文档库 最新最全的文档下载
当前位置:文档库 › 《自然》《科学》一周(8.27-9.2)材料科学前沿要闻

《自然》《科学》一周(8.27-9.2)材料科学前沿要闻

《自然》《科学》一周(8.27-9.2)材料科学前沿要闻
《自然》《科学》一周(8.27-9.2)材料科学前沿要闻

1. 高性能钙钛矿/Cu(In,Ga)Se2单片串联太阳能电池

材料名称:Cu(In,Ga)Se2

研究团队:美国加州大学洛杉矶分校 Yang Yang 研究组

原标题:High-performance perovskite/Cu(In,Ga)Se2 monolithic tandem solar cells

混合钙钛矿和 Cu(In,Ga)Se2(CIGS)的组合,具有互补的可调谐带隙以及这些材料的优异光伏特性,因此具有实现高效薄膜串联太阳能电池的潜力。在串联太阳能装置架构中,互连层在确定整体电池性能中起着关键作用,需要有高效的电连接和高光学透明度。Han 等人利用 CIGS 表面的纳米级界面工程和子电池之间的重掺杂聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)空穴传输层,来保持开路电压并增强填充因子和短路电流。单片钙钛矿/CIGS 串联太阳能电池的效率达到 22.43%,并且在持续的 1 个太阳光照射下老化 500 小时后,在环境条件下未封装的器件仍保持了其初始效率的88%。(Science DOI: 10.1126/science.aat5055)

2. 对模拟过渡金属的碱土金属配合物 M(CO)8(M = Ca,Sr 或 Ba)的观测

材料名称:碱土金属配合物 M(CO)8(M = Ca,Sr 或 Ba)

研究团队:南京工业大学 Gernot Frenking 研究组

原标题:Observation of alkaline earth complexes M(CO)8 (M = Ca, Sr, or Ba) that mimic transition metals

碱土金属钙(Ca)、锶(Sr)和钡(Ba)通常通过其 ns 和 np 价轨道作为经典主族元素进行化学键合,其中 n 是主量子数。Wu 等人报导了低温氖基质中八配位羰基配合物 M(CO)8(其中 M = Ca,Sr 或 Ba)的分离和光谱表征。对这些立方 O h-对称配合物的电子结构的分析表明,金属-(CO)键主要来自 [M(dπ)]→(CO)8π反馈,这解释了观察到的 CO 伸缩频率红移。对应的自由基阳离子络合物在气相中制备,并通过质量选择的红外光解离光谱法表征,证实了对常规下与过渡金属化学更相关的 18-电子规则的粘附性。(Science DOI: 10.1126/science.aau0839)

3. 基于生物的碳氢化合物生产所面临的障碍和机遇

材料名称:碳氢化合物

研究团队:瑞典查尔姆斯理工大学 Jens Nielsen 研究组

原标题:Barriers and opportunities in bio-based production of hydrocarbons 温室气体(GHGs)的积累引起了全球气候变化,而这引起了人们对继续依赖化石燃料作为我们主要能源的担忧。使用微生物发酵过程由生物质产生的碳氢化合物可以作为高质量的液体运输燃料,并且可以有助于减少温室气体排放。Zhou 等人讨论了基于生物生产用作柴油和喷气燃料的碳氢化合物所面临的障碍和机会,并综述了用于生产这些化学品的工程微生物的最新进展。要想建立基于生物的廉价原料产烃主要面临两个挑战:降低开发稳定且高效的微生物细胞工厂的成本,以及建立更高效的将生物质水解成用于发酵的糖的途径。Zhou 等人讨论了如何开发新的系统和合成生物学工具,以便能够更快、更便宜地建造微生物细胞工厂,从而解决第一个挑战,以及生物质加工的最新进展,这可能会促使在不久的将来克服第二个挑战。(Nature Energy DOI: 10.1038/s41560-018-0197-x)

4. CH3NH3PbI3钙钛矿中铁弹性孪晶畴的化学性质

材料名称:CH3NH3PbI3钙钛矿

研究团队:美国橡树岭国家实验室 Olga S. Ovchinnikova 研究组

原标题:Chemical nature of ferroelastic twin domains in CH3NH3PbI3 perovskite 有机-无机混合钙钛矿所具有的非凡光电性能推动研究人员为揭示其性质而不断努力。最近,作为甲基铵三碘化铅等材料中电流-电压滞后特性的可能解释,使得对甲基铵三碘化铅的铁孪晶畴的观测引起了人们极大的关注。然而,孪晶畴的性质,其局部化学性质和对光电性能的化学影响仍不清楚。在这里,使用多模式化学和功能成像方法,Liu 等人揭示了在三甲基三碘化铅中用压电力显微镜观察到的孪晶畴差别的力学起源。通过将实验结果与第一性原理模拟相结合,揭示了铁弹性孪晶畴与化学偏析之间的内在耦合。这些结果揭示了铁性特性和化学偏析对有机-无机混合钙钛矿的光电性能的相互作用,并为改进功能器件提供了探索性途径。(Nature Materials DOI: 10.1038/s41563-018-0152-z)

5. 室温下中红外石墨烯等离子体的高效电检测

材料名称:石墨烯

研究团队:西班牙巴塞罗那科学技术研究所 F. Javier García de Abajo和美国耶鲁大学 Fengnian Xia 研究组

原标题:Efficient electrical detection of mid-infrared graphene plasmons at room temperature

石墨烯等离子体的光学激发和随后的衰变可以使电荷-载流子温度显著增加。将该温度升高转换成电信号的有效方法可以实现重要的中红外应用。然而,石墨烯热电系数较小以及载流子传输的温度依赖性较弱都阻碍了这一目标的实现。Guo 等人展示了中红外石墨烯探测器,它由等离子体谐振器阵列组成,这些谐振器通过准一维纳米带相互连接。与纳米带中的无序有关的局部屏障产生了对载流子传输的显著温度依赖性,因此能够对临近石墨烯谐振器中等离子体衰变进行电检测。该器件亚波长覆盖为 5×5μm2,工作电流为 12.2μm,外部响应度为 16 mA·W-1,室温下噪声等效功率低至 1.3 nW·Hz-1/2。该器件采用大规模石墨烯制造,具有简单的双端几何结构,是实现片上石墨烯中红外探测器阵列的重要一步。(Nature Materials DOI: 10.1038/s41563-018-0157-7)

6. 范德华量子阱中子带间跃迁的纳米成像

材料名称:二维材料

研究团队:西班牙巴塞罗那科学技术学院 Frank H. L. Koppens 研究组

原标题:Nano-imaging of intersubband transitions in van der Waals quantum wells

几十年来,随着半导体异质结构的发展,推动了电子和光电子学的科学和应用。红外和太赫兹频率范围中的许多应用利用了半导体量子阱中的量子化状态之间的转换(子带间跃迁)。然而,目前的量子阱器件在功能和多功能性方面受到扩散界面和晶格匹配生长条件需求的限制。Schmidt 等人介绍了范德华量子阱中子带间跃迁的概念,并报导了首次实验观测。范德华量子阱由二维材料自然形成并具有未探索的潜力能够克服前文所述的限制,即它们形成原子级清晰的界面并且可以较容易地组合成异质结构而没有晶格匹配限制。Schmidt 等人采用近场局部探测来以光谱方式解析具有纳米级空间分辨率的子带间跃迁,并静电控制吸收。这项研究工作使得利用具有设计自由度的单子带间转换以及适用于光电探测器、发光二极管和激光器的单独的电子和光学控制成为了可能。(Nature Nanotechnology DOI: 10.1038/s41565-018-0233-9)

7. 通过角分辨光电子能谱实现对量子材料电子结构的可视化

材料名称:拓扑量子材料

研究团队:上海科技大学 Yulin Chen 研究组

原标题:Visualizing electronic structures of quantum materials by angle-resolved photoemission spectroscopy

电子结构是决定材料的电学、磁学和光学性质的关键特性。由于角分辨光电子能谱(ARPES)具有对能带色散和费米面直接可视化的能力,使其已经成为一种强大的实验工具,可以提取材料的电子结构以及这些电子结构与晶格中不同自由度的耦合。在过去的三十年中,仪器和光源的进步大大提高了 ARPES 实验的准确性和效率。这些进步使得 ARPES 在新材料系统中的应用有助于我们理解它们的物理特性和性能。Yang 等人简要介绍了 ARPES 的原理,并概述了它在不同材料系统,重点是拓扑量子材料和过渡金属二硫化物中的应用。(Nature Reviews Materials DOI: 10.1038/s41578-018-0047-2)

材料科学与工程

材料科学与工程 Materials Science and Engineering (专业代码:0805) 一、培养目标 本学科培养德、智、体、美、劳全面发展,具有坚实系统的材料科学与工程理论基础,了解材料科学与工程学科国际前沿领域和发展动态,能在科学研究和工程实践中做出创新性成果,并能够适应我国经济、科技、教育发展需要,从事材料科学与工程领域研究和教育的高层次人才。 二、主要研究方向 主要研究方向包括: 1.材料物理与化学:先进功能材料、先进光电功能材料与器件、材料计算与理论设计,高温超导电性、自旋电子学、新型人工晶体材料、太阳能电池,生物材料、材料先进表征、材料的微观结构和缺陷、材料疲劳与断裂机制、磁学与磁性材料、材料力学行为基础、催化材料、相变制冷材料、量子材料。 2.材料学:材料结构与性能关系、材料制备与加工、先进能源材料与应用技术(包括固体氧化物燃料电池材料、太阳能电池材料、锂离子电池材料、透氧透氢陶瓷膜反应器材料)、微电子材料、印刷电子工程材料与器件、无机膜材料、涂层材料、荧光材料、新型碳材料、陶瓷材料、微纳结构与器件、柔性材料与器件、特种用途材料、极端条件下材料制备、纳米材料、钛合金、生物医用材料、镁铝等轻合金材料、环境功能材料、高温合金等。 3.材料加工工程:特种合金及部件制备、材料表面工程及薄膜技术、金属塑性加工技术、焊接与连接技术、钢及合金的制备、加工及计算机模拟、合金凝固过程、钢铁冶金、粉末冶金、金属基复合材料、稀土金属及应用、大尺寸构件均质化制备。 4.腐蚀科学与防护:腐蚀电化学、高温氧化、材料力学与化学的交互作用、材料自然环境腐蚀、材料腐蚀防护技术。 三、课程类型和学分要求 1.硕士培养模式。通过硕士研究生招生统考或免试推荐等形式,取得我校硕士研究生资格者。研究生在申请硕士学位时,取得的总学分不低于35学分。其中公共必修课7学分,硕士学科基础课不少于10学分,硕士学科基础课和硕士专业基础课获得的总学分

材料科学前沿论文

智能材料的结构及应用 学院:班级: 姓名:学号: 摘要:材料的智能化代表了材料科学发展的最新方向,智能材料是一种能通过系统协调材料内部各种功能并对时间、地点和环境作出反应和发挥功能作用的材料。且能感知外部刺激,能够判断并适当处理且本身可执行的新型功能材料。本文旨在简要介绍智能材料的结构的基础之上,介绍一些它在当今社会不同领域的应用。 关键词:智能材料、结构、应用 材料的发展从之前的单一型、复合型和杂化型,发展为异种材料间的不分界的整体式融合型材料。而近几年所兴起的智能材料更是不同于以往的传统材料,它的仿生系统具有传感、处理和响应功能,而且与机敏材料相比更接近于生命系统。它能够根据外界环境条件的变化程度实现非线性响应从而达到最佳适应的效果。对于智能材料我结合自己听课的内容、书籍及网上资料的查阅写下对智能材料的认识。 智能材料不同于传统的结构材料和功能材料,它模糊了两者之间的界限并加上了信息科学的内容,实现了结构功能化功能智能化。一般来说智能材料由基体材料、敏感材料、驱动材料和信息处理器四部分构成。即: (1)基体材料:基体材料担负着承载的作用,一般宜选用轻质材料。一般基体材料首选高分子材料,因为其重量轻、耐腐蚀,尤其具有粘弹性的非线性特征。其次也可选用金属材料,以轻质有色合金为主。 (2)敏感材料:敏感材料担负着传感的任务,其主要作用是感知环境变化(包括压力、应力、温度、电磁场、PH值等)。常用敏感材料如形状记忆材料、压电材料、光纤材料、磁致伸缩材料、电致变色材料、电流变体、磁流变体和液晶材料等。 (3)驱动材料:因为在一定条件下驱动材料可产生较大的应变和应力,所以它担负着响应和控制的任务。常用有效驱动材料如形状记忆材料、压电材料、电流变体和磁致伸缩材料等。可以看出,这些材料既是驱动材料又是敏感材料,显然起到了身兼二职的作用,这也是智能材料设计时可采用的一种思路。 (4)其它功能材料:包括导电材料、磁性材料、光纤和半导体材料等。

专业前沿讲座-心得报告

专业前沿讲座 ——《太阳能电池》心得报告人类目前正面临严重的能源危机和环境恶化的问题。因此,蕴藏量无穷的太阳能,可能成为未来的主要能源之一。 1954年美国贝尔实验室制成了世界上第一个实用的太阳能电池,效率为4%,于1958年应用到美国的先锋1号人造卫星上。太阳能电池逐渐由航天等特殊的用电场合进入到地面应用中。一个4KW的屋顶家用光伏系统可以满足普通家庭的用电需要,每年少排放的CO2的数量相当于一辆家庭轿车的年排放量。由于材料、结构、工艺等方面的不断改进,现在太阳能电池的价格不到20世纪70年代的1%。预期10年内太阳能电池能源在美国、日本和欧洲的发电成本将可与火力发电竞争。目前,年均增长率35%,是能源技术领域发展最快的行业。 太阳能电池的发电原理是基于光伏效应(Photovoltaic Effect)由太阳光与材料相互作用而产生电势太阳能电池的种类按照所用材料的不同分为3种:无机太阳能电池,如半导体硅 (单晶、多晶、非晶、复合型等),化合物半导体(GaAs、CuInSe2、CdTe、InP 等);有机太阳能电池如有机半导体(酞菁锌、聚苯胺、聚对苯乙炔等);光化学太阳能电池例如纳米TiO2等。 无机太阳能电池的工作原理是半导体中可以利用各种势垒如pn结、肖特基势垒、异质结等形成光伏效应。当太阳能电池受到阳光照射时,光与半导体相互作用可以产生光生载流子,所产生的电子

-空穴对靠半导体内形成的势垒分开到两极,正负电荷分别被上下电极收集。由电荷聚集所形成的电流通过金属导线流向电负载。 有机太阳能电池工作原理: 有机半导体产生的电子和空穴束缚在激子(excitons)之中,电子和空穴在界面(电极和导电聚合物的结合处)上分离。它的特点:价格低、易成型,通过化学修饰调控性能。太阳能电池材料与器件结构的研究与开发可以为各种太阳能电池材料杂质与缺陷的转换效率及稳定性产生影响。也可以使太阳能电池与建筑物结合,架设太阳电池组件 太阳能电池在航天技术发展中有着不可替代的作用。由于材料与器材结构的研究与开发,太阳电能池的地面应用的潜在能力得到了发挥。从微观上认识光伏太阳能电池的本质,开展原位表征和超快时间分辨技术研究光生电子的迁移传输规律,为人们设计较高光电转换效率的半导体材料及染料敏化剂提供理论指导。太阳能的开发利用是人类进入21世纪必须解决的难题。太阳能电池作为清洁太阳能转换装置将有利于缓解世界的能源危机和环境污染问题。太阳能电池的研究有着重要的意义。

对生命科学的理解

刚接触生命科学这个学科时,我是那么的迷茫。因为在我上大学之前,我对生命科学是一点都不了解,对它以后发展的前景也是一无所知。但学校设置的生命科学前沿讲座,通过各位教授前沿讲座,通过各位教授的引导,使我对生命科学有了一定的了解。生命科学是21世纪最重要的科学。过去的一年里,科学已经取得了一些重大的进步。在气候科学领域,科学家们怎样的影响。与对极地冰川消失进行了综合考察,比以往更详细的发现了全球变暖对于北极和南极带来在此同时,人类学家追溯了人类的足迹揭开了曾经居住在中国的未知祖先线索。然后又出现了一些奇怪而又真实的发现,比如说一项研究表明1800年前的宦官比他们的同龄人长寿。但是人们总是存在更多的愿望,随着我们从2012年跨入2013年,生命科学网征询了各个领域研究人员在新的一年里的希望和梦想。 生命科学是系统地阐述与生命特性有关的重大课题的科学。支配着无生命世界的物理和化学定律同样也适用于生命世界,无须赋于生活物质一种神秘的活力。对于生命科学的深入了解,无疑也能促进物理、化学等人类其它知识领域的发展。比如生命科学中一个世纪性的难题是“智力从何而来?”我们对单一神经元的活动了如指掌,但对数以百亿计的神经元组合成大脑后如何产生出智力却一无所知。可以说对人类智力的最大挑战就是如何解释智力本身。对这一问题的逐步深入破解也将会相应地改变人类的知识结构。 正如我们老师所说,生命科学研究不但依赖物理、化学知识,也依靠后者提供的仪器,如光学和电子显微镜、蛋白质电泳仪、超速离心机、X-射线仪、核磁共振分光计、正电子发射断层扫描仪等等,举不胜举。生命科学学家也是由各个学科汇聚而来。学科间的交叉渗透造成了许多前景无限的生长点与新兴学科。 生命科学研究或正在研究着的主要课题是:生物物质的化学本质是什么?这些化学物质在体内是如何相到转化并表现出生命特征的?生物大分子的组成和结构是怎样的?细胞是怎样工作的?形形色色的细胞怎样完成多种多样的功能?基因作为遗传物质是怎样起作用的?什么机制促使细胞复制?一个受精卵细胞怎样在发育成由许多极其不同类型的细胞构成的高度分化的多细胞生物的奇异过程中使用其遗传信息?多种类型细胞是怎样结合起来形成器官和组织?物种是怎样形成的?什么因素引起进化?人类现在仍在进化吗?在一特定的生态小生境中物种之间的关系怎样?何种因素支配着此一生境中每一物种的数量?动物行为的生理学基础是什么?记忆是怎样形成的?记忆存贮在什么地方?哪些因素能够影响学习和记忆?智力由何而来?除了在地球上,宇宙空间还有其它有智慧的生物吗?生命是怎样起源的?等等。 在上述问题的研究中积累起来的知识已经或正在应用于人类社会,并产生了巨大的效益如减少人类疾病和动植物病害、改善人类的营养状况,减少环境公害、保护自然资源等等。 近年来,生物工程的兴起,使我们面临着重大的机遇与挑战。在这一关键时刻,我们必须有所作为,理解并参与做出决定。生命的基本特征遗传与变异生命的基本特征遗传与变异遗传与变异,是生物界不断地普遍发生的现象,也是物种形成和生物进化的基础。基因的两大特性稳定性和变异性决定了生物体的遗传和变异。生物的亲代能产生与自己相似的后代的现象叫做遗传。遗传通过基因的稳定性得以实现。稳定性是指基因能够自我复制,使后代基因保持祖先的样子。在日常生活中,我们常会看到,同一窝生的猫和猪,会出现毛色不同;自己和兄弟姐妹的相貌与父母也不同……。为什么会这样呢?这就如同“世界上找不到两片完全一样的树叶”一样,都是由一种普遍存在的生命现象-------变异所导致的。变异是生物的一般特性,而遗传则是变异后新物种繁育的必经方法,变异只有通过遗传才能使变异在下一代表现。遗传和变异是对立的统一体,遗传使物种得以延续,变异则使物种不断进化,为生物进化提供了原始材料。二、生物工程兴起与发展自二十世纪末以来,人类面临严重的资源危机、环境危机,经济发展和人口增长产生的对资源与环境的需求超出了地球生态系统资源与环境的供给能力。资源枯竭,尤其是石油、天然气的枯竭,

材料科学与工程专业培养方案(doc 7页)

材料科学与工程专业培养方案(doc 7页)

2009年博士材料科学与工程系 材料科学与工程培养方案 一、适用学科、专业: 材料科学与工程(一级学科,工学门类) ●材料物理与化学(二级学科、专业) ●材料学(二级学科、专业) ●材料加工工程(二级学科、专业) 二、培养方式 1. 实行导师负责制。必要时可设副导师,鼓励 组成指导小组集体指导。跨学科或交叉学科 培养博士生时,应从相关学科中聘请副导师 协助指导。 2. 博士生应在导师指导下,学习有关课程,查 阅文献资料,参加学术交流,确定具体课题,独立从事科学研究,取得创造性成果。 三、知识结构及课程学习的基本要求 1. 知识结构的基本要求 要掌握本门学科坚实宽广的基础理论和系统深入的专业知识;要注意拓宽知识面,加强知

识的综合性、前沿性和交叉性要求,为学位 论文工作的创造性研究打下必要的基础。 2. 课程学习及学分组成 A. 普通博士生 攻读博士学位期间,需获得学位要求学分不少于 14 ,其中公共必修课程4 学分,学科专业 要求课程学分不少于 5 ,必修环节 5 学分。 选修或补修课程学分计入非学位要求学分。 课程设置见附录。 B .直博生 攻读博士学位期间,需获得学位要求学分不少于 31 ,其中公共必修课程学分不少于6 ,学 科专业要求课程学分不少于20 ,必修环节 5 学分,考试学分不少于23 。选修或补修 课程学分计入非学位要求学分。课设置见附 录。 四、主要培养环节及有关要求 1. 制定个人培养计划:

占40%,“材料热力学、动力学”内容占30%,“材料分析方法”内容占30%。 学科方向组织的考试,其考试内容、考试方式由各学科方向自定,但必须事先通告,并报系 业务办备案。 考试记分为百分制。按系级考试70%、学科方向考试30%的权重计算总成绩。总成绩处于后10~15%者,半年后补考。补考成绩仍处于后10~15%者,按学校有关规定处理。 4. 社会实践 按《清华大学研究生社会实践管理条例》执行。 5. 学术活动 实行博士生学术报告制度,博士生在论文工作期间每学期至少在二级学科的研究室以上范围 内做一次学术报告(参加者至少有教师 5 人以上,其中博士生导师 3 人以上);至少有一次在全国性或国际学术会议上宣读自己撰 写的论文。

材料科学与工程前沿中期论文

稀土材料 姓名:牛刚学号:S2******* 稀土被称为工业“味精”,在材料的结构与功能改性方面具有非常重要的意义。稀土元素的4f轨道电子数目是稀土元素之间最明显的差异,正是4f轨道电子数目的差异引发了稀土材料之间的性能差异。纳米材料由于具有表面效应、小尺寸效应和宏观量子隧道效应等具有与其他材料完全不同的许多优良性能。 我国稀土产品主要应用于冶金机械、石油化工和玻璃陶瓷等传统领域,但功能材料在高新技术产业中的应用近年来备受关注,稀土在磁性材料、储氢材料、发光材料、催化材料等领域的应用增长迅速,其应用份额从1990年的13%增长到了2002年的30%。稀土功能材料在高新技术中的应用从70年代开始进入了高速发展阶段,应用和产业化开发的速度愈来愈快,一般以5年左右的周期出现一个震动世界的新成果,并迅速形成了高新技术产业。 1稀土磁性材料 1.1稀土永磁材料稀土永磁材料经历了3个阶段的发展,20世纪60年代发明了RECo5型第一代稀土永磁材料;70年代出现了RE2Co17型第二代稀土永磁材料,其磁能积有了较大提高,特别是温度稳定性好,但由于主要原料是Sm和Co,成本高,一般用于军工等特殊领域;第三代稀土永磁REFeB发明于80年代,是当今磁能积最高的永磁材料。近年来全世界NdFeB产量年均增长率达到25%,2003年我国NdFeB磁体的产量达到15000t左右,位居世界第一。但我国稀土永磁制备技术和磁体性能方面与国外比较还有不少差距,多数厂家的产品因磁体性能较低、一致性难以满足高档用户的要求,因此价格仅为国际市场的1/3~1/2,经济效益不尽人意。随着烧结NdFeB磁体应用领域的不断扩大,对其性能提出了越来越高的要求。因此,近几年来,国内外掀起了一股研发高性能烧结NdFeB磁体的热潮。西方国家大部分采用快冷厚带工艺制备高性能烧结NdFeB磁体。用该工艺生产的磁体磁能积高,性能稳定。国内许多单位都在加速开发此新工艺,北京有色金属研究总院稀土材料国家工程研究中心在国家科技部十五科技攻关项目的支持下,已经开发出了具有自主知识产权的快冷厚带制备工艺,并与设备厂家合作设计制造了一台300kg甩带炉,试运行效果良好,产品已基本达到国外用户要求,近年内将实现规模化生产。近年来,稀土永磁材料的研发主要集中在以下几个方面:(1)制备工艺和设备的改进; (2)通过掺杂Co,Al和稀土Tb等提高矫顽力和改善温度稳定性;(3)通过纳米双相耦合技术提高永磁材料的性能;(4)稀土永磁薄膜材料和新型稀土永磁材料的开发。 据全国稀土永磁材料协作网预测,“十五”期间我国烧结NdFeB磁体总产量将达到50,000t,销售总额达到150亿元。到2010年中国烧结NdFeB磁体产量将达到7万吨,占全球75%,销售额将达到260亿元。在未来10年内,我国将成为世界稀土永磁材料的制造中心。 1.2磁致伸缩材料磁致伸缩材料是在偏磁场和交变磁场同时作用下,发生同频率的机械形变的一种材料。与压电陶瓷(PZT)和传统的磁致伸缩材料Ni,Co相比,稀土超磁致

生物学学科前沿讲座报告

生物学学科前沿讲座报告 通过多位老师的精彩授课,我对生命科学前沿有了初步的了解,特别是对肿瘤的发病机理以及别对肿瘤的治疗方法有较为清晰认识。因为我对肿瘤感兴趣,下面就我在课堂上及课外的所学对肿瘤做一个小总结并发表自己的一些粗浅的看法。 首先,肿瘤是在各种致病因素的作用下,身体局部细胞在基因水平上失去对其生长的控制,导致异常增生所形成的新生物,这种新生物常形成局部肿块,这种肿块称作肿瘤。或机体组织细胞在内外致病因素的影响和作用下,使细胞的DNA发生结构和功能异常形成一种异常增生的肿块。肿瘤有良性和恶性之分,良性肿瘤不会扩散到身体其他部份,或是侵入别的组织,除非压迫到重要的器官,否则也不会影响生命。恶性肿瘤则会侵略其他器官,转移到身体其他部位而危害生命。 其次,肿瘤组织的结构,功能和物质代谢,不仅与正常的细胞组织完全不同,而且与再生性增生也有质的不同。虽然它是由正常细胞转变而来,与正常组织细胞有一定程度的相似性,但其生长失去控制,与整个机体不协调并能转移且缺乏正常的形态结构和物质代谢,因此没有正常的生理机能,对机体百害而无一利; 再次,肿瘤具有异质性即同一肿瘤内部由于肿瘤细胞系不同而造成的肿瘤细胞的差异,主要表现在组织学、抗原性、免疫性、激素受体、代谢性、生长速度和对化学药物敏感性、浸润和转移等差异。肿瘤的异质性,不仅发生在不同个体、不同部位、不同病理类型而且不

同病期的恶性肿瘤其生物学行为表现不同,即使是同一部位、同一病理类型和病期的肿瘤,其生物学行为也存在着很大的差异。因此,忽视了肿瘤的异质性,利用一般治疗肿瘤的方法治疗肿瘤往往达不到理想效果 由于肿瘤存在异质性,因此,要获得理想的治疗效果就必须对每个患者“区别对待”,也就是说要进行个性化的诊断和治疗,对于每一个肿瘤患者,都必须根据患者的具体情况,包括临床因素、肿瘤的分子病理学特点、甚至基因特征等,制定出科学、合理的个体化治疗方案,以期获得最佳的治疗效果。 总之癌细胞都是独一无二的,只有知道是哪些特定的癌细胞在作怪时,才能有针对性地对患者进行治疗。肿瘤虽然不难被人认出,但是它们的活动和发展过程却各不相同,故每一位肿瘤患者的病情都是独一无二的,因此应该根据每个肿瘤患者的具体病情进行针对性的治疗即个体化治疗,才能制订出适合患者的治疗方案。 最后,我相信个性化治疗将最终将会在临床中得到实现,肿瘤的治疗也必将开创一个新的纪元。 学院:医学院 姓名:王彪 学号:2013236084

《自然》《科学》一周(7.9-7.15)材料科学前沿要闻

1. 用于高产率环境稳定单分子层器件的金属纳米粒子接触 材料名称:金属纳米粒子 研究团队:瑞士 IBM 苏黎世实验室 Gabriel Puebla-Hellmann 研究组 原标题:Metallic nanoparticle contacts for high-yield, ambient-stable molecular-monolayer devices 想要实现用于电子应用、光发射或感测的分子的固有功能,需要与这些分子的可靠电接触。自组装的由单层(SAM)组成的夹层结构是有利于技术应用的,但是需要非破坏性的顶部接触制造方法。已有的各种方法,包含从直接金属蒸发到聚(3,4-乙烯二氧噻吩)聚苯乙烯磺酸盐(PEDOT:PSS)或石墨烯夹层到金属转移印刷。然而,在不损害薄膜完整性、内在功能或大规模制造兼容性的情况下,尚不可能制造基于 SAM 的器件。Puebla-Hellmann 等人开发了一种基于 SAM 的器件的顶部接触方法,通过利用金属纳米粒子可以为各个分子提供可靠的电接触这一事实,同时解决了所有问题。该制造步骤首先包括将一层金属纳米颗粒直接共形和非破坏性地沉积在 SAM 上(其本身横向约束在介电基质中的圆形孔内,直径范围为 60 纳米至 70 微米),然后通过直接金属蒸发对顶部接触进行加固。该方法能够制造数千个相同的、环境稳定的金属-分子-金属器件。SAM 组成的系统变化表明,固有的分子特性不受纳米颗粒层和后来的顶部金属化的影响。Puebla-Hellmann 等人提出的这一概念通常针对配有两个锚定基团的密集分子层,并为分子化合物大规模整合到固态器件提供了一条途径(可以缩小到单分子水平)。(Nature DOI: 10.1038/s41586-018-0275-z)

机械工程前沿讲座

机械工程前沿 近年来,机械工程学科在各大领域内取得了一系列突破性进展和原创性成果,为繁荣的经济建设提供了大量的理论方法和实践经验,对世界产生了重要的影响。 , 对 ?前机械工程前沿技术以及机械工程领域的发展现状,综述了其重要进展和成果,并对 国机械工程的发展趋势进行了展望。 机械工程是一门与机械和动力生产有关的工程学科,它以有关的自然科学和技术科学为理论基础,结合生产实践中的技术经验,研究和解决在开发、设计、制造、安装、运用和修理各种机械中的全部理论和实际问题。 机械工程学科包含以下几个方面:机械制造及其自动化机械电子工程、机械设计及理论、车辆工程和仿生技术。机械工程的服务领域广阔而多面,凡是使用机械、工具,以至能源和材料生产的部门,无不需要机械工程的服务。概括说来,现代机械工程有五大服务领域:研制和提供能量转换机械;研制和提供用以生产各种产品的机械;研制和提供从事各种服务的机械;研制和提供家庭和个人生活中应用的机械;研制和提供各种机械武器。 机械的发展经历了从制造简单工具到制造由多个零件、部件组成的现代机械的漫长过程。机械工程以增加生产、提高劳动生产率、提高生产的经济性为目标来研制和发展新的机械产品。随着世界的进步、国家的需求和学科的发展,机械工程科学的发展出现了以下显著特点和趋势:一方面,高技术领域如光电子、微纳系统、航空航 、生物医学、重大工程等的发展,要求机械与制造科学向这些领域提供更多更好的新理论、新方法和新技术,因而出现和发展着微纳制造、仿生及生物制造、微电子制造等制造科学新领域;另一方面,随着机械与制造科学与信息科学、生命科学、材料科学、管理科学、纳米科学技术的交叉,除了推动着机构学、摩擦学、动力学、结构强度学、传动学和设计学的发展外,还产生和发展着仿生机械学、纳米摩擦学、制造信息学、制造管理学等新的交叉科学。在未来的时代,新产品的研制将以降低资源消耗,发展洁净的再生能源,治理、减轻以至消除环境污染作为超经济的目标任务。

《自然》《科学》一周(10.8-10.14)材料科学前沿要闻

1. 由熵驱动的手性单壁碳纳米管的稳定性 材料名称:单壁碳纳米管(SWCNT) 研究团队:法国艾克斯马赛大学 Christophe Bichara 研究组 原标题:Entropy-driven stability of chiral single-walled carbon nanotubes 单壁碳纳米管是空心圆柱的,其可以在边界处催化剂的作用下,通过碳结合而生长达到厘米级长度。其表现出半导体或金属特性,取决于生长过程中形成的手性指数。Magnin 等人为了支持选择性合成,开发了一个热力学模型,该模型将管-催化剂的界面能量、温度与碳纳米管手性联系了起来。并表明了纳米管可以生长手性,因为它们的纳米尺寸边缘的结构熵,从而解释了实验观察到的手性分布的温度演变。通过界面能量考虑催化剂的化学性质,Magnin 等人构建了结构图谱和相图,用于指导催化剂和实验参数的理性选择,以实现更好的选择性。 (Science DOI: https://https://www.wendangku.net/doc/5c14929180.html,/10.1126/science.aat6228)

2. 亚微米级结构的钙钛矿发光二极管 材料名称:钙钛矿发光二极管 研究团队:西北工业大学黄维和南京工业大学王建浦研究组 原标题:Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures 发光二极管(LED)能够将电转换为光,广泛用于现代社会中如照明、平板显示器、医疗设备和许多其他情况。通常,LED 的效率受到非辐射复合(电荷载流子由此重新组合而不释放光子)和光陷的限制。在诸如有机 LED 的平面 LED 中,从发射器产生的光的大约 70%至 80%被捕获在装置中,为提高效率留下了很大的机会。研究人员们用了许多方法,包括使用衍射光栅、低折射率网格和屈曲图案,来提取被陷在 LED 中的光。然而,这些方法通常涉及复杂的制造工艺并且可能使发光光谱和出光方向发生改变。Cao 等人展示了高效和高亮度电致发光的溶液加工的钙钛矿,其自发形成亚微米级结构,可以有效地从器件中提取光并保持与波长和视角无关的电致发光。这种钙钛矿仅需要在钙钛矿前体溶液中引入氨基酸添加剂便可形成。此外,添加剂可有效钝化钙钛矿表面缺陷并减少非辐射复合。钙钛矿 LED 具有峰值 20.7%的外量子效率(电流密度为 18 mA·cm-2),能量转换效率为 12%(在 100 mA·cm-2的高电流密度下),该值与性能最佳的有机 LED 相接近。 (Nature DOI: https://https://www.wendangku.net/doc/5c14929180.html,/10.1038/s41586-018-0576-2)

材料学科前沿讲座总结

材料学科前沿讲座总结 生物医用高分子 一.引言 生物医用功能材料即医用仿生材料,又称为生物医用材料。这类材料是用于与生命系统接触并发生相互作用,能够对细胞、组织和器官进行诊断治疗、替换修复或诱导再生的天然或人工合成的特殊功能材料。随着化学工业的发展和医学科学的进步,生物医用功能材料的应用越来越广泛。从高分子医疗器械到具有人体功能的人工器官,从整形材料到现代医疗仪器设备,几乎涉及到医学的各个领域,都有使用医用高分子材料的例子。医用高分子材料所用的材料种类已由最初的几种,发展到现在的几十种,其制品种类已有上千种。 目前,生物医用功能材料应用很广泛,几乎涉及到医学的各个领域。其大致可分为机体外使用与机体内使用两大类。机体外用的材料主要是制备医疗用品,如输液袋、输液管、注射器等。由于这些高分子材料成本低、使用方便,现已大量使用。机体内用材料又可分为外科用和内科用两类。外科方面有人工器官、医用黏合剂、整形材料等。内科用的主要是高分子药物。所谓高分子药物,就是具有药效的低分子与高分子载体相结合的药物,它具有长效、稳定的特点。 二.发展历史 生物医用高分子材料的发展经历了三个阶段,第一阶段始于1937年,其特点是所用高分子材料都是已有的现成材料,如用丙烯酸甲酯制造义齿的牙床。第二阶段始于1953年,其标志是医用级有机硅橡胶的出现,随后又发展了聚羟基乙酸酯缝合线以及四种聚酯心血管材料,从此进入了以分子工程研究为基础的发展时期。该阶段的特点是在分子水平上对合成高分子的组成、配方和工艺进行优化设计,有目的地开发所需要的高分子材料。

目前的研究焦点已经从寻找替代生物组织的合成材料转向研究一类具有主动诱导、激发人体组织器官再生修复的新材料,这标志着生物医用高分子材料的发展进入了第三个阶段。其特点是这种材料一般由活体组织和人工材料有机结合而成,在分子设计上以促进周围组织细胞生长为预想功能,其关键在于诱使配合基和组织细胞表面的特殊位点发生作用以提高组织细胞的分裂和生长速度。 三.基本性能要求 1. 力学性能稳定 在使用期限内,针对不同的用途,材料的尺寸稳定性、耐磨性、耐疲劳度、强度、模量等应适当。比如,用超高分子量聚乙烯材料做人工关节时,应该用模量高、耐疲劳强度好、耐磨性好的材料。 2. 化学性能稳定 作为生物材料,化学性能必须稳定,对人体的血液、体液等无影响,不形成血栓等不良影响。人体是一个相当复杂的环境,血液在正常环境下呈现微碱性,胃液呈酸性,且体液与血液中含有大量的钾、钠、镁离子,含有多种生物酶、蛋白质、人体的环境易引起聚合物的降解、交联及氧化反应;生物酶会引起聚合物的解聚;体液会引起高分子材料中的添加剂析出;血液中的脂类、类固醇以及脂肪等会引起聚合物的溶胀,使得材料的强度降低。例如聚氨酯中含有的酰胺基极易水解,在体内会降解而失去强度,经过嵌段改性后,化学稳定性提高。 3. 与人体的组织相容性好 医用材料必须与人体的组织相容性好,不会引起炎症或其他排异反应材料,所引起的宿主反应应该能够控制在一定可以接受的范围之内。一些含有对人体有毒有害的基团是不能用作生物医用功能材料的,如有些添加剂对人体有害或有些残留单体对人体有不良影响等,这都应该引起极度的警惕。有些添加剂会随时间的变化,从材料内部逐渐迁移到表面与体液和组织发生作用,引起各种急性和慢性的反应。

道路材料工程学科前沿综述

道路材料工程学科前沿综述 摘要:近年来,道路材料工程学科各个领域取得了一系列突破性进展,为公路建设提供了大量的理论方法。本文针对当前道路材料工程发展现状,综述了其重要进展,并对我国该学科的发展趋势进行了展望。 关键词:道路材料工程;前沿;综述 0 引言 道路材料工程是一门与材料和道路有关的学科,它以材料科学和道路工程理论为基础,采用材料分析、测试等手段来研究材料,旨在研究和解决工程建养中遇到的相关技术问题。 道路材料工程学研究内容包括水泥路面材料开发、改性及施工工艺研究,沥青路面材料开发、改性及施工工艺研究,土质加固及半刚性路面基层材料研究。 回顾历史,道路工程每一项技术的出现,首先在材料方面有所突破。如路基土的改良与稳定技术,沥青、水泥材料的改性研究等都与材料科学有关。由此可见,道路材料学科的不断发展尤为重要[1]。 1 道路材料工程学科各方向的发展 1.1 路面结构与材料的发展 公路建设的蓬勃发展对路面的使用性能提出了更高的要求,而路面材料的适用性、组成设计等对路面的使用性能起着决定性的作用。 1.1.1 沥青路面与材料 (1)沥青路面材料 沥青路面成为主导路面结构形式的原因在于其表面平整、行车舒适、减振性良好,但若材料组成、施工工艺不当,面层也会出现车辙、低温开裂等不良现象。 近年来,为提高沥青路面的使用性能,从沥青材料性能的改善着手,相继出现了乳化沥青、改性沥青。从材料必须满足环境的角度出发,一些学者开始研发全温度域改性沥青及混合料流变特性与路用性能评价方法,进一步提出改性沥青质量控制技术。从环保角度出发,很多人员对废橡胶粉改性沥青、废塑料改性沥青、硅藻土改性沥青等开始进行深入研究。 (2)环保型道路材料

前沿讲座总结报告

前沿讲座总结 时光荏苒,不知不觉,我的研究生的生涯已经度过了一半的时间。虽然仅仅是一年的时间,但已经足以使我对其有一个整体的把握,并使自己逐渐融入其中,享受其中。同时,时间的流逝,更让我对接下来的日子感到珍惜。以下就结合研一这段时间曾参加的前沿讲座和学术沙龙活动,并谈谈自己的些许感悟以及总结。 前沿讲座作为了解学科的学术研究领域、方法和方向的一种重要形式,在学习中起着极为重要的作用。因此,我积极参加了学院和学校组织的前沿讲座。研一期间,我参加了心理健康、原是校园行、数据库培训、名师讲坛以及学术沙龙等诸多讲座。这些由诸多国内外学科最前沿的学者专家所做的精彩的讲座,为我们提供了了解国内外最新、最先进学术知识和科研进展以及学科研究方向的机会。同时,这些讲座使我的专业素养和个人心理素质都得到了很大提升,并对我的学术认识、观点以及今后的研究生学习提供了巨大的帮助。 2015年11月9日,是我第一次参加院士校园行系列的讲座。由David院士不远万里,从大洋对岸来到我们交大,给我们带来一场精彩的讲座。 2011年全国博士生学术论坛由北京交通大学承办,其中我参加了由机电学院承办的载运工具运用工程分论坛,听取了李强教授、任尊松教授做的专家点评。通过此次高水平的论坛学习了在载运工具结构设计与动力学分析、结构疲劳及可靠性、故障诊断技术及试验技术、安全与检测控制技术、先进动力技术、节能技术及环境保护等多方面知识。 还参加了几期学术沙龙,几位本学院的博士深入浅出的讲解让我收获很大,他们结合自己的课题,讲的生动详细。主要参加了这些方面的讲座,听取了丁万和聂蒙博士分别就机器人的创新和钢轨打磨的研究做的报告,对并联机器人的基本概念,研究现状以及国际研究前沿有了大概的了解,并第一次接触了钢轨打磨的知识,深刻体会到当前我国钢轨打磨方面研究的落后,拓宽了我们的视野。听取了金涛涛博士关于混合动力传动系统国内外研究现状及研究方向,着重学习了一种双模式混合动力传动系统,同时了解了美国的学习、科研生活,开阔了我们的视野。听取了姚燕安老师关于机构与机器人学方面的研究,在并联机器人的滚动步态设计、可变形车轮缩放比计算、两足步行机构设计及魔方内部结构设计等方面的内容。在上述讲座中,都与主讲博士进行了较好的互动,及时把自己的疑惑与博士进行了交流。 在论文写作方面听取了曹文平博士就“如何在一流IEEE杂志上发表高质量学术论文”的报告。曹博士结合自己多年来在电工机械、电力传动领域的研究成果和在一流IEEE杂志上发表高质量论文的经历,以自己发表的一篇研究论文为例,从论文的整体结构、标题引文、正文写作、结果分析、标点符号等方面,深刻剖析了每个环节的写作要点和注意事项。通过这个讲座我对英语科技论文写作的语言使用以及投稿过程中遇到的一些问题都有了了解。Vittal Prabhu博士介绍了制造业中的分布式控制应用现状,对分布式在企业中的应用有了很好的了解。 此外机电学院研究生辅导员潘显钟与我们分享近年来机电学院研究生就业去向,帮助我

材料学科前沿讲座论文

中国矿业大学 材料学科前沿讲座论文 班级:材料10-7 姓名:XXX 学号:XXX

学科前沿讲座——纳米材料在来矿大之前对材料没有多少认识,只知道他与物理化学联系较为紧密,是新世纪的主导学科!所以就选择了材料!在听教授们上完那个学科前沿讲座之后,我对自己的专业才有了一个初步的了解,尤其对纳米材料感触极深! 21世纪是高新技术的世纪,信息、生物和新材料代表了高新技术发展的方向。在信息产业如火如荼的今天,新材料领域有一项技术引起了世界各国政府和科技界的高度关注,这就是纳米科技。 处于新材料科技前沿的纳米科技,它的应用领域非常广泛。应用于制造业,现在已经造出只有米粒大小且能开动的汽车、只有蜜蜂大小的直升机。应用于生物医学,可以制出只有几毫米的人造手,帮助医生实施虚拟的现实手术。 有人预言,处于2l世纪高新技术前沿和核心地位的纳米科技所引起的世界性技术革命和产业革命对社会经济、政治、国防等所产生的冲击,将比以往的技术革命时代带来的影响更为巨大。纳米科技将会掀起新一轮的技术浪潮,领导下一场工业革命。人类将进入一个新的时代-----纳米科技时代。 1.纳米科技的基本概念和内涵 1959年,著名的理论物理学家、诺贝尔奖金获得者费曼曾预言:“毫无疑问,当我们得以对细微尺度的事物加以操纵的话。将大大扩充我们可能获得物性的范围。”在这里,通常界定为1—100nm的范围内纳米体系是细微尺度的事物的主角。 纳米科学技术是20世纪80年代末期刚刚诞生并正在崛起的新科技,他的基本涵义是在纳米尺寸(10-9—10-7m)范围内认识和改造自然,通过直接操作和安排原子、分子创制新的物质。 早在1959年,美国著名的物理学家,诺贝尔奖获得者费曼就设想:“如果有朝一日人们能把百科全书存储在一个针尖大小的空间内并能移动原子,那么这将给科学带来什么!”这正是对纳米科技的预言,也就是人们常说的小尺寸大世界.纳米科技是研究由尺寸在1—100nm之间的物质组成的体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术.纳米科技主要包括: (1)纳米体系物理学;(2)纳米化学; (3)纳米材料学;(4)纳米生物学; (5)纳米电子学;(6)纳米加工学; (7)纳米力学。 这7个部分是相对独立的。隧道显微镜在纳米科技中占有重要的地位,它贯穿到7个分支领域中,以扫描隧道显微镜为分析和加工手段所做工作占有一半以上。 纳米科学所研究的领域是人类过去从未涉及的非宏观、非微观的中间领域,从而开辟人类认识世界的新层次,也使人们改造自然的能力直接延伸到分子、原子水平,这标志着人类的科学技术进入了一个新时代,即纳米科技时代。以纳米新科技为中心的新科技革命必待成为21世纪的主导。 纳米新科技诞生才几十年,就在几个重要的方面有了如下的重要进展: (1)美国商用机器公司两名科学家利用扫描隧道电子显微镜直接操作原子,成功地在Ni(镍)基板上,按自己的意志安排原子组合成“IBM”字样,日本科学家已成功地将硅原子堆成一个“金字塔”,首次实现了原子三维空间立体搬迁.1991年IBM的科学家还制造了超快的氙原子开关.专家们预计,这一突破性的纳米新科技研究工作将可能使美国国会图书馆的全部藏书存储在一个直径仅为0.3cm的硅片上.据英国《科学与共同政策》杂志报道,科学家们最近制造出一种尺寸只有4nm的复杂分子,具有“开”和“关”的特性,可由激

生物医学工程前沿讲座

深圳大学考试答题纸 (以论文、报告等形式考核专用) 二○13 ~二○14 学年度第 2 学期课程编号 01 课程名称 生物医学工程前沿讲座 主讲教师 刘维湘等 评分 学号 07 姓名 李瑜 专业年级 生物医学工程10级 教师评语: 题目: 人工心脏瓣膜的研究及发展前景

摘要:心脏瓣膜疾病是一类危及人类健康和生命的疾病,严重影响患者的工作和生活质量。外科手术予瓣膜置换是治疗心脏瓣膜疾病的有效方法。目前应用于临床的主要有生物瓣膜和机械瓣膜,各有优缺点。随着组织工程技术的发展,运用组织工程学原理构建的组织工程心脏瓣膜(tissue—en西neered heart valve,1'EHv)的研究便应运而生。 关键字:人工心脏瓣膜组织工程PPM Abstract: Valvular heart disease is a kind of disease threatening human health andlife, seriously affect the patient's work and life quality. Surgical operation tovalve replacement is an effective method for the treatment of heart valve disease. At present the main clinical application of biological valves andmechanical valves, each have advantages and disadvantages. With the development of tissue engineering, the use of tissue engineering heart valvetissue engineering construction (tissue - en West neered heart valve, 1'EHv)research will emerge as the times require. Keywords:Artificial heart valve ;Tissue engineering ;PPM 引言:随着科技的发展,人类的疾病越来越多的得到了有效的治疗,而现代医学的发展为人类提供了更长的寿命。人工心脏瓣膜的出现,是人类心脏治疗的一个历史性的进程。现在越来越多的研究人员都在着重于组织工程在人工心脏瓣膜上的应用。 心脏瓣膜疾病是一类危及人类健康和生命的疾病,严重影响患者的工作和生活质量。外科手术予瓣膜置换是治疗心脏瓣膜疾病的有效方法。目前应用于临床的主要有生物瓣膜和机械瓣膜,各有优缺点:生物瓣膜容易钙化、衰败及破损撕裂.严萤影响实际使用寿命;机械瓣膜需终生抗凝以防血栓形成,因而两种人工心脏瓣膜在实际临床应用中均受到了一定的限制。理想的人工心脏瓣膜应该是既有良好的使用寿命,又有很好的组织相容性,不会或者极少产生血栓。随着组织工程技术的发展,运用组织工程学原理构建的组织工程心脏瓣膜(tissue—en西neered heart valve,1'EHv)的研究便应运而生,理论上能克服生物瓣膜与机械瓣膜的不足之处,而且有良好的自我修复、重建能力等优点,可成为理想的瓣膜,所以具有广阔的临床应用前景,也是目前组织工程化人工心脏瓣膜的研究热点。所谓组织工程化心脏瓣膜(rI'EHv).就是利用生命科学和组织T程学的原理与技术。将受体种子细胞种植于可降解吸收的瓣膜支架上,制造无免疫原性、无需抗凝和耐久性强的人工心脏瓣膜。 人工心脏瓣膜(Heart Valve Prosthesis)是可植入心脏内代替心脏瓣膜(主动脉瓣、肺动脉瓣、三尖瓣、二尖瓣),能使血液单向流动,具有天然心脏瓣膜功能的人工器官。当心脏瓣膜病变严重而不能用瓣膜分离手术或修补手术恢复或改善瓣膜功能时,则须采用人工心脏瓣膜置换术。换瓣病例主要有风湿性心脏病、先天性心脏病、马凡氏综合征等。 人工瓣膜的类型只要包括机械瓣Mechanical Prosthesis 或Mechanical Heart Valve ,球笼型瓣Caged Ball Valve ,碟型瓣Disk Valve,单叶倾碟瓣Tilting Disk Valve,双叶瓣Bileaflet Valve,组织瓣(生物瓣)Tissue Valve 或Bioprosthetic Valve,支架生物瓣Stent Tissue Valve,无支架生物瓣Stentless Tissue Valve,人体组织瓣Human Tissue Valve (Homograft,Autograft,Ross Procedure),动物组织膜Animal Tissue Valve (Xenograft,Heterograft)以上几种。 而PPM则是指植入的人工瓣膜有效开口面积(effective orifice area,EOA)相对于患者体表面积过小,术后仍有明显的残余跨瓣压差(transvalvular pressure gradients,TPG)从而可能对手术预后产生不良影响。PPM的危害主要在于术后残留TPG而术后超声实测人工瓣膜有效开口面积指数(indexed effective orifice area,EOAi)是唯一与TPG相关性良好的参数,目前认为它是唯一可准确描述PPM的合适指标,但仅有少数研究采用。更多的研究使用了基于文献报道的EOAi体内参考值(projected indexed EOA),其优越性在于术前即可获得术

材料科学前沿思考题1

1.航空器发展对材料的要求有哪些? 答:耐高温、高比强、抗疲劳、耐腐蚀、长寿命和低成本。 2.什么是自然资源,属性是什么?自然资源分为哪几类? 答:(1)人类可以直接从自然界获得并用于生产和生活的物质。(2)属性包括:自然+经济。(3)可分为三类:无穷——空气、风、太阳能;可再生——生物体、水、土壤;非再生,矿物、化石燃料。 3.环境的定义是什么?环境污染的实质是什么?对人类而言环境的作用有哪些? 答:(1)环境是人类周围一切物质、能量和信息的总和。 (2)人类索取超过资源再生+排放废弃物数量超过环境自净能力。 (3)首先,生存的基本条件——物质基础;其次,环境对废物消纳及转化,保证延续;第三,提供精神享受。 4.什么是资源保护?如何提高资源效率减轻环境污染? (1)广义——在维护生态系统及其综合体中,对资源采取的平衡行动;狭义——对资源综合利用,提高资源效率。(2)1》通过技术革新,提高生产效率,减少废物排放;2》保护资源,加强资源综合利用,特别是废弃物的回收。 5.什么是金属间化合物,金属间化合物的特点是什么? 答:指两种金属或金属与类金属组成的具有整数化学计量比的化合物。 特点:密度低、屈服强度随温度升高而提高、比刚度高、熔点高、高温强度好、抗氧化性能优良等。 6.金属间化合物分为哪几类,各自的特点是什么? 答:分类及特点:①正常价化合物:符合化合物原子价规律。键特点: 电子转移和共用电子对。a.金属倾向与345副族元素形成化合物,b.金属正电性越强, B族负电性越强,越易形成,越稳定。 ②电子化合物:a.不符合原子价规则,成分不定b.结构由e浓度决定,超点阵结构。c.金属键。 ③间隙化合物:AR大过渡族金属元素和AR小的C、N、B等元素组成;高熔点;高硬度。 ④复杂化合物:更复杂结构的间隙化合物——渗碳体及碳化物。 7.二元Ti3Al合金的缺点有哪些,其发展思路是什么? 答:缺点:室温断裂韧性、冲击韧性低、O相合金的抗氧化问题、高Nb合金抗氧化性差。发展思路:在Ti-Al-Nb 的基础上,加β相稳定元素,增加塑性第二相,改善室温塑性和加工性能。 8.金属间化合物结构材料脆性原因?其韧化方法有哪些? 答:脆性原因:①结构特性:电负性、结构复杂性②滑移特征:独立滑移系③晶界特征:杂质偏聚④环境影响:氢脆⑤应力状态:缺口敏感性。韧化方法:①偏离化学计量比;②合金化:微合金化法、宏合金化;③改变晶粒形态:细化晶粒、择优取向;④微结构控制:组织优化;制备多相合金、改进制备工艺。 9.Ti3Al(α2)基合金中加入β相稳定元素的目的是什么?不同β相稳定元素含量分别对应什么相组成? 答:通过添加β相稳定元素(如Nb和Mo),增加塑性的第二相,使Ti3Al基合金的室温塑性和加工性能得到改善。 ①第一代β稳定元素含量在10%~14%,显微组织为α2(DO19)+β;②β稳定元素含量在14%~17%之间,该合金具有更高的拉伸强度和蠕变抗力,显微组织取决于热处理,主要为α2、β和O相(第一代O相合金)O相(基于Ti2AlNb,正交结构,可看作α2的畸变结构;③β稳定元素含量在23%以上,如GE公司研制的Ti-24.5Al-23.5Nb和Ti-22Al-27Nb 合金,显微组织为O+β,这类以O相为基的合金比α2合金和超α2合金有更高的高温屈服强度、蠕变抗力和断裂韧性,已经成为近期研究的重点(第二代O相合金)。 10.什么是高温合金?高温合金的服役条件是什么?高温合金的强化方法有哪些?以Ni基高温合金的强化为例讲述高温合金强化原理。 答:高温合金又称热强合金、耐热合金或超合金(Superalloys),是指以Fe、Ni、Co为基,能在600℃以上温度,一定应力条件下适应不同环境短时或长时使用的金属材料。服役条件(航空发动机热端部件):①600~1100℃②氧化和燃气腐蚀环境③复杂应力(蠕变,高、低周疲劳,热疲劳等)④长期可靠工作。强化方法:组织:γ/ γ’共格组织,基体:γ,强化相:γ’①固溶强化:γ ②第二相强化:γ’ ③晶界强化:微量元素晶界偏聚④工艺强化:定向或单晶。 借助Mo来提高/ 晶格错配度,增加晶格界面应力场,阻止位错运动,减小合金最小蠕变速率。在蠕变过程中形成稠密的界面位错网络,这些位错网络在稳定的蠕变阶段可以有效阻止相中的滑移位错进入相。提高了Mo 元素的含量,增大了合金高温蠕变过程中TCP相析出的倾向,增加Ru元素降低这一倾向,提高合金稳定性。11.组织工程学的三大要素是什么?对细胞载体材料-支架材料的具体要求是什么? 答:三大要素:①细胞载体材料-支架材料;②细胞的分离和培养;③细胞生长因子。对支架材料的具体要求有:1.多孔且需要高的孔隙率;2.内部均匀分布和相互联通的孔结构;3. 支架材料易于加工成不同的厚度和形状;4. 良好的相容性和一定的机械强度;5. 可以通过生物降解最终消失。

相关文档
相关文档 最新文档