文档库 最新最全的文档下载
当前位置:文档库 › 绕线异步电动机串电阻启动设计

绕线异步电动机串电阻启动设计

绕线异步电动机串电阻启动设计
绕线异步电动机串电阻启动设计

摘要

由于三相异步电动机直接启动时,启动转矩和启动电流很大容易造成电机和设备的损坏,因此我小组对三相异步电动机启动做了研究,目的是保证电动机安全启动。

本文针对绕线型异步电动机转子串电阻做了阐述,根据启动电流和启动转矩的要求设计合适的电阻与启动级数来保证电动机安全平稳的启动。

关键词:异步电动机;串电阻;启动

目录

1电动机概述

1.1旋转磁场 (3)

1.2异步电动机结构 (3)

1.3异步电动机工作原理 (3)

1.4定子 (3)

1.5转子 (3)

2电动机的启动指标

2.1启动电流 (4)

2.2启动转矩 (4)

3启动过程

3.1串联起动电阻R1st和R2st起动 (5)

3.2切除起动电阻R (5)

3.3切除起动电阻R1st (5)

4起动级数未定时起动电阻所计算

4.1选择起动转矩T st和切换转矩T2s (8)

4.2求出起动转矩比β (8)

4.3求出起动级数m (8)

4.4重新计算β,校验T2,是否在规定范围内。 (8)

4.5求出转子每相绕组的电阻R2 (8)

4.6计算各级总电阻 (9)

4.7求出各级起动的电阻 (9)

5 结论 (12)

6心得体会 (13)

7 参考文献 (14)

2

3

1.电动机

1.1旋转磁场

定子三相对称绕组中通以频率为f 1的三相对称电流便会产生旋转磁场。旋转磁场的转速 由下式确定

n 0=p f 1

60

式中:

P 为电机的极对数。

n 0又称为同步转速旋转磁场的转向由三相电流通入三相绕组的相序决定。

改变电流相序,旋转磁场的转向随之改变。

1.2异步电动机结构

Y 形的电阻,或直接通过短路端环短三相异步电动机主要由静止的和转动的两部分构成,其静止部分称为定子。定子是用硅钢片叠成的圆筒形铁心,其内圆周有槽用来安放三相对称绕组:三相对称绕组每相在空间互差120°,可联接成Y 形或Δ形。三相异步电动机转动的部分称为转子,是用硅钢片叠成的圆柱形铁心,与定子铁心共同形成磁路。转子外圆周有槽用以安放转子绕组。转子绕组有鼠笼式和线绕式两种。鼠笼式:将铜条扦入槽内,两端用铜环短接,或直接用熔铝浇铸成短路绕组。线绕式:安放三相对称绕组,其一端接在一起形成Y 形,另一端引出连接三个已被接成路。

1.3异步电动机工作原理

转子绕组切割旋转磁场产生感应电势,并在短路的转子绕组中形成转子电流,转子电流与旋转磁场相互作用产生电磁力,形成转动力矩,使转子随旋转磁场以转速n 转动并带动机械负载。转子和旋转磁场之间转速差的存在是异步电动机转动的必要条件,转速差以转差率s 衡量

S=0

0-n n

n ×100%

1.4定子

定子铁芯:导磁和嵌放定子三相绕组:0.5mm 硅钢片冲制涂漆叠压而成;内圆均匀开槽;槽形有半闭口;半开口和开口槽三种:适用于不同的电机

定子绕组:电路;绝缘导线绕制线圈;由若干线圈按一定规律连接成三相对称绕组交流电机的定子绕组称为电枢绕组

机座:支撑和固定作用;铸铁或钢板焊接

1.5转子

转子铁芯:导磁和嵌放转子绕组;0.5mm 硅钢片;外圆开槽 转子绕组:分为笼型和绕线型两种 笼型绕组:电路;铸铝或铜条优缺点

绕线型绕组:对称三相绕组:星接;集电环优缺点

气隙:气隙大小的影响:中小型电机的气隙为0.2mm ~2mm

2.电动机的起动指标

起动是指电动机从静止状态开始转动起来,直至最后达到稳定运行。对于任何一台电动机,在起动时,都有下列两个基本的要求。

2.1起动转矩要足够大

堵转状态时电动机刚接通电源,转子尚未转动时的工作状态,工作点在特性曲线上的S 点。这时的转差s=1,转速n=0,对应的电磁转矩T

st

称为起动转矩。

堵转状态说明了电动机的直接起动能力。因为只有在T

st >T

L

<一般要求T

st

>(1.1~

1.2)T

L ,电动机才能起动起来。T

st

大,电动机才能重载起动;T

st

小,电动机只能轻载,

甚至空载起动。所以只有T

st ≧T

L

时,电动机才能改变原来的静止状态,拖动生产机械运

转。一般要求T

st >(1.1~1.2)T

L

。T

st

越大于T

L

,起动过程所需要的时间就越短。

2.2起动电流不要超过允许范围

对三相异步电动机来说,由于起动瞬间s=1,旋转磁场于转子之间的相对运动速度很大,转子电路的感应电动势及电流都很大,所以起动电流远大于额定电流。在电源容量与电动机的额定功率相比不是足够大时,会引起输电线路上电压的增加,造成供电电压的明显下降,不仅影响了同一供电系统中其他负载的工作,而且会延长电动机本身的起动时间。此外在起动过于频繁时,还会引起电动机过热。在这两种情况下,就必须设法减小起动电流。

4

3.起动过程

绕线型异步电动机的转子串联合适的电阻不但可以减小起动电流,而且还可以增大起动转矩,因而,要求起动转矩大或起动频繁的生产机械常采用绕线型异步电动机拖动。

容量较小的三相绕线型异步电动机可采用转子电路串联起动变阻器的方法起动。起动变阻器通过手柄接成星形。起动先把起动变阻器调到最大值,再合上电源开关S,电动机开始起动。随着转速的升高,逐渐减小起动变阻器的电阻,直到全部切除,使转子绕组短接。

容量较大的绕线型异步电动机一般采用分级起动的方法以保证起动过程中都有较大的起动的转矩和较小的起动电流。现以两级起动为例介绍其起动步骤和起动过。原理电路和机械特性如图1所示。图中机械特性只画出了每条特性的n

1

M段,并近似用直线代替。起动步骤如下:

3.1串联起动电阻R st2和R st2起动

起动前开关S

1和S

2

断开,使得转子每相串入电阻R″和R′,加上转子每相绕组自身

的电阻R2,转子电路每相总电阻为

R

22= R

2

+R″+R′

然后合上电源开关S,这时电动机的机械特性为图中的特性,由于转动转矩T

st

远大于负载转矩T

,电动机拖动生产机械开始起动,工作点沿特性a由b点向c点移动。

(a)电路图(b)机械特性

图3.1-1电动机的电路图和机械特性图

3.2切除起动电阻R

当工作点到达c点,即电磁转矩T等于切换转矩T

2s 时,合上开关S

1

切除起动电阻

R

2

st

转子每相电路的总电阻变为:

R

21=R

2

+R

1

st

5

这时电动机的机械特性变为特性d。由于切除R

2

st

的瞬间,转速来不及改变,故工作

点由特性a上的c点平移到特性d上e点,使这时的电磁转矩仍等于T

1s

,电动机继续加速,工作点沿特性由e点向f点移动

3.3切除起动电阻R1st

当工作点到达f点,即电磁转矩T等于切换转矩T

2s 时,合上开关S

1

切除起动电阻

R

1

st 。电动机转子电路短接,转子每相电路的总电阻变为:R

20

=R

2

机械特性变为固有特性g,工作点由f点评至h点,使得这时的电磁转矩T仍正好等于T

1S

,电动机继续加速,工作点沿特性g由h向i移动,经过i点,最后稳定运行在P点.整个起动过程结束。

6

7

4.起动级数未定时起动电阻所计算

4.1选择起动转矩T st 和切换转矩T 2s

一般选择

T 1s =(0.8-0.9)T M T 2s =(1.1-1.2)T L

4.2求出起动转矩比β

β= T 1s / T 2s

4.3求出起动级数m

利用图所示起动过程中的机械特性,根据集合关系推导起动级数m 所计算公式如下:由特性2与水平虚线构成的直三角形求得。

)/()(/001Mg h M S n n n n T T --=

=S h /S Mg

)/()(/02Mg h i M S n n n n T T --=

=S 1/S Mg

式中n h 和n i 是工作在h 点和i 点时的转速,n Mg 是T M 与特性g 交点在的转速(即临界转速)。S h ,S i 和S Mg 是与之对应的转差率。同理可以求得

T S1/T M =S b /S Ma =S e /S Mk = S h / S Mg

T 2s /T M =S c /S Ma =S f /S Mg =S i / S Mg

由于S e = S c ,对应两式相除,可得 β=T si /T 2s =S Ma /S Md

= (R 22/ X 2)/ (R 21/ X 2) = R 22/ R 21

由于S h =S f β=T S1/T 2s =S Md /S Mg

= R 21/ X 2/ R 20/ X 2 = R 21/ R 20

可见

R 22=βR 21

R 21=βR 20

所以

8

R 22=β

2

R 20

=βR 21

若是m 级起动,则

R m 2=βm R 20

=βm R 2 式中

R 2m = R 2+R 1st +R 2st +……+R stm 因此

β=m m

R R 22

由前面的分析还可以得到 S h /S Mg =S b /S Ma

S 1c =S b Ma

Mc

S S

若是m 级起动,则 S g =R 2/R m 2

此外,在固有特性c 上工作时 T s1/T N =S g /S N

S g = S N

N

T T 1

将这些关系带入β公式,可得

β=m n N T s T 1

两边取对数,便得到了起动级数m 的计算公式

M=

lg lg 1

T s T N N

若m 不是整数可取相近整数

4.4重新计算β,校验T 2,是否在规定范围内。

若m 是取相似整数,则需要重新计算β,并求出T 2s ,校验T 2s 是否在式所规定的范围之内。

若不在规定范围内,需加大启动级数m,重新计算β和T 2s ,直到T 2s 满足要求为止。

4.5求出转子每相绕组的电阻R 2

转子每相绕组的电阻可以通过实测或者通过名牌上提供的转子绕组额定线电压U N

2和转子绕组的额定线电流I N 2进行计算。

由于转子绕组为星形连接,相电流等于线电流,因此,在额定状态下运行时 由于S N 很小,S N X 2可以忽略不计,则

9

I N 2=

3

22R U s N

N 因此求得R 2的计算公式为

R 2=N

N

N I U s 223

4.6计算各级总电阻

由前面的分析知道

R 20=R 2 R 21=βR 2 R 22=βR 1=β2

R 2

……

R m 2=βm R 2

4.7求出各级起动的电阻

R 1st =R 21-R 2 R 2st =R 22-R 21 ……

R stm =R m 2-R )1(2-m

具体设计如下:

① 选择起动转矩T 1切换转矩T 2

T N =N N n 2 60πP =3

7402π 103060???=150N.m

T m =a mt T N =2.3*150N.m =345N.m

T 1=(0.8-0.9) T m

=(0.8-0.9)*345 =(276-310)N.m

T 2=(1.1-1.2)T l =(1.1-1.2)*100 取T 1=280N.m,T 2=120N.m ②求出起切转矩比β

β=T 1/T 2=280/120=2.3

β=m N N T s T

1==2.17

③ 求出起动级数m

(n 0-n N )/n 0=750-740=0.013

m=β

lg lg 1

T s T N N

10

=3.2lg 280

013.0150

lg

? =1.6/0.36 =4.4 取m=4.

④ 重新计算β,检验T 2是否在规定范围内

β=m

N N

T s T 1

=5.2280

013.01504=? T 2=T 1/β=280/2.5=110.5 T 2基本在规定范围之内.

由于T 2>1.1T L ,所以所选m 和β合适. ⑤求出转子每相绕组电阻R 2

R 2=N N N I U

s 223=0453.063

3380013.0=??Ω

⑥计算各级总电阻 R 21=βR 2

=2.5*0.045 =0.113Ω R 22=βR 21

=2.5*0.113 =0.283Ω R 23=βR 22

=2.5*0.283

=0.707Ω R 24=βR 23 =2.5*0.707 =1.768

⑦求出各级起动电阻 R 1st = R 21- R 2 =(0.113-0.0453)Ω =0.0677Ω R 2st =R 22-R 21

=(0.283-0.1113) =0.17Ω R 3st = R 23- R 22 =(0.707-0.283) =0.424Ω R 4st =R 24-R 23 =1.768-0.707 =1.061Ω

5结论

绕线式三相异步电动机转子回路串接电阻,一方面可以减小起动电流,另一方面可以增加最初起动转矩,当串入某一合适电阻时,还能使电动机以它的最大转矩T起动。当然,所串联的电阻超过一定数值后,最初起动转矩反而会减小。由于绕线异步电动机的转子串联合适的电阻,不但可以减少起动电流,而且可以增大起动转矩,因而,要求起动的转矩大或起动频繁的生产机械常用绕线型异步电动机。

通常,为了使整个起动尽量保持较大的起动转矩,在转子回路接入可以逐级切除的三相启动变阻器,启动变阻器切换使起动转矩保持在所设定的起动转矩最大和最小值之间。起动转矩一般取0.85T左右。

总之,转子回路串三相对称可变电阻起动,这种方法既可限制起动电流,又可增大起动转矩,串接电阻值取得适当,还可使起动转矩接近最大转矩起动,适当增大串接电阻的功率,使起动电阻兼作调速电阻,一物两用,适用于要求起动转矩大,并有调速要求的负载。缺点:多级调速控制电路较复杂,电阻耗能大。

11

6心得及体会

通过这段时间的课程设计,我明白真正的设计不能有一点马虎,每一步都要细心认真无论是知识的运用还是论文的格式都要按要求认真对待。

设计过程中,我查阅了大量的有关资料,并与同学交流,学到了不少知识,在设计中培养了我独立工作的能力,树立了对自己工作能力的信心。

我的独立思考能力得到了相应的提高,在设计过程中,我不仅学到了知识,也体会到知识的力量,发现了学习中的欠缺,以后要积极的改正,为自己以后的学习实践打基础。在设计中我发现了平时学习的知识面太过狭窄,以后要多看一些相关书籍来充实自己,让自己在未来的竞争中能比他人更有竞争力。

12

参考文献

⑴唐介,控制微电机,北京:高等教育出版社,1987年

⑵王东主编,电机学,杭州:浙江大学出版社,1990年

⑶李发海等编,电机学,北京:科学出版社,1991年

⑷谢桂林,刘允编,电力拖动与控制,徐州中国矿业大学出版社,1997年

⑸杨长能主编,电机学,重庆:重庆大学出版社,1994年

⑹郑朝科等编,电力拖动基础,北京:北京理工大学出版社,2000年

⑺李海发主编,电机学,北京:科学出版社,2001年

⑻秦曾发,电工实用手册,北京:中国电力出版社,1990年

13

RX21 涂覆型功率线绕电阻器

RX21 涂覆型功率线绕电阻器(1/4W,0.25W,1/2W,0.5W,1W,2W,3W,4W,5W,6W,8W,9W,10W,11W,12W) 内容介绍:RX21线绕电阻器具有性能温度,耐高温等特性,通常称为RX21绕线电 阻,RX21-1W,RX21-2W,RX21-3W,RX21-4W,RX21-5W,RX21-6W,RX21-8W,RX21-9W,RX21-10W,RX21-11W,RX21-12W等型号,常用阻值为 0.1R,0.15R,0.2R,0.5R,0.51R,1R,2R,2.2R,5.1R,5.6R,10R,22R,47R,56R,100R,120R,150R,200R,1KR,1.5KR,2.2KR,5KR,10KR。 特点及用途 ○体积小,阻值范围宽,性能稳定,可靠性高。 ○耐热性能好,温度系数小,噪音低,负荷功率大。 ○轴向引线,方便安装。 ○采用不燃漆包封。 外型尺寸 型号70℃额定功率(W) 尺寸(mm) L D l±3d±0.05 RX21 1/4W 6.3±1 2.3±0.5 25 0.41 1/2W 11.0±1 3.5±0.50.55 1W 11.0±1 3.5±0.50.55 2W 13.5±1 5.0±0.50.55 3W 13.5±1 5.0±0.50.55 4W 23.5±17.5±0.50.75 5W 23.5±17.5±0.50.75 6W 23.5±37.5±0.50.75 8W 32.5±38.5±0.50.75 9W 32.5±38.5±0.50.75 10W 32.5±38.5±0.50.75 11W 47.0±38.5±0.5 1.0 12W 47.0±38.5±0.5 1.0 主要性能指标

他励直流电动机串电阻启动的设计15613

题目 他励直流电动机串电阻启动的设计 专业:电气工程及其自动化 班级:13电牵1班 姓名:贤第 学号:20130210470103

Pan=200kw ;Uan=440v ;Ian=497A ;nN=1500r/min;Ra=0.076Ω; 采用分级启动,启动电流最大不超过2Ia N,,求各段电阻值,并且求出切除电阻时的瞬时转速和电动势,并作出机械特性曲线,对启动特性进行分析。 三、设计计划 第1天查阅资料,熟悉所选题目; 第2天根据基本原理进行方案分析; 第3天整理思路,按步骤进行设计; 第4天整理设计说明书; 第5天准备答辩; 四、设计要求 1、设计工作量为按要求完成设计说明书一份。 2、设计必须根据进度计划按期完成。 3、设计说明书必须经指导教师审查签字方可答辩。

摘要 他励直流电动机启动时由于电枢感应电动势Ea =CeΦn = 0 ,最初启动电流IS =U/Ra,若直接启动,由于Ra很小,ISt会十几倍甚至几十倍于额定电流, 无法换向,同时也会过热,因此不能直接启动。 要限制启动电流ISt的大小可以有两种方法:降低电枢电压和电枢回路串接附加电阻。本文仅以他励直流电动机的串电阻启动为主题进行详细的阐述。 在实际中,如果能够做到适当选用各级启动电阻,那么串电阻启动由于其启动设备简单、 经济和可靠,同时可以做到平滑启动,因而得到广泛应用。但对于不同类型和规格的直流电动机,对启动电阻的级数要求也不尽相同。 关键词:他励直流电动机;启动电流;串电阻启动; 目录 引言 (5) 1 直流电动机 (7) 1.1直流电动机的工作原理 (7) 1.2直流电动机的分类 (7) 1.3他励直流电机工作原理 (8)

三相绕线型异步电动机转子串电阻启动的设计说明

引言 三相异步电动机是目前应用最为广泛的电动机。要想讨论电力拖动中经常遇到的绕线型异步电动机转子电路串联电阻启动问题,首先我们要先了解三相异步电动机,这是讨论问题的基础。 异步电动机是交流电动机的一种。由于异步电动机在性能上有缺陷,所以异步电动机主要作电动机使用。 异步电动机按供电电源相数的不同,有三相、两相和单相之分。三相异步电动机结构简单、价格便宜、运行可靠、维护方便,是当前工业农业生产中应用最普通的电动机;单相异步电动机容量较小,性能较差,在实验室和家用电器中应用较多;两相异步电动机通常用作控制电机。 三相异步电动机分为三相笼型异步电动机和三相绕线型异步电动机。我的设计为三相绕线型异步电动机转子电路串电阻启动。

1 三相异步电机的工作原理和结构组成 1.1 工作原理 三相对称绕组,接通三相对称电源,流过三相对称电流,产生旋转磁场(电生磁),切割转子导体,感应电势和电流(磁变生电),载流导体在磁场中受到电磁力的作用,形成电磁转矩(电磁生力),使转子朝着旋转磁场旋转的方向旋转。 1.2 结构组成 三相异步电动机主要由定子、转子、气隙三部分组成。 1.2.1 定子 三相异步电动机的定子由定子铁心、定子绕组和机座三部分组成。 1)定子铁心定子铁心是异步电动机主磁通磁路的一部分。为了使异步电动机能产生较大的电磁转矩,希望有一个较强的旋转磁场,同时由于旋转磁场对定子铁心以同步转速旋转,定子铁心中的磁通的大小与方向都是变化的,必须设法减少由旋转磁场在定子铁心中所引起的涡流损耗和磁滞损耗,因此,定子铁心由导磁性能较好的0.5mm厚且冲有一定槽形的硅钢片叠压而成。对于容量较大(10kW以上)的电动机,在硅钢片两面涂以绝缘漆,作为片间绝缘之用。定子铁心上的槽形通常有三种半闭口槽,半开口槽及开口槽。从提高电动机的效率和功率因数来看,半闭口槽最好。 2)定子绕组定子绕组是异步电机定子部分的电路,它也是由许多线圈按一定规律联接面成。能分散嵌入半闭口槽的线圈由高强度漆包圆铜线或圆铝线绕成,放入半开口槽的成型线圈用高强度漆包扁沿线或扁铜线,或用玻璃丝包扁铜线绕成。开口槽也放入成型线圈,其绝缘通常采用云母带,线圈放入槽必须与槽壁之间隔有“槽绝缘”,以免电机在运行时绕组对铁心出现击穿或短路故障。一般根据定子绕组在槽布置的情况,有单层绕组及双层绕组两种基本型型。容量较大的异步电动机都采用双层绕组。双层绕组在每槽的导线分上下两层放置,上下层线圈边之间需要用层间绝缘隔开。小容量异步电动机常采用单层绕组。槽定子绕组的导线用槽楔紧固。槽楔常用的材料是竹、胶布板或环氧玻璃布板等非磁性材料。 3)机座机座的作用主要是固定和支撑定子铁心。中小型异步电动机一般都采用铸铁机坐,并根据不同的冷却方式而采用不同的机座型式。例如小型封闭式电动机、电机中损耗变成的热量全都要通过机座散出。为了加强散热能力,在机座的外表面有很多均匀分布的散热筋,以增大散热面积。对于大中型异步电动机,一般采用钢板焊接的机座。 1.2.2 转子 异步电机的转子由转子铁心、转子绕组和转轴组成。

直流电动机起动实验

实验一直流电动机起动实验 一、实验目的理解直流电机的工作原理,测试直流电动及直接起动的波形。说明负载转矩、转速、电流、电磁转矩之间为何具有相应的对应关系。 二、实验的主要内容 仿真一台直流并励电动机的起动过程。电动机参数为: PN =17kW, U N = 220V, n0= 3000r/min,电枢回路电阻R a =0. 0870,电枢电感La =0. 0032H,励磁回路电阻R F=181.50,电机转动惯量J=0.76 kg ?m2。 三、实验的基本原理直流电动机刚与电源接通的瞬间,转子尚未转动起来时,他励和串励电动机的电枢电流以及并励和复励电动机的输入电流称为起动电流,这时的电磁转矩称为起动转矩。一般情况下,在额定电压下直接起动时,起动电流可达电枢电流额定值的10~20倍,起动转矩也能达到额定转矩的10~20倍,这样的起动电流是换向所不允许的,而且过大的起动转矩会使电动机和它所拖动的生产机械遭受突然的巨大冲击,以致损坏传动机械和生产机械。由此可见,除了额定功率在数百瓦以下的微型直流电动机,因电枢绕组导线细、枢电阻大以及转动惯量又比较小,可以直接起动以外,一般的直流电动机是不允许采用直接起动的。 四、实验步骤 1) 建立并激电动机的仿真模型:直流电动机DCmotor 的电枢和励磁并联后由直流电源DC 供电,用Step 模块给定电动机的负载转矩,在DCmotor 的m 端连接了Demux 模块,将m 端输出的4 个信号分为4 路,以便通过示波器Scope 观察,m 端输出的转速单位为rad/s,这里使用了一个放大器(Gain), 将rad/s 转换为习惯的r/min,变换系数为:k=60/2 π =9.55。 2) 计算电动机参数: 励磁电流 励磁电感在恒定磁场控制时可取“ 0” 电枢电阻 R a =0.0870 电枢电感估算

直流电机串电阻启动(DOC)

指导教师评定成绩: 审定成绩: 重庆邮电大学移通学院 课程设计报告 设计题目:直流电机的串电阻启动过程设计 学校: 学生姓名: 专业: 班级: 学号: 指导教师: 设计时间:年月 重庆邮电大学移通学院

目录 一、直流电动机的综述 (4) 1.1直流电动机的基本工作原理 (4) 1.2直流电动机的分类 (5) 1.3直流电动机的特点 (5) 二、他励直流电动机 (5) 2.1他励直流电动机的机械特性 (5) 2.2固有机械特性与人为机械特性 (6) 三、他励直流电动机的起动 (7) 3.1直流电动机的启动过程分析 (8) 3.2他励直流电动机起动电阻的计算 (9) 四、设计内容 (10) 五、结论 (11) 六、心得体会 (12) 七、参考文献 (12)

一、直流电动机的综述 1.1直流电动机的基本工作原理 图1 是一台最简单的直流电动机的模型,N和S是一对固定的磁极(一般是电磁铁,也可以是永久磁铁)。磁极之间有一个可以转动的铁质圆柱体,称为电枢铁心。铁心表面固定一个用绝缘导体构成的电枢线圈abcd,线圈的两端分别接到相互绝缘的两个弧形铜片上,弧形铜片称为换向片,它们的组合体称为换向器。在换向器上放置固定不动而与换向片滑动接触的电刷A和B,线圈abcd通过换向器和电刷接通外电路。电枢铁心、电枢线圈和换向器构成的整体称为电枢。 如果将电源正负极分别接电刷A和B,则线圈abcd中流过电流。在导体ab中,电流由a 流向b,在导体cd中,电流由c流向d,如图(a)所示。载流导体ab和cd均处于N和S 极之间的磁场当中,受到的电磁力的作用。用左手定则可知,载流导体ab受到的电磁力F 的方向是向左的,力图使电枢逆时针方向运动,载流导体cd受到的电磁力F的方向是向右的, 也是力图使电枢逆时针方向运动,这一对电磁力形成一个转矩, 即电磁转矩T,其方向为逆时针方向,使整个电枢沿逆时针方向转动。当电枢转过180°, 导体cd转到N极下,ab转到S极上,如图(b)所示。由于电流仍从电刷A流入,使cd中的电流变为由d流向c,而ab中的电流由b流向a,再从电刷B流出。用左手定则判别可知,导体cd受到的电磁力的方向是向左的,ab受到的电磁力的方向是向右的,因而电磁转矩的方向仍是逆时针方向,使电枢沿逆时针方向继续转动。当电枢在转过180°,就又回到图(a)所示的情况。这就是直流电动机的基本工作原理。

绕线型异步电动机串电阻

课程设计名称:电子技术课程设计题目:绕线型异步电动机串电阻启动 学期:2013-2014学年第2学期 专业:电气技术 班级:电技12-2 姓名:周立君 学号:1205020229 指导教师:王巍

辽宁工程技术大学 课程设计成绩评定表

课程设计任务书 一、设计题目 绕线型三相异步电动机串电阻启动设计 二、设计任务 1、分析绕线型三相异步电动机的启动过程; 2、给出启动级数、各级启动电阻计算公式; 3、以实际例子说明启动级数和各级启动电阻的计算过程; 三、设计计划 电机与拖动课程设计共计1周内完成: 1、第1~2天查资料,熟悉题目; 2、第3~5天方案分析,具体按步骤进行设计及整理设计说明书; 3、第6天准备答辩; 4、第7天答辩。 四、设计要求 1、以实际例子说明启动级数和各级启动电阻的计算步骤; 2、对电枢串电阻启动进行优缺点分析; 指导教师:王巍 时间:年月日

摘要 三相异步电动机是交流电机的一种,主要用作电动机使用,因其结构简单、价格便宜、运行可靠、维护方便,是当前工农业当中应用最普遍的电动机。但是启动电流大是所有电动机启动的共性,电动机启动过程要求启动电流不能超出允许范围而且启动转矩不能太小,启动电流过大可能导致绕组烧坏,启动转矩太小会导致电动机启动过程缓慢甚至不能启动。所以,研究一种可行而适用易操作的启动方案就变得十分必要了。本课题研究绕线型三相异步电动机的电枢串电阻启动,通过理论计算,给出启动级数、各级启动电阻等详细参数,以达到增加最初起动转矩,使电动机以最大转矩T起动,避免因直接起动产生较大电流而带来的危害,提高启动的平稳性的可观效果。 关键词:异步电动机;电枢串电阻;启动

直流电动机串电阻分级启动仿真实验设计

直流电动机串电阻分级启动仿真实验 电路图搭建: 如果电动机直接启动的话,设置Step1/ Step2 /Step3的起始值为0,并且step time 设为0,也就是在0时刻开始以后一直都为0值,也就是三个电阻开关保持闭合,使所串电阻短路,仿真得到转速和电枢电流的启动图形: 可以发现,启动电流在很短的时间里就冲击到很大的值,我们将电流波形横坐标和纵坐标分别放大看看: 从图中可以看到,在时间约为0.08s时刻电流冲击到了大约1840A,这很显然不符合要求,电机一启动就烧,或者启动瞬间熔断丝就烧断。

如果这时候串一个1Ω的电阻,也就是讲三个电阻值都串进电路,设置Step1/ Step2 /Step3的step time 设置为20s,得到以下波形: 可以发现启动电流变小了很多,在200A左右,这也就满足启动电流限制的要求了,但是串联的电阻不能一直在电路中,这样会造成能量损耗,因为虽然电阻很小,但是电流很大,电流平方得到损耗电功率就很大了,即使是在额定运行时,额定电流大约在88.8A,而且我们还发现在时间t=10s时刻,电机还没有达到额定运行状态,也就是启动过程太慢,这主要是串了启动电阻的原因。

现在我们采用分级启动,下次电阻降低是在电流约为额定的1.2倍时,这样我们选t=3.5s时,把串的0.518Ω的电阻去掉,使所串电阻为0.482Ω,设置step3的step time 为3.5s,得到如下仿真图: 可以发现电流会在3.5s时又有一个冲击电流,大约是210V左右,一般也能满足要求, 也就是说,二次所串的电阻0.482欧姆能够满足要求,现在我们试试如果去掉0.838Ω的电阻,只剩一只0.162Ω时仿真的波形: 很显然看出,在时间3.5s时刻,冲击电流很大,大约460V(底下的放大波形可以清楚地看出),这也就不能满足电机的启动电流的要求。所以我们在去电阻时候要选择大小,不能一次性完全去掉,而是一次一次的分级去掉。下面就是我们进行的第二次去电阻。

KNP(RX21)线绕电阻产品规格书

KNP/RX21 WIREWOUND NONFLAME RESISTORS ●品名(PART NUMBER) 依据其种类,分别标明型号、额定功耗、精度、标称阻值和形状。 ACCORDING TO THE TYPES OF RESISTORS,THE POWER RATED, RESISTANCE TOLERANCE,RESISTANCE VALCE,SHAPES. ●使用环境温度:-55℃~+125℃ Operating ambient temperature-55℃~+125℃ ●FEATURES ●特性 ◎ Super heat dissipation,small linear ◎耐热性优,电阻温度系数TCR temperature coefficient. 小,呈直线变化 ◎ Instant overload capability,low noise ◎短时间超负载,低噪音,阻值wifhout annual shift on nesistance unlue 精度无变化 ◎ Flameproof,light weight paint Color ◎不燃性,重量轻,涂漆颜色为Of Fwhite Noncombustible 灰白色,不燃性面漆 ●KNP/RX21线绕阻燃涂漆电阻器结构图 ●KNP/RX21 WIREWOUND NONFLAME RESISTORS CONSTRUCTION

KNP/RX21WIREWOUND NONFLAME RESISTORS ●外形尺寸 DIMENSIONS ●降功耗曲线WIREWOUND RESISTORS POWER DERATING CURVE

绕线功率电阻概述及相关说明

01 of 02 Version 2014为设计工程师提供经济高品质的绕线功率电阻 德键电子为设计工程师提供工业级、高品质性能的绕线功率电阻。产品从大容量的功率铝壳电阻,不燃性固定或可调功率型绕线,波浪型绕线,滑动滑线变阻器,起动器,线绕功率电阻箱等。德键电子扩展了完整系列的电力线绕电阻器用于军事和商业应用。 优点及特点 德键电子为台湾著名生产制造电力功率电阻、耐冲击电阻、线绕电阻器的厂家之一,多年来秉持着所累积的经验与专业,不断的努力创新,致力于各类电阻器之开发与研究,以确保产品技术的领先,并与之建立同业长期互惠之伙伴关系,提供各类电阻器相关支援服务,以满足不同客户的各种需求。 功率系列电阻器广泛使用于各种高功率设备,电梯、亚弧焊机、电源设备、变频器、起重机械、建筑机械、轧机、拉线机、离心机、不间断电源 (UPS)、脉冲负载应用、缓冲器或泄漏电阻、用于牵引和工业驱动应用的功能转换设备、卷扬机、发电机、变压器、起动、制动、调速和负载试验、以及医疗、汽车及工业控制环境等设备。 德键电子亦可依客户的规格及需求,订制生产。 概述及相关说明 可调电阻器 滑动滑线变阻器线绕功率电阻器 德键电子工业股份了有限公司

绕线功率电阻使用注意事项: 不燃性电阻器无法在油中使用。 不燃性电阻器无法使用有机溶剂清洗。 不燃性塗料符合美國 UL-94 不燃性試驗,V-0 等級, 燃烧继续时间为 0 秒。 不燃性电阻器于首次通电使用时:会产生发烟情形,属正常现象, 敬请安心使用。 不燃性电阻器的涂布保护漆,硬度虽然高于 3H 硬度, 但请勿以螺丝起子等锐利的物体刻画表面涂装。 最小负载:为了防止随着时间增长产生氧化造成接触不良, 请使用额定电力 1/10 以上的电力。 实用负荷:为了防止象征电阻器寿命的电阻线产生疲劳, 电力的使用范围请保持在定格电压减轻曲线内。 瞬间突波电流 脉冲电压:需在短时间内印加超大负荷的话, 必须事先确认绕线功率电阻器,具有瞬间突波电流,脉冲电压能力。 高频机械使用,不燃性电阻器因线绕而产生电感, 无法使用于高频机械上,需另选用适当的电阻器,请与我们讨论。 不燃性电阻器使用于满载额定值时,表面产生高温约 350°C~ 400°C, 请勿以手处触摸,为维持电阻器能够长期使用, 请保持电阻器的表面温度上升在200°C以下。 为抑制其温度之上升,须选择高于原设计的额定功率电阻器。请勿使用刚 好在满载额定值上。长时间使用时及延长使用寿命、电阻器的功率数须大 于额定功率4倍以上, 并请尽量于定格功率的 25% 以下使用线绕功率电阻器。 使用以及放置注意事项:不同的绕线电阻器,使用不同的线径,线径有些 非常细(比毛发还细)的电阻线。环境中具有盐、湿气、尘埃、腐蚀性气 体等因素时, 往往容易造成电阻线易断裂,请避免在此种环境下使用。安装或使用时, 请注意不要让电阻表面积蓄尘埃。如有尘埃沾附会造成断线或接触不良。1.2.3.4.5.6.7.8.9.10.11.12.13.14. 15.02 of 02 Version 2014德键电子工业股份了有限公司

他励直流电机串电阻启动

他励直流电动机串电阻启动仿真一、工作原理 电动机的起动是指电机合上电源后,从静止状态加速到所要求的稳定转速时的过程。起动时把电动机电枢直接加上额定电压是不允许的,因为在起动前,电机转速为零,由电枢电势公式可知,Ea也为零,电枢绕组电阻Ra又很小,若此时加上额定电压,会引起过大的起动电流Is,Is = UN/Ra,其值可达额定值的10~20倍。这样大的启动电流会产生强烈火花,甚至烧毁换向器;还会加剧电网电压的波动,影响同一电网上其他设备的正常运行,甚至可能引起电源开关跳闸。 直流电动机在电枢回路中串联电阻起动是限制起动电流和起动转矩的有效方法之一。建立他励直流电动机电枢串联电阻起动的仿真模型,仿真分析其串联电阻起动过程,获得起动过程的电枢电流、转速和电磁转矩的变化曲线。 二、参数计算 有一台他励直流电动机,参数如下: PN=100KW UaN=440V IaN=497A

nN=1500r/min Ra=0.076Ω 若采用串电阻启动,所串电阻计算如下: (1)选择I1和I2 I1=(1.5~2.0)IaN=(1.5~2.0)497A=(745.5~994)A I2=(1.1~1.2)IaN=(1.1~1.2)497A=(546.7~596.4)A 选择I1=850A ,I2=550A (2)求出起切电流比β 5.1550 85021===I I β (3)求出启动时的电枢电路电阻Ram Ω=Ω==518.0850 4401I U R aN am (4)求出启动级数m 74.45 .1lg 076.0518.0lg lg lg ===βa aN R R m 故取m=5 (5)重新计算β,校验I 2

直流电动机起动实验

F 实验一直流电动机起动实验 一、实验目的 理解直流电机的工作原理,测试直流电动及直接起动的波形。说明负载转矩、 转速、电流、电磁转矩之间为何具有相应的对应关系。 二、实验的主要内容 仿真一台直流并励电动机的起动过程。电动机参数为: PN =17kW, U N = 220V, n0= 3000r/min,电枢回路电阻R a =0. 0870,电枢电感La =0. 0032H,励磁回路电阻R =181.50,电机转动惯量J=0.76 kg ?m2。 三、实验的基本原理 直流电动机刚与电源接通的瞬间,转子尚未转动起来时,他励和串励电动机的电枢电流以及并励和复励电动机的输入电流称为起动电流,这时的电 磁转矩称为起动转矩。一般情况下,在额定电压下直接起动时,起动电流可 达电枢电流额定值的10~20倍,起动转矩也能达到额定转矩的10~20倍,这 样的起动电流是换向所不允许的,而且过大的起动转矩会使电动机和它所拖 动的生产机械遭受突然的巨大冲击,以致损坏传动机械和生产机械。由此可见,除了额定功率在数百瓦以下的微型直流电动机,因电枢绕组导线细、枢 电阻大以及转动惯量又比较小,可以直接起动以外,一般的直流电动机是不 允许采用直接起动的。 四、实验步骤 1)建立并激电动机的仿真模型:直流电动机DCmotor 的电枢和励磁并联后由直流电源DC 供电,用Step 模块给定电动机的负载转矩,在DCmotor 的m 端连接了Demux 模块,将m 端输出的4 个信号分为4 路,以便通过示波器Scope 观察,m 端输出的转速单位为rad/s,这里使用了一个放大器(Gain), 将rad/s 转换为习惯的r/min,变换系数为:k=60/2π =9.55。 2)计算电动机参数: 励磁电流 励磁电感在恒定磁场控制时可取“0” 电枢电阻 电枢电感估算R a =0.0870

电机与拖动课程设计---他励直流电动机串电阻启动

课程设计名称:电机与拖动课程设计 题目:他励直流电动机串电阻启动 专业:电气工程及其自动化 班级: 姓名: 学号:

直流电动机是人类最早发明和应用的一种电机。直流电机可作为电动机用,也可作为发电机用。直流电动机是将直流电能转换成机械能而带动生产机械运转的电器设备。与交流电动机相比,直流机因结构复杂、维护困难、价格较贵等缺点制约了它的发展,但是它具有良好的启动、调速和制动性能,因此在速度调节要求较要、正反转和启动频繁或多个单元同步协调运转的生产机械上,仍广泛采用直流电动机拖动。在工业领域直流电动机仍占有一席之地。因此有必要了解直流电动的运行特性。在四种直流电动机中,他励电动机应用最为广泛。 关键词:直流电机;串电阻;启动;原理;分类:机械特性;变速

1 直流电动机简介............................... 错误!未定义书签。 2 直流电机的基本结构 (1) 2.1 定子 (1) 2.2 转子.................................... 错误!未定义书签。 2.3 气隙.................................... 错误!未定义书签。 3 直流电动机的工作原理 (2) 4 直流电机的分类 (3) 5 他励直流电动机的机械特性 (5) 6 直流电机的名牌数据和主要系列 (6) 7 固有机械特性与人为机械特性 (7) 8 他励直流电动机串电阻起动 (8) 9 起动电阻的计算 (10) 10 设计得出结论 (12) 体会............................................ 错误!未定义书签。参考文献........................................ 错误!未定义书签。

绕线异步电动机串电阻启动

1.电动机 1.1旋转磁场 定子三相对称绕组中通以频率为f 1 的三相对称电流便会产生旋转磁场。旋转磁场的转速由下式确定 n 0= p f 1 60 式中,P为电机的极对数。n 又称为同步转速旋转磁场的转向由三相电 流通入三相绕组的相序决定。改变电流相序,旋转磁场的转向随之改变。 1.2异步电动机结构 Y形的电阻,或直接通过短路端环短三相异步电动机主要由静止的和转动的两部分构成,其静止部分称为定子。定子是用硅钢片叠成的圆筒形铁心,其内圆周有槽用来安放三相对称绕组:三相对称绕组每相在空间互差120°,可联接成Y形或Δ形。三相异步电动机转动的部分称为转子,是用硅钢片叠成的圆柱形铁心,与定子铁心共同形成磁路。转子外圆周有槽用以安放转子绕组。转子绕组有鼠笼式和线绕式两种。鼠笼式:将铜条扦入槽内,两端用铜环短接,或直接用熔铝浇铸成短路绕组。线绕式:安放三相对称绕组,其一端接在一起形成Y形,另一端引出连接三个已被接成路。 1.3异步电动机工作原理 转子绕组切割旋转磁场产生感应电势,并在短路的转子绕组中形成转子电流,转子电流与旋转磁场相互作用产生电磁力,形成转动力矩,使转子随旋转磁场以转速n转动并带动机械负载。转子和旋转磁场之间转速差的存在是异步电动机转动的必要条件,转速差以转差率s衡量

S= 0-n n n ×100% 1.4定子 定子铁芯:导磁和嵌放定子三相绕组:0.5mm 硅钢片冲制涂漆叠压而成;内圆均匀开槽;槽形有半闭口;半开口和开口槽三种:适用于不同的电机 定子绕组:电路;绝缘导线绕制线圈;由若干线圈按一定规律连接成三相对称绕组交流电机的定子绕组称为电枢绕组 机座:支撑和固定作用;铸铁或钢板焊接 1.5转子 转子铁芯:导磁和嵌放转子绕组;0.5mm 硅钢片;外圆开槽 转子绕组:分为笼型和绕线型两种 笼型绕组:电路;铸铝或铜条优缺点 绕线型绕组:对称三相绕组:星接;集电环优缺点 气隙:气隙大小的影响:中小型电机的气隙为0.2mm ~2mm 2.电动机的起动指标 起动是指电动机从静止状态开始转动起来,直至最后达到稳定运行。对于任何一台电动机,在起动时,都有下列两个基本的要求。 2.1起动转矩要足够大 堵转状态时电动机刚接通电源,转子尚未转动时的工作状态,工作点在特性曲线上的S 点。这时的转差s=1,转速n=0,对应的电磁转矩T st 称为起动转矩。 堵转状态说明了电动机的直接起动能力。因为只有在T st >T L <一般要求T st >(1.1~1.2)T L ,电动机才能起动起来。T st 大,电动机才能重载起动;T st

他励直流电动机启动

运动控制系统课程设计 课题:他励直流电动机启动 系别:电气与信息工程学院 专业: 学号: 姓名: 指导教师:

城建学院 2015年1月4日 成绩评定· 一、指导教师评语(根据学生设计报告质量、答辩情况及其平时表现综合评定)。

二、评分 课程设计成绩评定

目录 一、设计目的 (1) 二、设计要求 (1) 三、设计容 (1) 3.1、直流电动机 (1) 3.1.1直流电动机 (1) 3.1.2直流电动机的分类 (2) 3.1.3他励直流电机工作原理 (2) 3.2 他励直流电动机的启动 (3) 3.2.1 他励直流电动机串电阻启动 (3) 3.2.2 直流电动机电枢串电阻起动设计方案 (6) 3.2.3 多级启动的规律 (7) 3.3 结论 (7) 3.4他励直流电动机串电阻起动特性分析 (8) 四、设计体会 (10) 五、参考文献 (10)

一、设计目的 通过对一个实用控制系统的设计,综合运用科学理论知识,提高工程意识和实践技能,使学生获得控制技术工程的基本训练,培养学生理论联系实际、分析解决实际问题的初步应用能力。 二、设计要求 完成所选题目的分析与设计,进行系统总体方案的设计、论证和选择;系统单元主电路和控制电路的设计、元器件的选择和参数计算;课程设计报告的整理工作。 三、设计容 有一台他励直流电动机,已知参数如下Pan=200kw ;Uan=440v ;Ian=497A ;Nn=1500r/min;Ra=0.076Ω;采用分级启动,启动电流最大不超过2IA,,求出各段电阻值,并作出机械特性曲线,对启动特性进行分析。 他励直流电动机的启动时间虽然很短,但是如果不能采用正确的启动方法,电动机就不能正常地投入运行。为此,应对电动机的启动过程和方法进行必要的分析。 直接启动时,他励直流电动机电枢加额定电压Un,电枢回路不串任何电阻,此时由于n=0,Ea=0,所以启动电流Ist=Un/Ra,由于电枢回路总电阻Ra较小,所以Ist可以达到额定电流In的十几甚至几十倍。这样大的电流可能造成电机换向严重不良,产生火花,甚至正、负电刷间出现电弧,烧毁电刷及换向器。另外,过大的启动电流使启动转矩Tst过大,会使机械撞击,也会引起供电电网电波动,从而引起其他接于同一电网上的电气设备的正常运行,因此是不允许的。一般只有微型直流电动机,由于自身电枢电阻大,转动惯量小,启动时间短,可以直接启动,其他直流电机都不允许直接启动。 在拖动装置要求不高的场合下,可以采用降低启动电压或在电枢回路串电阻的方法。他励直流电动机在电枢回路中串电阻,具有良好的启动特性、较大的启动转矩和较小的启

功率型线绕电阻器的热计算.

功率型线绕电阻器的热计算 功率型线绕电阻器是无源元件,以耗散功率大、耐电流冲击而得到使用者的青睐。常用作大功率电源的启动限流电阻、能量泻放电阻。在这一过程中,线绕电阻将电能转换为热能消耗掉,因此,电阻表面将有较高的温升。电阻表面的温升及其能量的耗散将严重的影响到周围元器件的工作状态。系统设计人员在选用功率型线绕电阻器时应考虑到电阻器的平衡温度、达到平衡温度的时间及断电冷却时间。当一个系统开始工作后,它的环境温度将随着通电时间的延续而升高,最后达到平衡温度。平衡温度的大小取决于耗电功率的大小、散热方式、空间大小等。对于一个功率型线绕电阻器的表面温升除取决于以上条件外更取决于产品的结构和用于产品材料的质量和比热容。首先建立功率型线绕电阻器的温升函数,并进一步进行讨论。 1 温升函数的建立当电阻受到如图1 所示的电脉冲冲击时,假设脉冲时间足够长,使得电阻体达到热平衡。在脉冲工作时间范围内,根据能量守恒定律有: 式中:Q为电脉冲单位时间内施加的能量,Q=0 24 P, P为脉冲功率(工频),0. 24为转换系数,当P为直流时,转换系数为1, Q1为向外释放的能量,Q仁as(T-T0),a 为散热系数(单位:cal /(s ? cm2「C))。S为电阻体的表面积,T为t时刻的温度,T0为t=0时的温度(室温);Q2为电阻体温度每升高1C所吸收的能量,Q2=Cm其中,C为电阻体的比热容(单位:cal / (g ?C)) o m为电阻体的质量(单位:g)。 将Q Q1, Q2代入式(1),得: 经整理得:解方程得: 式中:T为脉冲工作时间内的瞬时温度。时间区间为图1所示的0?t1 ,其物理意义为电阻器从通电到热平衡期间表面温升与时间的函数关系。

PLC课程设计-三相异步电动机转子串电阻启动

目录 摘要 (1) 关键词 (1) 1 关于PLC (2) 1.1概述 (2) 1.2 PLC的系统组成 (2) 2 S7-200简介 (3) 2.1 概述 (3) 2.2 组成 (3) 3 三相异步电动机的工作原理和结构组成 (3) 3.1 工作原理 (3) 3.2 结构组成 (4) 3.2.1 定子 (4) 3.2.2 转子 (4) 3.2.3 气隙 (4) 3.3 异步电动机的结构特点 (5) 3.4 转子串电阻启动的原理 (5) 3.5 启动电阻的使用原则 (5) 4 课程设计的目的 (5) 5 主接线图 (6) 5.1三相异步电动机转子串电阻启动主接线图 (6) 5.2绕线式的作用以及优缺点 (6) 6 硬件系统的设置 (6) 6.1 资源配置 (6) 6.2 PLC接线图 (7) 7 主程序设置 (7) 7.1 主程序梯形图 (7) 7.2 工作过程分析 (9) 8模拟软件上仿真动作与实验面板上调试演示结果 (10) 9课程设计总结 (11) 参考文献 (12)

三相异步电动机转子串电阻启动 三相异步电动机转子串电阻启动 指导教师 摘要:PLC在三相异步电机控制中的应用,与传统的继电器控制相比,具有控制速度快、可靠性高、灵活性强、功能完善等优点。长期以来,PLC始终处于工业自动化控制领域的主战场,为各种各样的自动化控制设备提供了非常可靠的控制应用。它能够为自动化控制应用提供安全可靠和比较完善的解决方案,适合于当前工业企业对自动化的需要。本文设计了三相异步电动机的PLC控制电路,该电路主要以性能稳定、简单实用为目的。 关键词:PLC;编程语言;三相异步电机;继电器 Three-phase Asynchronous Motor Rotor String Resistance Start Student majoring in Automation Liu Tong Tutor Zhou Jing Lei Abstract:PLC in three-phase asynchronous motor control application, compared with the traditional relay control, has control of speed, high reliability and flexibility, the perfect function etc. Long-term since, PLC is always in the industrial automation control field, igge for various automatic control equipment provides a very reliable control applications. It can provide security for automation control application reliable and comparatively perfect solutions, suitable for the current industrial enterprise of automation needs. This paper introduces the design of three-phase asynchronous motor, the PLC control circuit, this circuit mainly stable performance, simple and practical for the purpose. Key words: PLC;programming languages,;three-phase asynchronous motor,;relays

同步电动机的起动

同步电动机的起动 1.同步电机的基本原理 同步发电机和其它类型的旋转电机一样,由固定的定子和可旋转的转子两大部分组成。一般分为转场式同步电机和转枢式同步电机。 图1.1给出了最常用的转场式同步发电机的结构模型,其定子铁心的内圆均匀分布着定子槽,槽内嵌放着按一定规律排列的三相对称交流绕组。这种同步电机的定子又称为电枢,定子铁心和绕组又称为电枢铁心和电枢绕组。 转子铁心上装有制成一定形状的成对磁极,磁极上绕有励磁绕组,通以直流电流时,将会在电机的气隙中形成极性相间的分布磁场,称为励磁磁场(也称主磁场、转子磁场) 气隙处于电枢内圆和转子磁极之间,气隙层的厚度和形状对电机内部磁场的分布和同步电机的性能有重大影响。 除了转场式同步电机外,还有转枢式同步电机,其磁极安装于定子上,而交流绕组分布于转子表面的槽内,这种同步电机的转子充当了电枢。图中用AX、BY、CZ三个在空间错开120 分布的线圈代表三相对称交流绕组。 图1.1同步电机结构模型 1.1工作原理 主磁场的建立:励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主

磁场。 载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体。 切割运动:原动机拖动转子旋转(给电机输入机械能),极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。 交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。通过引出线,即可提供交流电源。 感应电势有效值:每相感应电势的有效值为E0 =4.44fNψ Φ 感应电势频率:感应电势的频率决定于同步电机的转速n和极对数p ,即 f=pn/60 交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。 1.2同步转速 同步转速从供电品质考虑,由众多同步发电机并联构成的交流电网的频率应该是一个不变的值,这就要求发电机的频率应该和电网的频率一致。我国电网的频率为50Hz ,故有: n=60f/p=3000/p 要使得发电机供给电网50Hz的工频电能,发电机的转速必须为某些固定值,这些固定值称为同步转速。例如2极电机的同步转速为3000r/min,4极电机的同步转速为1500r/min,依次类推。只有运行于同步转速,同步电机才能正常运行,这也是同步电机名称的由来。 1.3运行方式 同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。 分析表明,同步电机运行于哪一种状态,主要取决于定子合成磁场与转子主极磁场之间的夹角δ,δ称为功率角。

绕线型三相异步电动机串电阻启动

课程设计名称:电机与拖动课程设计 题目:绕线型三相异步电动机串电阻启动 专业:电气工程及其自动化 班级:电气09-1 姓名: XXX 学号:XXXXXXXXXX XXXX大学 课程设计成绩评定表

摘要 三相异步电动机是交流电机的一种,主要用作电动机使用,因其结构简单、价格便宜、运行可靠、维护方便,是当前工农业当中应用最普遍的电动机。但是启动电流大是所有电动机启动的共性,电动机启动过程要求启动电流不能超出允许范围而且启动转矩不能太小,启动电流过大可能导致绕组烧坏,启动转矩太小会导致电动机启动过程缓慢甚至不能启动。所以,研究一种可行而适用易操作的启动方案就变得十分必要了。本课题研究绕线型三相异步电动机的电枢串电阻启动,通过理论计算,给出启动级数、各级启动电阻等详细参数,以达到增加最初起动转矩,使电动机以最大转矩T起动,避免因直接起动产生较大电流而带来的危害,提高启动的平稳性的可观效果。 关键词:异步电动机电枢串电阻启动

目录 引言 (1) 1三相异步电动机 (2) 1.1 三相异步电动机的基本结构 (2) 1.1.1 定子 (2) 1.1.2 转子 (2) 1.2 三相异步电动机的工作原理 (2) 1.2.1 旋转磁场 (2) 1.2.2 电磁转矩的产生 (3) 1.3 异步电动机的启动方法 (3)

1.4 异步电动机的启动指标 (3) 2 绕线形异步电动机串电阻启动 (4) 2.1 启动过程分析 (4) 2.1.1 串联启动电阻Rst和Rst启动 (4) 2.1.2 切除启动电阻Rst2 (5) 2.1.3 切除启动电阻Rs1 (5) 2.2 启动电阻的计算 (5) 2.2.1 选择起动转矩Tst1和切换转矩Tst2…………………………… 5 2.2.2 求出起动转矩比β (5) 2.2.3 求出起动级数m (5) 2.2.4 重新计算β,校验T ,是否在规定范围内……………………… 7 2.2.5 求出转子每相绕组的电阻R (7) 2.2.6 计算各级总电阻 (7) 2.2.7 求出各级起动的电阻 (8) 3 实际例子分析 (9) 3.1 电动机相关参数 (9) 3.2 计算起动转矩T1 (9) 3.3 计算切换转矩T2 (9) 3.4 计算切换转矩比β (9) 3.5 计算起动级数 (9)

直流电动机的起动及性能分析

直流电动机的起动及性能分析 直流电动机就是依靠直流电驱动的将直流电能转换成机械能的电机。在这里,我们简单的讨论一下它的起动特点与性能。 与直流发电机相同,实际的直流电动机的电枢并非单一线圈,磁极也并非一对。由对电磁力及转矩分析可以看出:任何一台电机既可以作为发电机运行,也可以作为电动机运行,这一性质称为电机的可逆原理。电机的可逆原理不仅适用于直流电机,也适用于交流电机。电机的实际运行方式由外施条件决定,如果电机转子输入机械能,而电枢绕组输出电能,电机作为发电机运行;如果在电枢绕组中输入电能,转子输出机械能,则电机作为电动机运行。直流电动机和直流发电机的结构基本是相同的,即都有可旋转部分和静止部分。可旋转部分称为转子,静止部分称为定子,在定子和转子之间存在着气隙。 直流电动机有两大优点:一、调速性能好。所谓“调速性能”,是指电动机在一定负载的条件下,根据需要,人为地改变电动机的转速。直流电动机可以在重负载条件下,实现均匀、平滑的无级调速,而且调速范围较宽。二、起动力矩大。可以均匀而经济地实现转速调节。因此,凡是在重负载下起动或要求均匀调节转速的机械,例如大型可逆轧钢机、卷扬机、电力机车、电车等,都用直流电动机拖动。 机械特性是电动机机械性能的主要表现,它与负载的机械特性,运动方程式相联系,将决定拖动系统稳定运行及过渡过程的工作情况。若不计电枢反应的影响,当电动机正向运行时,其机械特性是一条横跨I、II、IV象限的直线。其中第I象限为电动机运行状态,其特点是电磁转矩的方向与旋转方向(转速的方向)相同,第II、IV 象限为制动运行状态。 首先,直流电动机为什么要限制启动电流?不论是交流电机还是直流电机,其启动电流都会比正常运行的时候要大.因为电机启动时,要使电机从静止状态变为转动状态,就如同把静止物体从静止推动起来匀速运动一样,静止摩擦远大于滑动摩擦.因为在启动瞬间电机还没有转,没有自感反电动势 ,且当时磁场刚刚运作,磁性最强,在启动的时候,由于T=Tn,Ea=CeΦn=0,此时的电枢电流Ia=Us/Ra=Is,由于Ra本身很小,Is和Ts都比启动电流大很多,所以此时,通电线圈在磁场中做切割磁感线运动最剧烈,所以电流最大.因为电枢电阻Ra很小,所以直接启动时启动电流很大,通常可达到额定电流的10到20倍。过大的启动电流会使电网电压下降过多,影响本电网上其他用户的正常用电;使电动机的换向恶化,甚至烧坏电动机;同时过大的冲击转矩会损坏电枢绕组和传动机构。因此,除容量很小的电动机

相关文档
相关文档 最新文档