文档库 最新最全的文档下载
当前位置:文档库 › Co-Mo系宽温耐硫变换催化剂硫化剂的选择

Co-Mo系宽温耐硫变换催化剂硫化剂的选择

Co-Mo系宽温耐硫变换催化剂硫化剂的选择
Co-Mo系宽温耐硫变换催化剂硫化剂的选择

Co-Mo系宽温耐硫变换催化剂硫化剂的选择

0 引言

Co-Mo系宽温耐硫变换催化剂使用前为氧化态,经硫化后转化为硫化态,只有在硫化态的催化剂才具有高活性。硫化反应为:

MoO3+2H2S+H2=MoS2+3H2O

ΔH0=-48.2kJ/mol

CoO+H2S=CoO+H2O

ΔH0=-13.4kJ/mol

目前采用的硫化方法都是基于湖北省化学研究院开发的高效快速硫化法对催化剂进行硫化。硫化剂一般选用的是CS2或湖北省化学研究院开发的ESS-1型固体硫化剂,也有极少数厂家使用高硫煤产生的高浓度H2S直接硫化。

CS2是一种易燃易爆且有毒性的液体,在运输、灌装、使用过程中必须特别小心;相对而言,固体硫化剂则存在诸多优势。本文试图将固体硫化剂相对CS2的优势作出陈述,以供广大使用厂家参考。

1 安全性

众所周知,CS2的沸点47 ℃,闪点105 ℃,是一种易燃易爆且有毒性的有机溶剂,在运输、灌装、使用过程中稍不小心就有着火、爆炸的危险;运输过程中需要办理危险品运输证,非常麻烦。我们曾经耳闻目睹多起CS2在运输中烧坏车辆,在灌装、使用过程中CS2着火、爆炸伤人的事件。可以说使用CS2是如履薄冰,要时刻小心。固体硫化剂是用混碾法将活性单质硫、催化剂、含硫化合物及一定量的助剂混碾打片而成的片状颗粒。具有贮存、运输、装卸安全、不燃不爆、无毒、出硫量高的特点,使用时安全可靠。

2 硫化时间

Co-Mo系宽温耐硫变换催化剂可以采用一次放空法或循环法,使用CS2、固体硫化剂的硫化工艺简图如图1、图2。

由图可见,使用固体硫化剂硫化时,所需增加的设备并不多,由于硫化时要求常压,所以固体硫化剂罐和相应的配管都可用常压设备,硫化完成后用盲板将其断开即可。

用CS2硫化时,由于在低温时CS2氢解率低,加入量不宜过大;在高温时加入量过大又会引起温度暴涨,所以催化剂硫化时间很长。此外,在硫化结束后的置换阶段,由于CS2吸附于催化剂的微孔中,使得其难于置换。在单套变换系统规模越来越大的今天,使用CS2硫化,时间越来越长,动辄3~4d,要消耗大量的煤气和电能。而使用固体硫化剂则大大缩短了硫化时间。下表所列的是使用两种硫化剂硫化时间比较。

从表1可看出,使用固体硫化剂时间要节省近一半,其经济效益是值得留意的。

3 硫化后催化剂活性比较

由于大部分厂家都采用干煤气进行硫化,低变催化剂在高CO及高温状态下,硫化时间较长,采用CS2硫化可能出现明显的析碳现象(表2),析出的碳会阻塞催化剂的微孔,降低催化剂的比表面积,从而降低催化剂的活性。实验和实际使用效果表明,采用固体硫化剂硫化,催化剂的活性要高5%左右(表3)。

4 易于控制性

CS2在≥180 ℃时于催化剂表面发生氢解反应生成H2S

CS2+H2=CH4+2H2S ΔH0=-240.9kJ/mol

固体硫化剂在≥180 ℃时,连续产生高浓度的H2S

S+H2=H2S ΔH0=-20.2kJ/mol

由于CS2与H2反应放热量较大,加入量控制不当,极易发生温度暴涨现象;虽然可以用流量计控制二硫化碳的加入量,但在煤气中氧含量波动时,催化剂床层温度的波动辐度比单纯氧的温升要大得多,这是因为除了氧的温升外,由于温度的升高,CS2的氢解反应也更加剧烈,氧与CS2的共同温升使床层温度难以控制,这也是使用CS2硫化常常发生超温现象的原因之一。而使用固体硫化剂则不会发生这种现象。可见使用固体硫化剂硫化更易于控制床层温度。

5 环保效果

CS2的氢解率在300 ℃以下时很低(<50%),这就是为何在床层温度200 ℃时加入CS2,哪怕加入量极低,也会很快闻到CS2臭味的原因。此外,CS2是有机溶剂,采用一般的碱液吸收方法是难于脱除的。而使用固体硫化剂只产生硫化氢,采用一般的脱硫方法即可脱除。在环保要求日趋严格的今天,孰优孰劣,一目了然。

6 小结

使用固体硫化剂硫化Co-Mo系宽温耐硫变换催化剂,比使用CS2作硫化剂安全,经济,硫化后催化剂活性更好。

钴钼系催化剂的硫化

硫化成功的必备条件有三个:0 _; X" s0 j6 }8 b+ N! } 1)要有足够高的硫化温度,一般不大于500 ℃;2)要有足够的强制硫化时间,并且最好有数小时的闷炉;3)强制硫化时,原料气中的硫化氢越高越好,一般不低于15 g/Nm3 。硫化时要防止催化剂超温,超过550 ℃对催化剂造成危害,但短时间超温对催化剂活性影响不大。 一、硫化条件) q8 j* @- |7 J3 C1 y& U 1、温度对硫化反应深度的影响很大,一般入口温度控制在230~260℃,床层温度控制在250~280℃。硫化反应后期应尽量提温,适当的高温(~425℃)既可以保证催化剂的活性,又可缩短硫化时间。7 K& X* R7 H+ c! }* o 2、硫化压力对硫化深度的影响不是很大,可根据装置的实际情况来确定压力,一般不低于1.0MPa(表压)。 3、H2S的浓度过低(体积分数≤0.2%)时,还原后的催化剂活性较差;H2S的较高时,对催化剂的影响不大。出于安全考虑,H2S的浓度不宜提的太高。/ W9 q8 h) o0 ?% I% h 4、系统中H2的体积分数尽量控制在10%~20%,过低会影响CS2的氢解,过高则有可能发生还原反应。 CS2在200℃以上时才发生氢解反应,所以添加CS2要等到温度达230℃左右开始添加。过早添加容易使CS2氢解不完全,在系统内冷凝和吸附。当达到温度时,就会突然发生氢解反应,放出大量的反应热导致床层温度暴涨。但超过250℃再加CS2,就可能发生CoO和MoO3的还原反应,使催化剂失活。运行过程中要保持H2的体积分数在10%~35%之间,因为当H2的浓度过低时,亦有可能造成CS2氢解不完全,在系统内冷凝和吸附。当H2含量提高时,CS2大量氢解,释放过多的反应热,从而导致催化剂床层温度暴涨。串联硫化时要防止“提温提硫”的同时发生,因为当上段硫穿透时,较高的热点温度和上段穿透的硫进入下一段,造成下段“提温提硫”,很容易造成超温。

催化剂分类

中国工业催化剂分类方法 一.石油炼制催化剂 1.催化裂化催化剂 2.催化重整催化剂 3.加氢裂化催化剂 4.加氢精制催化剂 5.烷基化催化剂 6.异构催化剂 二.无机催化剂 1.脱硫——加氢脱硫、硫回收催化剂 2.转化——天然气转化、炼厂气转化、轻油转化催化剂3.变换——高(中)变、低变、耐硫宽变催化剂 4.甲烷化——合成气甲烷化、城市燃气甲烷化 5.氨合成催化剂 6.氨分解催化剂 7.正、仲氢转化催化剂 8.硫酸制造催化剂 9.硝酸制造催化剂 10.硫回收催化剂 三.有机化工催化剂 1.加氢催化剂 2.脱氢催化剂 3.氧化——气相、液相催化剂 4.氨氧化催化剂 5.氧氯化催化剂 6.CO+H2合成——合成醇、F-T合成催化剂 7.酸催化——水合、脱水、烷基化催化剂 8.烯烃反应——齐聚、聚合、岐化、加成催化剂 四.环境保护催化剂 1.硝酸尾气处理催化剂 2.内燃机排气处理催化剂 3.制氮催化剂 4.纯化——脱痕量氧或氢催化剂 五.其它催化剂 其它催化剂 中国工业催化剂常规分类Classification industrial Catalysts 一、化肥催化剂(Catalysts for fertilizer manufacture) 一)脱毒剂(Purification agent)

1.活性炭脱硫剂(Active carbon desulfurizer) 2.加氢转化脱硫催化剂(Hydrodesulfurization Catalyst) 3.氧化锌脱硫剂(Zinc oxide sulfur absorbent) 4.脱氯剂(Dechlorinate agent) 5.转化吸收脱硫剂(Converted-absoubed desulfurizer) a.氧化铁脱硫剂(Iron ozide desulfurizer) b.铁锰脱硫剂(Iron-Nanganese oxide desulfurizer) c.羰基硫水解催化剂(Carbonyl Sulfide hydrolysis) 6.脱氧剂(Deoxidezer) 7.脱砷剂(Hydrodearsenic Catalyst) 二)转化催化剂(Reforming Catalyst) 1.天然气一段转化催化剂(Nature gas primary reforming catalyst) 2.二段转化催化剂(Secondary reforming catalyst) 3.炼厂气转化催化剂(Refinery gas steam reforming catalyst) 4.轻油转化催化剂(Naphtha steam reforming catalyst) 三)变换催化剂(CO shift catalyst) 1.中温变换催化剂(High temperature CO shift catalyst) 2.低温变换催化剂(Low temperature CO shift catalyst) 3.宽温耐硫变换催化剂(Sulfur tolerant shift catalyst) 四)甲烷化催化剂(Methanation catalyst) 1.甲烷化催化剂(Methanation Catalyst) 2.城市煤气甲烷化催化剂(Town gas methanation Catalyst) 五)氨合成催化剂(Ammonia synthesis Catayst) 1.氨合成催化剂(Ammonia synthesis catalyst) 2.低温氨合成催化剂(Low temperatuer ammonia synthesis catalyst) 3.氨分解催化剂(Ammonia decomposition catalyst) 六)甲醇催化剂(Methanol Catalyst) 1.高压甲醇合成催化剂(High pressure methanol synthesis catalyst) 2.联醇催化剂(Combined methanol synthesis catalyst) 3.低压甲醇合成催化剂(Low pressure methanol synthesis catalyst) 4.燃料甲醇合成催化剂(Fuel methanol synthesis catalyst) 5.低碳混合醇合成催化剂(mixture of lower alcohols synthesis catalyst) 七)制酸催化剂(Acid manufacture catalyst) 1.硫酸生产用钒催化剂(Vanudium catalyst for manufacture of sulfuric acid)2.硝酸生产用铂网催化剂(Platinum ganze catalyst for manufacture 3.非铂氨氧化催化剂(Non-platinum catalyst for ammonia oxidation)4.铂捕集网(platinum catch gamze) 5.硝酸尾气处理催化剂(Treated catalyst for tail gas from nitric acid plant)八)制氮催化剂(Nitrogen manufacture catalyst) 1.一段制氮催化剂(Frist stage catalyst for ammonia combined) 2.二段制氮催化剂(Second stage catalyst for nitrogen manufacture)

水煤浆宽温耐硫变换换热器泄漏原因分析及应对措施示范文本

水煤浆宽温耐硫变换换热器泄漏原因分析及应对措 施示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

水煤浆宽温耐硫变换换热器泄漏原因分析及应对措施示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 随着化工行业的大型化趋势,水煤浆气化配套宽温耐 硫变换工艺已经普遍应用与煤化工行业,由于该工艺使用 时间较短,系统中存在这样或那样的问题,反映出来就是 设备的泄漏停车,其中静止设备中换热器泄漏最经常遇 到。原因有工艺方面的问题,也有设备的先天不足,还有 施工质量控制等方面的因素。本文的重点是对该类设备问 题进行分析,并在工艺操作及设备的制造安装方面来控制 避免造成泄漏。 1、对国内变换工艺设备泄漏情况调研 1、安徽某化肥单位出现变换两台废锅全部泄露,造成 系统停车,损失巨大,主要现象是高低压废热锅炉合成气

泄露至蒸汽侧。 原因分析: (1)设备泄漏原为设计结构没有无废锅进水防冲板结构,造成水流直接冲击换热管。 (2)设备操作温度高,液位控制过低,引起换热管气相部分振动。 (3)另一方面就是管子质量可能存在质量问题。 2、山东某水煤浆工艺煤化工单位蒸汽过热器甲醇合成产蒸汽带水。原因分析:带液冷激造成泄漏。 3、陕西某石化下属煤化工单位2#蒸汽发生器、蒸汽发生器、水冷却器泄露,原因分析:是折流板间距过大形成共振所致,后增加一层支撑板进行加固后效果明显。 综合分析: 近年通过对多家该类工艺的使用状况的考察,耐硫变换中主要是软水加热器、水冷却器、中低压废热锅炉的泄

变换催化剂

DNB303Q 型低温耐硫变换催化剂的应用 张同福王志武孟令杨刘宜堂杨万成(山东明水化工有限公司 250200 临朐大祥精细化工有限公司262600) 摘要:简要介绍该公司“18.30”工程中采用中低低变换工艺的情况,重点介绍 DNB303Q 型催化剂升温还原及运行效果。 关键词: “18.30”工程中低低运行 山东明水化工有限公司前身为济南明水化肥厂。1958 年建厂,为全国最早的 13 家小氮肥企业之一,企业经过近 50 年的发展,2005 年已具备年产 20×104t 合成氨,24×104t 尿素的生产能力2005 年改制并且和晋煤集团合 作后,为进一步提高企业综合实力,决定对现有装置进行改造并新上一套“18.30”工程,工程投资约 5 亿元。新装置经过十个月的建设,于 2007 年元月建成进入试开车阶段。 此套“8.30”工程全部为我公司自行设计安装,在设计上大量采用目前国内最先进的技术变换工段采用比较成熟的中低低变换技术,采用临朐大祥公司的 DNB303Q 型低温耐硫变换催化剂,经过近 10 个月的生产使用,该催化剂表现出良好的性能。 1 中低低变换系统概述 (1)工艺流程(见图 1) (2)流程简述 压缩机二段来气首先进入焦炭过滤器,吸附掉气体中杂质后进入饱和热水塔与热水泵来的热水在塔内填料层逆流接触换热,换热后的气体经添加蒸汽后进入一热交管内和低变来变换热气体换热后,进入二热交和中变来热气体换热后进中变炉反应,中变反应气体经二热交换热后进入低变炉上段反应,反应后的气体经段间换热器进入低变下段,低变下段出气经一热交后进入饱和塔热水段,与热水换热后经气水分离器后送压缩机三段。 (3)主要设备(见表 1) (4)低变炉催化剂装填情况 根据低变炉生产负荷,上段催化剂装填40m3,下段催化剂装填 45m3,共 计装填 85m3。 2 升温还原 因为此装置是新上设备,且 DNB303Q 催化剂在我公司是第一次使用,为保证升温硫化顺利,制定了详细的升温硫化方案。 (1)硫化方法及流程 低变催化剂使用前需硫化,本次硫化采用一次通过硫化法。首先将液体 CS2 加入储槽,然后用钢瓶中的氮气将储槽压力升至 0.2MPa 左右备用,半水煤气置换合格后(O2<0.5%),经静电除焦和焦炭过滤器后通入低变炉,开电加热器,使催化剂升温最低点至120℃以上后,开启 CS2 储槽出口阀,使 CS2 经转子流量计计量后,进入半水煤气管道经低变炉放空。流程顺序如下。罗茨风 机→电加热炉→低变上段催化剂层→段间换热器→下段催化剂层→出口管放空。

耐硫变换

1岗位概况和任务 1.1 岗位概况 从气化工序来的煤气的成分(干基)大致为表1: 表1.煤气成分表 名称CO H2CO2CH4N2H2S Ar COS NH3含量(%)46.979 34.908 17.431 0.099 0.336 0.082 0.127 0.002 0.036 水煤气具有压力高、温度高、水气比高、含硫高、含CO2高等特点。因此,直接进行耐硫变换,在高含硫量的条件下进行CO变换反应。使CO:CO2:H2比例满足甲醇合成的要求。变换气中的有机硫也转化为无机硫(H2S)。这样即减少了换热设备,简化了流程,也降低了能耗。 虽然水煤气经过二级除尘,但水煤气中还会有微量的灰尘,经过变换炉时就沉积在催化剂表面,时间一长,催化剂将失去活性,根据经验,制取甲醇时CO的变换率不高时,可以先经煤气冷却,洗涤掉气体中的尘,同时,用水煤气废热锅炉来控制水煤气中的含水量,也控制CO的变换率,基本可以满足甲醇需要的CO的含量,如不能满足要求,可以通过旁路进行微调。 CO的变换反应工业上都是在催化剂存在的条件下进行,在许多中型合成氨厂以前的工艺中都是将原料气中的H2S和SO2等硫化物在被脱除的情况下应用以Fe2O3为主体的催化剂,温度在350~550℃的条件下进行变换反应。但约有3%左右的CO存在于变换气中,还有采用CuO为主体的催化剂,温度在200~280℃的条件下进行变换反应,残余的CO在0.4%左右。 本工序采用的变换反应也是在催化剂的作用下进行,但是从德士古气化工序过来的原料气直接进入本工序进行变换反应。因原料气中会有一定量的H2S、COS等硫化物,因而采用以Co、Mo为主体的催化剂,反应温度在200~465℃范围内进行,反应后的变换气中的CO为19%。 1.2岗位任务 来自气化工序的合成气,在触媒的作用下进行耐硫变换,使CO与H2比例完全满足甲醇合成需要后送入净化工序,同时利用余热付产0.5MPa和1.0MPa的低压蒸汽。 2 工艺原理、流程叙述及工艺指标

中温变换

中温变换炉的设计 摘要氨是一种重要的化工产品,主要用于化学肥料的生产。合成氨生产经过多年的发展, 现已发展成为一种成熟的化工生产工艺。合成氨的生产主要分为:原料气的制取;原料气的净化与合成。粗原料气中常含有大量的C,由于CO是合成氨催化剂的毒物,所以必须进行净化处理,通常,先经过CO变换反应,使其转化为易于清除的CO2和氨合成所需要的H2。因此,CO变换既是原料气的净化过程,又是原料气造气的继续。最后,少量的CO用液氨洗涤法,或是低温变换串联甲烷化法加以脱除。变换工段是指CO与水蒸气反应生成二氧化碳和氢气的过程。在合成氨工艺流程中起着非常重要的作用。 关键词:一氧化碳变换反应催化剂

Design of the Shift Convertor in Mesotemperature Abstract Ammonia is an important chemical products,mainly used for the production of chemical fertilizers. Ammonia production after years of development,has become a mature chemical production process. Ammonia production can bedivided into:the gas production of raw materials,raw materials and synthetic gas purification. Crude materials often contain large quantities of gas C,due to ammonia CO is the catalyst poison,so the need for purification,usually,the first reaction after CO transform it into easy to remove the CO2and ammonia synthesis required by the H2. Therefore,CO transformation is not only feed gas purification process,but also a feed gas to the gas. Finally,the CO with a small amount of liquid ammonia washing,or low-temperature method to transform series methanation removal. Section transform CO is the reaction of carbon dioxide and water vapor and hydrogen process. Ammonia in the process plays a very important role. Key words carbon monoxide shift reacction activator

预加氢催化剂预硫化方法

精心整理 中国石化九江分公司 30×104t/a重整预加氢装置FH-40C催化剂原则开工方案中国石油化工股份有限公司抚顺石油化工研究院 二○○九年四月 一、催化剂干燥 1、干燥前的准备工作 (1)催化剂装填完毕, (2)绘出催化剂干燥脱水升、恒温曲线。 (3) 2、干燥示意流程 ↓N2 ↑↓ ↓放水 3 循环氮气量:循环压缩机全量循环 干燥温度要求见表2。 表2催化剂干燥温度要求 反应器入口温度 ℃ 床层温度 ℃ 升、降温速度 ℃/h 升、恒温参考时间 h 常温→250- 10~15 15

250~280 ≮200- 至干燥结束 250→<150≯15020~25 4~5 4、干燥结束标准 高分无明水放出。 5、干燥操作 (1)在氮气压力1.5MPa/h的升 温速度将反应器入口温度升至250℃, 不到200 (2)在干燥过程中,每2 (3) (4) <150 (如DMDS)分解生成H2S,H2S使 H2S反应转化成硫化态之前被热氢还原。所以,催化剂预硫化时,必须控制好预硫化温度与循环氢中H2S含量的关系,在H2S未穿透催化剂床层前,床层最高点温度不应超过230℃。 1、预硫化前的准备工作 (1)催化剂干燥结束后,将催化剂床层温度降至150℃,泄压至0.2MPa,引氢气置换至氢纯度>85%,再升压至操作压力,建立氢气循环。

(2)绘出预硫化过程的升、恒温曲线。 (3)注硫系统吹扫干净,并将硫化剂装入硫化罐内。 (4)准备好不同规格的H 2S 检测管。硫化过程中每1小时测一次循环氢中的H 2S 浓度。 2、催化剂硫化示意流程 硫化油↓DMDS ↑ ↑分液罐→循环压缩机↓ ↑ ←高分←水冷←空冷←换热器 3、催化剂硫化条件 反应压力:操作压力 (CS 2)。 则需按照CS 2硫化剂含硫量的不同进行硫化温度及循环氢中H 2S 含量控制要求见表3。 表3催化剂硫化阶段温度要求 反应器入温度 ℃ 升温速度 ℃/h 升、恒温参考时间 h 循环氢H 2S 控制 v% 常温→150 15~20

耐硫变换操作法

坤天自动化系统有限公司变换岗位操作规程

1、变换岗位的任务和意义: 把气化工序送来的经洗涤塔洗涤冷却后合格的粗煤气送入变换工段,经部分 /CO≈2.0~2.1的变换气,耐硫变换,与未参加变换的粗煤气混合得到有效气H 2 同时回收部分变换反应热,副产低压蒸汽、预热锅炉给水及脱盐水等物料。 本岗位的主要任务:负责本工段所属动静设备的开停、置换、正常运转、日常维护保养和有关设备的试车及配合检修等,保证设备处于完好状态,确保本工序正常稳定生产。 2、变换岗位工艺流程概述: 来自气化工序的粗煤气( 230℃左右,汽气比约1.5)经1#气液分离器(V1501)分离掉气体中夹带的水分后,约56%的粗煤气进入粗煤气预热器(E1501),被变换炉(R1501)出来的经蒸汽过热器(E1502)预冷后的变换气预热至280℃,进入变换炉(R1501)进行耐硫变换,变换炉温度控制在 435℃,出变换炉的变换气(温度435℃)经蒸汽过热器(E1502)将2.5Mpa蒸汽由230℃过热至390℃,变换气温度降至400℃,再经粗煤气预热器(E1501) 预热粗煤气回收热量后,温度降至350℃,与未参加变换的粗煤气混合后进入1#低压蒸汽发生器(E1503),副产1.3MPa低压蒸汽,变换气温度降为220℃,经2#气液分离器(V1502)分离出冷凝液后,进入2#低压蒸汽发生器(E1504) 副产0.7MPa低压蒸汽,变换气温度降为190℃,经3#气液分离器(V1503)分离掉工艺冷凝液后,进入3#低压蒸汽发生器(E1505),副产0.35MPa低压蒸汽,温度进一步降低至170℃,经5#气液分离器(V1505)分离掉工艺冷凝液,进入蒸汽凝液预热器(E1510),将从713工段来的95℃透平凝液预热至140℃,变换气温度降至136.28℃;再经6#气液分离器(V1506)分离掉工艺冷凝液,进入2#脱盐水预热器(E1506)预热来自1#脱盐水预热器(E1508)的脱盐水,温度降至70℃,最后在水冷器(E1509)用循 ,环冷却水冷却至40℃左右,在4#气液分离器(V1504)顶部用冷密封水洗去NH 3 分离掉工艺冷凝液后变换气送入低温甲醇洗工段。 1#气液分离器(V1501)和2#气液分离器(V1502)分离出来的冷凝液,与3#气液分离器(V1503)分离出来的高温工艺冷凝液汇合后,温度约为 210℃,其中大部分经过工艺冷凝液泵(P1501)加压后送至气化工段洗涤塔(T1301)使用,一小部分与 5#、6#气液分离器(V1505、V1506)分离出来的冷凝液(温度约为100℃)一并进入汽提塔(T1501)上部进行汽提。 4#气液分离器(V1504)分离出来的低温冷凝液40℃在E1507换热器同汽

钴钼系耐硫变换催化剂使用注意事项

K8-11系列催化剂使用注意事项 一、催化剂的使用 1.1 催化剂的装填 装填催化剂之前,必须认真检查反应器,保持清洁干净,支撑栅格正常牢固。为了避免在高的蒸汽分压和高温条件下损坏失去强度,催化剂床层底部支撑催化剂的金属部件应选用耐高温和耐腐蚀的惰性金属材料。惰性材料应不含硅,防止高温、高水汽分压下释放出硅。 催化剂装填时,通常没有必要对催化剂进行过筛,如果在运输及装卸过程中,由于不正确地作业使催化剂损坏,发现有磨损或破碎现象必须过筛。催化剂的装填无论采取从桶内直接倒入,还是使用溜槽或充填管都可以。但无论采用哪一种装填方式,都必须避免催化剂自由下落高度超过1米,并且要分层装填,每层都要整平之后再装下一层,防止疏密不均,在装填期间,如需要在催化剂上走动,为了避免直接踩在催化剂上,应垫上木版,使身体重量分散在木版的面积上。 一般情况下,催化剂床层顶部应覆盖金属网和/或惰性材料,主要是为了防止在装置开车或停车期间因高的气体流速可能发生催化剂被吹出或湍动,可能由于气体分布不均发生催化剂床层湍动,损坏催化剂。 由于高压,原料气密度较大,为了尽可能的减小床层阻力降,应严格控制催化剂床层高度和催化剂床层高径比。通常催化剂床层高度应控制在3~5m;催化剂床层高径比控制在1.0~1.8。 1.2 开车 1.2.1 升温 为防止水蒸气在催化剂上冷凝,首次开车升温时,应使用惰性气体(N 2、H 2 、 空气或天然气)把催化剂加热到工艺气露点以上温度,最好使用N 2 。 采用≤50℃/h的升温速度加热催化剂,根据最大可获得流量来设定压力,从而确保气体在催化剂上能很好分布。在通常情况下,气体的有效线速度不应小于设计值的50%,但也不应超过设计值。 当催化剂床层温度达到100℃~130℃时,恒温2~3小时排除吸附的物理水,然后继续升温至200℃~230℃时,进行下一步的硫化程度。如果最初加热选用的是空气,在引入硫化气之前,必须用氮气或蒸汽吹扫系统,以置换残余氧气。硫化气的切换基本上在常压或较高压力下进行,这取决于气流的方便。 1.2.2 硫化 与铁铬系催化剂的还原相似,钴钼系耐硫变换催化剂使用前一般需要经过活化(硫化)方能使用,硫化的好坏对硫化后催化剂的活性有着重要作用。 如果工艺气中的硫含量较高,一般使用工艺气直接硫化时,硫化过程中可能发生下述反应: CoO+H 2S ? CoS+H 2 O ?H0 298 =-13.4KJ/mol (1) MoO 3+2H 2 S+H 2 ? MoS 2 +3H 2 O ?H0 298 =-48.1KJ/mol (2) CO+H 2O ? CO 2 +H 2 ?H0 298 =-41.4KJ/mol (3) CO+3H 2? CH 4 +H 2 O ?H0 298 =-206.2KJ/mol (4) 硫化过程为了使产生的热量尽可能小,便于硫化温度控制,在硫化过程中应尽可能地抑制这后两个反应,特别是反应(4),通常催化剂转化成硫化态后,对反应(3)是有利的,但催化剂为氧化态时,并在较高的压力下,即开车的初期

变换催化剂性能和控制工艺指标

QCS―11催化剂的技术性能介绍 QCS―11是钴钼系一氧化碳耐硫变换催化剂,是我公司专门为高CO、高水气比研究开发的催化剂。已经在两个壳牌气化工艺一变使用。和QCS-03/QCS-01催化剂相比,耐热温度高、活性稳定性好、孔结构更加合理,另外,颗粒度均匀、装填效果好,能够有效的保证装填均匀、阻力减小。镁-铝-钛三元尖晶石载体及特殊的加工制作工艺是确保QCS-11催化剂具备上述特性的基础和必备条件。 目前高CO、高水气比工艺包括壳牌炉气化、航天炉气化、GSP气化等,其中神华宁煤使用GSP是目前CO和水气比最高的工艺,对催化剂的要求也最高。我公司的QCS系列催化剂采用镁-铝-钛三元载体、稀土助剂,其活性稳定性、工况适应性是最好的,在与国外、国内催化剂对比使用过程中得到很多验证,获得中国、美国、德国、日本、印度、南非等国家的专利。 QCS―11钴钼系一氧化碳耐硫变换催化剂,适用于以重油、渣油部分氧化法或煤气化法造气的变换工艺,促进含硫气体的变换反应,是一种适应宽温(220℃~550℃)、宽硫(工艺气硫含量≥0.01% v/v)和高水气比(0.2~2.0)。该催化剂具有机械强度高,结构稳定性好,脱氧能力强等特点,能有效地脱除与吸附原料气中的氧和焦油等杂质或毒物。对高空速,高水气比的适应能力强,稳定性好,操作弹性较大。具有稳定的变换活性,可延长一氧化碳耐硫变换催化剂的使用寿命。 新鲜催化剂活性组份钴、钼以氧化钴、氧化钼的形式存在,使用时应首先进行硫化,使金属氧化物转变为硫化物。可以用含硫工艺气体硫化,也可用硫化剂单独硫化。 QCS―11耐硫变换催化剂不含对设备和人体有危害的物质,硫化时也只有少量的水生成并随工艺气排出,对设备无危害。 主要特点为: ●耐热温度高、活性稳定性好、孔结构更加合理。 ●颗粒度均匀、装填效果好,能够有效的保证装填均匀、阻力减小。 ●镁-铝-钛三元尖晶石载体及特殊的加工制作工艺是确保QCS-11催化剂具备独特性 能的基础和必备条件。 ●抗水合性能好,适用高水气比:0.2-2.0,可耐5.0MPa水蒸气分压。 ●耐热稳定性好,适合宽温变换:200-550℃。

加氢催化剂的预硫化及其影响因素

加氢催化剂的预硫化及其影响因素 张笑剑 摘要:加氢催化剂的预硫化是提高催化剂活性,优化加氢催化剂操作,获得理想经济效益的关键之一。为获得理想的硫化效果,必须严格控制各阶段的反应条件。本文介绍了加氢催化剂预硫化的反应原理,探讨了在预硫化过程中影响催化剂预硫化效果的因素。 关键词:加氢催化剂硫化技术操作条件影响因素 加氢催化剂硫化是提高催化剂活性,优化装置操作,延长装置运转周期,提 高经济效益的关键技术之一。加氢催化剂主要由金属组分(一般为W,Mo,Co, , Ni 等)和载体(氧化铝 ,二氧化硅,沸石,活性炭,黏土,渗铝水泥和硅藻土等)两部分组成,金属组分以氧化态的形式负载在多孔的载体上,促进加氢脱氮,加氢脱硫,加氢脱芳烃,加氢脱金属,加氢脱氧和加氢裂化等反应。生产经验和理论研究表明:氧化态催化剂的加氢活性,稳定性和选择性均低于硫化态催化剂。只有将催化剂进行硫化预处理,使金属组分从氧化态转变为硫化态,催化剂才具有较高的活性,稳定性和选择性,抗毒性强,寿命长,才能够最大限度地发挥加氢催化剂的作用。 1硫化原理 1.1 H 2 S的制备 H 2 S主要来自硫化剂的分解:硫化剂的分解均为放热反应,且理论分解温度与 实际操作条件下的分解温度有所差别,一般有机硫化物在催化剂和H 2 条件下分解温度通常比常温下分解温度低10~25o C。 CS 2+4H 2 =CH 4 +2H 2 S CH 3SSCH 3 +3H 2 =2CH 4 +2H 2 S 1.2金属氧化物的硫化 金属氧化物的硫化是放热反应。理想的硫化反应应为 MoO 3+2H 2 S+H 2 =MS 2 +3H 2 O 9CoO+8H 2S+H 2 =Co 9 S 8 +9H 2 O 3NiO+2H 2S+H 2 =NiS+3HO WO 3+2H 2 S+H 2 =WS 2 +3H 2 O

预加氢催化剂预硫化方案

中国石化九江分公司 30×104t/a重整预加氢装置FH-40C催化剂原则开工方案中国石油化工股份有限公司抚顺石油化工研究院 二○○九年四月 一、催化剂干燥 1、干燥前的准备工作 (1)催化剂装填完毕,临氢系统进行氮气置换、气密合格。催化剂干燥用氮气作介质。 (2)绘出催化剂干燥脱水升、恒温曲线。 (3)催化剂干燥前,各切水点排尽存水,并准备好计量水的器具。 2、干燥示意流程 ↓N2 循环氢分液罐→循环压缩机→换热器→加热炉 ↑↓ 分离器←水冷←空冷←换热器←反应器 ↓放水 3、催化剂干燥条件: 高分压力: 反应器入口温度:250℃ 循环氮气量:循环压缩机全量循环 干燥温度要求见表2。 表2 催化剂干燥温度要求 反应器入口温度 ℃床层温度 ℃ 升、降温速度 ℃/h 升、恒温参考时间 h

常温→250-10~1515 250~280≮200-至干燥结束 250→<150≯15020~254~5 4、干燥结束标准 高分无明水放出。 5、干燥操作 (1)在氮气压力下,循环压缩机全量循环,加热炉点火,以10~15℃/h的升温速度将反应器入口温度升至250℃,开始恒温脱水。如果催化剂床层最低点温度达不到200℃,可适当提高反应器入口温度,但反应器入口温度≯280℃。 (2)在干燥过程中,每2小时在高分放水一次,并计量。 (3)画出催化剂脱水干燥的实际升、恒温曲线图。 (4)干燥达到结束标准后,以≯25℃/h的降温速度将反应器床层各点温度均降至<150℃,方可引入氢气进行高压气密,合格后进行催化剂预硫化。 二、催化剂预硫化 催化剂预硫化是指催化剂在氢气存在下,硫化剂(如DMDS)分解生成H2S,H2S使催化剂金属组分由氧化态转化成相应的硫化态。 在预硫化过程中,关键问题是要避免金属氧化态在与H2S反应转化成硫化态之前被热氢还原。所以,催化剂预硫化时,必须控制好预硫化温度与循环氢中H2S含量的关系,在H2S未穿透催化剂床层前,床层最高点温度不应超过230℃。

耐硫变换催化剂及其使用技术

耐硫变换催化剂及其使用技术 1.钴-钼系耐硫变换催化剂及其使用工艺 1.1加压气化工艺及其耐硫变换催化剂 众所周知,在合成氨厂中,合成氨原料气中一氧化碳的变换通常是在铁-铬变换催化剂的存在下进行:CO+H2O<----------->C02+H2+Q 以铁为主的催化剂,由于其中(300~450℃)活性高,价格低廉,几十年来一直被广泛用于一氧化碳和水蒸气的变换反应。这种催化剂的缺点是水蒸气消耗高,在高硫气氛中,其变换活性低。因此,几十年来合成氨的净化流程历来是先脱硫后变换再脱碳。高温的粗煤气经经降温脱硫,在升温补入水蒸气变换,这样就带来流程长,能耗高的缺点。 五十年代,重油部分氧化工艺用于制合成氨原料气,之后,又开发了水煤浆德士古气化制合成氨原料气。针对直接回收热能的冷凝流程,为了充分利用气化反应热及气体中的水蒸气,国外首先开发了一种钴-钼系耐硫变换催化剂串联于气化之后,实现了先变换然后再脱硫脱碳的工艺,从而缩短了流程,降低了能耗。 由于重油(或渣油)部分氧化工艺以及水煤浆德士古气化工艺都是在较高的压力(一般在3.5~8.OMpa)下进行,而且气体中的一氧化碳浓度较高(46~48%),水蒸气浓度高(汽/气比高达1.5),反应热较高,(第一段出口温度可达450~460℃),因此要求用于该流程的耐硫变换催化剂能耐热、耐水汽和耐高压,催化剂有较高的强度和稳定的结构,使之具有足够的使用寿命。这种催化剂一般在载体中添加了镁及其它一些添加剂,或采用一些特殊的制法以稳定载体和催化剂的结构。我们把这种催化剂归为耐高压的中温型钴-钼耐硫变换催化剂。近十多年来,我国已引进了一批油气化和水煤浆加压气化的大、中型化肥(化工厂),形成了应用这类型钴-钼耐硫变换和节能工艺的一个系列。 1.2中串低流程及其变换催化剂 国内煤固定床气化制合成氨原料气的工艺,几十年来一直采用铁-铬型催化剂用于一氧化碳的变换反应,净化工艺一直采用先变换后脱硫脱碳的工艺。催化剂寿命短,水蒸气耗量高、能耗高。自上世纪八十年代以来,我国的合成氨工艺在节能降耗方面取得了重大突破,一些性能优良的节能型催化剂的开发和应用,为各种低能耗节能制氨工艺的开发奠定了技术基础。其中钴-钼型一氧化碳耐硫变换催化剂的开发和应用就是重要的技术进步之一。 这种含有碱金属的钴-钼型耐硫变换催化剂具有很高的低温活性,强度好,寿命长。它首先用于原铁铬型中变催化剂工艺中的第三段,即第三段的铁-铬催化剂改为钴-钼系列耐硫低温变换催化剂,或在原有三段铁-铬型变换的基础上加装一个小型的装有钴-钼型耐硫低变催化剂的低变炉。这就是国内最早开发的中串低的工艺。 中串低工艺的应用,降低了变换气中的汽/气比和第三段催化剂的温度,从而产生明显的经济效益,可归纳为以下三点: (1)节约水蒸气 全部使用铁-铬催化剂时,吨氨水蒸气消耗为800~1000kg。应用中串低工艺后,吨氨水蒸气消耗为400~500kg,减少了约50%。 (2)增产合成氨 应用中串低工艺后,出口变换气中的一氧化碳浓度与原来全铁-铬催化剂流程相比,从约3%下降到1%以下,从而达到增产氢气和合成氨。据估算,一个相当于1.5万吨/年的合成氨厂,每日可增产2.6吨氨。 (3)减少铜洗负荷 1.3中串低、中低低及全低变流程比较

催化剂预硫化

黑龙江安瑞佳石油化工有限公司 学习资料 (催化剂预硫化方法) 气分车间 2013年4月 催化剂的预硫化

催化剂的预硫化有两种方法:一是干法预硫化,亦称气相预硫化,即在循环氢或氢氮混合气或氢气与丙烷或氢气与丁烷混合气存在下注入硫化剂进行硫化;二是湿法预硫化,亦称液相预硫化,即在循环氢存在下以轻油等为硫化油携带硫化剂注入反应系统进行硫化。 催化剂硫化的基本原理 催化剂硫化是基于硫化剂(CS2或二甲基二硫DMDS )临氢分解生成的H2S, 将催化剂活性金属氧化态转化为相应的硫化态的反应。 干法硫化反应:用氢气作载体,硫化氢为硫化剂。 M O O3 + 2H2S + H2 ----------- ? M0S2 + 3H2O 9CoO + 8H2S + H2 --------- ? C09S8 + 9H2O 3NiO + 2H2S + H2 ________ . M3S2 + 3出0 湿法硫化反应:用氢气作载体,CS2为硫化剂。 CS2 + 4H2 ----------- ? 2H2S + CH4 M O O3 + CS2 + 5H2 --------------- k M0S2 + 3H20 + CH4 M O O3 + CS2 + 3H2 ---------------- ? M0S2 + 3H2O + C 9C O O + 4CS2 + 17H2 -------------- 09S8 + 9H20 + CH4 9C O O + 4CS? + 9H2 ----------- k C09S8 + 9H2O + 4C 3Ni0 + 2CS2 + 5H2 ------------ ? M3S2 + 3出0 + CH4 基于上述硫化反应式和加氢催化剂的装量及相关金属含量可估算出催化剂硫化剂的理论需要量。其硫化剂的备用量(采购量)一般按催化剂硫化理论需硫量的1.25倍考虑即可。

中温变换催化剂的升温还原原操作说明

中温变换催化剂的升温还原,钝化降温原理和操作方法 中变触媒是以三氧化二铁为主体的铁铬触媒,其本身是没有催化活性的,在生产时必须先将其还原成尖晶石结果的四氧化三铁,才具有很高的催化活性。其还原方法是利用半水煤气中的CO和H2来进行的,其还原反应如下: 3Fe2O3 +CO =2Fe3O4 +CO 2+Q 3Fe2O3 +H2 =2Fe3O 4 +H2O +Q 一,升温还原前的准备工作 1,根据所用催化剂的性能,制定相应的升温还原方案,绘制升温曲线,准备好操作记录表,同时检查电炉及电器,仪表,完好正常后方可进行。 2,认真检查系统内各盲板是否拆除,系统是否吹净,试压置换合格,系统内各阀门的开关是否在正确位置。 3,触媒升温还原操作人员应有明确分工,炉温操作有技术熟练的主操作担任。 二,升温还原程序 1,升温还原方法:先用被电炉加热器的高温空气进行升温,然后配入半水煤气进行还原。整个升温还原操作分为空气升温,蒸汽置换和过CO还原三个阶段。 2,确定升温还原的流程和线路,使其畅通合理,完成升温前的所有准备工作后,便可向变换系统输送空气。 3,开启罗茨机或压缩机,以最大空气量通过升温还原系统,要求空速在200~300NM3/hm3,在保证电炉出口温度及升温速率的前提下,空速越大越好,全开放空阀,使系统压力越低越好。 4试送一组电炉,开始空气升温。电炉出口温度及升温速率必须严格地按方案控制,温度不宜过高,升温速率不宜过快。电炉出口温度及升温速率的控制方法是气量的变化和电炉功率的调节相配合,其操作首先保证大空速,其次是调节电炉功率。 5,尽可能地缩小触媒层的轴向温差,温差以50~80℃为妥。120℃恒温主要是缩小触媒层轴向温差,有得于游离水缓慢地蒸发,以保证触媒的平稳温升和保护触媒的强度。200℃恒温应将触媒层最低温度提至高于蒸汽漏点温度20℃以上,在系统压力为0.05~0.1MPa时,触媒最低温度应在120~130℃以上,为蒸汽置换作好温度上的准备。恒温操作首先保证大蒸汽量。其次是适当地调节电炉功率,其电炉出口温度必须严格稳定在方案所要求的范围内,一般不应采用过高地提高电炉出口温度来提高触媒最低温度的方法。 6.在触媒层最低温度高于蒸汽露点后,可转为蒸汽置换升温。在转空气升温为蒸汽置换升温的过程中,应注意保护好电炉,保证温升的平稳,保证罗茨机和压缩机的安全正常运行。严禁系统压力过高,严禁带水进系统,尤其是触媒层。在保证电炉出口温度及升温速率的前提下,在兼顾系统压力尽可能低的情况下,蒸汽量低些好。蒸汽应将升温还原系统的所有设备和管线里的空气彻底置换干净(包括副线及设备的底部等死角)。如需走倒流程置换应注意变化电炉,保证电炉出口温度温升的平稳,应避免变换气体的倒流。要经常排放系统各处冷凝水。 7,蒸汽置换升温结束,当温度平稳,系统氧含量≦0.5%后,可转入触媒还原阶段。宜采用打气量小的压缩机向系统送半水煤气,一般压缩机二出压力约0.05~0.1MPa,若采用罗茨机送为气还原,在保证罗茨机安全运行的前提下,压力尽可能高些,以保证还原煤气能进入升温还原系统。如通煤气还原的阀门太大,可考虑设置管线小的近路来比较准确地调节还原煤气量。 8,应在大蒸汽比例的情况下,配入极少量的煤气。开始触媒的还原,操作者应十分认真和慎重,应避免还原煤气量过大造成还原速度过快,温度过高。触媒还原时间应长,应大于

水煤浆宽温耐硫变换换热器泄漏原因分析及应对措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.水煤浆宽温耐硫变换换热器泄漏原因分析及应对措 施正式版

水煤浆宽温耐硫变换换热器泄漏原因分析及应对措施正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 随着化工行业的大型化趋势,水煤浆 气化配套宽温耐硫变换工艺已经普遍应用 与煤化工行业,由于该工艺使用时间较 短,系统中存在这样或那样的问题,反映 出来就是设备的泄漏停车,其中静止设备 中换热器泄漏最经常遇到。原因有工艺方 面的问题,也有设备的先天不足,还有施 工质量控制等方面的因素。本文的重点是 对该类设备问题进行分析,并在工艺操作 及设备的制造安装方面来控制避免造成泄 漏。 1、对国内变换工艺设备泄漏情况调研

1、安徽某化肥单位出现变换两台废锅全部泄露,造成系统停车,损失巨大,主要现象是高低压废热锅炉合成气泄露至蒸汽侧。 原因分析: (1)设备泄漏原为设计结构没有无废锅进水防冲板结构,造成水流直接冲击换热管。 (2)设备操作温度高,液位控制过低,引起换热管气相部分振动。 (3)另一方面就是管子质量可能存在质量问题。 2、山东某水煤浆工艺煤化工单位蒸汽过热器甲醇合成产蒸汽带水。原因分析:带液冷激造成泄漏。

钴系催化剂研究进展

钴系催化剂的研究和发展 ---含钼催化剂的研究和发展 摘要:含钼催化剂广泛用于多种化工生产过程,在含钼精细化学品的研究与开发中占有重要地位。简要介绍了我国近年来一些含钼催化剂的研究进展和有关文献。催化是现代十分重要的化工技术,据统计,发达国家近三分之一的国民经济总产值来自初花技术。含钼催化剂在催化领域占有重要地位,广泛用于石油加工和化工生产,如合成气制造,基本有机合成和精细化工产品等的生产。因此,长期以来国内外对含钼催化剂的创新和改进不断进行。这也引起我国钼业界的广泛关注,逐渐成为我国钼深加工领域的一个新的发展方向。 关键字:含钼催化剂、合成醇催化剂 (1)烷烃芳构化催化剂 四烷无氧脱氢芳构化,为甲烷活化和转化的一个新的研究热点。王林胜等在1993年首次报道一种以HZSM-5分子筛为载体的含钼催化剂使甲烷于无氧条件下高选择性地转化为苯。该催化剂是甲烷芳构化反应的典型催化剂。此后,对这种催化剂的研究活跃。舒玉瑛等用机械混合、机械混合后焙烧、机械混合后微波处理等方法制备这种催化剂,并考察了其对甲烷芳构化反应的催化性能。结果表明:机械混合法、固相反应

法和微波处理法制备。Mo/HZSM-5催化剂,比一般浸渍法能明显提高芳烃的选择性和减少积碳生成;在不同制法的Mo/HZSM-5催化剂上,Mo 物种落位不同,机械混合法、固相反应法和微波处理法能使Mo物种较多地落位于分子筛外表面,这对甲烷芳构化反应有利,并明显减少积碳的生成。 最近,田丙伦等报道了对Mo/MCM-22催化剂用于甲烷无氧芳构化的研究结果。MCM-22为晶粒呈片状、含两种孔道结构的高硅沸石分子筛。同Mo/HZSM-5催化剂相 比,Mo/MCM-22催化剂稳定性更好,苯产物的选择性较高 。用浸渍法制备的Mo担载量为6%的Mo/MCM-22催化剂性能最佳。此外,还研究了添加钴对Mo/MCM-22催化反应性能和催化剂积碳性质的影响。(2)烷烃选择氧化催化剂 甲基丙烯酸(MAA)是重要的有机化工原料,当前主要用烯烃为原料生产。然而,饱和烃较烯烃来源广泛,更经济易得,故近年来由异丁烷氧化制MAA已成研究与开发的新方向。采用一般热表面催化法由异丁烷选择氧化制取MAA主要存在的问题是MAA选择性低,浓度反应产物(COx)高达40%。激光促进表面反应法是很有应 用前景的光催化合成新技术。最近,陶跃武等分别采用在铋钼复合氧化物、钒钼复合氧化物表面上激光促进异丁烷选择氧化制MAA,取得选择性达到90%和无COx产生的良好结果。 (3)加氢处理催化剂

相关文档
相关文档 最新文档