文档库 最新最全的文档下载
当前位置:文档库 › 百微焦级光纤结构的飞秒激光器

百微焦级光纤结构的飞秒激光器

百微焦级光纤结构的飞秒激光器
百微焦级光纤结构的飞秒激光器

第42卷第12期2015年12月

Vol.42,No.12

December,2015中国激光

CHINESE JOURNAL OF LASERS

百微焦级飞秒光纤激光放大系统

李峰杨直*赵卫李强龙胡晓鸿杨小君王屹山

中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室,陕西西安710119

摘要实验研究了基于掺Yb3+光纤的啁啾脉冲放大(CPA)系统。利用半导体可饱和吸收体锁模光纤激光器作为种子源,采用啁啾脉冲放大技术,将波长为1030nm的脉冲展宽到数百皮秒进行放大。采用多级的掺镱单模光纤和双包层光纤组成预放大器,主放大器采用大模场的掺镱棒状光子晶体光纤作为激光工作物质,实现了重复频率为211kHz,功率为50W的单模皮秒脉冲输出。通过合理地控制放大系统中每一级光纤放大器的增益以及非线性积累量,有效抑制了高能脉冲放大过程中非线性效应对脉冲时域特性的影响。采用反射式光栅对,对输出的放大脉冲进行压缩,最终获得了脉宽为887fs的激光输出,单脉冲能量达到124μJ,对应峰值功率为139.8MW,该实验结果为国内首次报道基于光纤结构的百微焦级飞秒激光系统。

关键词激光器;光子晶体光纤;啁啾脉冲放大;飞秒激光

中图分类号O436文献标识码A

doi:10.3788/CJL201542.1202005

Hundred Micro-Joules Level Femtosecond Fiber Laser

Amplification System

Li Feng Yang Zhi Zhao Wei Li Qianglong Hu Xiaohong Yang Xiaojun Wang Yishan State Key Laboratory of Transient Optics and Photonics,Xi′an Institute of Optics and Precision Mechanics,

Chinese Academy of Sciences,Xi′an,Shaanxi710119,China

Abstract A fiber chirped pulse amplification system based on Yb3+doped fibers is demonstrated.The seeder is

a mode-locked fiber laser with semiconductor saturable absorber,the chirped pulse amplification technique is

applied to stretch the1030nm pulse to several hundred picoseconds to be amplified.The single mode picosecond pulses with average power of50W and repetition rates of211kHz are achieved by using multistage pre-amplifier consisted with Yb3+doped single mode fiber amplifier and double cladding fiber amplifier and the main amplifier with a large mode area rod-typed photonic crystal fiber as the laser gain material.Properly controlled the gain and the nonlinearity in every step of the amplification system,the influence of nonlinear effects are effectively suppressed on the pulse of time domain in high energy https://www.wendangku.net/doc/5515139661.html,ser pulses with pulse duration of887fs are generated by a reflective grating-pair compressor,corresponding to single pulse energy of124μJ and peak power of139.8MW.This experimental result of hundred micro joules level femtosecond laser based on fiber structure is firstly reported in China.

Key words lasers;photonic crystal fiber;chirped pulse amplification;femtosecond laser

OCIS codes320.2250;320.7090;320.7140;320.7160

1引言

飞秒激光具有脉宽窄、峰值功率高、光谱宽度大等特点,在超快非线性光学、太赫兹波产生、飞秒化学等基础研究领域[1]已经得到了广泛的应用。特别是大能量高功率的飞秒激光,由于其与物质相互作用时,热效应小[2],加工孔径周围没有熔融区,对加工材料无选择性等特点,在超精细加工、微光子器件制造[3]、医学精密手术、高密度三维光存储、纳米生物工程、纳米医学和国防激光武器等领域有着广泛的应用。因此,大能量收稿日期:2015-06-16;收到修改稿日期:2015-07-20

基金项目:科技部仪器专项(2011YQ007501)

作者简介:李峰(1987—),男,硕士,实习研究员,主要从事光纤飞秒技术方面的研究。E-mail:laser_lifeng@https://www.wendangku.net/doc/5515139661.html,

*通信联系人。E-mail:yangzhi@https://www.wendangku.net/doc/5515139661.html,

高功率飞秒激光引起了国内外科学家的广泛关注,已经成为研究的热点。

光纤结构的飞秒激光器,由于光纤自身的结构特性,当高功率的超短脉冲在光纤中传播时,极高的峰值

功率必然会激起诸多的非线性效应,导致脉冲波形畸变[4]。所以在光纤结构的超短脉冲系统中,要实现高能

量大功率的飞秒激光输出,就需要合理的控制系统的非线性,并进行有效的色散管理。为了降低系统的非

线性积累,通常采用啁啾脉冲放大(CPA)系统。同时伴随着双包层光纤以及光子晶体光纤(PCF)的出现,光纤

模场直径不断增大,目前增益光纤的芯径已经达到百微米量级,极大地降低了光纤飞秒放大系统的非线性

积累,有利于在光纤中产生高能飞秒激光。

基于光纤结构的飞秒啁啾脉冲放大系统的实验研究中,除了脉冲合成技术之外,目前国际上该领域获

得的最高单脉冲能量是Eidam等[5]报道的脉宽为500fs,能量为2.2mJ,平均功率为11W的实验结果。在此

之前,R?ser等[6]通过将脉宽展宽到2ns进行放大,在光纤CPA系统中获得了单脉冲能量为1.45mJ,脉宽为800fs的高能飞秒输出。以上两个毫焦级的光纤CPA实验中均使用了两级大模场光子晶体光纤作为放大器用以提升能量,而Wan等[7]采用单级棒状光子晶体光纤作为主放大器获得了能量为0.85mJ,800fs的脉冲输

出。国内在该领域的研究中,天津大学刘博文等[8]报道了微焦耳量级、百飞秒光子晶体光纤飞秒激光放大

器,获得了重复频率为1MHz,脉宽为124fs,单脉冲能量为1.56μJ的输出;方晓惠等[9]利用掺镱多芯光子晶

体光纤实现了重复频率为1MHz,脉宽为110fs,功率为17.1W的输出,对应单脉冲能量为17.1μJ。石俊凯

等[10]采用全保偏(PM)双包层掺镱大模场面积光子晶体光纤单级放大获得了平均功率为34W,脉宽为50fs的

超短脉冲输出,但是对应的脉冲能量只有0.8μJ。中科院西安光机所Ding等[11]利用5级光纤啁啾脉冲放大系

统,获得了脉冲能量为12μJ,脉宽为525fs的激光脉冲输出。本文采用基于掺Yb3+光纤的啁啾脉冲放大系

统,通过合理的控制系统的非线性积累和色散管理,实现了重复频率为211KHz,功率为50W的单模皮秒脉

冲输出。利用反射式光栅对,对输出的放大脉冲进行压缩,最终获得了脉宽为887fs的激光输出,单脉冲能

量达到124μJ,对应峰值功率为139.8MW。本文所述的实验工作的数据结果达到的单脉冲能量和峰值功率

水平在国内光纤飞秒激光器研究领域未曾看到相关的报道。

2实验装置与理论分析

图1为本实验方案的整个光纤结构啁啾脉冲放大光学系统结构图,采用脉宽约5ps的锁模光纤激光器

作为种子源。通过采用环形器和光纤光栅组成脉冲展宽器对种子脉冲展宽,将脉冲展宽到数百皮秒再进行

放大。预放大系统包括三级放大,首先是单模光纤放大器和10μm芯径的双包层光纤(PM10/125)放大器,初

步放大后的激光通过光纤耦合声光调制器进行降频,将激光的重复频率由52.7MHz降低到数百千赫兹,以

便在后继放大过程中提高单脉冲能量。降频后的激光脉冲再经过一级25μm芯径的双包层光纤(PM25/250)

放大器,输出功率达到2.5W。预放大系统输出的激光通过隔离器输出之后采用透镜空间耦合进入棒状掺

图1啁啾脉冲放大系统图

Fig.1Chirped pulse amplification system

镱光子晶体光纤主放大器,主放大器采用NKT 公司生产的直径为1mm ,芯径为85μm ,内包层直径为260μm ,长度为0.8m ,包层对976nm 抽运光的吸收系数为15dB/m 的光子晶体光纤作为主放大工作物质,该光子晶体光纤模场面积大,有效降低了系统的非线性积累,同时光子晶体的波导结构确保了良好的单模输出特性。为了获得最大的增益以及良好的光束质量,需要对棒状光子晶体光纤进行最佳的耦合,尽量保证信号光在棒状光纤的纤芯中传输,且抽运光在内包层中被高效吸收。通过棒状光纤的放大后的输出光,经过刻线密度为1800line/mm 的反射式光栅对的色散补偿,获得飞秒激光输出。

为了有效控制系统的非线性,对系统参数进行了优化,在保证增益的情况下尽量采用较短的增益光纤以及传输光纤,来降低系统非线性的积累,确保最终输出的放大脉冲可以被有效的压缩。B 参数是对系统非线性积累的表征,其表达式为:B =2πλ∫0L

n 2I (z )d z ,其中λ代表波长,n 2代表非线性折射率,L 是光纤长度,I (z )代表沿光纤长度分布的峰值强度,对放大系统的积分计算可以求出系统积累的非线性。通过对系统的所有增益光纤以及传输光纤的积分计算,得到如表1所述的整个系统优化后的非线性B 积分的计算值,整个系统最终的B 积分值约为10.4。

表1系统B 参数计算

Table 1Calculation of system′s B parameter

Amplifier stage B integral value of gain fiber

B integral value of transmission fiber

B integral value of system 1st stage 0.00126970.01251810.4339237

2nd stage 0.041690.1634463rd stage 1.75813.3792Main stage 5.07770同时,采用分步傅里叶法对整个放大系统的非线性传输进行了数值模拟计算,最终获得的脉冲输出的模拟结果如图2(a)所示,黑色曲线表示在最大输出能量下压缩后得到的实际脉冲形状,红色曲线表示压缩后得到的脉冲自相关曲线,黄色代表压缩后得到的脉冲相位曲线。可以发现由于系统的高阶色散的影响最终的压缩脉冲底座较大,信噪比比较低,脉宽最窄为1.4ps 左右。图2(b)给出了最终模拟输出的光谱,由于Yb 3+光纤的发射谱线并不是一个平坦的发射谱,导致不同波长其增益不同,所以在宽光谱放大过程中,出现了光谱形状的不对称。图2(c)给出了模拟得到的系统的啁啾曲线,除了小的波动,啁啾几乎是正的线性啁啾,因此在合理控制系统的高阶色散的情况下,

是可以将脉冲压缩到飞秒量级。

图2放大系统的非线性传输模拟。(a)输出脉冲;(b)输出光谱;(c)放大脉冲的啁啾曲线

Fig.2Simulation of nonlinear propagation of amplifier system.(a)Output pulse;(b)output spectrum;(c)chirp curve of amplified pulse 3实验结果与分析种子源的输出中心波长为1032nm ,谱宽为18nm ,脉宽为5ps ,重复频率为52.7MHz ,功率为13.7mW 。将种子源输出的脉冲经过啁啾光纤光栅展宽,由于啁啾光纤光栅带宽只有10nm ,中心波长为1030nm ,所以展宽后的数百皮秒的脉冲光谱宽度就只有9~10nm,中心波长已经变为1030nm 左右。展宽后的数百皮秒脉冲光进入多级光纤预放大器,经过一级保偏单模光纤放大器和一级保偏的10μm 芯径(PM10/125)双包层光纤放大器的放大,功率达到2W 左右,通过声光调制器降频到211kHz ,再通过一级保偏25μm 芯径(PM25/250)双包层光纤放大器,达到输出功率为2.5W 的数百皮秒的激光。由于Yb 3+光纤的发射谱线并不是一个

平坦的发射谱,不同波长其增益不同,所以在宽光谱放大过程中,导致了光谱宽度的窄化。预放大过程中可以看到,随着激光功率以及脉冲能量的不断提升,预放大输出的光谱由于增益窄化效应,最终进入主放大的光谱宽度就只有6nm 左右。

全光纤结构的预放大器输出的功率为2.5W ,重复频率为211kHz 的激光通过透镜的准直聚焦之后进入作为主放大器的棒状PCF ,经过聚焦镜耦合调节,将信号光能量尽量集中到棒状光纤的纤芯中。通过CCD 可以观察到信号经过耦合调节好之后,信号光大部分的能量都集中在纤芯中,这样可以实现最大的放大效率以及最佳的光束质量输出。图3给出了CCD 上采集到的光斑图样,可以看到CCD 上呈现出光子晶体光纤的端面像,且大部分信号光能约束于纤芯中传输。

主放大器采用后向抽运,使用200W 带尾纤输出的LD 作为抽运源,抽运光中心波长为976nm 。由于在高功率下工作,需要对主放大器的增益介质进行水冷,将棒状光纤放置于水冷板的V 型槽中进行冷却。图4给出了棒状光子晶体光纤随抽运驱动电流的增加的功率输出曲线。由图4可以看出,在最大抽运电流为35A 时,主放大器输出激光功率达到50W ,对应单脉冲能量达到237μJ 。

主放大器输出的数百皮秒激光通过隔离器之后进入光栅对压缩器。但是由于棒状光子晶体光纤的退偏以及隔离器的损耗,在35A 的抽运驱动源电流条件下,主放大器进入压缩器的激光功率降低为37.18W 。压缩器采用反射式光栅对进行色散补偿,光栅刻线密度为1800line/mm,压缩后输出光功率为26.23W ,对应的单脉冲能量为124μJ 。光束四次通过光栅的衍射效率达到70.5%。同时对棒状光子晶体光纤放大输出的光斑以及压缩后的光斑模场分布进行了测量,如图5所示,从CCD 采集图样可以看到输出光斑均具有单模输出特性。由于主放大输出的光斑经过两个透镜的准直,准直光学系统存在的象差以及光栅对的非严格平行导致光斑的椭圆度有一定增加[如图5(b)所示]

图5输出光斑测量。(a)主放大输出光斑测试;(b)压缩器输出的光斑测试

Fig.5Output beam profile.(a)Beam profile of main amplifier;(b)beam profile after compression 图6(a)给出了压缩输出的脉冲自相关曲线,通过Lorentz 拟合自相关曲线得到压缩脉宽为1.334ps 。图6(b)为测量得到的压缩后的光谱,谱宽约6nm ,对于洛伦兹线型脉冲,根据变换极限公式Δν×Δt =0.221,其极限脉冲宽度为130fs ,可见压缩脉冲宽度还没有达到变换极限。其主要原因是采用的光栅刻线密度大,致使压缩器引入的高阶色散大,导致最终压缩的脉冲因无法补偿高阶色散而带有较大的拖尾底座。另外,光纤CPA 系统的非线性积累也比较大,在主放大阶段,随着放大功率的不断增强,脉冲中积累的非线性相移也在

提高,导致光谱出现了比较明显的调制,频域的变化最终导致时域的脉冲宽度难以得到精确的色散补偿。

图3棒状光子晶体光纤信号光耦合调节好之后CCD 上的

成像图

Fig.3Image on CCD after coupling signal laser into rod-type photonic crystal

fiber 图4主放大器及压缩器输出功率随抽运电流的变化Fig.4Output power of main amplifier and compressor as a function of pumping

current

因此该系统还需要进一步优化,以期得到更窄的脉冲输出。

图6压缩后的脉冲自相关曲线以及光谱。(a)脉冲自相关曲线;(b)压缩后的输出光谱

Fig.6Auto correlation curves of pulses and spectrum after compression.(a)Auto correlation curves of pulses;

(b)spectrum of compressed pulses

为了进一步压缩脉冲,改用折射率非均匀变化的啁啾光纤光栅作为展宽器,该光栅的主要参数为:中心波长为1030±1nm,反射带宽为10nm,反射率大于70%,色散为-100ps/nm,以此补偿由于压缩光栅对引入的正的三阶色散,通过这样的三阶色散补偿,压缩后输出的脉宽如图7所示,达到887fs,对应的脉冲峰值功率达到139.8MW。通过进一步的系统色散管理以及非线性管理,该CPA系统可以得到更窄的脉冲输出。

图7三阶色散补偿后得到的脉冲输出自相关曲线

Fig.7Auto correlation curves of pulses after compensating third order dispersion

4结论

实验研究了光纤结构的大能量飞秒激光系统。采用啁啾脉冲放大技术,部分地控制了系统的非线性积累;利用声光调制器降低脉冲重复频率,提高了单脉冲能量;采用棒状光子晶体光纤,在减小非线性积累的同时实现了高能超短脉冲输出;通过光栅对压缩器结合非线性啁啾光纤光栅,最终该光纤CPA系统实现了124μJ,887fs的高能超短脉冲输出。据本文所知,该实验结果为国内首次在光纤结构的CPA系统中获得百微焦级飞秒超短脉冲,是目前国内单脉冲能量和峰值功率最高的光纤飞秒激光器。同时,该系统可以再进一步优化,通过合理的控制系统的非线性的积累以及主动的色散管理,可实现更窄的接近转换极限的飞秒激光脉冲输出。

参考文献

1M E Fermann,A Galvanauskas,G Sucha.Ultrafast Laser:Technology and Application[M].New York:Marcel Dekker Inc,2002,323-765.

2Rudolf Weber,Thomas Graf,Peter Berger,et al..Heat accumulation during pulsed laser materials processing[J].Optics Express,2014, 22(9):11312-11324.

3Ik-Bu sohn,Man-Seop Lee.Nano-structuring of transparent materials by femtosecond laser pulses[J].Journal of the Optical Society of Korea,2005,9(1):1-5.

4D N Schimpf,D Müller,S H?drich,et al..Control of nonlinearity in fiber CPA system by pulse-shaping[C].OSA/ASSP,2007:TuC2. 5Tino Eidam,Jan Rothhardt,Fabian Stutzki,et al..Fiber chirped-pulse amplification system emitting3.8GW peak power[J].Opt Express,

2011,19(1):255-260.

6F R?ser,T Eidam,J Rothhardt,et https://www.wendangku.net/doc/5515139661.html,lijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system [J].Opt Express,2007,32(24):3495-3497.

7Peng Wan,Lih-Mei Yang,Jian Liu.All fiber-based Yb-doped high energy,high power femtosecond fiber lasers[J].Opt Express,2013, 21(24):29854-29859.

8Liu Bowen,Hu Minglie,Song Youjian,et al..Photonic crystal fiber femtosecond laser amplifier with microjoules and100fs levle output [J].Chinese J Lasers,2010,37(9):2415-2418.

刘博文,胡明列,宋有建,等.微焦耳、百飞秒光子晶体光纤飞秒激光放大器[J].中国激光,2010,37(9):2415-2418.

9Fang Xiaohui,Hu Minglie,Liu Bowen,et al..Hundreds of megawatts peak power multi-core photonic crystal fiber laser amplifier[J]. Chinese J Lasers,2010,37(9):2366-2370.

方晓惠,胡明列,刘博文,等.百兆瓦峰值功率的多芯光子晶体光纤飞秒激光放大系统[J].中国激光,2010,37(9):2366-2370. 10Shi Junkai,Chai Lu,Zhao Xiaowei,et al..Generation of34W high power femtosecond pulses by single-stage direct amplification in an all-photonic-crystal-fiber laser system[J].Chinese J Lasers,2014,41(2):0202001.

石俊凯,柴路,赵晓薇,等.全光子晶体光纤单级放大产生34W高功率飞秒激光[J].中国激光,2014,41(2):0202001.

11Guanglei Ding,Xin Zhao,Yishan Wang,et al..Ultra-short pulsed ytterbium doped fiber laser and amplifier[J].Chin Opt Lett,2006,4 (4):222-224.

栏目编辑:宋梅梅

光纤激光器工作原理及发展

光纤激光器的工作原理及其发展前景 1 引言 光纤激光器于1963年发明,到20世纪80年代末第一批商用光纤激光器面市,经历了20多年的发展历程。光纤激光器被人们视为一种超高速光通信用放大器。光纤激光器技术在高速率大容量波分复用光纤通信系统、高精度光纤传感技术和大功率激光等方面呈现出广阔的应用前景和巨大的技术优势。光纤激光器有很多独特优点,比如:激光阈值低、高增益、良好的散热、可调谐参数多、宽的吸收和辐射以及与其他光纤设备兼容、体积小等。近年来光纤激光器的输出功率得到迅速提高。已达到10—100 kW。作为工业用激光器,现已成为输出功率最高的激光器。光纤激光器的技术研究受到世界各国的普遍重视,已成为国际学术界的热门前沿研究课题。其应用领域也已从目前最为成熟的光纤通讯网络方面迅速地向其他更为广阔的激光应用领域扩展。本文简要介绍了光纤激光器的结构、工作原理、分类、特点及其研究进展,最后对光纤激光器的发展前景进行了展望。 2 光纤激光器的结构及工作原理 2.1光纤激光器的结构 和传统的固体、气体激光器一样。光纤激光器基本也是由泵浦源、增益介质、谐振腔三个基本的要素组成。泵浦源一般采用高功率半导体激光器(LD),增益介质为稀土掺杂光纤或普通非线性光纤,谐振腔可以由光纤光栅等光学反馈元件构成各种直线型谐振腔,也可以用耦合器构成各种环形谐振腔泵浦光经适当的光学系统耦合进入增益光纤,增益光纤在吸收泵浦光后形成粒子数反转或非线性增益并产生自发辐射所产生的自发辐射光经受激放大和谐振腔的选模作用后.最终形成稳定激光输出。图1为典型的光纤激光器的基本构型。 增益介质为掺稀土离子的光纤芯,掺杂光纤夹在2个仔细选择的反射镜之间.从而构成F—P谐振器。泵浦光束从第1个反射镜入射到稀土掺杂光纤中.激射输出光从第2个反射镜输出来。 2.2 光纤激光器的工作原理 掺稀土元素的光纤放大器促进了光纤激光器的发展,因为光纤放大器可以通过适当的反馈机理形成光纤激光器。当泵浦光通过光纤中的稀土离子时.就会被稀土离子所吸收。这时吸收光子能量的稀土原子电子就会激励到较高激射能级,从而实现离子数反转,反转后的离子数就会以辐射形式从高能级转移到基态,并且释放出能量,完成受激辐射。从激发态到基态的辐射方式有2种:自发辐射和受激辐射。其中,受激辐射是一种同频率、同相位的辐射,可

光纤激光器原理

光纤激光器原理 光纤激光器主要由泵浦源,耦合器,掺稀土元素光纤,谐振腔等部件构成。泵浦源由一个或多个大功率激光二极管阵列构成,其发出的泵浦光经特殊的泵浦结构耦合入作为增益介质的掺稀土元素光纤,泵浦波长上的光子被掺杂光纤介质吸收,形成粒子数反转,受激发射的光波经谐振腔镜的反馈和振荡形成激光输出。 光纤激光器特点 光纤激光器以光纤作为波导介质,耦合效率高,易形成高功率密度,散热效果好,无需庞大的制冷系统,具有高转换效率,低阈值, 光纤激光器原理图1: 峰值功率:脉冲激光器,顾名思义,它输出的激光是一个一个脉

冲,每单个脉冲有一个持续时间,比如说10 ns(纳秒),一般称作单个脉冲宽度,或单个脉冲持续时间,我们用t 表示。这种激光器可以发出一连串脉冲,比如,1 秒钟发出10 个脉冲,或者有的就发出一个脉冲。这时,我们就说脉冲重复(频)率前者为10,后者为1,那么,1 秒钟发出10 个脉冲,它的脉冲重复周期为0.1 秒,而1 秒钟发出1 个脉冲,那么,它的脉冲重复周期为1 秒,我们用T 表示这个脉冲重复周期。 如果单个脉冲的能量为E,那么E/T 称作脉冲激光器的平均功率,这是在一个周期内的平均值。例如, E = 50 mJ(毫焦),T = 0.1 秒,那么,平均功率P平均= 50 mJ/0.1 s = 500 mW。 如果用 E 除以t,即有激光输出的这段时间内的功率,一般称作峰值功率(peak power),例如,在前面的例子中E = 50 mJ, t = 10 ns, P峰值= 50 ×10^(-3)/[10×10^(-9)] = 5×10^6 W = 5 MW(兆瓦),由于脉冲宽度t 很小,它的峰值功率很大。 脉冲能量E=1mj 脉宽t=100ns 重复频率20-80K 脉冲持续时间T=1s/2k=?秒 平均功率P=E/T=0.001J/0.00005s=20W P峰值功率=E/t 激光的分类: 激光按波段分,可分为可见光、红外、紫外、X光、多波长可调谐,目前工业用红外及紫外激光。例如CO2激光器10.64um红外

飞秒激光器在加工铁和钨零件的应用

摘要: 飞秒激光增材制造第一次被证明。具有非常不同的熔融温度和机械性能的纯铁和钨粉末用于演示。制造各种形状的零件,例如环形和立方体,对制造的样品进行微硬度和极限拉伸强度的研究。研究的结果也与由连续激光器制成的类似部件进行比较。发现飞秒激光增材制造可以获得更好的机械性能,而且可以加工以前不能加工的材料。 1、简介 在过去二十年中,增材制造(AM),特别是激光辅助增材制造AM,引起了广泛的关注[1,2]。近年来金属部件的激光增材制造被研究的最多[3,4]。目前,大功率连续激光器(CW)以及一些长脉冲激光器(脉冲持续时间纳秒到毫秒)被广泛应用[4,5]。虽然已经取得了许多突破,但仍然存在许多难题,例如由于热影响区大而缺乏准确性,以及材料种类的限制[6],特别是对于具有高导热性(> 100 W(mK))的高温(> 3000℃)材料,如钨[7]和一些陶瓷[8],需要极高的功率才能使样品完全熔化,这不实际。 超快激光器引起了更多的关注,在诸如材料加工[9],光谱学[10]和生物医学成像等领域有很多重要的应用[11]。区别于其他激光源,超快激光器有极短的脉冲持续时间和极高的峰值功率等特点。像局部温度高,热影响区域小[9]以及能产生极高温度的特点(>7000℃)[12,13],给了飞秒激光器特殊加工的机会,在增材制造中发挥前所未有的作用,最近,我们首次发布由飞秒光纤激光器用于熔化具有极高熔点的材料的研究[14],在此研究中,使用单层粉末来证明高温材料钨(熔化温度3422℃)铼(3182℃)完全熔化的可行性和一些超高温陶瓷(> 3000℃),这项研究展示了在激光增材制造AM中采用飞秒光纤激光器的巨大前景。 在这项工作中,我们将研究扩展到多层熔化或成型零件。第一次由飞秒光纤激光器制造各种形状的零件(环和立方体)。铁和钨粉末用于测试,详细研究了制造零件的机械性能和显微组织,也分析对比了由连续器激光制成的类似零件。 2、实验设置 在我们的实验中,使用了两种类型的激光 - 飞秒激光器和连续激光器。它们是1MHz重复平率飞秒掺镱 Yb光纤激光器(Uranus-mJ,PolarOnyx laser,Inc.,California毫焦高能飞秒光纤激光器)80MHz重复频率飞秒掺镱 Yb光纤激光器(天王星,PolarOnyx激光公司,加利福尼亚州)和连续掺镱Yb光纤激光器。所有激光器的中心波长为1030nm。1MHz和80 MHz激光器分别具有400和350飞秒的脉冲半高宽度(FWHM)。自制选择性激光熔化设置用于测试(图1)。激光束被引导通过声光调制器(AOM),其用于控制激光器的开/关和变化激光功率。配备有F-theta透镜(100mm长焦距)的激光振镜与AOM同步,并用于在粉末表面上扫描激光束。将扫描器安装在电动平台上以控制激光束使粉末表面的位于焦点位置。粉末均匀地分布在具有刀片的基底上。将样品容器安装在z台上并充满氩气以防止金属粉末氧化。扫描一层粉末后,将样品容器降低一定距离,并使用刮刀将新的粉末重新涂覆在其上,新粉末表面保持与上一次相同的高度。 在这里测试了两种材料,铁粉(1-5微米,大西洋设备工程公司,新泽西州)

激光的发展历史与前景

激光的发展历史与前景 ——15物01 15075003 邹萌●激光原理 激光是光与物质的相互作用,实质上,也就是组成物质的微观粒子吸收或辐射光子,同时改变自身运动状况的表现。 微观粒子都具有特定的一套能级(通常这些能级是分立的)。任一时刻粒子只能处在与某一能级相对应的状态(或者简单地表述为处在某一个能级)上。与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h(h为普朗克常量)。 ●发展历程 激光是20世纪以来,继原子能、计算机、半导体之后,人类的又一重大发明,被称为“最快的刀”、“最准的尺”、“最亮的光”。 激光的最初的中文名叫做“镭射”、“莱塞”,是它的英文名称LASER的音译,LASER (Light Amplification by Stimulated Emission of Radiation)的意思是“通过受激发射光扩大”,这已经完全表达了制造激光的主要过程。1964年按照我国著名科学家钱学森建议改称“激光”。 激光的原理早在 1917年已被著名的美国物理学家爱因斯坦发现,但直到 1960 年激光才被首次成功制造。 1958年,美国科学家肖洛(Schawlow)和汤斯(Townes)发表重要论文,并获得1964年的诺贝尔物理学奖。 1960年5月15日,美国加利福尼亚州休斯实验室的科学家梅曼宣布获得了波长为0.6943微米的激光,这是人类有史以来获得的第一束激光,梅曼因而也成为世界上第一个将激光引入实用领域的科学家。 1960年7月7日,梅曼宣布世界上第一台激光器诞生。 前苏联科学家尼古拉·巴索夫于1960年发明了半导体激光器。 ●应用前景 激光技术是现代科学技术发展的结果,是20世纪与原子能、计算机、半导体齐名的四项重大发明之一。激光一问世,就获得了飞快发展,激光的发展不仅使古老的光学科学和光学技术获得了新生,而且推动了许多新兴产业的产生。激光能够使人们有效地利用目前所拥有的先进方法和手段,促进生产力的提高。因此,激光技术是当今工业发展的一个重要趋势。 其中,生命和健康科学是一个非常强劲的市场,因为那里会不断出现的新应用,很多都是基于激光的原理。激光不再只局限为一种外科手术工具,它将会更加广

半导体激光器 薄片激光器 飞秒光纤激光器在材料加工领域和太阳能电池领域的应用

半导体激光器薄片激光器飞秒光纤激光器在材料加工领 域和太阳能电池领域的应用 关键词:金属穿孔卷绕激光器、发射极穿孔卷绕激光器、激光烧制接触激光器、SiN / SiO 层掺杂、MWT激光、EWT激光、LFC激光、硅太阳能电池激光设备、薄膜太阳能电池激光设备、太阳能电池薄片激光器、激光焊接、激光打孔、飞秒激光加工、薄片激光器材料加工、高功率飞秒光纤激光器、固体激光器材料加工、激光熔融、激光熔覆、薄片激光器、飞秒光纤激光器、频率脉宽可独立调制 太阳能电池加工(硅太阳能电池) 在硅太阳能电池领域,激光加工在金属穿孔卷绕(MWT)、发射极穿孔卷绕(EWT)、激光烧制接触、SiN / SiO层掺杂方面发挥了重要作用; 金属穿孔卷绕、发射极穿孔卷绕:最高20000个孔/秒,孔直径20~60μm,3~4个脉冲/孔。 激光烧制接触:最高15000接点/秒,接点尺度50~80μm,1个脉冲/接点。 SiN / SiO dielectric layer opening:最高100000接点/秒,熔接直径20~70μm,1个脉冲/接点。(更多半导体激光模块知识可参见深圳顶尖(科仪)的博客)

在薄膜太阳能电池领域,复合物薄膜和基底有多种选择,对于每一种不同的组合所用到的激光加工工艺都是不同的,下面以几个典型的结构为例进行介绍。 a-Si / CdTe type solar cells:结构为玻璃/TCO/发射层/金属,接触点p1和p3层。激光器选用JenLas? fiber ns 10-4。 CIGS type solar cells:结构和a-Si / CdTe type相反。发射极加工:JenLas? fiber ns 10-40或JenLas? D2.fs。 JenLas? disk IR50是45W的红外声光调Q薄片激光器,具有非常好的光束质量,特别适合于各种工业上的微加工。 JenLas? disk IR50 / JenLas? disk IR70 1、波长1030nm, 2、声光调Q 3、平均功率 > 45W/65W 4、宽脉冲宽度,200~2000ns/650~1600ns可调 5、快速,重复频率8~30kHz(高级模式最大100kHz), 6、单脉冲能量高达5/7mJ @8kHz 7、光束质量好M2<1.2 JenLas? mopa N35 1、基本同上 2、固态二极管泵浦调Q激光器,功率35W 3、波长1064nm 4、重复频率30~150kHz 0.2mJ @150kHz 5、OEM设计,运行费用低 6、稳定性 8h ±3%

光纤激光器研究进展

收稿日期:2008-10-13. 动态综述 光纤激光器研究进展 申人升,张玉书,杜国同 (大连理工大学物理与光电工程学院,辽宁大连116023) 摘 要: 光纤激光器具有寿命长,模式好,体积小,免冷却等一系列其他激光器无法比拟的优点,近年来受到了来自电子信息、工业加工和国防科技等研究开发领域的高度关注。文章概述了光纤激光器典型的工作原理,阐述了其当前主要研究方向以及国内外研究现状,最后提出了光纤激光器产业化的趋势。 关键词: 光纤;光纤激光器;光子晶体光纤;超短脉冲 中图分类号:TN248 文献标识码:A 文章编号:1001-5868(2009)01-0001-05 Latest Development of Fiber Lasers SH EN Ren -sheng ,ZH ANG Yu -shu,DU Guo -tong (School of Physics and Optoelectronic Technology,Dalian University of Technology,Dalian 116024,C HN) Abstract: Fiber lasers ow n lots of advantages co mpared w ith other lasers,including lo ng life,goo d mode,compactness,etc.Recently,fiber lasers have received increasing ly intensive attention in the applications o f electro nic inform ation,industr y processing and national defense technolog y.T he ty pical principle o f fiber laser is explained and resear ch progr esses about fiber lasers are review ed.Furthermore,the future developm ental trends fo r laser fiber are discussed. Key words: fiber;fiber lasers;photonic crystal fiber;ultrashort pulse 0 引言 光纤激光器诞生于20世纪60年代初,它是伴随着光纤通信技术、光纤制造工艺以及与激光器生产技术的日趋成熟而迅猛发展起来的新型器件。由于其在高速率、密集波分复用(DWDM )通信系统、高精度传感技术和大功率激光加工等方面呈现出潜在的技术优势和广阔的应用前景,所以备受世界各国科研工作者的青睐,现已成为国际学术界的热门研究对象。 光纤激光器与其他类型激光器相比较,其优点为:(1)泵浦功率低、增益高、输出光束质量好;(2)与其他光纤器件兼容,可实现全光纤传输系统;(3)使用光纤作为基体,其结构具有较高的比表面积,因而散热好;(4)体积小,携带方便;(5)光纤激光器可以作为光孤子源,实现光孤子通信。 1 原理与分类 1.1 基本工作原理 图1 所示为典型光纤激光器的基本结构。 图1 光纤激光器基本结构 典型光纤激光器主要由三部分组成:产生光子的增益介质、使光子得到反馈并在增益介质中进行谐振放大的光学谐振腔和激发增益介质的泵浦源。其中,增益介质为掺杂稀土离子的纤芯。 当泵浦光从反射镜1(或光栅1)入射到掺杂光纤芯中时,会被所掺杂的稀土离子吸收。吸收了光子能量的稀土离子会发生能级跃迁,实现/粒子数反 # 1#

调Q光纤激光器结构示意图和MOPA光纤激光器结构示意图.

调Q光纤激光器和普通的调Q激光器一样,都是在激光谐振腔内插入Q开关器件,通过周期性改变腔损耗,实现调Q激光脉冲输出。Q开关是被广泛采用的产生短脉冲的激光技术之一。 现状: 调Q光纤激光器在许多领域都有着广泛应用,大功率是调Q光纤激光器的一个发展方向。全光纤化也是调Q光纤激光器发展的一个重要趋势,人们陆续研发出一些全光纤的Q开光来代替传统的声光与电光调制器,大大地降低了激光器的插入损失。 用于光纤激光器的调Q技术大致可以分为光纤型调;和非光纤型调Q两类。非光纤型调Q有光调Q、电光调Q、机械转镜调Q和可饱和吸收体调Q等。 非光纤型调Q: 1.声光调Q激光器:

2.电光调Q激光器:

3.可饱和吸收体调Q激光器: 光纤型调Q装置 光纤型调Q装置有光纤迈克尔逊干涉仪调Q、光纤马赫

一曾特尔干涉仪调Q和光纤中的受激布里渊散射(SBS)调Q光纤激光器等。下面介绍混合调Q和脉冲泵浦受激布里渊散射混合调Q光纤激光器。 混合调Q光纤激光器 如图所示 得到了峰值功率3.7KW,脉宽2m的脉冲激光输出。 实验中选用掺钕双包层光纤作增益介质,光纤长7.2m,纤芯直径5.1um,数值孔径0.12。内包层为矩形结构,截面尺寸150um*75um。 泵源为800nm、3w激光二极管,有60%的泵光祸合到内包层中。 系统由一个全反镜和一个二向色镜构成驻波谐振腔。在双包层光 纤的输出端接几米长的单模光纤,实现调Q ,得到纳秒量级的激光脉冲。在腔内插人一声光调制器(AQM),使激光脉冲重复频率在6.6KHz-16.4KHZ范围内可调。 脉冲泵浦和受激布里渊散射混合调Q : 在线形腔双包层光纤激光器中,用脉冲泵浦和SBS混合调Q 。 如图所示

光纤激光器的特点与应用

光纤激光器的特点与应用 光纤激光器是在EDFA技术基础上发展起来的技术。近年来,随着光纤通信系统的极大的应用和发展,超快速光电子学、非线性光学、光传感等各种领域应用的研究已得到日益重视。光纤激光器在降低阂值、振荡波长范围、波长可调谐性能等方面,已明显取得进步。它是目前光通信领域的新兴技术,它可以用于现有的通信系统,使之支持更高的传输速度,是未来高码率密集波分复用系统和未来相干光通信的基础。 1.光纤激光器工作原理 光纤激光器主要由三部分组成:由能产生光子的增益介质、使光子得到反馈并在增益介质中进行谐振放大的光学谐振腔和可使激光介质处于受激状态的泵浦源装置。光纤激光器的基本结构如图1所示。 掺稀土元素的光纤放大器推动了光纤激光器的发展,因为光纤放大器可以通过适当的反馈机理形成光纤激光器。当泵浦光通过光纤中的稀土离子时,就会被稀土离子所吸收,这时吸收光子能量的稀土原子电子就会激励到较高激射能级,从而实现离子数反转。反转后的离子数就会以辐射形式从高能级转移到基态,并且释放出能量,完成受激辐射。从激发态到基态的辐射方式有两种,即自发辐射和受激辐射,其中受激辐射是一种同频率、同相位的辐射,可以形成相干性很好的激光。激光发射是受激辐射远远超过自发辐射的物理过程,为了使这种过程持续发生,必须形成离子数反转,因此要求参与过程的能级应超过两个,同时还要有泵浦源提供能量。光纤激光器实际上也可以称为是一个波长转化器,通过它可以将泵浦波长光转化为所需的激射波长光。例如掺饵光纤激光器将980nm的泵浦光进行泵浦,输出1550nm的激光。激光的输出可以是连续的,也可以是脉冲形式的。 光纤激光器有两种激射状态,三能级和四能级激射。三能级和四能级的激光原理如图2所示,泵浦(短波长高能光子)使电子从基态跃迁到高能态E4或者E3,然后通过非辐射方式跃迁过程跃迁到激光上能级E43或者E3 2,当电子进一步从激光上能级跃迁到下能级E扩或者E3,时,就会出现激光的过程。

光纤激光器的前世今生

光纤激光器的前世今生 ?光纤激光器定义 光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,光纤激光器可在光纤放大器的基础上开发出来:在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”,当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。 光纤激光器应用范围非常广泛,包括激光光纤通讯、激光空间远距通讯、工业造船、汽车制造、激光雕刻激光打标激光切割、印刷制辊、金属非金属钻孔/切割/焊接(铜焊、淬水、包层以及深度焊接)、军事国防安全、医疗器械仪器设备、大型基础建设,作为其他激光器的泵浦源等等。 光纤激光器发展史 早期对激光器的研制主要集中在研究短脉冲的输出和可调谐波长范围的扩展方面。今天,密集波分复用(DWDM)和光时分复用技术的飞速发展及日益进步加速和刺激着多波长光纤激光器技术、超连续光纤激光器等的进步。同时,多波长光纤激光器和超连续光纤激光器的出现,则为低成本地实现Tb/s的DWDM或OTDM传输提供理想的解决方案。就其实现的技术途径来看,采用EDFA放大的自发辐射、飞秒脉冲技术、超发光二极管等技术均见报道。 目前国内外对于光纤激光器的研究方向和热点主要集中在高功率光纤激光器、高功率光子晶体光纤激光器、窄线宽可调谐光纤激光器、多波长光纤激光器、非线性效应光纤激光器和超短脉冲光纤激光器等几个方面。 1962年世界上第一个GaAs半导体激光器问世以来,已有四十余年的历史,现在半导体激光器已广泛地应用于激光通信、光盘存储、激光检测等领域。 随着半导体激光器连续输出功率的日益提高,其应用范围也不断扩大,其中大功率半导体激光器泵浦的固体激光器(DPSSL)是它最大的应用领域之一。这一技术综合了半导体激光器与固体激光器的优点,不仅将半导体激光器的波长转换为固体激光器的波长,而且伴随光束质量的改善和光谱线宽的压缩,以及实现脉冲输出等。https://www.wendangku.net/doc/5515139661.html,/半导体激光器体积小、重量轻,直接电子注入具有很高的量子效率,可以通过调整组份和控制温度得到不同的波长与固体激光材料的吸收波长相匹配,但它本身的光束质量较差,且两个方向不对称,横模特性也不尽理想。而固体激光器的输出光束质量较高,有很高的时间和空间相干性,光谱线宽与光束发散角比半导体激光小几个量级。对于DPSSL,是吸收波长短的高能量光子,转化为波长较长的低能量光子,这样总有一部分能量以无辐射跃迁的方式转换为热。这部分热能量将如何从块状激光介质中散发、排除成为半导体泵浦固体激光器的关键技术。 为此,人们开始探索增大散热面积的方法。深圳市星鸿艺激光科技有限公司专业生产激光打标机,激光焊接机,深圳激光打标机,东莞激光打标机 ?方法之一就是将激光介质做成细长的光纤形状。 所谓光纤激光器就是用光纤作激光介质的激光器,1964年世界上第一代玻璃激光器就是光纤激光器。由于光纤的纤芯很细,一般的泵浦源(例如气体放电灯)很难聚焦到芯部。所以在以后的二十余年中光纤激光器没有得到很好的发展。随着半导体激光器泵浦技术的发展,以及光纤通信蓬勃发展的需要,1987年英国南安普顿大学及美国贝尔实验室实验证明了掺铒光纤放大器(EDFA)的可行性。它采用半导体激光光泵掺铒单模光纤对光信号实现放大,现在这种EDFA已经成为光纤通信中不可缺少的重要器件。由于要将半导体激光泵浦入单模光纤的纤芯(一般直径小于10um),要求半导体激光也必须为单模的,这使得单模EDFA难以实现高功率,报道的最高功率也就几百毫瓦。

大功率光纤激光器技术及其应用

的构想 , 但直到 20 世纪 80 年代, 随着激光二极管泵浦技术的发展和双包层结构光纤的提出 , 光纤激光 现于世 第 21 卷 第 6 期 山 东 科 学 Vol. 21 No. 6 2008 年 12 月 SHANDONG SCIENCE Dec. 2008 文章编号: 1002 4026( 2008) 06 0072 06 大功率光纤激光器技术及其应用 宋志强 ( 山东省 科学院激光研究所, 山东 济南 250014) 摘要: 光纤激光器是当今光电子技术研究领域中最炙手可热的研究课题, 尤其是大功率光纤激光器, 已在很多 领域表现 出取代传统 固体激光 器和 CO 2 激光器 的趋势。本文 从光纤激 光器的结构 出发, 详细论述 了大功率 光纤激光器的工作原理和关键技术, 重点介绍了应用更为广泛 的脉冲型 光纤激光器 技术, 最后简单 列举了大 功率光纤激光器的优势及其在工业加工、国防、医疗等领 域里的应用情况。 关键词: 光纤激光器; 包层泵浦技术; 双包层掺杂光纤; 光纤光栅; 应用 中图分类号: TN249 文献标识码: A The Development of High Power Fiber Laser and Its Applications SONG Zhi qiang ( Institute of Laser , Shandong Academy of Sciences , Jinan 250014, China ) Abstract: The technology of fiber lasers is one of research focuses topics in current optoelectronic area, especially for a high power fiber opt ic laser that has exhibited a tendency substituting traditional solid state laser and CO 2 laser in many areas. We fully expound its principles and some key technologies from its structure, emphasize the technology of a pulse fiber optic laser that is more widely applied, and enumerate its superiorit ies and applications in such areas industrial processing, national defense, medical service, etc. Key words: fiber optic laser; cladding pump; double clad rare earth doped fiber; fiber Bragg grating; application 所谓光纤激光器就是利用稀土掺杂光纤作为增益介质的激光器, 它的发展历史几乎和激光器技术一样 长。早在 20 世纪 60 年代初, 美国光学公司的 E. Snitzer 等人就已经提出了掺稀土元素光纤激光器和放大器 [ 1] [ 2] 器才进入了一个蓬勃发展的阶段。最近十年, 适合各种不同应用目的和领域的光纤激光器已雨后春笋般涌 [ 3- 5] 。 1 工作原理及关键技术 同其他类型激光器一样, 光纤激光器主要由泵浦源、谐振腔和增益介质三要素构成, 具体包括泵浦 LD 、 DCDF 、大模场 FBG 和光纤合束器等, 如图 1 所示。光纤激光器的所有器件均可由光纤介质制作, 因此光纤技 术是决定光纤激光器性能的关键因素。 收稿日期: 2008 08 23 基金项目: 山东省仪器设备改造项目资助( 2007GG1TC04039) 。 作者简介: 宋志强( 1982- ) , 男, 硕士, 主要研究方向为大功率光纤激光器技术。E mail: zhiqiangs@ gmail. com

激光20wmopa系列光纤激光器应用介绍2018.2.22

20W MOPA光纤激光器应用介绍 应用工程师:无锡创永激光刘工 2016年7月18日

20W MOPA参数表 长脉宽单脉冲能量高,热效应明显,窄脉宽单脉冲能量低,热效应弱;高频率,平均功率高,热效应明显,低频率(10KHz),平均功率低,热效应弱;低扫描速度,低填充密度,激光能量集中,热效应明显,高扫描速度,中等填充密度(),激光能量分散,热 效应弱。

固定脉宽,100%功率,频率由小增大,平均功率线性增大,直至降功率频率(4ns400KHz),降功率频率到最大频率,功率趋于稳定。 固定脉宽,100%功率,频率由小增大,峰值功率增大,直至降功率频率(4ns400KHz),降功率频率到最大频率,峰值功率呈反比例函数递减。 其他脉宽类似。 MOPA光纤激光器,脉宽可调,脉冲频率范围大,应用范围十分广泛,本文中介绍了20W MOPA光纤激光器部分常见应用,用于20W MOPA应用介绍和推广。其中不同材料参数设置有所差异,文中参数

可作为参考,如有不同之处,敬请谅解。

1. 阳极氧化铝标刻 小米手机壳阳极氧化铝标刻黑色LOGO 小米充电宝阳极氧化铝标刻白色LOGO 阳极氧化铝上标刻黑色二维码,显微镜下可扫描 2. 304不锈钢标刻 304不锈钢打彩色LOGO 304不锈钢名牌标刻黑色 304不锈钢深雕 3.部分高分子材料标刻 公牛插座、苹果手机数据线等某些白色高分子材料标刻深色 PA66+、PE等某些黑色高分子材料标刻浅色 4. 电子器件标刻 电解电容标记黑色参数 PCB板标刻白色二维码和参数 电镀电子器件标刻 IC芯片等电子器件参数标刻 5. 漆剥除 汽车、电脑、手机等透光件漆剥除 亚克力瓶、橡胶按键表面漆剥除 电脑铝制外壳导通处漆剥除 6. 铜制器件标刻 黄铜件标记白色尺寸参数 7. 微弧氧化铝合金标刻黑色名牌 8. 碳钢轴承标记黑色参数 9. 铝箔、锡箔、铜箔切割

光纤激光器的原理及应用

光纤激光器的原理及应用 张洪英 哈尔滨工程大学理学院 摘要:由于在光通信、光数据存储、传感技术、医学等领域的广泛应用,近几年来光纤激光器发展十分迅速,且拥有体积小、重量轻、检测分辨率高、灵敏度高、测温范围宽、保密性好、抗电磁干扰能力强、抗腐蚀性强等明显优势。本文简要介绍了光纤激光器的基本结构、工作原理及特性,并对目前几种光纤激光器发展现状及特点做了分析,总结了光纤激光器的发展趋势。 关键词:光纤激光器原理种类特点发展趋势 1引言 对掺杂光纤作增益介质的光纤激光器的研究20世纪60年代,斯尼泽(Snitzer)于1963年报道了在玻璃基质中掺激活钕离子(Nd3+)所制成的光纤激光器。20世纪70年代以来,人们在光纤制备技术以及光纤激光器的泵浦与谐振腔结构的探索方面取得了较大进展。而在20世纪80年代中期英国南安普顿大学掺饵(EI3+)光纤的突破,使光纤激光器更具实用性,显示出十分诱人的应用前景[1]。 与传统的固体、气体激光器相比,光纤激光器具有许多独特的优越性,例如光束质量好,体积小,重量轻,免维护,风冷却,易于操作,运行成本低,可在工业化环境下长期使用;而且加工精度高,速度快,寿命长,省能源,尤其可以智能化,自动化,柔性好[2-3]。因此,它已经在许多领域取代了传统的Y AG、CO2激光器等。 光纤激光器的输出波长范围在400~3400nm之间,可应用于:光学数据存储、光学通信、传感技术、光谱和医学应用等多种领域。目前发展较为迅速的掺光纤激光器、光纤光栅激光器、窄线宽可调谐光纤激光器以及高功率的双包层光纤激光器。 2光纤激光器的基本结构与工作原理 2.1光纤激光器的基本结构 光纤激光器主要由三部分组成:由能产生光子的增益介质、使光子得到反馈并在增益介质中进行谐振放大的光学谐振腔和可使激光介质处于受激状态的泵浦源装置。光纤激光器的基本结构如图2.1所示。

我国商用光纤激光器的应用现状及发展

我国商用光纤激光器的应用现状及发展 2011/1/25 14:59:16 标签:光纤激光器现状发展应用 1 引言 近年来,随着各种关键技术的突破,光纤激光器得到了长足的发展。作为第三代激光技术的代表,光纤激光器具有其他激光器无可比拟的技术优越性。这几年随着各种商用光纤激光器的面市,光纤激光器被应用到众多领域。本文主要介绍国内外光纤激光器的最新应用进展及我国商用光纤激光器现状及发展。 2 光纤激光器的应用 2.1 光纤激光器在工业上的应用 工业生产要求激光器可靠性高、体积小、安全、便于操作。光纤激光器以其结构紧凑、光转换效率高、预热时间短、受环境因素影响小、免维护以及容易与光纤或由光学镜片组成导光系统耦合等优点受到人们的广泛关注。 目前,光纤激光器正逐步取代传统激光器在激光打标、激光焊接、激光切割等领域的主导地位。在打标领域,由于光纤激光器具有较高的光束质量和定位精度,光纤打标系统正取代效率不高的二氧化碳激光和氙灯抽运的Nd:YAG脉冲激光打标系统;在欧美及日本市场,这种取代正大规模地进行着,仅在日本,每月的需求量就超过100台。我国作为世界上最大的工业制造国,对光纤激光打标机的需求是十分巨大的,估计每年有超过2000台的需求量。在激光焊接和切割领域,随着上千瓦甚至几万瓦光纤激光器的研制成功,光纤激光器也得到了应用。此前,IPG报道,德国宝马汽车公司购买了他们的高功率光纤激光器用在车门焊接生产线上。 2.2 光纤激光器在传感上的应用 较之于其他光源,光纤激光器被用作传感光源有许多优势。首先,光纤激光器有效率高、可调谐、稳定性好、紧凑小巧、重量轻、维护方便和光束质量好等优异性能。其次,光纤激光能很好地与光纤耦合,与现有的光纤器件完全兼容,能进行全光纤测试。 目前,基于可调谐窄线宽光纤激光器的光纤传感是该领域的应用热点之一。该类型光纤激光器的光谱线宽很窄,具有超长相干长度,并且可以对频率进行快速调制。把这种窄线宽光纤激光器应用到分布式传感系统,可实现超长距离、超高精度的光纤传感。在美国和欧洲,这种基于可调谐窄线宽光纤激光器的传感技术被广泛应用到国土安全及重要设施监测、石油/天然气管道监测以及水下声纳探测等众多领域。我国估计每年对这种类型光纤激光器的需求量也在100台以上。 2.3 光纤激光器在通讯上的应用 光纤激光器相比于常规激光系统在结构紧凑性、散热、光束质量、体积以及与现有系

飞秒激光器

飞秒激光是过去20年间由激光科学发展起来的最强有力的新工具之一。飞秒脉冲时域宽度是如此的短,目前已经达到了4fs以内。1飞秒(fs),即10-15s ,仅仅是1千万亿分之一秒,如果将10fs作为几何平均来衡量宇宙,其寿命仅不过1min而已;飞秒脉冲又是如此之强,采用多级啁啾脉冲放大(CPA)技术获得的最大脉冲峰值功率可达到百太瓦(TW,即1012W)甚至拍瓦(PW,即1015W)量级,其聚焦强度比将太阳辐射到地球上的全部光聚焦成针尖般大小后的能量密度还要高。飞秒激光完全是人类创造的奇迹。 近二十年来,从染料激光器到克尔透镜锁模的钛宝石飞秒激光器,以及后来的二极管泵浦的全固态飞秒激光器和飞秒光纤激光器,虽然说脉冲宽度和能量的记录在不断刷新,但最大进展莫过于获得超飞秒脉冲变得轻而易举了。桑迪亚国家实验室的R.Trebino说:“过去1 0年中,(超快)技术已有显著改善, 钛蓝宝石激光器和现在的光纤激光器正在使这种(飞秒) 激光器的运转变得简洁和稳定。这种激光器现在人们已可买到, 而10年前, 你却必须自己建立。”比如,著名的飞秒激光系统生产商美国Clark-MXR公司将产生高功率飞秒脉冲的所有部件全部集成到一个箱子里,采用掺铒光纤飞秒激光器作为种子源,加上无需调整(NO Tweak)的特殊设计,形成了世界上独一无二,超稳定、超紧凑的CPA2000系列钛宝石啁啾脉冲放大系统。这种商品化的系统不需要飞秒专家来操作,完全可以广泛应用于科研和工业上的许多领域里。 根据飞秒激光超短和超强的特点,大体上可以将应用研究领域分成超快瞬态现象的研究和超强现象的研究。它们都是随着激光脉冲宽度的缩短和脉冲能量的增加而不断的得以深入和发展。飞秒脉冲激光的最直接应用是人们利用它作为光源, 形成多种时间分辨光谱技术和泵浦/探测技术。它的发展直接带动物理、化学、生物、材料与信息科学的研究进入微观超快过程领域, 并开创了一些全新的研究领域, 如飞秒化学、量子控制化学、半导体相干光谱等。飞秒脉冲激光与纳米显微术的结合, 使人们可以研究半导体的纳米结构(量子线、量子

飞秒光纤激光器的应用

飞秒光纤激光器的应用 飞秒光纤激光器是一种主要由光纤激光器构成,具有飞秒(10负15次秒)区持续时间的脉冲激光器。 飞秒激光器的脉宽极窄,瞬问功率极高,既使平均输出功率为lW,峰值功率也能达到千瓦级至兆瓦级以上。飞秒激光器现已应用于以往纳秒脉冲激光器或连续波激光器无法应用的各种领域。 1990年,日本爱信精机公司以IMRA AmericaInc.的名字在美国成立了一家子公司,门从事飞秒光纤激光器的研发、生产、销售与应用开发工作。因此“IMRA”既是美国研究法人的名字,又是爱信精机公司生产的激光器的商标名称,这是在美国研究开发、日本制造的激光器。 1、飞秒光纤激光器的优点 1.1、小型轻便 光纤激光器在确保必要光学长度的同时,可将光纤卷成半径约3cm的环形。与固体激光器相比,光纤激光器的体积大幅缩小。光纤形态每单位体积的表面积大于棒状或片状晶体激光器,散热效果好,不需要冷却器等外围装置,因此在这方面又大幅缩小了激光器的体积。 1.2、高可靠性高稳定性 光纤激光器是由光纤部件组装而成。这些光纤部件采用电弧熔接的方法,因此光学轴长期无偏移,这种连接方法确保了光纤激光器的稳定性和可靠性。另外,IMRA激光器系统外部采购的元器件都严格选用高可靠性的光通信部件,这也对激光器系统的高可靠性提供了保障。 1.3、高光束质量 单模光纤输出的光是近乎理想的点光源,输出光束的圆度和强度分布较容易获得接近理想的高质量输出光束。飞秒光纤激光器在用于微细加工时,聚焦光束很容易达到透镜的聚焦极限,因此适于微细加工。 1.4、低功耗 现已广泛使用的钛宝石飞秒激光振荡器的晶体吸收波长在530nm附近,将大功率Nd:YAG激光器的波长转换成530nm来泵浦激光器,既需要大型Nd:Y AG激光器,又需要冷却器,其电能消耗很大。而光纤激光器则不需要冷却器,可以用二极管激光器直接泵浦。结果表明,飞秒光纤激光器的电光转换效率优于钛宝石飞秒激光器1个数量级。 2、飞秒光纤激光振荡器 虽然20世纪90年代初问世的飞秒光纤激光器的光学轴具有长期无偏移的特点,但因温度的变化等会使偏振面光纤旋转,从而导致输出功率的改变,因此需要偏振面的调整机构,并需要维护。 1994年,Fermann等人利用新结构的被动锁模飞秒脉冲激光振荡器实现了无调整运转。科研人员在谐振腔的两端对置法拉第转子,以往返运转来补偿因环境变化所引起的偏振旋

光纤激光器原理与特性详解

光纤激光器原理与特性详解 一、简介 光纤激光器,英文名称为Fiber Laser,是一种以掺稀土元素的玻璃光纤为增益介质来产生激光输出的装置。光纤激光器可在光纤放大器的基础上进行开发,由于光纤激光器中光纤纤芯很细,因此在泵浦光作用下,光纤内部功率密度高,使得激光能级出现“粒子数反转”现象,在此基础上,再通过正反馈回路构成谐振腔,便可在输出处形成激光振荡。

二、结构 光纤激光器的结构类似于传统的固体激光器、气体激光器,主要由泵浦源、增益介质、谐振腔三大部分构成,如下图所示。其中,泵浦源一般为高功率的半导体激光器,增益介质为掺稀土元素的玻璃光纤,谐振腔由耦合器或光纤光栅等构成。 三、原理 在上图中,由泵浦源发出的泵浦光通过一面反射镜耦合进入增益介质中,由于增益介质为掺稀土元素光纤,因此泵浦光被吸收,吸收了光子能量的稀土离子发生能级跃迁并实现粒子数反转,反转后的粒子经

过谐振腔,由激发态跃迁回基态,释放能量,并形成稳定的激光输出。 四、特点 特点一:由于光纤纤芯直径小,在纤芯内容易形成高功率密度,因此光纤激光器具有较高的转换效率、较低的阙值、较高的增益、较窄的线宽、且可方便高效的实现与当前光纤通信系统的连接。 特点二:由于光纤具有很好的柔绕性,因此光纤激光器具有小巧灵活、结构紧凑、性价比较高、且更易于系统的集成的特点。 特点三:与传统的固体激光器、气体激光器相比,光纤激光器的能量转换效率较高、结构较紧凑、可靠性高、且适合大批量的生产。 特点四:与半导体激光器相比,光纤激光器的单色性较好、调制时可产生较小的啁啾和畸变、且与光纤的耦合损耗较小。

和半导体激光器相比,光纤激光器的优越性主要体现在:光纤激光器是波导式结构,可容强泵浦,具有高增益、转换效率高、阈值低、输出光束质量好、线宽窄、结构简单、可靠性高等特性,易于实现和光纤的耦合。 我们可以从不同的角度对光纤激光器进行分类,如根据光纤激光器的谐振腔采用的结构可以将其分为Fabry-Perot腔和环行腔两大类。也可根据输出波长数目将其分为单波长和多波长等。 对于不同类型光纤激光器的特性主要应考虑以下几点: (1)阈值应越低越好; (2)输出功率与抽运光功率的线性要好; (3)输出偏振态; (4)模式结构; (5)能量转换效率;

飞秒激光器

可以使光速减慢的飞秒激光器

学员:1111414李鹏辉1111437王小平1111434田朝光1111415李曦 摘要:近年来,随着高新科技的发展,自超短频脉光学问世以来,已经历了25年的发展历程,而这时,飞秒激光器现已在工业加工中得到了应用。因为脉冲短的原因,飞秒激光器也就能拍摄到很多完全想象不到的画面。利用这个,可以对很多领域的学科进行更加细致,更加周密的系统性研究。 论文关键词:超短脉冲组合光玻色-爱因斯坦凝聚 飞秒的概念:飞秒是一种时间单位,1飞秒只有1秒的一千万亿分之一,即1e?15秒或0.001皮秒(1皮秒是,1e?12秒),。它有多快呢?我们知道,光速是30万千米每秒,即 3×10^8m/s。而在1飞秒之内,光只能走0.3 μm,这只是不到一根头发丝的百分之一。 飞秒激光器是指利用锁模技术来获得的飞秒量级短脉冲的激光器。所谓飞秒,也叫做毫微微秒,即1飞秒只有10的负15次方秒。飞秒激光不是单色光,而是中心波长在800nm左右的一段波长连续变化光的组合,利用这段范围内连续波长光的空间相干来获得时间上极大的压缩,从而实现飞秒量级的脉冲输出。所采用的激光晶体为激光谱线很宽的钛宝石晶体。说白了就是一个可以以千兆分之一秒左右的超短时间放光的“超短脉冲光”发生装置。所谓脉冲光是仅在一瞬间放光。 超短脉冲激光器从上世纪80年代开始,经历了从染料到固体飞秒激光器的发展,开辟了科学和工业应用的新时代。但其昂贵的价格,庞大的体积,对环境的稳定性差等缺陷阻碍了飞秒激光的应用。探索新机理,突破现有飞秒激光局限,研制新一代飞秒激光成为世界范围内热门研究课题。自90年代初,光纤激光器利用半导体激光器泵浦,具有小巧、结构简单、无需水冷和可集成化的特点,逐步发展起来并成为钛宝石激光器强有力的竞争者和替代者。早期的飞秒光纤激光器,采用掺铒的通信光纤,工作波长1550nm,普通单模光纤色散为负,能提供与自相位调制对应的啁啾补偿,于是孤子锁模(Soliton mode locking)和展宽脉冲(Stretched pulse)锁模就成为主流机制。由于其倍频光的波长在775nm,经过拉曼移频可移到800nm附近,在商用激光器上,已经用作钛宝石放大器的种子脉冲。但是,由于铒光纤的掺杂浓度不能很高,以及锁模机制的限制,输出脉冲能量仍然很低(10pJ-10nJ量级),限制了此种光纤激光器的应用。进入新世纪后,随着高掺杂掺镱光纤激光器的发展,自相似(Self-similar)和全正色散(All-normal-dispersion)锁模理论被提出并在实验上获得证实,使光纤振荡器的单脉冲能量突破10n。 与其平行的是,90年代中期光子晶体光纤的问世,使得飞秒光纤激光器多了一个选择支。光子晶体光纤的主要特点是大模场面积光纤比普通的双包层光纤能更好地保持单模特性,在放大器上有重要应用。但是,光子晶体增益光纤特别是双包层大模场面积光子晶体光纤价格非常昂贵,远远高于晶体的价格;而且泵浦光的耦合需要在空间进行,对机械件稳定性能要求很高,不像普通单模光纤以及普通的双包层光纤有直接的光纤合成。 对于工作在1微米波段的光子晶体光纤,不同于普通的单模光纤,可以提供负色散,但也仅仅限于光纤芯径在1~2微米的光纤。在这样细的光纤中,孤子能量非常小,否则就会导致脉冲分裂,也不可能作为放大后的压缩器。由于以上缺点,除了放大器,光子晶体光纤做飞秒激光器振荡器并无明显优势。目前国内外报道的光子晶体光纤激光器,都是空间耦合的,并含有光栅对等需要空间的元件,不是低成本、抗击外部环境影响的封闭式结构。 光纤激光器的最大优点是小型化、封闭式及无水冷。如果反过来做成空间式的,那就只有效率高这样的优点,稳定性甚至不如固体激光器。因此,作为放大器的种子光源以及对小能量应用(脉冲能量小于1mJ,例如光波导的刻划、THz波的产生、精密时频传输、纠缠光子对的产生、泵浦探针测量等),普通单模光纤飞秒激光器以及普通大模场面积光纤飞秒放

相关文档
相关文档 最新文档