAD/S2 δ=δ0+0.5dd2δ/dt2 所以PI=0.5*2PI*f/10t方 t=更号10/50=0.447 (2)t=0.447时,

风电水电互补电力系统稳定性分析与计算

风电——水电互补电力系统稳定性分析与计算 摘要 本文介绍了含风力发电的风电一水电互补电力系统如何处理风力发电参数,进行稳定性分析与计算的方法,并结合新疆阿勒泰地区布尔津风电一水电互补电力系统计算实例验证其方法的正确性及可行性。 引言 近年来,由于当代科学技术的发展,加之能源短缺和环境保护等方面的影响,人类正在致力于寻找可再生的,取之不尽,用之不竭又是洁净的绿色能源,而水能与风能是绿色能源中最有发展潜力和前景的品种。同时水能与风能又都容易转化为能源的更高级形式一电能,其经济效益显著。 由于风力资源的随机性和季节性使风力发电的出力不平稳,风力发电不具备有功调节和无功调节的能力。风电的缺点也就是无风就无电,影响到风电的连续及稳定性。为了解决风电的连续性和稳定性问题就需要有一个互补系统。 在我国西北、华北、东北等内陆风区,风资源的季节分布特色大多为冬春季风大、夏秋季风小,与水能资源夏秋季丰水、冬春季枯水的季节分布正好形成互补特性,这是构建风能一水能互补系统的基础条件。如果在上述地区内,以带有蓄水调节水库的水电站为依托,在风资源丰富的地点建设适当容量的风电场,两者以电网连接实现季节性能量互补,以水库做为能源调剂手段,就能够实现风能与水能这两种最佳绿色能源的联姻,充分发挥绿色能源的优势,以风一水联手供电取代传统的水一火联合供电,这将是人类能源利用形式的历史性突破。由于阿勒泰地区的风资源和水资源具有极强的互补性,更由于阿勒泰地区具有较大的水电装机容量,而且其中有三个电站带有库容可观的调节水库,因此在该地区突破传统限制,在风电装机大大超出电网容量10%的条件下建设水电一风电互补系统,在技术上和经济上都是可行的。在我国类似阿勒泰那样资源条件的地区还有很多,都可以构建水电一风电互补系统解决供电问题,这将是对现有禁区的重要突破,有可能为阿勒泰及有类似条件地区的电源建设找到一条最为多快好省的途径。 1问题的提出 在电力系统中,传统的发电方式为水力发电和火力发电,一般均为同步电机。目前,风力发电这一新成员加入电网,一般都采用电容励磁感应异步发电机。使其分析计算复杂化。风电的加入使电网的稳定性受到影响。对风力发电机如何给定运行条件,如何建立数学模型、如何确定参数,是进行含风力发电的风电一水电互补电力系统静态和暂态及动态稳定性分析和计算的关键。本文介绍了含风力发电的风电一水电互补电力系统如何处理风力发电参数,进行稳定计算的方法。 2风力发电机的处理 电力系统是由发电厂、输电网络及电力负荷三大部分组成的能量生产、传输和使用系统。在过去的几十年间,同步发电机(水轮发电机或汽轮发电机)、输电网络及负荷的稳定计算已经成熟。只有风力发电技术在国内外都属于研究阶段,建立适合潮流计算、暂稳、动稳和静稳

实验二 控制系统的阶跃响应及稳定性分析

实验二 控制系统的阶跃响应及稳定性分析 一、实验目的及要求: 1.掌握控制系统数学模型的基本描述方法; 2.了解控制系统的稳定性分析方法; 3.掌握控制时域分析基本方法。 二、实验内容: 1.系统数学模型的几种表示方法 (1)传递函数模型 G(s)=tf() (2)零极点模型 G(s)=zpk(z,p,k) 其中,G(s)= 将零点、极点及K值输入即可建立零极点模型。 z=[-z1,-z …,-z m] p=[-p1,-p …,-p] k=k (3)多项式求根的函数:roots ( ) 调用格式: z=roots(a) 其中:z — 各个根所构成的向量 a — 多项式系数向量 (4)两种模型之间的转换函数: [z ,p ,k]=tf2zp(num , den) %传递函数模型向零极点传递函数的转换 [num , den ]=zp2tf(z ,p ,k) %零极点传递函数向传递函数模型的转换 (5)feedback()函数:系统反馈连接

调用格式:sys=feedback(s1,s2,sign) 其中,s1为前向通道传递函数,s2为反馈通道传递函数,sign=-1时,表示系统为单位负反馈;sign=1时,表示系统为单位正反馈。 2.控制系统的稳定性分析方法 (1)求闭环特征方程的根(用roots函数); 判断以为系统前向通道传递函数而构成的单位负反馈系统的稳定性,指出系统的闭环特征根的值: 可编程如下: numg=1; deng=[1 1 2 23]; numf=1; denf=1; [num,den]= feedback(numg,deng,numf,denf,-1); roots(den) (2)化为零极点模型,看极点是否在s右半平面(用pzmap); 3.控制系统根轨迹绘制 rlocus() 函数:功能为求系统根轨迹 rlocfind():计算给定根的根轨迹增益 sgrid()函数:绘制连续时间系统根轨迹和零极点图中的阻尼系数和自然频率栅格线 4.线性系统时间响应分析 step( )函数---求系统阶跃响应 impulse( )函数:求取系统的脉冲响应 lsim( )函数:求系统的任意输入下的仿真 三、实验报告要求:

李雅普诺夫稳定性分析

第六章 李雅普诺夫稳定性分析 在反馈控制系统的分析设计中,系统的稳定性是首先需要考虑的问题之一。因为它关系到系统是否能正常工作。 经典控制理论中已经建立了劳斯判据、Huiwitz 稳定判据、Nquist 判据、对数判据、根轨迹判据等来判断线性定常系统的稳定性,但不适用于非线性和时变系统。分析非线性系统稳定性及自振的描述函数法,则要求系统的线性部分具有良好的滤除谐波的性能;而相平面法则只适合于一阶、二阶非线性系统。 1892年俄国学者李雅普诺夫(Lyapunov )提出的稳定性理论是确定系统稳定性的更一般的理论,它采用状态向量来描述,不仅适用于单变量、线性、定常系统,还适用于多变量、非线性、时变系统。 §6-1 外部稳定性和内部稳定性 系统的数学模型有输入输出描述(即外部描述)和状态空间描述(即内部描述),相应的稳定性便分为外部稳定性和内部稳定性。 一、外部稳定性 1、定义(外部稳定性): 若系统对所有有界输入引起的零状态响应的输出是有界的,则称该系统是外部稳定的。 (外部稳定性也称为BIBO (Bounded Input Bounded Output )稳定性) 说明: (1)所谓有界是指如果一个函数)(t h ,在时间区间],0[∞中,它的幅值不会增至无穷,即存在一个实 常数k ,使得对于所有的[]∞∈0 t ,恒有∞<≤k t h )(成立。 (2)所谓零状态响应,是指零初始状态时非零输入引起的响应。 2、系统外部稳定性判据 线性定常连续系统 ∑),,(C B A 的传递函数矩阵为 Cx y Bu Ax x =+= BU A sI X BU X A sI CX Y BU AX sX 1)()(--==-=+= B A sI C s G 1 )()(--= 当且仅当)(s G 极点都在s 的左半平面内时,系统才是外部稳定(或BIBO 稳定)的。 【例6.1.1】已知受控系统状态空间表达式为

自动控制实验报告一控制系统稳定性分析

实验一控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.自动控制系统实验箱一台 2.计算机一台 三、实验内容 系统模拟电路图如图 系统模拟电路图 其开环传递函数为: G(s)=10K/s(0.1s+1)(Ts+1) 式中 K1=R3/R2,R2=100KΩ,R3=0~500K;T=RC,R=100KΩ,C=1μf或C=0.1μf两种情况。 四、实验步骤 1.连接被测量典型环节的模拟电路。电路的输入U1接A/D、D/A卡的DA1输出,电路的 输出U2接A/D、D/A卡的AD1输入,将纯积分电容两端连在模拟开关上。检查无误后接通电源。 2.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。 3.在实验项目的下拉列表中选择实验三[控制系统的稳定性分析] 5.取R3的值为50KΩ,100KΩ,200KΩ,此时相应的K=10,K1=5,10,20。观察不同R3 值时显示区内的输出波形(既U2的波形),找到系统输出产生增幅振荡时相应的R3及K值。再把电阻R3由大至小变化,即R3=200kΩ,100kΩ,50kΩ,观察不同R3值

时显示区内的输出波形, 找出系统输出产生等幅振荡变化的R3及K值,并观察U2的输出波形。 五、实验数据 1模拟电路图 2.画出系统增幅或减幅振荡的波形图。 C=1uf时: R3=50K K=5:

R3=100K K=10 R3=200K K=20:

等幅振荡:R3=220k: 增幅振荡:R3=220k:

R3=260k: C=0.1uf时:

MATLAB分析系统稳定性的方法

. Matlab在控制系统稳定性判定中的应用 稳定是控制系统的重要性能,也是系统能够工作的首要条件,因此,如何分析系统的稳定性并找出保证系统稳定的措施,便成为自动控制理论的一个基本任务.线性系统的稳定性取决于系统本身的结构和参数,而与输入无关.线性系统稳定的条件是其特征根均具有负实部. 在实际工程系统中,为避开对特征方程的直接求解,就只好讨论特征根的分布,即看其是否全部具有负实部,并以此来判别系统的稳定性,由此形成了一系列稳定性判据,其中最重要的一个判据就是劳斯判据。劳斯判据给出线性系统稳定的充要条件是:系统特征方程式不缺项,且所有系数均为正,劳斯阵列中第一列所有元素均为正号,构造劳斯表比用求根判断稳定性的方法简单许多,而且这些方法都已经过了数学上的证明,是完全有理论根据的,是实用性非常好的方法. 具体方法及举例: 一用系统特征方程的根判别系统稳定性 设系统特征方程为s5+s4+2s3+2s2+3s+5=0,计算特征根并判别该系统的稳定性。在command window窗口输入下列程序,记录输出结果。 >> p=[1 1 2 2 3 5]; >> roots(p) 二用根轨迹法判别系统稳定性:对给定的系统的开环传递函数 1.某系统的开环传递函数为,在command window窗口输入程序,记录系统闭环零极点图及零极点数据,判断该闭环系统是否稳定。 >> clear >> n1=[0.25 1]; >> d1=[0.5 1 0]; >> s1=tf(n1,d1);

. >> sys=feedback(s1,1); >> P=sys.den{1};p=roots(P) >> pzmap(sys) >> [p,z]=pzmap(sys) 2

控制系统的稳定性分析

精品 实验题目控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、系统模拟电路图 系统模拟电路图如图3-1 图3-1 系统模拟电路图R3=0~500K; C=1μf或C=0.1μf两种情况。 四、实验报告 1.根据所示模拟电路图,求出系统的传递函数表达式。 G(S)= K=R3/100K,T=CuF/10 2.绘制EWB图和Simulink仿真图。

精品 3.根据表中数据绘制响应曲线。 4.计算系统的临界放大系数,确定此时R3的值,并记录响应曲线。 系统响应曲线 实验曲线Matlab (或EWB)仿真 R3=100K = C=1UF 临界 稳定 (理论值 R3= 200K) C=1UF

精品 临界 稳定 (实测值 R3= 220K) C=1UF R3 =100K C= 0.1UF

精品 临界 稳定 (理论 值R3= 1100 K) C=0.1UF 临界稳定 (实测值 R3= 1110K ) C= 0.1UF

精品 实验和仿真结果 1.根据表格中所给数据分别进行实验箱、EWB或Simulink实验,并进行实验曲线对比,分析实验箱的实验曲线与仿真曲线差异的原因。 对比: 实验曲线中R3取实验值时更接近等幅振荡,而MATLAB仿真时R3取理论值更接近等幅振荡。 原因: MATLAB仿真没有误差,而实验时存在误差。 2.通过实验箱测定系统临界稳定增益,并与理论值及其仿真结果进行比较(1)当C=1uf,R3=200K(理论值)时,临界稳态增益K=2, 当C=1uf,R3=220K(实验值)时,临界稳态增益K=2.2,与理论值相近(2)当C=0.1uf,R3=1100K(理论值)时,临界稳态增益K=11 当C=0.1uf,R3=1110K(实验值)时,临界稳态增益K=11.1,与理论值相近 四、实验总结与思考 1.实验中出现的问题及解决办法 问题:系统传递函数曲线出现截止失真。 解决方法:调节R3。 2.本次实验的不足与改进 遇到问题时,没有冷静分析。考虑问题不够全面,只想到是实验箱线路的问题,而只是分模块连接电路。 改进:在实验老师的指导下,我们发现是R3的取值出现了问题,并及时解决,后续问题能够做到举一反三。 3.本次实验的体会 遇到问题时应该冷静下来,全面地分析问题。遇到无法独立解决的问题,要及时请教老师,

电力系统稳定性分析研究

电力系统稳定性分析研究 摘要:电力系统地域分布非常辽阔,是一个结构极为复杂的大系统,它由发电厂、变电站、输配电网络和用户组成,电力系统具有的非线性、时变性以及参数的不确定等特性,并含有大量未建模动态部分,是一个巨维数的典型动态动力学系统。稳定的电力系统是保证电力系统安全和经济运行的有效手段,对保证经济发展和国民安全以及人民生活有重大的意义,随着科学技术不断提高,各类自动化技术也在电力系统中广泛的应用,电力系统的稳定性也越来越受到电力工作者们的重视。本文从电力系统稳定的重要性出发,首先分析了电力系统运行的基本状态,然后解释了稳定性的基本概念,最后提出了有关于电力系统稳定性的解决办法。 关键词:电力系统静态稳定暂态稳定 1、电力系统稳定性的重要性 我国经济发展速度越来越快,对电力的需求也越来越大,电力建设是各行各业发展的基础,是国民经济增长的基础,是我国向现代化前进的命脉。近年来我国电力消耗越来越高,预计到“十二五”时期,我国电力需求会逐年上升10%,在加上我国电力系统的大规模化和系统结构的复杂化,电力系统的不确定性也增加了发生电力事故的概率,给人民生活、工业生产以及国民安全带来较大的损失。所以要维持我国经济的高速发展,必须要建立现代化的电力系统,其首要问题就是保证电力系统稳定正常安全的运行。 电力系统所具有复杂的非线性特征,其不确定的动态行为使得电力系统会出现混沌振荡、频率崩溃和电压崩溃,这三种现象就是电网系统不稳定的典型特征,这也是电网事故三大主要原因。1966年美国两大电网西北西南电网合并互联时,就曾发生过振荡现象,在一分钟内发生了六次混沌振荡,从而导致两大电网解列。1996年5月28日11时57分我国华北电网发生了一起较为罕见的系统振荡事故,振荡持续了1分46秒,造成地处张家口地区的两座火力发电厂的停电,即沙岭子电厂(4*300MW),下花园电厂(2*100+200MW)全停,最后导致该区域大部分地区停电,这就是严重的“5.28”华北电网事故。由此可见,电力工作者们必须在工程和技术上非常重视和关注电力系统的稳定性。 2、电力系统运行的基本状态 电力系统应有充足的静态稳定容量,分有功和无功两种,而且在正常负荷的波动下,能够有效的调节有功和无功间的潮流,并且不发生振荡,这样就可以保持电力系统正常运行的稳定性。若系统任意一元件发生故障,如发电机或变压器等,不应导致主系统发生频率崩溃或电压崩溃等非同步运行的情况。 若电力系统的总功率与总负荷随时相等,那么我们可以称该电力系统正常运行。用数学公式表示为:; ,式中P为有功功率,Q为无功功率,g为功率,l为负荷,△P、Q分别代表有功、无功的损耗。 电力运行的状态主要包括以下四种。(1)正常状态:电力系统可以在电压和频率上满足各用户的用电需求。(2)警戒状态:电力系统在正常运行状态下受到振荡等一些因素的干扰,并且将干扰带来的影响积累起来,当干扰的影响积累足够多时,电力系统进入警戒状态。(3)紧急状态:当干扰的影响积累足够多时,各运行水平偏离正常值,电力系统已经不能在电压和频率上满足各用户的用电需

(整理)MATLAB实现控制系统稳定性分析.

MATLAB 实现控制系统稳定性分析 稳定是控制系统的重要性能,也是系统能够工作的首要条件,因此,如何分析系统的稳定性并找出保证系统稳定的措施,便成为自动控制理论的一个基本任务.线性系统的稳定性取决于系统本身的结构和参数,而与输入无关.线性系统稳定的条件是其特征根均具有负实部. 在实际工程系统中,为避开对特征方程的直接求解,就只好讨论特征根的分布,即看其是否全部具有负实部,并以此来判别系统的稳定性,由此形成了一系列稳定性判据,其中最重要的一个判据就是Routh 判据.Routh 判据给出线性系统稳定的充要条件是:系统特征方程式不缺项,且所有系数均为正,劳斯阵列中第一列所有元素均为正号,构造Routh 表比用求根判断稳定性的方法简单许多,而且这些方法都已经过了数学上的证明,是完全有理论根据的,是实用性非常好的方法. 但是,随着计算机功能的进一步完善和Matlab 语言的出现,一般在工程实际当中已经不再采用这些方法了.本文就采用Matlab 对控制系统进行稳定性分析作一探讨. 1 系统稳定性分析的Matlab 实现 1.1 直接判定法 根据稳定的充分必要条件判别线性系统的稳定性,最简单的方法是求出系统所有极点,并观察是否含有实部大于0的极点,如果有,系统则不稳定.然而实际的控制系统大部分都是高阶系统,这样就面临求解高次方程,求根工作量很大,但在Matlab 中只需分别调用函数roots(den)或eig(A)即可,这样就可以由得出的极点位置直接判定系统的稳定性. 已知控制系统的传递函数为 ()24 5035102424723423+++++++=s s s s s s s s G (1) 若判定该系统的稳定性,输入如下程序: G=tf([1,7,24,24],[1,10,35,50,24]); roots(G.den{1}) 运行结果: ans = -4.0000 -3.0000 -2.0000 -1.0000 由此可以判定该系统是稳定系统. 1.2 用根轨迹法判断系统的稳定性 根轨迹法是一种求解闭环特征方程根的简便图解法,它是根据系统的开环传递函数极点、零点的分布和一些简单的规则,研究开环系统某一参数从零到无穷大时闭环系统极点在s 平面的轨迹.控制工具箱中提供了rlocus 函数,来绘制系统的根轨迹,利用rlocfind 函数,在图形窗口显示十字光标,可以求得特殊点对应的K 值. 已知一控制系统,H(s)=1,其开环传递函数为: ()()() 21++=s s s K s G (2) 绘制系统的轨迹图. 程序为: G=tf(1,[1 3 2 0]);rlocus(G); [k,p]=rlocfind(G) 根轨迹图如图1所示,光标选定虚轴临界点,程序 结果为:

基于MATLAB的控制系统稳定性分析报告

四川师范大学本科毕业设计 基于MATLAB的控制系统稳定性分析 学生姓名宋宇 院系名称工学院 专业名称电气工程及其自动化 班级 2010 级 1 班 学号2010180147 指导教师杨楠 完成时间2014年 5月 12日

基于MATLAB的控制系统稳定性分析 电气工程及其自动化 本科生宋宇指导老师杨楠 摘要系统是指具有某些特定功能,相互联系、相互作用的元素的集合。一般来说,稳定性是系统的重要性能,也是系统能够正常运行的首要条件。如果系统是不稳定,它可以使电机不工作,汽车失去控制等等。因此,只有稳定的系统,才有价值分析与研究系统的自动控制的其它问题。为了加深对稳定性方面的研究,本设计运用了MATLAB软件采用时域、频域与根轨迹的方法对系统稳定性的判定和分析。 关键词:系统稳定性 MATLAB MATLAB稳定性分析

ABSTRACT System is to point to have certain function, connect with each other, a collection of interacting elements. Generally speaking, the stability is an important performance of system, also is the first condition of system can run normally. If the system is not stable, it could lead to motor cannot work normally, the car run out of control, and so on. Only the stability of the system, therefore, have a value analysis and the research system of the automatic control of other problems. In order to deepen the study of stability, this design USES the MATLAB software using the time domain, frequency domain and the root locus method determination and analysis of the system stability. Keywords: system stability MATLAB MATLAB stability analysis

系统的相对稳定性分析

系统的相对稳定性分析 已知某系统的开环传递函数为200 153.0005.060023)()(+++= S S S H G S S ,试用Nyquistw 稳定判据判断闭环系统的稳定性,并用阶跃响应曲线验证。 (1)计算系统开环特征方程的根。 p=[0.0005 0.3 15 200]; roots(p) 程序运行结果 ans= 1.0e+002 * -5.4644 -0.2678 + 0.0385i -0.2678 - 0.0385i 即三个根均有负实部,都为稳定根。故开环特征方程的不稳定根的个数p=0。 (2)绘制系统的开环Nyquist 图,并用来判断闭环系统的稳定性。 n=600;d=[0.0005 0.3 15 200]; GH=tf(n,d); nyquist(GH) 程序运行后,绘制出系统的开环Nyquist 曲线如图1所示,由图1可以看出系统的Nyquist 曲线不包围(-1,j0)点。而p=0,根据Nyquist 稳定判据,其闭环系统是稳定的。这还可以用系统的阶跃响应曲线来验证。 图1系统的开环Nyquist 图

(3)用阶跃响应曲线来验证。 syms s GH sys; GH=600/(0.0005*s^3+0.3*s^2+15*s+200); sys=factor(GH/(1+GH)) 程序运行结果 sys = 1200000/(s^3 + 600*s^2 + 30000*s + 1600000) 即1600000 300006001200000s 23+++=Φs s s )( 下面为使用matlab 绘制系统单位阶跃响应曲线的程序代码: n=1200000;d=[1 600 30000 1600000]; sys=tf(n,d); step(sys) 程序运行后,绘制系统单位阶跃响应曲线如图2所示。由图2可知,曲线略微超调后迅速衰减到响应终了值,对应的系统闭环不仅稳定,而且具有优良的性能指标,这就证明了Nyquist 稳定判据的正确性。 图2 系统的单位阶跃响应曲线

控制系统的稳定性分析

自动控制理论实验报告 实验题目控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、系统模拟电路图 系统模拟电路图如图3-1 图3-1 系统模拟电路图R3=0~500K; C=1μf或C=0.1μf两种情况。 四、实验报告 1.根据所示模拟电路图,求出系统的传递函数表达式。 G(S)= K=R3/100K,T=CuF/10

自动控制理论实验报告 2.绘制EWB 图和Simulink 仿真图。 3.根据表中数据绘制响应曲线。 4.计算系统的临界放大系数,确定此时R3的值,并记录响应曲线。

自动控制理论实验报告

自动控制理论实验报告

自动控制理论实验报告 实验和仿真结果 1.根据表格中所给数据分别进行实验箱、EWB或Simulink实验,并进行实验曲线对比,分析实验箱的实验曲线与仿真曲线差异的原因。 对比: 实验曲线中R3取实验值时更接近等幅振荡,而MATLAB仿真时R3取理论值更接近等幅振荡。 原因: MATLAB仿真没有误差,而实验时存在误差。 2.通过实验箱测定系统临界稳定增益,并与理论值及其仿真结果进行比较 (1)当C=1uf,R3=200K(理论值)时,临界稳态增益K=2, 当C=1uf,R3=220K(实验值)时,临界稳态增益K=2.2,与理论值相近(2)当C=0.1uf,R3=1100K(理论值)时,临界稳态增益K=11 当C=0.1uf,R3=1110K(实验值)时,临界稳态增益K=11.1,与理论值相近 四、实验总结与思考 1.实验中出现的问题及解决办法 问题:系统传递函数曲线出现截止失真。 解决方法:调节R3。 2.本次实验的不足与改进 遇到问题时,没有冷静分析。考虑问题不够全面,只想到是实验箱线路的问题,而只是分模块连接电路。 改进:在实验老师的指导下,我们发现是R3的取值出现了问题,并及时解决,后续问题能够做到举一反三。 3.本次实验的体会 遇到问题时应该冷静下来,全面地分析问题。遇到无法独立解决的问题,要及时请教老师,

具有脉冲负载波动的电力系统稳定性分析

具有脉冲负载波动的电力系统稳定性分析 电力系统是供电和用电设备组合在一起的一个整体,各设备之间运行情况变化大,系统应能自动地迅速消除扰乱,继续正常工作,这样就大大提高系统运行的稳定性,采取系统解列、异步运行和再同步等应急措施,以减少损失,尽快恢复对用户的正常供电。随着电力市場化的推进,与其他电力公司的电力互换,电力输送的扩大,以及配电系统中分布式电源的导入,使得对系统规划运行的灵活性要求更高,有必要超出既往的探讨范围来考虑系统的规划运行。本文将重点分析具有脉冲负载波动的电力系统稳定性。 标签:脉冲负载波动;电力系统;稳定性;策略 前言 原动机功率和发电机的电磁功率之间产生功率不平衡,将会引起发电机转速的改变,即引起电力系统频率的变化。电网频率是发电功率和用电负荷平衡的依据。当发电功率与用电负荷相等时,电网频率维持在额定值; 当发电功率大于用电负荷时,电网频率升高;当发电功率小于用电负荷时,电网频率降低。 一、电力系统的组成和接线方式 简单来说,在电力系统正常运行过程中,整个电力系统具有相同的频率。同步发电机组发出的交流电的频率是和机组的转速相对应的。第一,负荷决定频率。频率稳定的本质是有功平衡问题。不管多么先进的系统和设备,都会存在发生故障的潜在危险,电力系统的输电线路也不例外,并且,电力系统在事故发生后,原有的正常系统也会发生相应的改变,增加抢修工作的难度,甚至会造成电力系统大面积的瘫痪,影响人们正常使用电能。因而,在电力系统设计之初就要充分重视输电线路的稳定性设计,融入应急措施设计,保障电力系统的正常安全高效运转。因而,电力系统在进行设计时就要长远考虑到可能出现的危险和发生的故障以及采取的应对措施等等,其中就包括每一种常见故障发生情况下的暂态稳定,要求电力系统输电线路的实际传送电能的能力高于电能应用的场合,在发生故障时,系统可以自行启动串联补偿机制措施,快速控制故障现场局面,缩小故障。 电力系统的四大主要元件:发电机、变压器、电力线路、负荷。动力系统包括动力部分(火电厂的锅炉和汽轮机、水电厂的水库和水轮机、核电厂的核反应堆和汽轮机)和电力系统。电力网包括变压器和电力线路。用户只能从一回线路获得电能的接线方式称为无备用接线方式。电力系统的运行特点电能的生产、传输、分配和消费具有:①重要性、②快速性、③同时性。电力系统运行的基本要求:①安全可靠持续供电(首要要求)、②优质、③经济根。据负荷的重要程度(供电可靠性)将负荷分为三级。电压质量分为:①电压允许偏差、②三相电压允许不平衡度、③公网谐波、④电压允许波动与闪变衡量电能质量的指标:①电压、②频率、③波形(电压畸变率)10kV公用电网电压畸变率不超过4%。抑制

(完整word版)线性系统的稳定性分析

第三章 线性系统的稳定性分析 3.1 概述 如果在扰动作用下系统偏离了原来的平衡状态,当扰动消失后,系统能够以足够 的准确度恢复到原来的平衡状态,则系统是稳定的。否则,系统不稳定。一个实际的系统必须是稳定的,不稳定的系统是不可能付诸于工程实施的。因此,稳定性问题是系统控制理论研究的一个重要课题。对于线性系统而言,其响应总可以分解为零状态响应和零输入响应,因而人们习惯分别讨论这两种响应的稳定性,从而外部稳定性和内部稳定性的概念。 应用于线性定常系统的稳定性分析方法很多。然而,对于非线性系统和线性时变系 统,这些稳定性分析方法实现起来可能非常困难,甚至是不可能的。李雅普诺夫(A.M. Lyapunov)稳定性分析是解决非线性系统稳定性问题的一般方法。 本章首先介绍外部稳定性和内部稳定性的概念及其相互关系,然后介绍李雅普诺夫 稳定性的概念及其判别方法,最后介绍线性定常系统的李雅普诺夫稳定性分析。 虽然在非线性系统的稳定性问题中,Lyapunov 稳定性分析方法具有基础性的地 位,但在具体确定许多非线性系统的稳定性时,却并不是直截了当的。技巧和经验在解决非线性问题时显得非常重要。在本章中,对于实际非线性系统的稳定性分析仅限于几种简单的情况。 3.2 外部稳定性与内部稳定性 3.2.1 外部稳定: 考虑一个线性因果系统,如果对一个有界输入u (t ),即满足条件: 1()u t k ≤<∞ 的输入u (t ),所产生的输出y (t )也是有界的,即使得下式成立: 2()y t k ≤<∞ 则称此因果系统是外部稳定的,即BIBO (Bounded Input Bounded Output )稳定。 注意:在讨论外部稳定性的时候,我们必须要假定系统的初始条件为零,只有在这种假定下面,系统的输入—输出描述才是唯一的和有意义的。 系统外部稳定的判定准则 系统的BIBO 稳定性可根据脉冲响应矩阵或者传递函数矩阵来进行判别。

系统稳定性及其李雅普诺夫稳定

第四章系统稳定性及其李雅普诺夫稳定 4-1 稳定性一般概念 对于一个实际的控制系统,其工作的稳定性无疑是一个极其重要的问题,因为一个不稳定的系统在实际应用中是很难有效地发挥作用的。从直观上看,系统的稳定性就是一个处于稳态的系统,在某一干扰信号的作用下,其状态偏离了原有平衡位置,如果该系统是稳定的,那么当干扰取消后有限的时间内,系统会在自身作用下回到平衡状态;反之若系统不稳定,则系统永远不会回到原来的平衡位置。 系统的稳定一般有外部稳定和内部稳定两种。外部稳定又称作输出稳定,也就是当系统在干扰取消后,在一定时间内,其输出会恢复到原来的稳态输出。输出稳 定有时描述为系统的BIBO稳定,即有限的系统输入只能产生有限的系统输出。 系统内部稳定主要针对系统内部状态,反映的是系统内部状态受干扰信号的影响。当扰动信号取消后,系统的内部状态会在一定时间内恢复到原来的平衡状态,则称系统状态稳定。 在经典控制论中,研究对象都是用高阶微分方程或传递函数描述的单输入单输出(SISO)系统,反映的仅是输入输出的关系,不会涉及系统内部的状态。因此经典控制论中只讨论系统的输出稳定问题。 系统的稳定性是系统本身的特性,与系统的外部输入(控制)无关。在经典控制论中,我们通过研究线性定常系统的特征根的情况来判断系统的输出稳定性:如果系统的特征根都有负的实部(即都在复平面的左部),则系统输出稳定。 对于n阶线性连续系统,其特征方程为: …………………………(4-1) 当n≥4时,要求出其所有特征根是非常困难的,从而要想通过解出高阶系统的特征根来判别系统稳定性也是不现实的。所以1877年劳斯(Routh)和1895年霍尔维茨(Hurwitz)分别提出了有名的劳斯-霍尔维茨稳定判据,它可以通过

电力系统稳定性分析

电力系统稳定性综述 摘要:本文对电力系统的稳定性进行了概括性分析,介绍了电力系统中常用的分析方法,并对电力系统分析未来的发展进行了展望。 关键词:电力系统;稳定性 Abstract:this paper analysised the stability of power system synoptically, this paper introduced the common use of the power system analysis methods, and discussed the future development of the power system analysis. Key word:the power system ; stability 1 引言 电力系统是一个非线性动态系统,电压稳定是整个电力系统稳定的一个方面。CIGRE于1993年把电压稳定研究分为静态电压稳定和动态电压稳定,又进一步将动态电压稳定分为小扰动电压稳定、暂态电压稳定和长期电压稳定。此外为了区分:扰动后虽有平衡点但电压值不可接受与没有平衡点两种情况。CIGRE一方面将小扰动电压稳定定义为负荷电压接近于扰动前平衡点的电压值,将扰动后没有平衡点的情况定义为电压不稳定,而将扰动后有平衡点,但电压值过低的情况定义为电压崩溃。但另一方面却又认为电压不稳定性和电压崩溃这两个术语可以交换代用。 对电压崩溃机理进行探讨的目的是要弄清楚电压崩溃的本质及原因,电压稳定问题与电力系统中其它稳定问题的关系,电力系统中各种元件对电压稳定性的影响,从而建立适合于分析电压稳定问题的系统模型,提出电压稳定判据、电压稳定裕度指标和控制电压崩溃的措施。 2 电压稳定分析方法及评价 电压稳定的分析方法可以分为两类,一类是基于潮流方程的静态分析法,另一类是基于微分方程的动态分析法。动态分析法又可进一步分为小扰动分析法、暂态电压稳定分析法和长期电压稳定分析法。 静态电压稳定分析 目前有关静态电压稳定分析的研究都是基于潮流方程或经过修改的潮流方程。这一方面是因为许多学者认为电压稳定是一个潮流是否存在可行解的问题,因而把临界潮流解看作是电压稳定极限;另一方面也由于静态分析技术比较成熟,易于给出电压稳定裕度指标和其对状态变量的灵敏度信息,从而便于对系统的监控和优化调整。这一类分析方法主要有:潮流多解法、奇异值分解(特征结构分析)法和最大功率法等。潮流方程是非线性代数方程组,因而可能存在多个潮流解。潮流方程解的个数与负荷水平有关,最多可能有2n-1个;随着负荷的加重,解的个数成对减少,当系统接近极限运行状态时,潮流方程只存在两个解,且这两个解关于奇异点对称。这样就可以根据解的个数以及多解之间的距离来反映系统接近极限运行状态的程度。 P-V曲线和Q-V曲线只能用来分析单个节点的电压稳定性,而实际系统中电压稳定与否是与系统的运行模式密切相关的。Venikov等人川首次提出把潮流雅可比矩阵的奇异度作为系统电压稳定性的指标。Tiranuchit等人首次用潮流雅可比矩阵的最小奇异值来作为电压稳定性指标。利用潮流雅可比矩阵的稀疏特征,采用稀疏存储技术并对节点编号进行优化,可应用最优乘子法潮流程序求取迭代收敛时所对应的降阶雅可比矩阵J的因子表,根据逆迭代原理快速算出最小奇异值和相应的左、右奇异向量,并按此分

自动控制系统传递函数稳定性分析--奈氏图分享汇总

中北大学 课程设计说明书 学生姓名:学号: 学院:软件学院 专业:软件工程 题目:自动控制系统传递函数稳定性分析 指导教师:史媛媛职称: 讲师 2014年6月27日

中北大学 课程设计任务书 2013~2014 学年第二学期 学院:软件学院 专业:软件工程 学生姓名:张永春学号:1121010633 课程设计题目:自动控制系统传递函数稳定性分析起迄日期:6月16日~6 月27 日 课程设计地点:旧光电楼 指导教师:史源源 负责人:赵俊生 下达任务书日期: 2014年6月16日

课程设计任务书

课程设计任务书

目录 1、关于软件matlab6.5----------------------------------1 2、利用matlab6.5绘制奈氏图----------------------------3 3、实验原始数据、技术参数、条件、设计要求---------------------3 4、程序源码、相关截图及解释------------------------------------------4 5、总结与展望---------------------------------------------------------------7

1、关于软件matlab6.5 1980年前后,美国的Cleve Moler教授利用自己研制的基于特征值计算和线性代数软件包,构思并开发了MATLAB (MATrix LABoratory,即矩阵实验室)。随后,Cleve Moler和John Little等人成立了The Mathworks公司,Cleve Moler一直任该公司的首席科学家。 MATLAB的第一个商业版本(DOS版本1.0)发行于1984年。1990年推出的MATLAB3.5i是第一个可以运行于Microsoft Windows 下的版本,它可以在两个窗口上分别显示命令行计算结果和图形结果。稍后推出的SimuLAB环境首次引入基于框图的仿真功能,该环境就是我们现在所知的Simulink,其模型输入的方式使得一个复杂的控制系统的数字仿真问题变得十分直观而且相当容易。2000年10月,MATLAB6.0问世,较之以前的版本在操作界面有了很大的改观,同时给出了程序窗口、历史信息窗口和变量管理窗口。2002年6月推出的MATLAB Release 13,即MATLAB6.5/Simulink5.0是目前的最新版本。 经过多年来版本的不断更新,MATLAB已集中了日常数学处理中的各种功能,包括高效的数值计算、矩阵运算、信号处理和图形生成等功能。新版本的MATLAB功能已经十分强大,速度变得更快,数值性能更好;用户图形界面设计更趋合理;与C语言接口及转换的兼容性更强;新的虚拟现实工具箱更给仿真结果三维视景下显示带来了新的解决方案。MATLAB由于其强大的功能,已经在数值型软件市场上

相关文档