文档库 最新最全的文档下载
当前位置:文档库 › Na2HPO4与NaH2PO4混合液组分含量的测定

Na2HPO4与NaH2PO4混合液组分含量的测定

Na2HPO4与NaH2PO4混合液组分含量的测定
Na2HPO4与NaH2PO4混合液组分含量的测定

Na2HPO4与NaH2PO4混合液组分含量的测定

刘凯

(武汉大学化学与分子科学学院 2014级化学基地2班)

摘要:本实验使用酸碱滴定法测定了Na2HPO4与NaH2PO4混合液中的各组分,即HPO42-与H2PO4-的含量,并研究了各种不同的酸碱指示剂的使用范围及误差大小.

关键词:酸碱滴定;磷酸二氢根;磷酸氢根;测定;酸碱指示剂.

Titration of Na2HPO4 and NaH2PO4 in miscible

liquids

Linus Liu

(College of Chemistry and Molecular Science, Wuhan University Cultivation Base Class2, Grade 2014)

Abstract:Titration of Na2HPO4 and NaH2PO4 in miscible liquids by acid-base titrimetry. By the way, we study the error of the indicators in this case, and find the most suitable indicator of the titration.

Key words: acid-base titrimetry; dihydrophosphate; hydrophosphate; acid-base indicators.

0 引言

滴定H

3PO

4

时,(以0.10mol?L-1NaOH滴定

0.10mol?L-1H

3PO

4

溶液为例),H

3

PO

4

的各

级解离平衡常数为

H 3PO

4

?H++H

2

PO

4

- K

a

1

=7.5×10-3

H 2PO

4

-?H++HPO

4

2- K

a

2

=6.3×10-8

HPO

42-?H++PO

4

3- K

a

3

=4.4×10-13

滴定曲线如下[1]

本试验中需要滴定HPO

42-和H

2

PO

4

-的含量,而

根据能否分步准确滴定的条件K a×C≥10-8

发现H

2

PO

4

-浓度在大于0.1mol·L-1时可以被

NaOH准确滴定.但是HPO42-不可以.由于

HPO

4

2-呈碱性,

2

2

-14

-7

w

b-8

a

K110

K===1.5910

K 6.310

?

?

?

当c≥0.1mol·L-1时 cK

b

2

≥10-8

所以H

2

PO

4

-可以被酸滴定.

目前常用的碱指示剂有酚酞(变色范围:

pH=8.2-10.0)、百里酚酞(pH=9.4-10.6)

酸指示剂有甲基红(pH=4.2-6.2)、甲基橙

(pH=3.1-4.4)、溴甲酚绿(pH=3.8-5.4)、

溴酚蓝(pH=3.0-4.6由黄变蓝)、溴甲酚绿

(pH=3.8-5.4 由黄变蓝).[3]

1 实验

1.1实验材料

基准Na 2CO 3,基准KHC 8O 4H 6,浓盐酸(约12mol ·L -),NaOH 固体,混合液,酸式滴定管(聚四氟乙烯旋钮)两支,锥形瓶,称量瓶,分析天平.

1.2实验原理

H 2PO 4-+OH →HPO 4-+H 2O 以百里酚酞做指示剂 ,用标准NaOH 溶液进行准确滴定 ,滴定终点溶液颜色变化为 : 无色 → 淡蓝色(半分钟内不褪色 ,pH=10.0) 实验过程中,设所消耗NaOH 的量为V NaOH ,浓度为c NaOH ,则磷酸二氢钠的含量

24NaH PO NaOH NaOH n =V c ?

3. HPO 42=+ H +→ H 2PO 4- 以溴甲酚绿为指示剂,用标准HCl 溶液进行准确标定,滴定终点溶液颜色变化为:黄色→蓝色 (滴定终点 pH=

4.8)

实验过程中,设所消耗HCl 的量为V HCl ,浓度为c HCl ,则磷酸氢二钠的含量为

24Na HPO HCl HCl n =V c ?

本实验采用一次滴定法,即先用NaOH 滴定H 2PO 4-(百里酚酞作指示剂),再用HCl 滴定HPO 42-(溴甲酚绿作指示剂),这样百里酚酞的就不会影响溴甲酚绿的显色.

1.3 操作过程

A .盐酸的标定

用量筒量取约4.5mL 浓盐酸,倒入500mL 试剂瓶中,加水到500mL 刻度.用差量法分别量取0.1669g 、0.1654g 、0.1590g Na 2CO 3固体于三只锥形瓶中,编号1/2/3,加约25mL 水溶解后滴入甲基橙2滴.

用清水润洗滴定管后用配好的盐酸润洗3遍,装入盐酸,分别滴定1/2/3瓶中的Na 2CO 3,,由下式子计算c HCl ,

23

23Na CO HCl Na CO HCl

m c =

2M V ??

c HCl =0.1521mol ·L

-1

B .NaOH 的标定

用电子天平称取 2.00gNaOH ,加到试剂瓶里,加水到500mL 刻度.用差量法分别称取0.5939g 、0.5475g 、0.5456g KHC 8H 4O 4于三只锥形瓶中(编号A/B/C ).

用清水润洗滴定管后用配好的盐酸润洗3遍,装入盐酸,分别滴定A/B/C 瓶中的KHP ,由下式计算c NaOH

KHP

NaOH KHP NaOH

m c =

M V ?

c NaOH =0.0968mol ·L -1

1.4 测定Na 2HPO 4 /NaH 2PO 4的含量

A .分别用移液管在三只锥形瓶内加入25mL 混合液(编号为a/b/c ),分别滴入2滴百里酚酞,用标定好的NaOH 滴定之,待溶液稍变蓝即到达终点, 浓度由下式计算

24NaOH NaOH

NaH PO c V c =

V ?混合液

数据如下

B .分别在a/b/c 中滴入两滴溴甲酚绿 用标定好的HCl 滴定之,待溶液由黄变蓝时,即到达终点,总的P 浓度的浓度由下式计算

HCl HCl p V c c =

V ?混合液

Na 2HPO 4的浓度可以由下式计算

2424

Na PO p Na HPO c =c c -.

最终测得,c (Na 2HPO 4)=0.9891 mol ·L -1c (NaH 2PO 4)

=0.9787 mol ·L -1 在滴定过程中,误差来源除了NaH 2PO 4

和Na 2HPO 4本身的性质之及滴定操作之外,最

主要的是指示剂的变色点.

在本试验中,百里酚酞和溴甲酚绿是最

合适的指示剂

只有HPO 42-存在时的pH=9.7最为接近.

溴甲酚绿的理论变色点为pH=4.6,与溶液中

只有H 2PO 4-存在时的pH=4.7最为接近. 根据酸碱滴定的Ringbom 误差公式

pH pH

t 1010E =

100%

?-?-? [3]

可知,△pH 越小,误差也越小.

参考文献:

[1] 武汉大学. 分析化学(第五版). 高等教

育出版社. 2006 Wuhan University. Analytical Chemistry.

HIGHER EDUCATION PRESS. 2006

[2] https://www.wendangku.net/doc/5415141334.html,/wiki/酸碱指示剂

2015.4.20 04:39 AM [3] 同上. Idem [4] 同上. Idem

离子液体

1.2.4离子液体的合成 (1)直接合成法 通过酸碱中和反应或季铵化反应一步合成离子液体,操作经济简便,没有副产物,产品易纯化。硝基乙胺离子液体可以由乙胺的水溶液与硝酸中和一步合成。 通过季铵化反应也可以一步制备出多种离子液体,如1-丁基-3-甲基咪唑盐[Bmim][CF3SO3],[Bmim]Cl等[11]。 (2)两步合成法 如果直接法难以得到目标离子液体,就必须使用两步合成法。 首先,通过季铵化反应制备出含目标阳离子的卤盐([阳离子]X型离子液体);然后用目标阴离子Y—置换出X—离子或加入Lewis酸MX y来得到目标离子液体。 应特别注意的是,在用目标阴离子Y—交换X—阴离子的过程中,必须尽可能地使反应进行完全,确保没有X—阴离子留在目标离子液体中,因为离子液体的纯度对于其应用和物理化学特性的表征至关重要。高纯度二元离子液体的合成通常是在离子交换器中利用离子交换树脂通过阴离子交换来制备[12]。另外,直接将Lewis酸MX y与卤盐结合,可制备[阳离子][M n X ny+1]型离子液体,如氯铝酸盐离子液体的制备就是利用这个方法[13]。 (3)微波辅助合成法 一般离子液体均在有机溶剂中加热回流制备,反应时间数小时至数十小时不等。而在微波作用下无需有机溶剂,且反应速度快、产率高,产品纯度好。微波是一种强电磁波,在微波照射下能产生热力学方法得不到的高能态原子、分子和离子,可以迅速增加反应体系中自由基或碳正离子的浓度,从能量角度分析,只要能瞬间提高反应物分子的能量,使体系中活化分子增加,就有可能增加反应速率,缩短反应时间。超声波能减小液体中悬浮粒子的尺寸,提高异相反应速率。但微波功率宜采用中低档功率较合适,若采用微波加水浴的方法效果相对较好些。 (4)超声波辅助合成法 超声波能减小液体中悬浮粒子的尺寸,提高异相反应速率。Welton等[14]采用超声波作为能量源,在密闭体系非溶剂条件下合成离子液体。他们发现卤代物

保健食品功效成分及卫生指标检验规范

功效成分及卫生指标检验规范

功效成分及卫生指标检验规范 1 主题内容和适用范围 1.1 本规范规定了保健食品和原料的卫生要求、功效成分和卫生指标的检验项目和方法。 1.2 本规范适用于保健食品的检验受理、项目的确定和方法的选择。 2 基本要求 2.1 凡保健食品,必须符合"保健食品通用卫生要求",该"要求"所列的各项目必须按规定执行。附表1所列检测项目是对"保健食品通用卫生要求"补充规定。 2.2 保健食品中使用的添加剂必须符合"GB2760食品添加剂使用卫生标准"规定的品种名单。检测机构根据产品配方检测合成色素、防腐剂、甜味剂及抗氧化剂的含量。 2.3 凡使用有机溶剂提取物为原料的产品,其使用的有机溶剂要符合GB2760附录D食品工业用加工助剂推荐名单要求。 2.4 保健食品应具有与产品配方和申报的保健功能相适应的功效成分或特征成分,申报时须检测配方中主要原料所含的功效成分或特征成分。附表2所列原料为主的产品须检测表中规定的项目。 2.5 保健食品评审专家委员会可根据产品的具体配方、工艺等相关资料,要求申报单位检测指定的项目。

2.6 功效成分、特征成分、营养成分及卫生学指标的检测方法应根据其产品适用的方法学范围选择国家标准、卫生部部颁标准、行业标准以及国际上权威分析方法进行测定。 2.7 在没有相应的标准方法之前,其产品中所声称(具有)的功效成分或特征成分的检测方法及检测所需的标准品对照品及特殊试剂均由申报单位提供,并说明其产品中功效成分或特征成分分析方法的来源。如属自主开发研究的分析方法,需提供方法学研究的相关资料,同时将方法学研究的资料报卫生部保健食品功效成分检测协作组(中国疾病预防控制中心营养与食品安全所)备案,必要时卫生部将组织方法学验证,其费用由申报单位承担。 2.8 检验机构受理保健食品检测时,申报单位应提供该产品的配方、工艺及企业标准等相关资料。 2.9卫生部对保健食品的功效成分的检测机构进行认定,检测机构的名单由卫生部门公布。保健食品的功效成分检测工作应在卫生部认定的检测机构进行。违禁成分的检测由卫生部指定的检验机构进行检测。

钻井液中固相含量的测定实验报告

中国石油大学(油田化学)实验报告 实验日期:成绩: 班级:学号:姓名:教师: 同组者: 实验四钻井液中固相含量的测定 一.实验目的 1.掌握固相含量测定仪的操作方法。 2.学会钻井液中固相含量的计算方法。 二.实验原理 根据蒸馏原理,取一定量钻井液用电热器将其蒸干,收集并测出冷凝的体积,用减差法即可求出钻井液中固相含量。也可通过称重方法算出其固相含量。 三.实验仪器 ZNC型固相含量测定仪;电动搅拌器;台称;量筒。 四.实验步骤 1.拆开蒸馏器,称出蒸馏杯重量:W 杯 (克) 2.用注射器取10毫升均匀钻井液样,注入蒸馏水杯中,称重W 杯+浆 (克)。 3.将套筒及加热棒拧紧在蒸馏杯上,再将蒸馏器引流管插入冷凝器出口端。 4.将加热棒插头插入电线插头,通电加热蒸馏,并计时间。通电约3~5分钟后冷凝液即可滴入量筒,连续蒸馏至不再有液体滴出为止,切断电源。 5.用环架套住蒸馏器上部,使其与冷凝分开,再用湿布冷却蒸馏器。 6.记下量筒中馏出液体体积毫升数,若馏出物为水与油且分层不清时可加入 1~3滴破乳剂。油、水体积分别以V 油、V 水 表示。 7.取出加热棒,用刮刀刮净套筒内壁及加热棒上附者的固体,全部收集于蒸馏杯中,然后称重W 杯+固 (克)。 注意事项:

1.操作时蒸馏器必须竖直。 2.蒸馏时间一般为20分钟,不应超过30分钟。 3.注意保护加热棒和用电安全。 4.若钻井液泡多,可加数滴消泡剂。 五.实验数据处理: 设为淡水非加重钻井液: 固相质量体积百分含量(W 杯+浆-W 杯 )×10(克/100ml) 固相体积百分含量 = 固相质量体积百分含量÷ 土 (ml/100ml)注:粘土比重γ土=2.5。 六.实验数据计算 原始数据记录表 表1 泥浆中固相含量的测定 泥浆的质量(W 杯+浆-W 杯 )=115.25-105.04=10.21g 干馏后固体的质量(W 杯+固-W 杯 )=105.43-105.04=0.39g 固相质量体积百分含量G=0.39*10=3.9(克/100ml) 固相体积百分含量 V =固相重量体积百分含量÷γ土 =3.9/2.5 =1.56(ml/100ml) 实验五钻井液中膨润土含量的测定一. 实验目的

阿司匹林中乙酰水杨酸含量的测定[详实参考]

荧光光度法测定阿司匹林中乙酰水杨酸的含量 一、实验目的 1.掌握用荧光法测定药物中的乙酰水杨酸含量的方法。 2.掌握970CRT 型荧光分光光度计的操作方法。 3.加深对荧光光度法原理的理解。 二、实验原理 1.荧光光度法原理 (1)常温下,处于基态的分子吸收一定的紫外可见光的辐射能成为激发态分子,激发态分子通过无辐射跃迁至第一激发态的最低振动能级,再以辐射跃迁的形式回到基态,发出比吸收光波长长的光而产生荧光。在稀溶液中,当实验条件一定时,荧光强度I F 与物质的浓度c 成线性关系: 即Kc I F (这是荧光光谱法定量分析的理论依据)。 (2)荧光光谱 激发光谱:固定测量波长(选最大发射波长),化合物发射的荧光强度与照射光波长的 关系曲线。激发光谱曲线的最高处,处于激发态的分子最多,荧光强度最大。 发射光谱:固定激发光波长(选最大激发波长), 化合物发射的荧光强度与发射光波长关系曲线。 固定发射光波长进行激发光波长扫描,找出最大激发光波长,然后固定激发光波长进 荧 光强度 波长

行荧光发射波长扫描,找出最大荧光发射波长。激发光波长和发射荧光波长的选择是本实验的关键。 2. 荧光光度法测定阿司匹林中乙酰水杨酸的含量 通常称为ASA 的乙酰水杨酸(阿司匹林)水解即生成水杨酸(SA )(如下式)。而在阿司匹林中或多或少存在一些水杨酸,用醋酸—氯仿作为溶剂,然后用荧光法可以分别测定其含量,少许醋酸还可以增加二者的荧光强度(本次实验只测定阿司匹林中乙酰水杨酸的含量)。在1%的乙酸—氯仿中乙酰水杨酸的激发光谱和荧光光谱如图所示:(为了消除药片之间的差异,可以取几片一起研磨,然后取部分由代表性的样品进行分析) 三、仪器与试剂: 仪器:970CRT 型荧光分光光度计及附件;容量瓶:1000mL 2只,100 mL 2只,50mL 8只;l0mL 吸管2支;铁架台;研钵;称量瓶;玻璃棒;烧杯;定量滤纸;电子天平。 试剂:冰醋酸;氯仿;乙酰水杨酸;阿司匹林;丙酮。 四、实验步骤: 1. 接通电源,打开氙灯,再打开主机,然后打开计算机启动工作站并初始化仪器,预热30min 左右。 2. 仪器初始化完毕后,在工作界面上选择测量项目,设置适当的仪器参数。 3.配置溶液: (1)配置1%的醋酸—氯仿溶剂:在1000ml 容量瓶中,将冰醋酸与氯仿以1:99的比例配制。 (2)配置储备液:准确称取0.4000g 乙酰水杨酸溶于1%的醋酸—氯仿溶剂中制成溶液,在1000ml 的容量瓶中定容备用。(400ug|ml ) (3)配置4.00 ug|ml 的ASA 溶液:在100 ml 容量瓶中将(2)中的标准液稀释100倍.(扫光谱) (CH 3CO)2O H 2O (ASA) (SA)

中药注射液中吐温80的含量测定

中药注射液中吐温80的含量测定 摘要】目的:建立中药注射液中辅料吐温80的含量测定方法,为中药注射液的 安全性检测提供方法和理论依据。方法:采用分子排阻-蒸发光散射(SEC-ELSD)法测定中药注射液中吐温80的含量。结果:中药注射液中吐温80含量差异较大。结论:文献表明吐温80可引起不良反应,因此为保证产品质量的安全性,应在 现行标准中增加吐温80的含量检查项,对其用量进行有效控制。 【关键词】丹参注射液;香丹注射液;吐温80;含量测定 【中图分类号】R927.2 【文献标识码】A 【文章编号】1007-8231(2015)14-0235-02 吐温80(聚山梨酯80),其化学名为聚氧乙烯20山梨醇酐单油酸酯,为淡 黄色至橙黄色的粘稠液体,在水、乙醇、甲醇或乙酸乙酯中易溶,在矿物油中极 微溶解。是由山梨醇及其失水化合物的单油酸酯与环氧乙烷在碱性条件下缩合而成。我国常采用其作为注射液中的助溶剂。但随着近年来药理学研究的深入,人 们认识到吐温80是具有一定生物和药理活性的物质,并与药物临床上出现的不 良反应相关[1]。本文建立了中药注射液中辅料吐温80的SEC-ELSD含量测定方法,以此对中药注射液质量的稳定性和安全性进行综合评价和分析。 1.材料与试药 1.1 仪器 岛津SHIMADZU LC-2010A型高效液相色谱仪(配有四元梯度泵、自动进样器、柱温箱、SEDEX ELSD 75型蒸发光散射检测器、CLASS VP色谱工作站)日本岛津 公司;FA2104N分析天平(上海四瑞仪器有限公司)。 1.2 试药及试剂 吐温80(上海申宇医药化工有限公司,批号090115);丹参注射液样品 (四川某制药厂,批号1311053,1311054,1311055);乙腈(色谱纯,山东禹 王实业有限公司化工风公司);其他均为分析纯。 2.吐温80含量测定方法的建立 2.1 色谱条件的确定 2.1.1色谱柱的确定采用TSKgel G2000SWXL(7.8mm×30 cm,5 μm)色谱柱。 2.1.2流动相的选择分别考察乙腈-0.02mol/L乙酸铵比例为(30:70), (20:80)、(10:90)三个比例,对分离效果进行综合分析,最终确定流动相为 乙腈-0.02mol/L乙酸铵比例为(10:90)。 2.1.3流速的选择以乙腈-0.02mol/L乙酸铵比例为(10:90)为流动相,分别 考察了0.2ml/min,0.4ml/min,0.6 ml/min三个流速,最终确定基线较平稳,分 离效果较好且分析时间适当的流速0.6 ml/min。 2.1.4柱温的选择分别考察了25℃,30℃,35℃,40℃四个柱温,对出峰时 间和色谱分离情况进行综合分析,最终确定柱温为35℃。 2.2 对照品溶液的制备 精密称取吐温80对照品适量,加流动相制成每1mL含有4.0 mg的溶液,作 为对照品溶液,即得。 2.3 供试品溶液的制备 取本品,0.45μm微孔滤膜滤过,取续滤液,即得。 2.4 含量测定方法的确定 最终确定吐温80含量测定方法如下:色谱条件:TSKgel G2000SWXL

钻井液中固相含量的测定

中国石油大学油田化学实验报告 实验日期:2015.4.9 成绩: 班级:学号:姓名:教师: 同组者: 实验四钻井液中固相含量的测定 一.实验目的 1.掌握固相含量测定仪的操作方法。 2.学会钻井液中固相含量的计算方法。 二.实验原理 根据蒸馏原理,取一定量钻井液用电热器将其蒸干,收集并测出冷凝液的体积,用减差法即可求出钻井液中固相含量。也可通过称重方法算出其固相含量。 三.实验仪器 1.ZNC型固相含量测定仪一台 2.电子天平一台; 3.10ml注射器一支; 4.经充分搅拌的泥浆100ml。 四.实验步骤 1.拆开蒸馏器,称出蒸馏杯重量:W杯(克) 2.用注射器取10毫升均匀钻井液样,注入蒸馏杯中,称重W杯+浆(克)。 3.将套筒及加热棒拧紧在蒸馏杯上,再将蒸馏器引流管插入冷凝器出口端。 4.将加热棒插头插入电线插头,通电加热蒸馏,并计时间。通电约3~5分钟后冷凝液即可滴入量筒,连续蒸馏至不再有液体滴出为止,切断电源。 5.用环架套住蒸馏器上部,使其与冷凝器分开,再用湿布冷却蒸馏器。 6.记下量筒中馏出液体体积(ml),若馏出物为水与油且分层不清时可加入1~3滴破乳剂。油、水体积分别以V油、V水表示。 7.取出加热棒,用刮刀刮净套筒内壁及加热棒上附着的固体,全部收集于蒸馏杯中,

然后称重W杯+固(克)。 注意事项: 1.操作时蒸馏器必须竖直。 2.蒸馏时间一般为20分钟,不应超过30分钟。 3.注意保护加热棒和用电安全。 4.若钻井液泡多,可加数滴消泡剂。 五.实验数据处理: 实验数据记录如下: 对于淡水非加重钻井液: 固相质量体积百分含量=(W杯+浆-W杯)×10(克/100ml) =(106.12-105.02)×10 =11(克/100ml) 固相体积百分含量= 固相质量体积百分含量÷ρ土(ml/100ml) =11÷2.5 =4.4(ml/100ml)

紫外可见分光光度法测定水杨酸的含量

紫外可见分光光度法测定水杨酸的含量 一、实验目的 1、了解紫外可见分光光度计的性能、结构及其使用方法。 2、掌握紫外-可见分光光度法定性、定量分析的基本原理和实验技术。 二、实验原理 紫外-可见光谱是用紫外-可见光测获的物质电子光谱,它研究产生于价电子在电子能级间的跃迁,研究物质在紫外-可见光区的分子吸收光谱。当不同波长的单色光通过被分析的物质时能测得不同波长下的吸光度或透光率,以ABS为纵坐标对横坐标波长入作图,可获得物质的吸收光谱曲线。一般紫外光区为190- 400nm,可见光区为400-800nm。 紫外吸收光谱的定性分析为化合物的定性分析提供了信息依据。由于分子结构不同但只要具有相同的生色团,它们的最大吸收波长值就相同。因此,通过对末知化合物的扫描光谱、最大吸收波长值与已知化合物的标准光谱图在相同溶剂和测量条件下进行比较,就可获得基础鉴定。 利用紫外吸收光谱进行定量分析时,必须选择合适的测定波长。苯甲酸和水杨酸的紫外吸收光谱如图1所示。 1-苯甲酸;2-水杨酸 水杨酸在波长300 nm处有吸收峰,而苯甲酸此处无吸收,在波长230 nm两组吸收峰重叠,为了避开其干扰,选用300 nm波长作为测定水杨酸的工作波长。由于乙醇在250?350nm无吸收干扰,因此可用60%乙醇为参比溶液。 三、仪器与试剂 1 ?仪器 紫外—可见分光光度计(UVWIN 5 ,北京普析通用仪器有限公司);容量瓶

100mL 1个、50mL 5个;刻度吸量管1mL、2mL、5mL各1支。 2 ?试剂 水杨酸对照品(分析纯);60°/乙醇溶液(自制)。 四、实验步骤 1、标准溶液的制备:准确称取0.0500 g水杨酸置于100 mL烧杯中,用60% 乙醇溶解后,转移到100 mL容量瓶中,以60%乙醇稀释至刻度,摇匀。此溶液浓度为0.5mgmL-1。 2、将五个50mL容量瓶按1-5依次编号。分别移取水杨酸标准溶液0.50、1.00、2.00、3.00、4.00mL于相应编号容量瓶中,各加入60%乙醇溶液,稀释至刻度,摇匀。 3、用1 cm石英吸收池、,以60%乙醇作为参比溶液,在200?350 nm波长范围内测定一份水杨酸标准溶液的紫外吸收光谱,确定最大吸收波长。 4、在选定波长下,以60%乙醇为参比溶液,由低浓度到高浓度测定水杨酸标准溶液系列及未知液的吸光度。以水杨酸标准溶液的吸光度为纵坐标,浓度为横坐标绘制标准曲线,根据水杨酸试液的吸光度,通过标准曲线计算水杨酸试样中水杨酸的含量。 表1标准曲线制定及未知试样浓度检测

维生素C注射液的含量测定

化学与制药工程学院 药物分析实验报告 实验题目:维生素AD胶丸中维生素A的含量测定班级:应化0704 学号:07220418 姓名:实验日期:

实验题目:果汁中总糖的测定 一、摘要 采用葡萄糖标准溶液来标定配置好的酒石酸铜溶液。以次甲基蓝为指示剂,先预测样品溶液所消耗的酒石酸铜的体积,然后进行准确滴定,得到果汁样品中总糖的含量为7.76%。 关键词:标准溶液,酒石酸铜,总糖 二、前言 在食品分析中,含糖量是一项很重要的测定项目,可以为抽检食品的整体质量评价提供重要的参考依据。本实验采用传统化学分析方法,简便易于操作,取得了较为满意的分析结果。 三、实验试剂 1、碱性酒石酸铜甲液:称取15克硫酸铜(CuSO4.5H20)及0.05克次甲基蓝,溶于水中并稀释至1000毫升。 2、碱性酒石酸铜乙液:称取50克酒石酸钾钠及75克氢氧化钠,溶于水中,再加入4克亚铁氰化钾,完全溶解后,用水稀释至1000毫升,贮于橡胶塞玻璃瓶内。 3、葡萄糖标准溶液:精密称取1.000克经过98-100℃干燥至恒重的纯葡萄糖,加水溶解后,加5毫升盐酸,并以水稀释至1000毫升,此溶液每毫升相当于lmg葡萄糖。 4、6M盐酸:量取50毫升盐酗口水稀释至100毫升。 5、甲基红指示液:0.1%乙醇溶液。 6、20%氢氧化钠溶液。 四、操作方法 1、样品处理:吸取样品10毫升,加水40毫升,在水浴上加热煮沸10分钟后,移入250毫升容量瓶中加水至刻度,混匀后备用。取以上样液50毫升于l00毫升容量瓶中,加人5毫升6M盐酸,在68-70℃水浴中加热15分钟,冷却后,加2滴甲基红指示液,用20%氢氧化钠溶液中和至红色褪去,加水至刻度混匀。 2、标定碱性酒石酸铜溶液;吸取碱性酒石酸铜甲、乙液各5.0毫升,置于150毫升锥形瓶中,加水20毫升,加入沸石1粒,从滴定管滴加约9毫升葡萄糖标准溶液,控制在2分钟内加热至沸,趁沸以每两秒1滴的速度继续滴加葡萄糖标准溶液,直至溶液兰色刚好褪去为终点,记录消耗葡萄糖标准溶液的总体积,同时平行操作三份,取其平均值,计算每9毫升(甲乙液各5毫升)碱性酒石酸铜

离子液体及其应用知识分享

离子液体及其应用

离子液体及其应用 离子液体是指在室温或接近室温下呈现液态的、完全由阴阳离子所组成的盐,也称为低温熔融盐。可制成离子液体/聚合物电解质,作为双电层器和电池的电解质。如高温下的KCI, KOH呈液体状态,此时它们就是离子液体。在室温或室温附近温度下呈液态的由离子构成的物质,称为室温离子液体、室温熔融盐、有机离子液体等,目前尚无统一的名称,但倾向于简称离子液体。在离子化合物中,阴阳离子之间的作用力为库仑力,其大小与阴阳离子的电荷数量及半径有关,离子半径越大,它们之间的作用力越小,这种离子化合物的熔点就越低。某些离子化合物的阴阳离子体积很大,结构松散,导致它们之间的作用力较低,以至于熔点接近室温。 离子液体种类繁多,改变阳离子、阴离子的不同组合,可以设计合成出不同的离子液体。离子液体的合成大体上有两种基本方法:直接合成法和两步合成法。直接合成法是指通过酸碱中和反应或季胺化反应等一步合成离子液体,操作经济简便,没有副产物,产品易纯化。直接法难以得到目标离子液体,必须使用两步合成法。两步法制备离子液体的应用很多。常用的四氟硼酸盐和六氟磷酸盐类离子液体的制备通常采用两步法。首先,通过季胺化反应制备出含目标阳离子的卤盐;然后用目标阴离子置换出卤素离子或加入Lewis酸来得到目标离子液体。在第二步反应中,使用金属盐MY(常用的是AgY),HY或NH4Y时,产生Ag盐沉淀或胺盐、HX气体容易被除去,加入强质子酸HY,反应要求在低温搅拌条件下进行,然后多次水洗至中性,用有机溶剂提取离子液体,最后真空除去有机溶剂得到纯净的离子液体。 近年来,离子液体作为一类新型的绿色介质,引起全球学术界和工业界的高度重视。离子液体的特点也越来越多的为大家所熟知。不挥发、不可燃、导电性强、室温下离子液体的粘度很大(通常比传统的有机溶剂高1~3个数量级,离子液体内部的范德华力与氢键的相互作用决定其粘度。)、热容大、

不同产地不同季节的千里光药材中指标成分的含量测定

不同产地不同季节的千里光药材中指标成分的含量测定 目的比较不同产地及不同采收季节的千里光药材中金丝桃苷和绿原酸的含量。方法反相高效液相色谱法。结果8个产地的千里光药材金丝桃苷和绿原酸的含量差异较大,金丝桃苷含量以浙江衢州所产最高;绿原酸含量以广东连州所产最高;不同采收季节的千里光药材金丝桃苷和绿原酸含量均以10月份所产最高。结论市场上全年采收的千里光药材给药品质量控制带来了困难,本实验数据显示千里光药材的最佳采收期为9~10月。 标签:千里光;高效液相;含量测定;金丝桃苷;绿原酸 千里光为菊科植物千里光(Senecio scandens Buch.-Ham.)的干燥地上部分。该品始载于《本草拾遗》。味苦、辛,性寒。清热解毒、明目利湿[1]。用于痈肿疮毒,感冒发热,目赤肿痛,泄泻痢疾,皮肤湿疹。生于路旁及旷野间,分布浙江、江苏、江西、四川、湖南、广东、广西等地,是我国应用历史悠久的常用中药。目前对其质量进行控制的指标成分多为金丝桃苷和绿原酸。在实际应用过程中发现,不同产地的千里光药材其绿原酸含量有一定差异[2],这样,将其投料制成成方制剂的质量不稳定,易造成成方制剂中绿原酸含量测定结果为不合格,影响厂家投料生产。而且各工具书对其采收季节的描述也各有出入,《中国药典》2015版对千里光采收的描述为“全年均可采收”,《中药大辞典》中对其采收的描述为“夏秋二季采收”,而《中华本草》中对其采收的描述为“9—10月收割全草”,市場上也确实存在着茎、叶共存,茎、叶、花共存及单独以茎入药的现象,正是因采收时间不同所致,而季节对指标成分的影响并无报道,综合考虑产地与采收时间的影响,该实验以金丝桃苷和绿原酸为指标成分,对不同产地和不同季节采收的千里光进行了含量测定,拟为从源头上提高千里光药材及其制剂的质量提供依据。 1 仪器、试剂与样品 岛津LC-20AT高效液相色谱仪;SPD-20A(VWD)检测器;Welch Ultimax XB C18(250 mm×4.6 mm,5 μm)色谱柱;对照品:均为中国药品生物制品检定所提供,绿原酸(批号:110753-201506,纯度:96.2%);金丝桃苷(批号:111521-201507,纯度:92.5%)试剂:甲醇(色谱纯,霍尼韦尔);水(纯净水,怡宝)。 2 方法与结果 2.1 溶液的制备 2.1.1 对照品溶液精密称取绿原酸对照品①12.46 mg与②10.25 mg,加75%甲醇制成浓度各为239.730 4 μg/mL、197.21 μg/mL的对照品溶液。 精密称取金丝桃苷对照品①10.45 mg与②10.82 mg,加75%甲醇制成浓度各

水杨酸测定氨氮

水杨酸-次氯酸盐分光光度法测定氨氮氨氮的测定方法:通常有纳氏试剂比色法、水杨酸-次氯酸盐,比色法和电极法。氨氮含量较高时,可采用蒸馏-酸滴定法。纳氏试剂比色法具有操作简便、灵敏等特点,但钙、镁、铁等金属离子、硫化物、醛、酮类,以及水中色度和混浊等干扰测定,需要相应的预处理。水杨酸-次氯酸盐法具灵敏、稳定等优点,操作简便、实验室污染少等优点而被广泛应用。 1、测定原理 在碱性介质(pH =11.6)中,亚硝基铁氰化钠[Na 2(Fe(CN) 6 )NO]·2H 2 O存在下, 水中的氨、铵离子与水杨酸盐和次氯酸离子反应生成蓝色化合物,在波长697nm 具最大吸收,用分光光度计测量吸光度。 这类反应称为Berthelot反应。这类反应的机理比较复杂,是个分步进行的反应: (1)第一步是氧与次氯酸盐反应生成氯胺。NH 3+HOCl←→NH 2 Cl+H 2 O (2)第二步氯胺与水杨酸C 6H 4 (OH)COOH反应形成一个中间产物:5氨基水杨酸。 (3)第三步是氨基水杨酸转变为醌亚胺 (4)最后是卤代醌亚胺与水杨酸缩合生成靛酚蓝。 pH对每一步反应几乎都有本质上的影响。最佳的pH值不仅随酚类化合物而不同,而且随催化剂和掩蔽剂的不同而变化。此外,pH还影响着发色速度、显色产物的稳定性以及最大吸收波长的位置。因此控制反应的pH值是重要的。

2、本标准适用于地下水、地表水、生活污水和工业废水中氨氮的测定。 当取样体积为8.0mL,使用10mm比色皿时,检出限为0.01mg/L,测定下限为0.04mg/L,测定上限为1.0mg/L(均以N计)。 3、干扰及消除 氯铵在此条件下均被定量地测定。钙、镁等阳离子的干扰,可加酒石酸钾钠掩蔽。如果水样的颜色过深、含盐量过多,酒石酸钾盐对水样中的金属离子掩蔽能力不够,或水样中存在高浓度的钙、镁和氯化物时,需要预蒸馏。 (一)水样的预处理 1.1 样品采集与保存 水样采集在聚乙烯瓶或玻璃瓶内,要尽快分析。如需保存,应加硫酸使水样酸化至pH<2,2℃~5℃下可保存7天。 1.2 水样的预处理 水样带色或浑浊以及含其他一些干扰物质,影响氨氮的测定。为此,在分析时需作适当的预处理。对较清洁的水,可采用絮凝沉淀法;对污染严重的水或工业废水,则用蒸馏消除干扰。 絮凝沉淀法 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,在pH>10.5时,生成氢氧化锌絮状沉淀,再经过滤除颜色和浑浊等。 1.3. 仪器与试剂: 100 ml具塞量筒或比色管。 (1)10%硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100 ml。 (2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯 瓶中。 (3)硫酸, =1.84。 (4)中速滤纸 (5)漏斗 1.4.絮凝沉淀步骤:

离子液体的制备

一.3.1 咪唑类离子液体的制备(制备氧化锆) 3.1.1 溴化1-辛基-3-甲基咪唑([C8mim]Br)的合成及纯化 这种离子液体的合成反应可表示为: C8H17Br + C4H6N2 → [C8mim]Br 实验步骤:在圆底烧瓶中加入100 g新蒸馏的N-甲基咪唑和300 mL三氯乙烷,在强烈搅拌下,在60℃滴加236 g新蒸馏的正溴辛烷,滴加时间超过2 h,滴加完毕后在83℃下回流约3 h,反应现象是先浑浊后变为橙黄色粘稠的液体,经分液漏斗分离出离子液体, 并用三氯乙烷洗涤数次后, 在65℃真空干燥48 h除去残余的溶剂和水,即可得到最终产品。 3.1.2 1-辛基-3-甲基咪唑四氟硼酸盐([C8mim][BF4])的合成及纯化 该离子液体的制备反应可表示为: [C8mim]Br + NaBF4 → [C8mim][BF4] + NaBr 实验步骤:将160.6 gNaBF4溶于550 mL水中,再加入202.6 g[C8mim]Br,搅拌48 h,而后用二氯甲烷萃取,有机层多次用水洗涤,直到在被除去的水相中滴加AgNO3溶液没有黄色沉淀出现为止。先蒸去二氯甲烷溶剂,再在65℃真空干燥48 h用以除去残余的溶剂和水。 3.1.3 溴化1-十二烷基-3-甲基咪唑([C12mim]Br)的合成及纯化 该离子液体的制备反应可表示为: C12H 25Br + C4H6N2 → [C12mim]Br 实验步骤:在圆底烧瓶中,加入75 g新蒸馏的N-甲基咪唑和250 mL三氯乙烷,在强烈搅拌下,在60℃滴加250 mL新蒸馏的正溴十二烷,滴加时间超过2 h,滴加完毕后在83℃再回流3 h,反应现象是先浑浊后变为橙黄色粘稠的液体。然后蒸出溶剂三氯乙烷,得到此离子液体极其粘稠,[C12mim]Br在65℃真空干燥48 h用以除去残余的溶剂和水。 3.1.4 十二烷基-3-甲基咪唑四氟硼酸盐([C12mim][BF4])的合成及纯化 该离子液体的制备反应可表示为: [C12mim]Br + NaBF4 → [C12mim][BF4] + NaBr 实验步骤:将142 gNaBF4溶于600 mL水中,再加入215 g[C12mim]Br,接着搅拌48 h,而后用二氯甲烷萃取,有机层多次用水洗涤,直到在被除去的水相

固相含量分析

固相含量分析 功能与说明: 本程序对水基与非加重钻井液及油基 DRILLFAZE?钻井液进行较全面的固相分析。对于水基钻井液在输入CEC(阳离子交换容量)及CB(钻屑阳离子交换容量与搬土的阳离子交换容量之比), 根据较多的现场经验, 本程序取做0.11, 也可根据您所在地区的实测结果输入值,将进行将低密度固相分解为搬土与钻屑。若无CEC测量值, 输入0。对于油基钻井液, 程序除输出CaCl2的含量外, ?还输出CaCl2溶液的重量百分数及密度。 运行本程序首先应根据需要, 在窗体上选择钻井液体系, 水基加重钻井液(1), 水基非加重钻井液(2)。注意必须对窗体上的选项进行选择,否则,程序将出错或得不出正确的结果,然后输入数据再进行计算。在本程序中对油基和水基钻井液将分别单独进行计算。 理论与实验依据 1.水基钻井液 1.1.NaCl含量分析 根据实验,在一定Cl-含量下,盐水溶液体积与纯水体积之间有下列关系: Vc=Vw*A (1) A=1/(1.00099-5.875*10^(-7)*Cl) (2) 可得NaCl在钻井液中的体积百分数及每立方米钻井液中重量含 量: PC=Pw*(A-1) (3) CW=Pw*A*Cl*1.64875*10^(-5) (4) 1.2.加重水基钻井液固含的分析 SP=PS-PC (5)

SW=MW*100-PW*1-PO*0.84-CW/10 (6) SP=LP+HP (7) SW=LP*2.6+HP*SG (8) LP=(SG*SP-SW)/(SG-2.6) (9) HP=SP-LP (10) 1.3.非加重水基钻井液固含分析 由固相、水及盐在钻井液中的含量可得: SP2=100-PO (11) SW2=MW*100-PO*0.84 (12) SP2=SP+PW+PC (13) SW2=SP*2.6+Pw*1+CW (14) PW=(SW2-2.6*SP2)/(1+A*(CL*1.64875*10^(-6)))) (15) LP=100-PO-PW-PC (16) 1.4.搬土与钻屑分析 CEC=(BP+CB*DP)*2.6/100 (17) LP=BP+DP (18) DP=(LP-CEC/0.026)/(1-CB) (19) BP=LP-DP (20)

葡萄糖注射液的含量测定

葡萄糖注射液的含量测定 一、目的要求 ? 1.掌握旋光法测定葡萄糖注射液含量的原理、方法及计算。 ? 2.学会使用自动旋光仪。 二、仪器与试剂 ? 仪器 自动旋光仪,旋光管,移液管(50ml ),容量瓶(100ml)。 ? 试剂 葡萄糖注射液(含量在16%以上), 氨试液(取浓氨溶液400ml ,加水使成1000ml )。 三、方法原理 ? 葡萄糖分子结构中有多个不对称碳原子,具有旋光性,为右旋体。一定条件下的旋光度是旋光性物质的特性常数,测定葡萄糖的比旋度,可以鉴别药物,也可以反映药物的纯杂程度。 ? 旋光度(α)与溶液的浓度(c )和偏振光透过溶液的厚度(L )成正比。当偏振光通过厚1dm 且每1ml 中含有旋光性物质1g 的溶液,使用光线波长为钠光D 线(589.3nm ),测定温度为t ℃时,测得的旋光度称为该物质的比旋度,以[α]Dt=α/Lc 。 ? 2.0852的由来:+52.75为无水葡萄糖的比旋度,按下式计算无水葡萄糖的浓度: ? 无水葡萄糖浓度(c )=100 α /[α]D20l ? 如果换算成一水葡萄糖浓度(c ˊ)时,则应为: ? c ˊ = c × = α× × =α×2.0852 ? 所以,测定葡萄糖溶液的旋光度可以求得其含量。 四、旋光仪的工作原理 1.光源 2.小孔光栏 3.物镜 4.滤光片 5.偏振镜 6.磁旋线圈 7.样品室8.偏振镜9.光电倍增管10.前置放大器 11.自动高压12.选频放大器13.功率放大器 14.伺服电机15.蜗轮蜗杆16.计数器 ? 使用方法 (1)将仪器电源插头插入220V 交流电源,并将接地脚可靠接地。 (2)打开电源开关,这时钠光灯应启亮,需经5min 钠光灯预热,使之发光稳定。 (3)打开电源开关(若光源开关打开后,钠光灯熄灭,则再将光源开关上下重复打开1到2次,使钠光灯在直流下点亮,为正常)。 (4)打开测量开关,这时数码管应有数字显示。 (5)将装有蒸馏水或其他空白溶剂的试管放入样品室,盖上箱盖,待示数稳定后,按清零按钮。试管中若有气泡,应先让气泡浮在凸颈处。通光面两端的雾状水滴,应用软布揩干。试管螺帽不宜旋得过紧,以免产生应为,影响读数。试管安放时应注意标记的位置和方向。 (6)取出试管,将待测样品注入试管,按相同的位置和方向放入样品室内,盖好箱盖。仪器数显窗将显示出该样品的旋光度。 (7)逐次按下复测按钮,重复读几次数,取平均值作为样品的测定结果。 (8)如样品超过测量范围,仪器在±45 处来回振荡。此时,取出试管,打开箱盖按箱内回零按钮,仪器即自动)(16.180)(17.198无水葡萄糖的分子量一水葡萄糖的分子量175.52100 16.18017.198

钻井液常用计算公式

计算公式 1、钻井液配制与加重的计算 (1)配制低密度钻井液所需粘土量 水 土水 泥土泥土 ) (ρ-ρρ-ρρ=V W 式中: 土W ---所需粘土重量,吨(t ); 土ρ -- 粘土密度,克/厘米3(g/cm3) 水ρ -- 水的密度,克/厘米3(g/cm3) 泥ρ -- 欲配制的钻井液的密度,克/厘米3(g/cm3) 泥 V 欲配制的钻井液的体积,米3(m3) (2)配制低密度钻井液所需水量 土 土泥水ρ-=W V V 式中: 水V ---所需水量,米3(m3); 土ρ -- 所用粘土密度,克/厘米3(g/cm3) 土 W -- 所用粘土的重量,吨(t ) 泥V -- 欲配制的钻井液的体积,米3(m3) (3)配制加重钻井液的计算 ①对现有体积的钻井液加重所需加重剂的重量 重 加原 重加原加 ) (ρ-ρρ-ρρ=V W

式中: 加W ---所需加重剂的重量,吨(t ); 原ρ -- 原有钻井液的密度,克/厘米3(g/cm3) 重ρ -- 钻井液欲加重的密度,克/厘米3(g/cm3) 加ρ -- 加重剂的密度,克/厘米3(g/cm3) 原 V -- 原有钻井液的体积,米3(m3) ②配制预定体积的加重钻井液所需加重剂的重量 原 加原 重加重加 ) (ρ-ρρ-ρρ=V W 式中: 加W ---所需加重剂的重量,吨(t ); 原ρ -- 原有钻井液的密度,克/厘米3(g/cm3) 重ρ -- 钻井液欲加重的密度,克/厘米3(g/cm3) 加ρ -- 加重剂的密度,克/厘米3(g/cm3) 重 V -- 加重后钻井液的体积,米3(m3) ③用重晶石加重钻井液时体积增加 2 1 224100(v ρ-ρ-ρ=.) 式中: v ---每100m3原有钻井液加重后体积增加量,米3(m3); 1ρ -- 加重前钻井液的密度,克/厘米3(g/cm3) 2 ρ -- 加重后钻井液达到的密度,克/厘米3(g/cm3)

离子液体及其应用

离子液体及其应用 离子液体是指在室温或接近室温下呈现液态的、完全由阴阳离子所组成的盐,也称为低温熔融盐。可制成离子液体/聚合物电解质,作为双电层器和电池的电解质。如高温下的KCI, KOH呈液体状态,此时它们就是离子液体。在室温或室温附近温度下呈液态的由离子构成的物质,称为室温离子液体、室温熔融盐、有机离子液体等,目前尚无统一的名称,但倾向于简称离子液体。在离子化合物中,阴阳离子之间的作用力为库仑力,其大小与阴阳离子的电荷数量及半径有关,离子半径越大,它们之间的作用力越小,这种离子化合物的熔点就越低。某些离子化合物的阴阳离子体积很大,结构松散,导致它们之间的作用力较低,以至于熔点接近室温。 离子液体种类繁多,改变阳离子、阴离子的不同组合,可以设计合成出不同的离子液体。离子液体的合成大体上有两种基本方法:直接合成法和两步合成法。直接合成法是指通过酸碱中和反应或季胺化反应等一步合成离子液体,操作经济简便,没有副产物,产品易纯化。直接法难以得到目标离子液体,必须使用两步合成法。两步法制备离子液体的应用很多。常用的四氟硼酸盐和六氟磷酸盐类离子液体的制备通常采用两步法。首先,通过季胺化反应制备出含目标阳离子的卤盐;然后用目标阴离子置换出卤素离子或加入Lewis酸来得到目标离子液体。在第二步反应中,使用金属盐MY(常用的是AgY),HY或NH4Y时,产生Ag盐沉淀或胺盐、HX气体容易被除去,加入强质子酸HY,反应要求在低温搅拌条件下进行,然后多次水洗至中性,用有机溶剂提取离子液体,最后真空除去有机溶剂得到纯净的离子液体。 近年来,离子液体作为一类新型的绿色介质,引起全球学术界和工业界的高度重视。离子液体的特点也越来越多的为大家所熟知。不挥发、不可燃、导电性强、室温下离子液体的粘度很大(通常比传统的有机溶剂高1~3个数量级,离子液体内部的范德华力与氢键的相互作用决定其粘度。)、热容大、蒸汽压小、性质稳定,对许多无机盐和有机物有良好的溶解性。在与传统有机溶剂和电解质相比时,离子液体具有一系列突出的优点:(1)液

新药含量测定的方法学研究

一、含量测定药味的选择: 药味的指标成分的选择既要考虑到指标成分的性质,又要考虑到能否对新药的有效性、安全性、可控性进行评价及中医的君臣佐使的关系,还有考虑到目前现有分析技术等!选择合理的药味,合理的指标性成分,对于制定含量测定标准可以说已经成功了一半!因此,含量测定药味、指标性成分选择至关重要!选择时着重从以下几个方面进行: (1)需考虑含测指标与新药的安全性、有效性的关系。首选新药的有效成分及毒性成分为含测指标。如含有罂粟壳的止咳药中药,应测定吗啡的含量,并确定合理的含量限度范围。 (2)需考虑含测指标成分的理化性质。当新药中所含有效成分或毒性成分,因缺乏标准品、或因其他成分的干扰而确实难以建立含测方法时,可考虑选择与有效成分化学结构相似、理化性质相近的指标成分,或大类成份为含测指标,以间接反映新药的有效性或安全性。 (3)需考虑新药稳定性研究的需要。稳定性研究需要反映新药稳定性的灵敏指标。如含有苷类成分的新药,如采用水解后苷元的含量为含测指标则难以反映在贮存期问苷类成分水解成苷元的情况。新药中有几个有效成分都可测定含量时,需选择稳定性较差的成分,以反映药物的稳定性。 (4)传统中药需考虑中医理论的指导作用。传统中药复方制剂为,以中医理论为指导,采用传统工艺制成、以传统功能主治表述的中药复方制剂。其含测指标应考虑君臣佐使的配伍理论,首选君药的成分为含测指标。 (5)需考虑含测指标成分与工艺的关系。如含何首乌的复方,以其水提工艺制成的制剂中大黄素的含量很低,而用四羟基二苯乙烯苷为含测指标较好。 (6)需考虑中药多成分多靶点的特点。处方中含有多个明确有效成分的,或者处方中药味分别按不同路线提取的,建议研究建立多个含测指标;鼓励将有效成分、大类成分、浸出物等指标结合起来,以更全面控制产品质量。 (7)中药含量测定指标的选择需要考虑与基础研究的关联,体现基础研究与应用研究的关系。应充分利用已有的基础研究成果,为新药的研究和评价提供参考;同时,应结合新药应用研究的需要进行必要的基础研究,以提高中药质量控制的水平。已有的研究成果、文献资料是药品质量控制研究的基础,应加以充分利用,体现研究的继承性。如板蓝根一直缺少合适的含测指标,现发现其所含喹唑酮成分具有抗病毒活性,且溶于水及乙醇,含量稳定,有代表性,适用于作为板蓝根的质控指标。 (8)其他。含量限度过低者(如低于万分之一),应增加含量测定指标或浸出物测定。在建立化学成分的含量测定有困难时,也可考虑建立生物测定等其它方法。中西药合用的复方制剂,需建立中药及每个化学药的含测方法。 二、含量测定方法介绍:

钻井液常规性能测定及常用钻井液计算公式

钻井液常规性能测定 一.密度的测定 1、按安全检查表内容检查仪器,确保仪器安全可靠。 2、将钻井液加热到所需温度。 3、在密度计的杯中注满钻井液,盖上杯盖慢慢拧动压紧。 4、用手指压住杯盖小孔,用清水冲洗并擦干样品杯。 5、把密度计的刀口放在底座的刀垫上,移动游码直到平衡,记录读值。 6、将密度计冼净擦干备用。 二.测定马氏漏斗粘度 1、按安全检查表内容检查仪器,确保仪器安全可靠。 2、将漏斗悬挂在墙上,且保证垂直;量杯置于漏斗流出管下面。 3、用手指堵住漏斗流出管下口,将搅拌均匀的泥浆倒入漏斗至筛网底;放开手指,同时启动秒表,待泥浆流满量杯达到它的边缘时,按停秒表。秒表所示时间即为泥浆粘度,单位为s。 4、使用完毕,将仪器洗净擦干。 三.流变的测定(ZNN-D6六速旋转粘度计) 1、按安全检查表内容检查仪器,确保仪器安全可靠。 2、使用前检查读数指针是否对准刻度盘“0”位,落下托盘,装配好内、外筒。 3、将搅拌均匀的泥浆倒入样品杯至刻度线、将样品杯置于托盘上,上升托盘使液面至外筒刻度线,拧紧托盘手轮。 4、调整变速手把和转速开关,迅速从高到低进行测量,待刻度盘稳定后,分别读取各转速下刻度盘的偏转格数。 5、测量完毕,落下托盘,卸下外筒,将内、外筒及样品杯洗净擦干。 四.钻井液失水的测定 1、按安全检查表内容检查仪器,确保仪器安全可靠。 2、用手指堵住泥浆杯底部小孔,将搅拌均匀的泥浆倒入杯内至刻度线处,按顺序放入“O”型密封圈、滤纸、杯盖和杯盖卡,将杯盖卡旋转90°并拧紧旋转手柄。 3、将组装好的泥浆杯组件倒置嵌入气源接头并旋转90°;将量筒置于失水仪下方并对准滤液流出孔。 4、调节气源压力至0.7MPa,打开气源手柄并同时启动秒表,收集滤液于量筒之中。 5、当秒表指示为30min时,将悬于滤液流出孔的液滴收集于量筒之中并移开量筒,此量筒中液体体积即为滤失量。 6、关闭气源手柄,放出泥浆杯中余气;卸下泥浆杯组件,倒去泥浆并洗净擦干。 五.钻井液泥饼粘滞系数的测定(NZ-3A型泥饼粘滞系数测定仪) 1、按安全检查表内容检查仪器,确保仪器安全可靠。 2、打开机盖,调节滑板及平衡脚,使水平泡居中;接通电源,按下“清零”键。 3、将泥饼平放在滑板上,滑块纵向轻轻地放在泥饼上,静置1min。 4、按一下“电机”键,使滑板转动,当滑块开始滑动时,再按一下“电机”键,滑板停止转动,此时,显示窗中的数值即为泥饼摩擦角,单位为o,查其显示角度值的正切值,正切值为泥饼的摩擦系数。 5、使用完毕,切断电源,取下滑块和泥饼,擦净仪器,盖上机盖。 六.含砂量的测定 1、按安全检查表内容检查仪器,确保仪器安全可靠。 2、将待测钻井液注入含水量砂量管中至“钻井液”刻度线处,再注入水至“水”刻度线处,用手指堵住含砂量管口,剧烈摇动。

相关文档
相关文档 最新文档