文档库 最新最全的文档下载
当前位置:文档库 › CATIA有限元分析计算实例 完整版

CATIA有限元分析计算实例 完整版

CATIA有限元分析计算实例 完整版
CATIA有限元分析计算实例 完整版

CATIA有限元分析计算实例

CATIA有限元分析计算实例

11.1例题1 受扭矩作用的圆筒

11.1-1划分四面体网格的计算

(1)进入【零部件设计】工作台

启动CATIA软件。单击【开始】→【机械设计】→【零部件设计】选项,如图11-1所示,进入【零部件设计】工作台。

图11-1单击【开始】→【机械设计】→【零部件设计】选项

单击后弹出【新建零部件】对话框,如图11-2所示。在对话框内输入新的零件名称,在本例题中,使用默认的零件名称【Part1】。点击对话框内的【确定】按钮,关闭对话框,进入【零部件设计】工作台。

(2)进入【草图绘制器】工作台

在左边的模型树中单击选中【xy平面】, 如图11-3所示。单击【草图编辑器】工具栏内的【草图】按钮,如图11-4所示。这时进入【草图绘制器】工作台。

图11-2【新建零部件】对话框

图11-3单击选中【xy平面】

(3)绘制两个同心圆草图

点击【轮廓】工具栏内的【圆】按钮,如图11-5所示。在原点点击一点,作为圆草图的圆心位置,然后移动鼠标,绘制一个圆。用同样分方法再绘制一个同心圆,如图11-6所示。

图11-4【草图编辑器】工具栏

图11-5【轮廓】工具栏

下面标注圆的尺寸。点击【约束】工具栏内的【约束】按钮,如图11-7所示。点击选择圆,就标注出圆的直径尺寸。用同样分方法标注另外一个圆的直径,如图11-8所示。

图11-6两个同心圆草图

图11-7【约束】工具栏

双击一个尺寸线,弹出【约束定义】对话框,如图11-9所示。在【直径】数值栏内输入100mm,点击对话框内的【确定】按钮,关闭对话框,同时圆的直径尺寸被修改为100mm。用同样的方法修改第二个圆的直径尺寸为50mm。修改尺寸后的圆如图11-10所示。

图11-8标注直径尺寸的圆草图

图11-9【约束定义】对话框

(4)离开【草图绘制器】工作台

点击【工作台】工具栏内的【退出工作台】按钮,如图11-11所示。退出【草图绘制器】工作台,进入【零部件设计】工作台。

图11-10修改直径尺寸后的圆

图11-11【工作台】工具栏

(5)拉伸创建圆筒

点击【基于草图的特征】工具栏内的【凸台】按钮,如图11-12所示。弹出【凸台定义】对话框,如图11-13所示。在【第一限制】选项组内的【长度】数值栏内输入50mm,点击对话框内的【确定】按钮,生成一个圆筒体,如图11-14所示。在左边的模型树上出现【填充器.1】元素。

图11-12【基于草图的特征】工具栏

图11-13【凸台定义】对话框

(6)对零件赋予材料属性

在左边的模型树中点击选中零件名称【Part1】,如图11-15所示。点击【应用材料】工具栏内的【应用材料】按钮,如图11-16所示。先弹出一个【打开】警告消息框,如图11-16所示,这是因为使用简化汉字界面,但没有相应的简化汉字材料库造成的,点击警告消息框内的【确定】按钮,关闭消息框。弹出【库(只读)】对话框,如图11-18所示。点击【Metal】(金属)选项卡,在列表中选择【Steel】(钢)材料。点击对话框内的【确定】按钮,将钢材料赋予零件。

图11-14拉伸创建的一个圆筒体

图11-15选中的零件名称【Part1】

图11-16【应用材料】工具栏图11-17【打开】警告消息框

图11-18【库(只读)】对话框

如果对软件内钢铁材料的属性不了解,可以查看定义的材料属性,也可以修改材料属性参数。在左边的模型树上双击材料名称【Steel】,如图11-19所示。弹出【属性】对话框,如图11-20所示。

图11-19材料名称【Steel】图11-20【属性】对话框

(7)进入【Advanced Meshing Tools】(高级网格划分工具)工作台点击菜单中的【开始】→【分析与模拟】→【Advanced Meshing Tools】(高级网格划分工具)选项,如图11-21所示。点击后进入了【高级网格划分工具】工作台。进入工作台后,生成一个新的分析文件,并且弹出一个【新分析算题】对话框,如图11-22所示。点击后,在对话框内选择【Static

Analysis】(静态分析算题),然后点击【确定】按钮。

图11-21【开始】→【分析与模拟】→【Advanced Meshing Tools】(高级网格划分工具)选项

点击【Meshing Method】(网格划分方法)工具栏内的【Octree

Tetrahedron Mesher】(Octree 四面体网格划分)按钮,如图11-23所示。需要在【Meshing Method】(网格划分方法)工具栏内点击中间按钮的下拉箭头才能够显示出【Octree Tetrahedron Mesher】(Octree 四面体网格划

分)按钮。

图11-22【新分析算题】对话框图11-23【Meshing Method】(网格划分方法)工具栏

在图形区左键点击选择圆筒三维实体模型,如图11-24所示。选择实体后弹出【OCTREE Tetrahedron Mesher】(Octree 四面体网格划分器)对话框,如图11-25所示。

点击【Global】(全局)选项卡,在【Size】(尺寸)栏内输入5mm作为网格的尺寸;点击选中【Absolute sag】(绝对垂度)选项,在该数值栏内输入0.5mm;在【Element type】(单元类型)选项区内选中【Paraboic】二次单元。点击对话框内的【确定】按钮,完成设置,关闭对话框。

图11-24选择圆筒三维实体模型

图11-25【OCTREE Tetrahedron Mesher】(Octree 四面体网格划分器)对话框

在左边的模型树上右击【OCTREE Tetrahedron Mesher.1】元素,如图11-26所示。在弹出的右键快捷菜单中选择【Update Mesh】(更新网格)选项,如图11-27所示。程序开始划分网格,划分后的四面体网格如图11-28所示。

图11-26右击【OCTREE Tetrahedron Mesher.1】元素

图11-27选择【Update Mesh】(更新网格)选项

(8)进入【Generative Structural Analysis】(创成式结构分析)工作台

点击主菜单中的【开始(S)】→ 【分析与模拟】→【Generative Structural Analysis】(创成式结构分析)选项,如图11-29所示,进入【创成式结构分析】工作台。

图11-28划分后的四面体网格

图11-29点击【开始(S)】→ 【分析与模拟】→【Generative Structural Analysis】(创成式结构分析)选项

(9)指定3D属性

点击【Model Manager】(模型管理器)工具栏内的【3D Property】(三维属性)按钮,如图11-30所示。点击后弹出【3D Property】(三维属性)对话框,如图11-31所示。在左边的模型树上点击选择【OCTREE Tetrahedron Mesher.1】元素,点击对话框内的【确定】按钮,关闭对话框,将3D属性指定到三维零件上。

图11-30【Model Manager】(模型管理器)工具栏

图11-31【3D Property】(三维属性)对话框

(10)设置固支边界条件

点击【Restraints】(约束)工具栏内的【Clamp】(固支)按钮,如图11-32所示。在图形区选择圆筒体的一个底面,如图11-33所示。弹出【Clamp】(固支)对话框,如图11-34所示。点击对话框内的【确定】按钮,对圆筒体的一个底面增加了固支约束。

图11-32【Restraints】(约束)工具栏

图11-33

图11-34【Clamp】(固支)对话框

(11)对圆筒施加扭矩

点击【Loads】(载荷)工具栏内的【Moment】(扭矩)按钮,如图11-35所示。弹出【Moment】(扭矩)对话框,如图11-36所示。在【Moment Vector】(扭矩分量)选项区内的【Z】数值栏内输入100Nxm,即设置扭矩z 方向的分量为100Nxm。在图形区点击选择圆筒的内表面,如图11-37所示,即设置内表面上的扭矩为100Nxm。点击对话框内的【确定】按钮,关闭对话框。

图11-35【Loads】(载荷)工具栏

图11-36【Moment】(扭矩)对话框

同理,用同样的方法设置圆筒的外表面,对外部施加相反方向的扭矩,即要把z方向的扭矩设置为-100Nxm。设置完成后,显示的模型如图11-38所示。

图11-37图11-38添加两个扭矩和固支约束后的模型

(12)计算模型

点击【Compute】(计算)工具栏内的【Compute】(计算)按钮,如图

11-39所示。弹出【Compute】(计算)对话框,如图11-40。点击勾选【Preview】(预览)选项,点击对话框内的【确定】按钮,开始计算分析。点击后会弹出两个对话框,一个是【Computing】(正在计算)进程显示框,如图11-41所示,显示计算进程;另外一个是【Computation】(计算)框,显示当前的计算步骤和已经使用的计算时间,如图11-42所示。

图11-39【Compute】(计算)工具栏

图11-40【Compute】(计算)对话框

图11-41【Computing】(正在计算)进程显示框

图11-42【Computation】(计算)框

当计算进程把网格划分完毕,并计算完成刚度矩阵后,会弹出一个【Computation Resource Estimation】(计算资源估计)对话框,如图11-43所示,显示需要的CPU时间、需要的内存、需要的硬盘储存量,并且询问用户是否继续计算,如果点击【No】(否)按钮,则退出计算,如果点击【Yes】(是)按钮,则计算继续。如果用户在图11-40【Compute】(计算)对话框内未选中【Preview】(预览)选项,则不会弹出【Computation Resource Estimation】(计算资源估计)对话框,直接运行计算。对于比较复杂的结构,计算时间比较长时,建议用户选中该选项,这样可以大致了解算题所需要的时间和计算机资源,用户自己也估算,计算机配置是否能够满足要求。点击对话框内【Yes】(是)按钮,继续计算。程序重新弹出【Computing】(正在计算)进程对话框,此时,如果用户想终止计算,仍然可以点击该对话框内的【取消】按钮,取消计算过程。

图11-43【Computation Resource Estimation】(计算资源估计)对话框

(10)显示模型计算结果

在左边的模型树中鼠标右击【Static Case Solution.1】,如图11-44所示。在出现的菜单中选择【Generate Image】(生成图像)选项,如图11-45。选择后弹出【Image Generation】(图像生成)对话框,如图11-46所示。在对话框内选择【Stress full tensor component】(应力张量的分量)选项,选择后,出现应力张量图像,如图11-47所示。

图11-44右击【Static Case Solution.1】

图11-45选择【Generate Image】(生成图像)选项

图11-46【Generate Image】(生成图像)选项

图11-47应力张量图

应力张量图中,含有网格、边界条件,同时未显示为彩色,下面对图像进行修改。

在图像区或者模型树上点击选中固支约束和扭矩载荷名称或者符号,然后在【视图(v)】工具栏内点击【隐藏/显示】按扭,如图11-48所示。将固支边界条件、扭矩载荷条件隐藏起来。

将图例移动到图形旁边。在图例上点击左键,然后在图例上按下中间键不松开,即可移动图例。移动到合适位置后,再点击左键。图形区重新处于激活状态。

在【视图(v)】工具栏内点击【带材料着色】按扭,如图11-49所示,显示材料。最终修改后显示的应力张量图如图11-50所示。

图11-48【视图(v)】工具栏内

图11-49【视图(v)】工具栏内点击【带材料着色】按扭

图11-50修改后显示的应力张量图

下面将圆筒剖开,查看其内部应力分布情况。点击【Analysis Tools】(分析工具)工具栏内的【Cut Plane Analysis】(剖切平面分析)按钮

,如图11-51所示。弹出【Cut Plane Analysis】(剖切平面分析)对话

框,如图11-52所示,不选中对话框内的【Show cutting plane】(显示剖切面)选项,在图形区不显示出剖切面。同时在图形区显示罗盘,用户可以操作罗盘,对应力分布图进行不同方向的剖切,如图11-53所示。

图11-51【Analysis Tools】(分析工具)工具栏

图11-52【Cut Plane Analysis】(剖切平面分析)对话框

图11-53剖切的应力分布图

(13)修改网格的参数

从图中可以看出,圆筒内部的应力较高。为了使计算结果更加准确,对圆筒内壁的有限元网格进行细化处理。在左边的模型树上双击【OCTREE Tetrahedron Mesher.1】元素,如图11-54所示。双击后弹出【OCTREE Tetrahedron Mesh】对话框,如图11-55所示。点击【Local】(局部)选项卡,在【Available specs】(可用的特定参数)区内,点击选择【Local size】(局部尺寸)选项,然后点击【Add】(添加)按钮,弹出【Local Mesh Size】(局部网格尺寸)对话框,如图11-56所示。在【Value】(数值)栏

内输入2mm,在图形区选择圆筒的内表面,然后点击对话框内的【确定】按钮,关闭对话框,返回到【OCTREE Tetrahedron Mesh】对话框。

图11-54双击的【OCTREE Tetrahedron Mesher.1】元素

图11-55【OCTREE Tetrahedron Mesh】对话框

图11-56【Local Mesh Size】(局部网格尺寸)对话框

在【OCTREE Tetrahedron Mesh】对话框内,在【Available specs】(可用的特定参数)区内,点击选择【Local sag】(局部垂度)选项,如图11-57所示。然后点击【Add】(添加)按钮,弹出【Local Mesh Sag】(局部网格垂度)对话框,如图11-58所示。在【Value】(数值)栏内输入2mm,在图形区选择圆筒的内表面,然后点击对话框内的【确定】按钮,关闭对话框,返回到【OCTREE Tetrahedron Mesh】对话框。

图11-57选择【Local sag】(局部垂度)选项

图11-58【Local Mesh Sag】(局部网格垂度)对话框

在左边的模型树上右击【OCTREE Tetrahedron Mesher.1】元素,在弹出的右键快捷菜单中选择【Update Mesh】(更新网格)选项。程序开始划分网格,重新划分后的四面体网格如图11-59所示,可以看到,圆筒内壁的网格明显比其它部分细化。

图11-59重新划分后的四面体网格

点击【Compute】(计算)工具栏内的【Compute】(计算)按钮。弹出【Compute】(计算)对话框,开始进行计算。重新计算的应力张量结果如图11-60所示。应力值有所提高。

图11-60重新计算的应力张量结果

11.1-2 划分结构化六面体网格计算分析

(1)进入【线框和曲面设计】工作台

启动CATIA软件。单击【开始】→【机械设计】→【线框和曲面设计】选项,如图11-61所示,进入【线框和曲面设计】工作台。

图11-61【开始】→【机械设计】→【线框和曲面设计】选项

单击后弹出【新建零部件】对话框,如图11-62所示。在对话框内输入新的零件名称,在本例题中,使用零件名称为【Part1-2】。点击对话框内的【确定】按钮,关闭对话框,进入【线框和曲面设计】工作台。

(2)定义点

点击【线框】工具栏内的【点】按钮,如图11-63所示。点击后弹出【点定义】对话框,如图11-64所示。在【Y=】数值栏内输入50mm,即在(0,50,0)位置创建一个点。点击对话框内的【确定】按钮,创建一个点。

图11-62【新建零部件】对话框

图11-63【线框】工具栏

用同样的方法创建第二个点(0,100,0),第三个点(0,0,0)。(3)创建线段

点击【线框】工具栏内的【直线】按钮,弹出【直线定义】对话框,如

图11-65所示。在图形区选择【点1】和【点2】,如图11-66所示。点击对话框内的【确定】按钮,创建一条线段。

图11-64【点定义】对话框

图11-65【直线定义】对话框

继续创建第二条线段,但方法与第一条线段出创建方法不同。点击【线框】工具栏内的【直线】按钮,弹出【直线定义】对话框,在图形区选择

第三个点,然后再选择【xy plane】参考平面,如图11-67所示。此时,【直线定义】对话框内【线型】下拉列表框自动更改为【点-方向】,如图11-68所示。在【结束】数值栏内输入20mm,即线段的长度为20mm。

图11-66选择【点1】和【点2】

图11-67选择第三个点【xy plane】参考平面

(4)旋转创建面

点击【曲面】工具栏内的【旋转】按钮,如图11-69所示。弹出【旋转曲面定义对话框】,如图11-70所示。在图形区选择【直线.1】作为轮廓,选择【直线.2】作为旋转轴,如图11-71所示。

图11-68【线型】下拉列表框自动更改为【点-方向】

图11-69【曲面】工具栏

CATIA有限元分析计算实例-完整版

CATIA有限元分析计算实例 CATIA有限元分析计算实例 11.1例题1 受扭矩作用的圆筒 11.1-1划分四面体网格的计算 (1)进入【零部件设计】工作台 启动CATIA软件。单击【开始】→【机械设计】→【零部件设计】选项,如图11-1所示,进入【零部件设计】工作台。 图11-1单击【开始】→【机械设计】→【零部件设计】选项 单击后弹出【新建零部件】对话框,如图11-2所示。在对话框内输入新的零件名称,在本例题中,使用默认的零件名称【Part1】。点击对话框内的【确定】按钮,关闭对话框,进入【零部件设计】工作台。 (2)进入【草图绘制器】工作台 在左边的模型树中单击选中【xy平面】, 如图11-3所示。单击【草图编辑器】工具栏内的【草图】按钮,如图11-4所示。这时进入【草图绘制器】工作台。 图11-2【新建零部件】对话框

图11-3单击选中【xy平面】 (3)绘制两个同心圆草图 点击【轮廓】工具栏内的【圆】按钮,如图11-5所示。在原点点击一点,作为圆草图的圆心位置,然后移动鼠标,绘制一个圆。用同样分方法再绘制一个同心圆,如图11-6所示。 图11-4【草图编辑器】工具栏 图11-5【轮廓】工具栏 下面标注圆的尺寸。点击【约束】工具栏内的【约束】按钮,如图11-7所示。点击选择圆,就标注出圆的直径尺寸。用同样分方法标注另外一个圆的直径,如图11-8所示。 图11-6两个同心圆草图 图11-7【约束】工具栏 双击一个尺寸线,弹出【约束定义】对话框,如图11-9所示。在【直径】数值栏内输入100mm,点击对话框内的【确定】按钮,关闭对话框,同时圆的直径尺寸被修改为100mm。用同样的方法修改第二个圆的直径尺寸为50mm。修改尺寸后的圆如图11-10所示。

CATIA有限元分析计算实例讲诉

CATIA有限元分析计算实例 11.1例题1 受扭矩作用的圆筒 11.1-1划分四面体网格的计算 (1)进入【零部件设计】工作台 启动CATIA软件。单击【开始】→【机械设计】→【零部件设计】选项,如图11-1所示,进入【零部件设计】工作台。 图11-1单击【开始】→【机械设计】→【零部件设计】选项 单击后弹出【新建零部件】对话框,如图11-2所示。在对话框内输入新的零件名称,在本例题中,使用默认的零件名称【Part1】。点击对话框内的【确定】按钮,关闭对话框,进入【零部件设计】工作台。 (2)进入【草图绘制器】工作台 在左边的模型树中单击选中【xy平面】, 如图11-3所示。单击【草图编辑器】工具栏内的【草图】按钮,如图11-4所示。这时进入【草图绘制器】工作台。

图11-2【新建零部件】对话框 图11-3单击选中【xy平面】 (3)绘制两个同心圆草图 点击【轮廓】工具栏内的【圆】按钮,如图11-5所示。在原点点击一点,作为圆草图的圆心位置,然后移动鼠标,绘制一个圆。用同样分方法再绘制一个同心圆,如图11-6所示。 图11-4【草图编辑器】工具栏 图11-5【轮廓】工具栏 下面标注圆的尺寸。点击【约束】工具栏内的【约束】按钮,如图11-7所示。点击选择圆,就标注出圆的直径尺寸。用同样分方法标注另外一个圆的直径,如图11-8所示。

图11-6两个同心圆草图 图11-7【约束】工具栏 双击一个尺寸线,弹出【约束定义】对话框,如图11-9所示。在【直径】数值栏内输入100mm,点击对话框内的【确定】按钮,关闭对话框,同时圆的直径尺寸被修改为100mm。用同样的方法修改第二个圆的直径尺寸为50mm。修改尺寸后的圆如图11-10所示。 图11-8标注直径尺寸的圆草图 图11-9【约束定义】对话框 (4)离开【草图绘制器】工作台 点击【工作台】工具栏内的【退出工作台】按钮,如图11-11所示。退出【草图绘制器】工作台,进入【零部件设计】工作台。 图11-10修改直径尺寸后的圆 图11-11【工作台】工具栏

CATIA曲面设计实例教程

CATIA曲面设计实例教程之洗涤用品瓶身外形设计 作者:无维网WUSHENMARS 本文节选自图书《CATIA V5R19造型设计》,相关视频演示请查阅本书。 【简单分析】 参考一张ID平面图进行外形设计,除了需要根据外形线条塑造最大外形轮廓,还要根据图片光线阴影分析模型细节并在塑造时体现出来。由于只有一张视图,因此其他视角的模型细节需要操作者结合实际情况综合考虑。在设计这款洗涤用品的瓶身外形时需要先根据图片设计局部细节,然后合并连接这些细节,最后完善设计。 【建模过程】 1. 导入ID平面图 (1) 如图9.43所示,在菜单栏中选择“开始”→“外形”→Sketch Tracer命令,从而打开“影像草图”模块。 (2) 在导入ID平面设计图之前必须更改显示模式,否则输入的图档无法显示。在“视图方式”工具栏中选择“自定义视图参数”工具,在“视图模式自定义”对话框中选择“材质(Materiale)”选项。单击“确定”按钮,完成设置。 (3) 在导入平面图之前还需要选择“正视图” 或者使用“视图选择” 选择正视图方向。 (4) 如图9.44所示,在工具栏中选择“创建溶入草图(Create an Immersive sketch)” , (5) 如图9.45所示,通过鼠标拖曳箭头标志移动虚线框的位置和范围。

(6) 如图9.46所示,双击高度值并修改。数值修改完毕后单击“确定”按钮,完成草图参数的设置。 2. 设计瓶口细节 (1) 在“结构树”中先单击Product1,然后在菜单栏中选择“开始”→“外形”→Imagine & Shape,从而打开“图像和外形”模块。 (2) 如图9.47所示,首先在模型区选择一个基准平面,然后在“封闭原始曲

CATIA有限元高级划分网格教程

CATIA有限元高级网格划分教程 盛选禹李明志 1.1进入高级网格划分工作台 (1)打开例题中的文件Sample01.CATPart。 (2)点击主菜单中的【开始】→【分析与模拟】→【Advanced Meshing Tools】(高级网格划分工具),就进入【Advanced Meshing Tools】(高级网格划分工具)工作台,如图1-1所示。进入工作台后,生成一个新的分析文件,并且显示一个【New Analysis Case】(新分析算题)对话框,如图1-2所示。 图1-1【开始】→【分析与模拟】→【Advanced Meshing Tools】(高级网格划分工具)(3)在【New Analysis Case】(新分析算题)对话框内选择【Static Analysis】(静力分析)选项。如果以后打开该对话框的时候均希望是计算静力分析,可以把对话框内的【Keep as default starting analysis case】(在开始时保持为默认选项)勾选。这样,下次进入本工作台时,将自动选择静力分析。 (4)点击【新分析算题】对话框内的【确定】按钮,关闭对话框。 1.2定义曲面网格划分参数 本节说明如何定义一个曲面零件的网格类型和全局参数。 (1)点击【Meshing Method】(网格划分方法)工具栏内的【高级曲面划分】按钮,如图1-3所示。需要在【Meshing Method】(网格划分方法)工具栏内点击中间按钮的下拉箭头才能够显示出【高级曲面划分】按钮。

图1-2【New Analysis Case】(新分析算题)对话框图1-3【高级曲面划分】按钮 (2)点击【高级曲面划分】按钮后在图形区选择零件,弹出【Global Parameters】(全局参数)对话框,如图1-4所示。 图1-4 【Global Parameters】(全局参数)对话框 (3)在【Global Parameters】(全局参数)对话框内定义需要的网格参数。在本例题中,用户需要定义的参数如下: ●选择【Set frontal quadrangle method】(设置前四边形网格方法)按钮,作为网 格的类型。 ●点击【Mesh】(网格)选项卡,定义下面的全局参数: i.在【Mesh size】(网格尺寸)数字栏内输入5mm; ii.在【Offset】(偏移量)数字栏内输入0mm。 ●点击【Geometry】(几何)选项卡,定义下面的全局参数: i.在【Constraint sag】(约束垂度)数字栏内输入1mm; ii.在【Min holes size】(最小孔大小)数字栏内输入10mm; iii.选择【Merge during simplification】(简化过程中合并)选项; iv.在【Min size】(最小尺寸)数字栏内输入2mm。 (4)点击【Global Parameters】(全局参数)对话框内的【确定】按钮,在左边的模型树中出现新的元素【Advanced Surface Mesh】(高级曲面网格),如图1-5所示。

CATIA有限元分析计算例题

CA TIA有限元分析计算例题 11.1例题1 受扭矩作用的圆筒 11.1-1划分四面体网格的计算 (1)进入【零部件设计】工作台 启动CATIA软件。单击【开始】→【机械设计】→【零部件设计】选项,如图11-1所示,进入【零部件设计】工作台。 图11-1单击【开始】→【机械设计】→【零部件设计】选项单击后弹出【新建零部件】对话框,如图11-2所示。在对话框内输入新的零件名称,在本例题中,使用默认的零件名称【Part1】。点击对话框内的【确定】按钮,关闭对话框,进入【零部件设计】工作台。 (2)进入【草图绘制器】工作台 在左边的模型树中单击选中【xy平面】, 如图11-3所示。单击【草图编辑器】工具栏内的【草图】按钮,如图11-4所示。这时进入【草图绘制器】工作台。 图11-2【新建零部件】对话框 图11-3单击选中【xy平面】 (3)绘制两个同心圆草图 点击【轮廓】工具栏内的【圆】按钮,如图11-5所示。在原点点击一点,作为圆草图的圆心位置,然后移动鼠标,绘制一个圆。用同样分方法再绘制一个同心圆,如图11-6

所示。 图11-4【草图编辑器】工具栏 图11-5【轮廓】工具栏 下面标注圆的尺寸。点击【约束】工具栏内的【约束】按钮,如图11-7所示。点击选择圆,就标注出圆的直径尺寸。用同样分方法标注另外一个圆的直径,如图11-8所示。 图11-6两个同心圆草图 图11-7【约束】工具栏 双击一个尺寸线,弹出【约束定义】对话框,如图11-9所示。在【直径】数值栏内输入100mm,点击对话框内的【确定】按钮,关闭对话框,同时圆的直径尺寸被修改为100mm。用同样的方法修改第二个圆的直径尺寸为50mm。修改尺寸后的圆如图11-10所示。 图11-8标注直径尺寸的圆草图 图11-9【约束定义】对话框 (4)离开【草图绘制器】工作台 点击【工作台】工具栏内的【退出工作台】按钮,如图11-11所示。退出【草图绘制器】工作台,进入【零部件设计】工作台。

CATIA CAE模块命令详解.pdf

一、CA TIA有限元分析学习基础 如学习实体零件有限元分析,应当先学习零件创建相关模块,如part design零部件设计; 如学习车身零件有限元分析,应当先学习曲面创建、零件创建相关模块如wireframe and surface Design 线框和曲面设计,generative shape design创成式外形设计。 如学习总成有限元分析,应当先学习assembly design装配件设计 还需要熟悉catia一般操作,如放大缩小旋转平移。 二、有限元分析一般步骤 建立几何零件—建立网格—添加材料属性—设定边界条件/施加力---计算---结果查看 对于实体零件,在进入分析模块后,catia自动生成网格,所以为了方便,一般实体零件,在进入分析模块之前,先添加材料属性。如果忘了添加,在进入分析模块时,会跳出对话框提示。 (也可以在进入后添加,比较麻烦。删除网格、3d,在手动添加材料,建立网格,3d)对于中文版catia,添加材料属性时,会跳出对话框,提示没有找到中文的材料库。可以忽略。 解决这个问题,只需要在安装目录下的materials文件夹中创建Simplified_Chinese(可能需要注意大小写)文件夹,并将原materials目录下的Catalog.CA TMaterial拷贝到其中就可以了。 三、CA TIA有限元分析模块 它可以进行的分析有Static case静态分析,Frequency case模态分析,Buckling Case挠度分析,Combined case组合分析等。本次入门介绍静态分析和模态分析。

四、界面介绍 -------------------------------------------------------------- 1、model manager模型管理 2、loads 载荷

CATIA 曲面造型 鼠标实例教程

CATIA V5曲面造型 (教程2-鼠标) GSD (曲面造型) Part Design (实体造型) Assembly Design(装配设计)

CATIA Surface-modeling 教程2A –在CATIA中导入鼠标的二维轮廓图 –基于导入的二维轮廓图建立三维曲线 –建立鼠标上半部分的曲面(运用曲面造型模块GSD) 教程2B –用草图分析命令查找上半部曲面是否有零拔模角 –手动调整有问题的曲面 –建立鼠标下半部分的曲面 –将曲面转换成实体 教程2C –基于导入的图纸建立各部分的曲面 –从完成的主模型中创建组件 –重新装配组件并生成产品 –修改主模型的外形并自动更新所有的组件 请注意:本教程的主要目的在于演示CATIA的设计方法,而不是CATIA的命令

?你可以在你电脑的本地硬盘上创建一个项目文件夹并将下载的数据存放在此文件夹中 ?打开CATIA ?(如果license 菜单此时弹出, 请选择ED2, 关掉CATIA后重新打开) ?默认情况下,CATIA会自动建立一个“Product”文件。但是 由于我们现在并不使用它,请先在“File”菜单中选择关闭此 ?在菜单栏中选择“file/Open”直接打开刚才下载的数据 (mouse_outline.dxf)

首先确认图纸的尺寸大小是否正确:- ?点击“Dimensions”图标(如右图); ?选择图纸中的50mm尺寸线; ?比较显示的测量尺寸是否是50mm,如果不是,我们需要扩大或是缩小图纸比例。 把图纸复制&粘贴到三维空间:- ?除了50mm的尺寸线外,选择图纸上所有的实体 (用Ctrl 键选择) ?点击“Copy”图标

Catia静态有限元分析指南

Catia静态有限元分析指南 注意:在进行有限元分析之前,必须赋予零件材质属性。 切换到GPS模块时出现的对话框说明如下: 缺省情况下,CATIA会自动计算并为每个零件赋予网格特性。 网格特征可以删除和添加。 一、模型管理 创建四面体网格,用于3D体单元网格划分。 创建2D面网格,用于面和板壳单元网格划分。 创建1D网格,用于线和梁单元网格划分。 修改局部网格大小,达到网格划分不同密度的需要。 修改网格类型,分为线性和非线性两种。 创建局部网格塌陷。 创建实体特性,缺省情况下,CATIA自动为part赋予实体特性。 创建壳单元特性。 创建梁单元特性,分为以下几种: 圆柱,参数R。

管状,参数R i和R o。 矩形,参数H和L。 匣形,参数L i、L e、H i和H e。 U形梁,参数H、L和T。 I形梁,参数H、L、T l和T h。 T形梁,参数H、L、T h和T l。 X形梁,参数H、L、T h和T l。用户自定义的梁。 输入梁的参数数值。 创建导入的梁特性。

检查模型,可以检查特性、连接和网格等方面,建议在进行计算之前进行模型的检查。 二、网格规范 创建适应性框,来修改网格规格。 三、群组 群组功能可以使你生成一组点、线、面和体的映像,方便操作。 群组点。 群组线。 群组面。 群组体。 四、连接特性 创建滑动连接,在共同的接触面上,垂线方向上两个体扣紧,切线方向上可以相互滑动。 创建接触连接,防止体在彼此共同接触面上分离。 创建扣紧连接,使体在共同面上扣紧。 创建压力装配连接,防止体在彼此共同接触面上分离。 创建螺钉固定连接,防止体在彼此共同接触面上分离。 创建刚性连接,在体之间的共有边界上创建硬性的紧扣连接,表现就好像共有面见具有无穷的刚性。 创建柔性连接,在体之间的共有边界上创建紧扣连接,表现好像它们之间是柔软的。 创建虚拟刚性螺钉连接,只考虑使用螺钉装配式的拉紧压力,而不包括螺钉。 创建虚拟柔性螺钉连接,在一装配系统中指定边界作用。 自定义间隔连接,在一定的距离之内,指定单元的类型和关联特性。 创建点焊连接,在两体之间创建焊点连接。 创建焊缝连接,在两体之间创建焊缝连接。 五、虚拟零件 虚拟零件是创建的一种没有几何体支持的结构,在单个零件或装配的结构分析中具有很大的作用。虚拟零件常用做在一定距离上传递作用效果,这样它们可以被认为是刚性体,除了那

CATIA有限元分析计算实例 完整版复习进程

C A T I A有限元分析计 算实例完整版

CATIA有限元分析计算实例 CATIA有限元分析计算实例 11.1例题1 受扭矩作用的圆筒 11.1-1划分四面体网格的计算 (1)进入【零部件设计】工作台 启动CATIA软件。单击【开始】→【机械设计】→【零部件设计】选项,如图11-1所示,进入【零部件设计】工作台。 图11-1单击【开始】→【机械设计】→【零部件设计】选项 单击后弹出【新建零部件】对话框,如图11-2所示。在对话框内输入新的零件名称,在本例题中,使用默认的零件名称【Part1】。点击对话框内的【确定】按钮,关闭对话框,进入【零部件设计】工作台。 (2)进入【草图绘制器】工作台 在左边的模型树中单击选中【xy平面】, 如图11-3所示。单击【草图编辑器】工具栏内的【草图】按钮,如图11-4所示。这时进入【草图绘制器】工作台。

图11-2【新建零部件】对话框 图11-3单击选中【xy平面】 (3)绘制两个同心圆草图 点击【轮廓】工具栏内的【圆】按钮,如图11-5所示。在原点点击 一点,作为圆草图的圆心位置,然后移动鼠标,绘制一个圆。用同样分方法再绘制一个同心圆,如图11-6所示。 图11-4【草图编辑器】工具栏 图11-5【轮廓】工具栏 下面标注圆的尺寸。点击【约束】工具栏内的【约束】按钮,如图11-7所示。点击选择圆,就标注出圆的直径尺寸。用同样分方法标注另外一个圆的直径,如图11-8所示。

图11-6两个同心圆草图 图11-7【约束】工具栏 双击一个尺寸线,弹出【约束定义】对话框,如图11-9所示。在【直径】数值栏内输入100mm,点击对话框内的【确定】按钮,关闭对话框,同时圆的直径尺寸被修改为100mm。用同样的方法修改第二个圆的直径尺寸为50mm。修改尺寸后的圆如图11-10所示。 图11-8标注直径尺寸的圆草图 图11-9【约束定义】对话框 (4)离开【草图绘制器】工作台 点击【工作台】工具栏内的【退出工作台】按钮,如图11-11所示。退出【草图绘制器】工作台,进入【零部件设计】工作台。

CATIA活塞连杆设计实例教程

第三章 零件设计------活塞、连杆、汽缸组件 本章是设计活塞、连杆与汽缸的三维模型。进一步熟悉绘制草图、拉伸成形、旋转成形、拉伸切除、旋转切除、钻孔、倒(圆)角等命令,同时增添混成、特征的阵列等命令。读者在使用过程中注意将各种命令穿插应用。领会各个命令的用法。 3.1 Loft(混成)特征 混成实体特征不仅应用非常广泛,而且其生成方法也非常丰富、灵活多变。Loft(混成)特征分为两种:Loft(混成实体)和Removed Loft (混成切除)。它们形成的方式是一样的。主要区别在于:Loft(混成实体)是增料特征,Removed Loft (混成切除)是减料特征。 3.1.1. Loft(混成实体) 混成实体指的是利用两个或两个以上的截面(或者说是轮廓),以逐渐变形的方式生成实体。也可以加入曲线或折线作为导引线,使用导引线可以更好的控制外形轮廓之间的过渡。 操作过程举例如下: 1.在窗口中建立三个平行平面,绘制三个截面 左键单击左边模型树中的xy plane平面,单击工具栏中的Plane (平面)图标 ,弹出对话框,提供创建平面的参数的设定。在Plane type 一栏中选 择 Offset from plane (偏移平面);在Offset 一栏中输入20 mm ;预览生成的平面,如图3.1所示。 图3.1 同样再以刚才生成的平面作为参考面,再生成一个偏移10 mm的新平面,预览生成的平面,如图3.2所示。 图3.2 左键单击左边模型树中的xy plane 参考平面,再单击一下右边工具栏中的

sketch(草图设计)图标 ,进入草图绘制模式。 单击工具栏中的Ellipse(椭圆)图标,绘制一个椭圆,圆心在原点。左 键单击工具栏中Auto Constraint (自动标注尺寸)图标 ,标注椭圆的尺寸, 如图3.3所示。 绘制完草图之后,单击工具栏中的退出工作台图标 ,进入零件实体设计模式。 图3.3 同样,利用草图中的圆功能在新建的平面1和平面2上分别绘制直径为6和直径为15的圆,如图3.4所示,如图3.5所示。 图3.4 图3.5 2.以渐进曲线混成实体 左键单击Loft(混成实体)图标 ,弹出对话框,提供混成参数的设定。 在第一栏中分别选择上述绘制的三个草图,作为混成的截面,混成的图形预览如图3.6所示。

非常详细的CATIA实例教程

第五章CATIA V5创成式工程绘图及交互式工程绘图

目录 1产品介绍 (6) 2图标功能介绍(基本概念、基本界面介绍) (6) 2.1视图(Views)图标 (6) 2.2绘图(Drawing)图标 (7) 2.3尺寸(Dimensioning)图标 (8) 2.4生成(Generation)图标 (9) 2.5注释(Annotations)图标 (9) 2.6装饰(Dress up)图标 (9) 2.7几何元素创立(Geometry creation)图标 (10) 2.8几何元素修改(Geometry modification)图标 (12) 3软件环境设定(Customizing Settings) (13) 3.1一般环境参数设定(General) (13) 3.2布置(Layout)设置 (15) 3.3生成(Generation)设置 (16) 3.4几何元素(Geometry)设置 (17) 3.5尺寸(Dimension)设置 (17) 3.6操纵器(Manipulators)设置 (18) 3.7注释(Annotation)设置 (19) 4功能详解 (20) 4.1投影视图创建功能(Project) (20) 4.1.1前视图(Front View)创建详解 (20) 4.1.2展开视图(Unfolded View)创建详解 (20) 4.1.3从三维模型生成视图(View From 3D)详解 (21) 4.1.4投影视图(Projection View)创建详解 (21) 4.1.5辅助视图(Auxiliary View)创建详解 (21) 4.1.6轴侧图(Isometric View)创建详解 (22) 4.2剖面及剖视图创建功能(Section) (22) 4.2.1阶梯剖视图(Offset Section View)创建详解 (22)

catia画飞机教程-中文实例教程-以P51为例

外文文献的中文翻译,祝君成功。 第一节 ---创建三个拉伸曲面,分别相对X、Y、Z平面进行偏移 ---给平面附上参考图片 ---为每一个截面创建草图之后,将它们重新放置在相对应的位置 第二节 ---创建3D曲线,之后创建自由曲面 ---首先创建机身,之后创建机翼,最后创建尾翼 ---将所有的曲面按照一个参考平面作对称,创建一个对称模型 请牢记:这些章节只是用来陈述通过CATIA进行设计的方法,而不单是CATIA那些命令本

CATIA中鼠标的一些操作不多说了 首先要获得p51正视图、右视图、俯视图(读者自行获取),图像是正方形的1000*1000像素的,可以通过以下网址获得HTTP://https://www.wendangku.net/doc/5714762816.html,.hk/~mmdsham/images/p51/ -p51-front.jpg -p51-right.jpg -p51-top.jpg 打开CATIA,一个空的product被创建,可以把它关掉 开始->形状->创成式外形设计 将启用混合图形集点掉,点击OK 于是我们就在创成式外形设计环境下创建了一个空的Part

插入几何图形集 点击“插入”->“几何图形集” 用“reference”(参考平面)作为图形集的名字 点击OK 创建一个草图 点击“草图”,选择“yz”平面作为参考 作一个垂直的直线,长度120mm,位置为距离坐标原点100mm (在点击第二个点之前,看一下“草图工具”中的L值) 点击退出草图

创建一个拉伸曲面 选择刚刚绘制的草图作为轮廓,“yz”平面作为方向 点击reverse direction“翻转方向” 用鼠标拖动“limit1”(绿色箭头),拖到显示为285mm 点击OK 点击“应用材料” (对刚刚的“拉伸曲面”赋予材料) 点击刚刚做的拉伸曲面 点击OK结束 为了能看到赋予材料的效果,选择“渲染方式”为“带材料作色”

CATIA钣金实例教程_第五章__生成棱边弯曲

第五章生成棱边弯曲 5.1由板上生成弯曲 在桌面上双击CATIA的图标,进入CATIA软件。或者从【开始】菜单 选择CATIA,运行该软件。进入CATIA软件的界面后,点击Start< Mechanical Design(机械设计)

图5-2Sheet Metal Parameters钣金参数定义对话框点击工具栏内的Sketcher 草图图标,然后在左边的模型树中点击选中xy 平面,如图5-3。选择后,进入草图设计工作台。 图5-3选中xy平面 在工具栏中点击Rectangle矩形图标,画一个矩形,如图5-4。点击工 具栏中的Exit Workbench 离开草图工作台图标,就可以进入钣金设计工作台。

图5-4矩形草图 点击工具栏中的Wall 板图标,出现Wall 板定义对话框,如图5-5。在 图形区显示预览的板,如图5-6。点击Wall 板定义对话框内的“确定”按钮,形成一个侧板。同时在左边的模型树上形成一个“墙.1”元素。 图5-5Wall 板定义对话框

图5-6预览形成的板 在刚才的板模型中选中板的棱边,如图5-7。点击工具栏中的Wall 板图标 ,直接进入草图设计工作台,并同时出现一个以所选棱边为边长的矩形草图,并且标注了矩形的高度尺寸,如图5-8。 图5-7选中板的棱边

非常详细的CATIA实例教程

第五章 CATIA V5创成式工程绘图及交互式工程绘图

目录 1产品介绍 (5) 2图标功能介绍(基本概念、基本界面介绍) (5) 2.1视图(Views)图标 (5) 2.2绘图(Drawing)图标 (6) 2.3尺寸(Dimensioning)图标 (6) 2.4生成(Generation)图标 (7) 2.5注释(Annotations)图标 (8) 2.6装饰(Dress up)图标 (8) 2.7几何元素创立(Geometry creation)图标 (9) 2.8几何元素修改(Geometry modification)图标 (10) 3软件环境设定(Customizing Settings) (12) 3.1一般环境参数设定(General) (12) 3.2布置(Layout)设置 (13) 3.3生成(Generation)设置 (14) 3.4几何元素(Geometry)设置 (15) 3.5尺寸(Dimension)设置 (16) 3.6操纵器(Manipulators)设置 (17) 3.7注释(Annotation)设置 (18) 4功能详解 (18) 4.1投影视图创建功能(Project) (18) 4.1.1前视图(Front View)创建详解 (18) 4.1.2展开视图(Unfolded View)创建详解 (19) 4.1.3从三维模型生成视图(View From 3D)详解 (19) 4.1.4投影视图(Projection View)创建详解 (19) 4.1.5辅助视图(Auxiliary View)创建详解 (20) 4.1.6轴侧图(Isometric View)创建详解 (20) 4.2剖面及剖视图创建功能(Section) (20) 4.2.1阶梯剖视图(Offset Section View)创建详解 (21) 4.2.2转折剖视图(Aligned Section View)创建详解 (21) 4.2.3阶梯剖面图(Offset Section Cut)创建详解 (22) 4.2.4转折剖面图(Aligned Section Cut)创建详解 (22) 4.3局部放大视图功能(Details) (22) 4.3.1局部放大视图(Detail View)创建详解 (22) 4.3.2多边形局部放大视图(Detail View Profile)创建详解 (24) 4.3.3快速生成局部放大视图(Quick Detail View)创建详解 (24)

catia_p51外形设计中文实例教程

声明:本文是翻译他人文章,图片也截于该篇文章,仅供学习之用,不得非法传播,如需要,请联系 Mr. Dickson S.W. Sham CATIA Certified Professional, Department of Mechanical Engineering, The Hong Kong Polytechnic University Tel : (852) 2766 4507 Email : mmdsham@https://www.wendangku.net/doc/5714762816.html,.hk Website : https://www.wendangku.net/doc/5714762816.html,.hk/~mmdsham 翻译难免有不准确的地方,欢迎批评指正,谢谢! 第一节 ---创建三个拉伸曲面,分别相对X、Y、Z平面进行偏移 ---给平面附上参考图片 ---为每一个截面创建草图之后,将它们重新放置在相对应的位置 第二节 ---创建3D曲线,之后创建自由曲面 ---首先创建机身,之后创建机翼,最后创建尾翼 ---将所有的曲面按照一个参考平面作对称,创建一个对称模型 请牢记:这些章节只是用来陈述通过CATIA进行设计的方法,而不单是CATIA那些命令本

CA TIA中鼠标的一些操作不多说了 首先要获得p51正视图、右视图、俯视图(读者自行获取),图像是正方形的1000*1000像素的,可以通过以下网址获得HTTP://https://www.wendangku.net/doc/5714762816.html,.hk/~mmdsham/images/p51/ -p51-front.jpg -p51-right.jpg -p51-top.jpg 打开CATIA,一个空的product被创建,可以把它关掉 开始->形状->创成式外形设计 将启用混合图形集点掉,点击OK 于是我们就在创成式外形设计环境下创建了一个空的Part

CATIA钣金实例教程 第一章_钣金设计基本功能

第一章钣金设计基本功能 1.1 进入钣金设计工作台 在桌面上双击CATIA的图标,进入CATIA软件。或者从【开始】菜单 选择CATIA,运行该软件。进入CATIA软件的界面后,点击Start< Mechanical Design(机械设计)

图1-2钣金设计工作台 1.2 设置钣金参数 点击工具栏内的Sheet Metal Parameters钣金参数图标,出现Sheet Metal Parameters钣金参数定义对话框,如图1-3。点击Parameters参数制表栏,可以 定义钣金的参数:采用的标准、厚度和缺省的导角半径。 图1-3Sheet Metal Parameters钣金参数定义对话框点击对话框内的Bend Extremities弯曲边缘制表栏,可以选择不同的弯曲边缘形式,如图1-4。选择边缘形式后,点击Sheet Metal Parameters钣金参数定义 对话框内的“确定”按钮,完成钣金参数设置,在左边的模型树上出现“钣金件参

数.1”元素,如图1-5。 图1-4Bend Extremities弯曲边缘制表栏 图1-5模型树上出现“钣金件参数.1”元素 1.3 生成一个底板 点击工具栏内的Sketcher 草图图标,然后在左边的模型树中点击选中xy 平面,如图1-6。选择后,进入草图设计工作台。 图1-6选中模型树中的xy平面 点击工具栏内的Profile轮廓线图标,然后画一条封闭的多边形轮廓线, 如图1-7。点击工具栏内的Constrain约束图标,标注一条线段的尺寸,如图

catia有限元分析

catia有限元分析 声明:该文章由文鼎教育汇编、转载,版权归原作者所有. 南京catia有限元分析培训 CATIA有限元分析计算实例 CATIA有限元分析计算实例 11.1例题1 受扭矩作用的圆筒 11.1,1划分四面体网格的计算 ,1,进入【零部件设计】工作台 启动CATIA软件。单击【开始】?【机械设计】?【零部件设计】选项,如图11,1所示,进入【零部件设计】工作台。 图11,1 单击【开始】?【机械设计】?【零部件设计】选项 单击后弹出【新建零部件】对话框,如图11-2所示。在对话框内输入新的零件 文鼎教育集团—南京

声明:该文章由文鼎教育汇编、转载,版权归原作者所有. 名称,在本例题中,使用默认的零件名称【Part1】。点击对话框内的【确定】按钮,关闭对话框,进入【零部件设计】工作台。 ,2,进入【草图绘制器】工作台 在左边的模型树中单击选中【xy平面】, 如图11-3所示。单击【草图编辑器】工具栏内的【草图】按钮,如图11-4所示。这时进入【草图绘制器】工作台。 图11,2 【新建零部件】对话框 图11,3 单击选中【xy平面】 ,3,绘制两个同心圆草图 点击【轮廓】工具栏内的【圆】按钮,如图11-5所示。在原点点击一点,作为圆草图的圆心位置,然后移动鼠标,绘制一个圆。用同样分方法再绘制一个同心圆,如图11-6所示。 文鼎教育集团—南京 声明:该文章由文鼎教育汇编、转载,版权归原作者所有. 图11,4 【草图编辑器】工具栏

图11,5 【轮廓】工具栏 下面标注圆的尺寸。点击【约束】工具栏内的【约束】按钮,如图11-7所示。点击选择圆,就标注出圆的直径尺寸。用同样分方法标注另外一个圆的直径,如图11-8所示。 图11,6 两个同心圆草图 图11,7 【约束】工具栏 双击一个尺寸线,弹出【约束定义】对话框,如图11,9所示。在【直径】数值栏内输入100mm,点击对话框内的【确定】按钮,关闭对话框,同时圆的直径尺寸被修改为100mm。用同样的方法修改第二个圆的直径尺寸为50mm。修改尺寸后的圆如图11-10所示。 文鼎教育集团—南京 声明:该文章由文鼎教育汇编、转载,版权归原作者所有. 图11,8 标注直径尺寸的圆草图

catia有限元分析简述

前言 运用固体力学理论(包括结构力学、弹性力学、塑性力学等)对结构进行强度和刚度分析,是工程设计的重要内容之一。随着科学技术的进步和生产的发展,工程结构的几何形状和载荷情况日益复杂,新的材料不断出现,使得寻找结构分析的解析解十分困难,甚至不可能,因而人们转而寻求近似解。 1908年,W.Ritz提出一种近似解法,具有重要意义。它利用带未知量的试探函数将势能泛函近似,对每一个未知量求势能泛函的极小值,得到求解未知量的方程组。Ritz法大大促进了弹性力学在工程中的应用。Ritz法的限制是试探函数必须满足边界条件。对于几何形状比较复杂的结构来说,寻找满足整个边界条件的试探函数也非易事。1943年,R.Couran对Ritz法做了极其重要的推广。他在求解扭转问题时,将整个截面划分为若干个三角形区域,假设翘曲函数在各个三角形区域内做近似线性分布,从而克服了以前Ritz法要求整体近似函数满足全部边界条件的困难。Couran这样应用Ritz法与有限元法的初期思想是一致的。但是这种近似解法要进行大量数值计算,在当时还是个难题。因此,未能得到发展。 有限单元法是采用计算机求解数学物理问题的一种数值计算近似方法。它发源于固体力学,后迅速扩展到流体力学、传热学、电磁学、声学等其它物理领域。固体力学有限元法的理论依据,从发展历史看,主要有三种途径,即结构矩阵法、变分法和加权余量法。整个计算过程是泰国编制好的程序在电子计算机上自动进行。它具有极大的通用性,在程序功能范围内,只要改变输入的数据,就可以求解不同的工程实际问题。这种解法完全改变了解析法中针对一种实际问题寻找一种解法的局限性。 在1946年电子计算机诞生以后,首先采用它进行数值计算的是杆系结构力学。它的理论依据是由结构力学位移法和力学演变成的矩阵位移法和矩阵力学,统称为结构矩阵法。它采用矩阵代数运算,不仅能使算式书写简明,而且编制计算机程序非常方便。结构矩阵法的力学概念清楚,全部理论公式按结构力学观点讲都是准确的,仅在数值计算过程中,由于计算机存储位数的限制,造成舍入误差。 1956年,M.J.Turner,R.W.Clough,H.C.Martin和L.J.Topp在纽约矩形的航空学会年会上介绍了一种新的计算方法,将矩阵位移法推广到求解平面应力问题。他们把结构划分成一个个三角形和矩形的单元,利用单元中的近似位移函数,求得单元节点力与节点位移关系的单元刚度矩阵。同期,J.H.Argyris在航空工程杂志上发表一组能量原理和结构分析论文,他将弹性结构的基本能量原理做了概括、推广并予以统一,发展了矩阵方法,还导出由平面应力板和四个边缘件组成的矩形板格的单元刚度矩阵。他们对连续体有限元法的形成做了开创性的工作。

CATIA元分析计算实例完整版

C A T I A元分析计算实例 完整版 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

CATIA有限元分析计算实例 CATIA有限元分析计算实例 例题1 受扭矩作用的圆筒 -1划分四面体网格的计算 (1)进入【零部件设计】工作台 启动CATIA软件。单击【开始】→【机械设计】→【零部件设计】选项,如图11-1所示,进入【零部件设计】工作台。 图11-1 单击【开始】→【机械设计】→【零部件设计】选项 单击后弹出【新建零部件】对话框,如图11-2所示。在对话框内输入新的零件名称,在本例题中,使用默认的零件名称【Part1】。点击对话框内的【确定】按钮,关闭对话框,进入【零部件设计】工作台。 (2)进入【草图绘制器】工作台 在左边的模型树中单击选中【xy平面】, 如图11-3所示。单击【草图编辑器】工具栏内的【草图】按钮,如图11-4所示。这时进入【草图绘制器】工作台。

图11-2 【新建零部件】对话框 图11-3 单击选中【xy平面】 ? (3)绘制两个同心圆草图 点击【轮廓】工具栏内的【圆】按钮,如图11-5所示。在原点点击一点,作为圆草图的圆心位置,然后移动鼠标,绘制一个圆。用同样分方法再绘制一个同心圆,如图11-6所示。 图11-4 【草图编辑器】工具栏 图11-5 【轮廓】工具栏 下面标注圆的尺寸。点击【约束】工具栏内的【约束】按钮,如图11-7所示。点击选择圆,就标注出圆的直径尺寸。用同样分方法标注另外一个圆的直径,如图11-8所示。

图11-6 两个同心圆草图 图11-7 【约束】工具栏 双击一个尺寸线,弹出【约束定义】对话框,如图11-9所示。在【直径】数值栏内输入100mm,点击对话框内的【确定】按钮,关闭对话框,同时圆的直径尺寸被修改为100mm。用同样的方法修改第二个圆的直径尺寸为50mm。修改尺寸后的圆如图11-10所示。 图11-8 标注直径尺寸的圆草图 图11-9 【约束定义】对话框 (4)离开【草图绘制器】工作台 点击【工作台】工具栏内的【退出工作台】按钮,如图11-11所示。退出【草图绘制器】工作台,进入【零部件设计】工作台。

装配件catia有限元分析

装配件的有限元分析 1、打开装配件。 2、进入工作台 在菜单栏中选择【开始】→【分析与模拟】→【Generative Structural Analysis】命令,进入【结构有限元分析】工作台。 3、进入分析模块 进入【结构有限元分析】工作台后,弹出窗口【New Analysis Case】,如图3-1所示,选择【Static Analysis】选项,单击【确定】按钮,生产一新分析算题。 3-1装配件有限元模型 4、指定材料 (material) 点击工具栏图标来指定零件材料,系统可能弹出图3-2所示对话框,提示没有中文材料库,确定即可;弹出图3-3所示对话框,左键点击【Analysis Manager】模型树内【Rubber】, 再点击材料库对话

框内【Other】卡片下的【rubber】,【确定】完成橡胶主簧材料的指定。 3-2无中文材料库报错对话框 3-3材料指定对话框 同理定义上液室、惯性通道体、下液室均、橡胶底模为铝制材料【aluminium】,外壳为橡胶【rubber】。 5、网格划分(nodes and elements) 双击模型树中的来调整rubber的单元划分参数,则弹出图3-4所示四面体网格密度定义对话框,输入图中所示数值,完成网格参数修正。同理对其他部分划分网格。

3-4网格划分密度定义对话框 6、定义约束(Restraints) 装配件通过橡胶底模用螺栓固定在车身或车架上,可以用橡胶主簧和外壳的完全固定来模拟分析,单击【Restraints】工具栏中的【Clamp】按钮,弹出图3-5所示【Clamp(夹紧)】定义对话框,选择橡胶主簧上表面和外壳下表面固定,【确定】完成约束定义。 3-5、定义约束 7、定义装配件接触约束定义 在左边的模型树中将【Links Manager.1】展开,显示出装配件下面的约束,选择【曲面约束.1】,单击【Connection Properties】工具栏中

相关文档