文档库 最新最全的文档下载
当前位置:文档库 › 内燃机噪声与降噪技术

内燃机噪声与降噪技术

内燃机噪声与降噪技术
内燃机噪声与降噪技术

内燃机噪声与降噪技术

冯雷

(上海师范大学2012级环境工程120193475)

摘要:环境污染已经影响到人类的生存与进一步的发展,一个一个的污染事件不断地给人类敲响了警钟,使人们不得不驻足思考自己的生活方式。噪声污染作为环境污染当中的一支,虽不及大气污染、水污染那么迫在眉睫,当也有着不可小觑的危害。控制噪声污染首先要控制噪声源,而内燃机是一大噪声源,本文阐述内燃机噪声产生的机理,并针对其产生机理,概述了几种控制内燃机噪声的方向,以供读者研究和学习。

关键词:噪声污染;噪声源;内燃机;降噪技术

Internal combustion engine noise and noise reduction technology

Fenglei

(Shanghai normal university 2012 level environmental engineering 120193475) Abstrast: Environmental pollution has influence to human's survival and further development. More and more pollution incidents is constantly a wake-up call to humans, so that people have to stop thinking about his way of life.As one of the pollution of the environment noise pollution .Although it is the less important than air pollution,water pollution. It is also a serious pollution.First,to control noise must control pollution noise source.Internal combustion engine is a big noise source.This paper describes the mechanism of internal combustion engine noise.summarizes the several directions of control the internal combustion engine noise, for readers to study and learn.

Key words: Noise pollution;Noise source;Internal combustion engine;The noise reduction technology

1.前言

日益严重的环境问题使人们认识到自身生活和生产方式的不足,为了保护环境和提高自身生活质量,人们积极地去寻找解决目前各种环境问题的方法。噪声是那些人们在生活过程中不需要的声音,它干扰着人们的工作、学习和休息,给人们的生体健康造成危害【1】。曾几何时,当人们生活在山林之中,白天除了鸟叫声、水声、风声和动物的声音之外,没有其他多余的声

音,晚上,四周寂静一片,偶尔听到几声虫鸣。而如今,现代工业产品充斥着人们的生活,各种电子产品、交通工具、生产机器等,它们在为人们带来便捷的同时,也产生了很多令人厌烦的噪声。在经济飞速发展的今天,城市化的步伐加快,人们都进入了城市,那种虫叫鸟鸣的生活已经一去不复返了,有的只是噪声污染严重的生活和工作环境。

控制噪声污染首先要考虑的就是如何控制噪声源,降低噪声,当在噪声源处无计可施的时候,就开始考虑在传播途径上去降低噪声,如果前两种方式都不行,就只好保护噪声的接收者,甚至有时使用几种方式来降噪。内燃机是十

九世纪最伟大的发明,它在推动人类社会发

展进程的同时,带来了严重的空气和噪声污

染,在我们的生活当中,汽车、工厂的机器

等都用到内燃机,在噪声污染中,内燃机是

一种要的噪声源。如何降低内燃机产生的噪

声,近年来,一直受到世界各发达国家的重

视。

控制内燃机的噪声,首先要识别内燃机

的那些结构容易产生噪声,如图1所示是内

燃机的结构示意图,内燃机噪声识别方法有:

近场声压法、封闭法、表面震动法、近场测量法、分别运转法、声全息法、声强测量法、神经网络法和信号处理法【2】。然后研究其产生噪声的机理,最后针对产生的机理采取一些降噪技术,常用的几个降噪技术有动力吸振、振动隔离、阻尼减振、吸声和隔声技术【3】。

2.内燃机的噪声产生机理

内燃机的噪声源一般分为三种,分别为燃烧噪声、空气动力噪声和机械噪声,三种内燃机噪声不仅其发声的原理不同,而且各有各的传播途径,但又互相作用、不可分割。

2.1 燃烧噪声

通常在内燃机工作时。气缸内压力急剧上升产生的动载荷和冲击波引起高频振动,高频振动经气缸盖、气缸套、活塞、连杆、曲轴及主轴承传至机体以及通过气缸盖等引起内燃机结构表面振动而辐射出来的这部分噪声被称为燃烧噪声。

气缸内气体压力的剧变是内燃机产生燃烧噪声的根源,压力剧变使得气缸及其连接的所有图1 内燃机示意图

部件受到强烈的冲击性载荷传到内燃机的整体,导致各部件的结构振动。首先着火点处的局部压力急剧升高,火焰向邻近区域传播,在火焰传播的同时,也传播着具有冲击性质的压力波,这种冲击波在燃烧室内来回反射,形成气体的高频振动,辐射出高频噪声。

对直喷式柴油机不同曲轴转角下燃烧室空腔进行声模态的有限元计算和测试分析,发现缸内压力的高频振荡是由燃烧室空腔共鸣引起的,使得在燃烧压力高频振荡的共振频率处辐射的燃烧噪声能量较大,成为燃烧噪声的主要成分。占燃烧压力总能量5%左右的缸内压力高频振荡,激励的燃烧噪声能量占燃烧噪声总能量的80%。一般认为燃烧噪声经由两条路径传播并辐射出来,一是经过气缸盖及气缸套经由气缸体上部向外辐射,另一条路径是经过曲柄连杆机构,即活塞、连杆、曲轴和主轴承经由气缸体下部向外辐射。下面分别论述。

2.2空气动力噪声

空气动力噪声主要包括进、排气噪声和风扇噪声,进气噪声是发动机的主要空气动力噪声源之一,它是由进气门周期性开、闭而产生的压力变化起伏所形成的周期性进气噪声,它包含有进气管内压力脉冲形成的噪声,一般频率在2000Hz 以下的低频噪声和部分高次谐波噪声以及气流在气门流通截面形成涡流,产生1000Hz以上频率的涡流噪声。对于增压发动机由于增压器转速较高,一般进气噪声明显高于非增压发动机,其主要能量分布在500-1000Hz范围。发动机的空气滤清器对进气噪声有大幅度的消减。

排气噪声主要是由于发动机做功冲程结束,排气门打开时排出废气的压力脉动引起的能量很高、宽频的周期性噪声。从声源特性来看,在排气总管处它接近于单源。周期性的压力脉动引起周围媒质的周期性变化,从而产生噪声,在发动机噪声源中,排气噪声占有相当大的比例,也是内燃机降噪控制的首要目标。风扇噪声在水冷式发动机的噪声中并不占突出地位,而风冷发动机的风扇噪声往往是主要噪声源,从产生机理来看,风扇噪声包括旋转噪声和涡流噪声。

2.3机械噪声

机械噪声主要是内燃机各运动零、部件在运转过程中受气体压力和运动惯性力的周期变化所引起的振动或互相冲击而产生的,这些零部件有活塞、气缸套、气缸体、连杆、曲轴、配气机构、传动齿轮及喷油泵等。影响机械噪声的因素有结构刚度、零件加工精度和表面粗糙度、零件材料、运动件间隙及运转速度等。

在发动机空气动力噪声(主要是排气噪声)得到有效控制后,高速运转时的机械噪声常常是最主要的噪声源,这些噪声通常包括:活塞敲击噪声、传动噪声、配气机构噪声【4】。

3.内燃机降噪技术

降低内燃机噪声的主要措施是从噪声的声源入手,查明多种噪声源中的最大噪声成分及其频率特性,采取有关技术措施将噪声减至尽可能低的程度,再就是通过减振和隔声措施限制振动和噪声传播的途径。内燃机降噪还要和其它技术要求如内燃机动力性、经济性、可靠性、当前的技术水平、成本等多种因素综合起来考虑。

3.1燃烧噪声地控制

降低柴油机的燃烧噪声需从两方面着手。从产生根源上说,应降低气缸压力级,其措施有选用噪声低的燃烧室等,如选用半开式燃烧室。改变发动机结构提高燃烧噪声衰减量的措施有:选用较小的气缸直径、减小曲柄连杆机构各部分的间隙、提高缸套和机体的刚性以及采用隔振及隔声措施等。增加燃烧室中涡流强度,可改善燃烧条件,加速燃油与空气的混合。采用较小的供油提前角,可使燃烧柔和,降低燃烧噪声。内燃机的表面辐射噪声是由内部产生的机械噪声和燃烧噪声引起的,其对生产影响较小。

3.2空气动力噪声地控制

进气噪声是由进气门周期性开闭而产生的压力起伏变化所引起的。进气噪声的大小与发动机进气方式(增压或自然吸气)、进气门结构尺寸、缸径、凸轮型线等设计因素有关。降低进气噪声的方法是减小进气管内压力脉动的强度及在气门通过截面处的涡流强度,如采用波纹管作为进气管,能使压力脉动得到缓冲; 但一般采用进气消声器是最有效和常用的方法。进气消声器与空气滤清器通常是合为一体的。

排气噪声的来源与进气噪声相似,对内燃机排气噪声的控制,首先应从排气系统的设计方面着手,合理选择排气管以避免发生共振,并减少涡流。虽然内燃机的转速、缸数、排气背压、排气门开启时间及燃烧室设计对排气噪声均有很大影响,但这些因素更大程度上由其它因素决定。因此,仅从噪声源本身采取措施,其降噪量很有限,最有效和常用的降噪措施是采用排气消声器。

风扇噪声在内燃机噪声源中也占较大比重,尤其是风冷内燃机中,风扇噪声可能是重要的噪声源。风扇噪声主要由旋转噪声和涡流噪声组成。其主要受转速、工作能力、直径及效率的影响。风扇效率越低、风扇直径越大、转速越高,风扇的风量就越大,噪声也就越高。通过选择适当的风扇断面及安装角,设计高效的风扇,改用后置静轮,是轴流风扇降低噪声的一种有效措施。增加静轮与工作轮的间距,并通过改变叶片数,可使风扇的噪声成分降低。

3.3机械噪声的控制

内燃机运转时,活塞在上、下止点附近受侧向力作用产生由一侧向另一侧的横向移动,从而形成活塞对缸壁的强烈敲击。活塞对缸壁的敲击主要是由于它之间存在着间隙。降低活塞的敲击噪声可适当减小活塞和气缸间的间隙,活塞裙部开横向绝热槽和纵向斜切槽,或采用椭圆鼓形活塞、镶钢片活塞、热膨胀系数小的共晶铝硅合金活塞都可以达到减少活塞配缸间隙的目的。还可采用将活塞销孔中心偏置气缸中心线来减轻活塞对缸壁的敲击噪声。

传动齿轮的噪声是齿轮啮合过程中齿与齿之间的撞击和摩擦产生的。在内燃机上,齿轮承载着交变的动负荷,这种动负荷会使轴产生变形,并通过轴在轴承上引起动负荷,轴承的动负荷又传给发动机壳体和齿轮室壳体,使壳体激发出噪声。此外,曲轴的扭转振动也会破坏齿轮的正常啮合而激发出噪声。传动齿轮噪声与齿轮的设计参数和结构型式、加工精度、齿轮材料配对、齿轮室结构以及运转状态有关。

降低传动齿轮的噪声可采取以下措施。

1)合理选择和确定齿轮型式及齿轮参数,选择合适的加工方法,适当提高齿轮加工精度,都

可以降低齿轮工作时的噪声。如采用斜齿轮代替直齿轮。

2)适当减小齿轮的侧向间隙,有助于减小噪声,但同时要考虑加工成本。

3)合理选用齿轮材料及其配对,尽量采用高内阻的材料或采用外部阻尼隔振; 或在轮辐上装

以橡皮垫圈;或在齿轮体表面上涂敷阻尼性能良好的高分子材料,以有效地抑制噪声。

4)采用正时皮带传动代替正时齿轮传动,可明显降低噪声。

配气机构噪声与气门机构的型式、气门间隙、气门落座速度、材料、凸轮型线、凸轮和挺柱的润滑状态、内燃机的转速等因素有关。控制配气机构噪声的主要措施有以下几方面:

1)选用性能良好的凸轮型线。常用的缓冲曲线形式有等加速———等速缓冲曲线、余弦型缓

冲曲线、摆线型缓冲曲线。

2)提高配气机构的刚度。刚度提高后可使机构的固有频率提高,减小振动,缩小气门运动的

不规则变化。

3)采用液力挺柱可使配气机构的噪声显著降低【5】。

4.结语

除了上述的各种针对性的降噪技术外,还要辅助性的采取一些其他的措施,比如制定相关的标准和法律法规,规定内燃机的生产标准,严格管理,保护受害者,不准噪声不达标的内燃机流入市场;鼓励相关技术人员去开发低噪声内燃机,鼓励人们去买低噪声内燃机产品。只要

妥善解决好了内燃机噪声问题,这个世界将会变得安静一些,人们想了很多方法去解决内燃机的噪声问题,但只能在目前所能及的能力范围内,要想彻底消除内燃机的噪声,还有很多路要走。

参考文献

[1]王文奇.噪声控制技术及其应用[M].沈阳:辽宁科学技术出版社,1985,513.

[2]盛美萍,王敏庆,孙进才.噪声与控制技术基础[M].北京:科学出版社,2007,191.

[3]郭永红,郭常立,李杰,马艳艳.内燃机噪声源识别与噪声控制技术研究[J].设计与研

究,2009,(1):31-40.

[4]张晶,韩树,索文超.内燃机噪声研究的现状与发展[J].机械工程师,2005,(7):26-29.

[5]王春明,吴秀华.内燃机噪声源识别与噪声控制[J].林业机械与木工设备,2006,(3):43-45.

车用内燃机

[试题分类]:车用内燃机 1.按我国汽车内燃机的型号编制规则,内燃机一般按()来分类。 A.排量;B.气门数目;C.所用燃料;D.凸轮轴位置 2.气缸工作容积是指()的容积。 A.活塞运行到下止点活塞上方;B.活塞运行到上止点活塞上方; C.活塞上、下止点之间; D.进气门从开到关所进空气 3. 二冲程发动机一个工作循环中,曲轴转()。 A.120°; B. 180°; C.360°; D. 720°; 4. 压缩比是指()与燃烧室容积的比值。 A.所有气缸工作容积; B. 气缸工作容积; C. 气缸总容积; D. 发动机排量 5. 四冲程发动机一个工作循环中,曲轴转()。 A.120°; B. 180°; C.360°; D. 720°; 6. 四冲程发动机曲轴,当其转速为3000r/min时,则同一气缸的进气门,在1min 时间内开启次数应该是()。 A、1500次; B、3000次; C、750次; D、2000次 7.保持发动机在最适宜的温度范围内工作的系统是( )。 A. 润滑系; B. 点火系; C.燃料系; D. 冷却系 8.内燃机燃烧室容积是指()。 A.活塞运行到下止点活塞上方的容积;B.活塞运行到上止点活塞上方的容积;C.活塞上、下止点之间的容积; D.进气门从开到关所进空气体积

9. 6135Q柴油机的汽缸直径是()。 A.35mm B.613mm C.13mm D.135mm 10.下列发动机组成中柴油机没有的是()。 A、冷却系统 B、起动系统 C、点火系统 D、润滑系统 11. 6135Q柴油机型号中的Q表示()。 A.汽油 B.汽车用 C.拖拉机用 D.机车用 12.车用内燃机的排量是指排气门从开到关所排出的废气量。() 13.对于四冲程发动机,曲轴转2圈,凸轮轴转1圈,发动机各个缸都完成了一个工作循环。() 14. 热力发动机按运动规律分类,属于往复运动式发动机的有() A、汽油机 B、蒸汽机 C、热气机 D、汽轮机 E、燃气轮机

汽车发动机振动噪声测试实用标准系统

附件1 汽车发动机振动噪声测试系统 1用途及基本要求: 该设备主要用于教学和科研中的振动和噪声测量,要求能够测量试验对象的振动噪声特性(频率、阶次、声强等),能对试验数据进行综合分析。该产品的生产厂应具有多年振动噪声行业从业经验,有较高的知名度和影响力。系统软件和硬件应该为成熟的模块化设计,同时具有很强的扩展能力,能保证将来软件和硬件同时升级。 2设备技术要求及参数 2.1设备系统配置 2.1.1数据采集系统一套; 2.1.2数据测试分析软件一套; 2.1.3传声器 2个; 2.1.4加速度计 2个; 2.1.5声强探头 1套; 2.1.6声级校准器 1个; 2.1.7笔记本电脑一台 2.2数据采集、控制系统技术要求 2.2.1主机箱一个;供电采用9~36V直流和 200~240V交流; 2.2.2便携式采集前端,适用于实验室及现场环境; 2.2.3整机消耗功率<150W; 2.2.4工作环境温度:-10?C ~50?C; 2.2.5中文或英文WindowsXP下运行,操作主机采用笔记本电脑; 2.2.6输入通道数:4个以上,其中2个200V极化电压输入通道、不少一个转速输入通道; 2.2.7输入通道拥有Dyn-X技术,动态围160dB; 2.2.8每通道最高采样频率:≥65.5kHz,最大分析带宽:≥25.6kHz; 2.2.9系统留有扩充板插槽,根据需要可以进一步扩充;数据采集前端可同时连接多种形式传感器,包括加速度计、转速探头、传声器、声强探头等; 2.2.10系统具有堆叠和分拆能力,多个小系统可组成多通道大系统进行测量。大系统可分拆成多个小系统独立运行; 2.2.11采集前端的数据传输具备二种方式之一:①通过10/100M自适应以太网传输至PC; ②通过无线通讯以太网技术传输至PC,通信距离在100米以上。使测量过程更为灵活方便,方便硬件通道和计算机系统扩展升级;

发动机表面结构振动与辐射噪声的关系

第3章发动机表面振动与辐射噪声关系的系统研究 所谓发动机噪声除了进、排气噪声和风扇噪声外,主要是指由发动机外表面辐射出来的噪声,而辐射噪声与发动机表面结构振动有着密切的关系。系统地研究发动机表面振动与辐射噪声之间的关系,对于发动机噪声源预测和降低辐射噪声有着极其重要的意义。 3.1内燃机的表面振动 结构的表面振动和辐射噪声之间的关系非常复杂,通常无法确定。通过对噪声和单源振动测定的比较研究可知,大约有50%没有确切的关系。声场环境的影响、声的传播方向、结构振动的频率和相位的不均匀性,以及精确的数学模型极为复杂等因素导致精确的解析分析不可能实现。随机因素的影响和影响因素的随机性使得研究人员转而采用统计分析的方法来完成对振动和噪声辐射之间关系的研究[77-81]。 发动机结构振动可用其模态振型来表示,发动机结构振动的模态振型是由发动机设计所决定的,发动机质量分布、刚度和阻尼决定了其模态频率及其各阶模态之间的频率间隔。 柴油机是一种结构复杂、变工况运行的动力机械。柴油机的表面振动特性决定了其辐射噪声特性。为此,作者对一典型的直列柴油机-CY6102BZQ型柴油机的表面振动进行了实验测试与研究。实验框图如下:

实验仪器如下: 仪器名称 型号生产厂 传感器YJ2-1(665) 杨州无线电二厂 YJ2-1(667) 杨州无线电二厂 YD-42(24) 杨州无线电二厂 9024(2) 北戴河传感器技术研究所 电荷放大器7021 磁带机TEAC XR-30C TEAC CORP. Made in Japan 光线示波器 抗混滤波器DLF-6 北京东方振动和噪声技术研究所数据采集与分析系统INV306D 北京东方振动和噪声技术研究所测功机Y120-S 中国启东测功设备厂 测点布置如下:

内燃机简介

内燃机 内燃机是一种动力机械,它是通过使燃料在机器内部燃烧,并将其放出的热能直接转换为动力的热力发动机。 广义上的内燃机不仅包括往复活塞式内燃机、旋转活塞式发动机和自由活塞式发动机,也包括旋转叶轮式的燃气轮机、喷气式发动机等,但通常所说的内燃机是指活塞式内燃机。 活塞式内燃机以往复活塞式最为普遍。活塞式内燃机将燃料和空气混合,在其气缸内燃烧,释放出的热能使气缸内产生高温高压的燃气。燃气膨胀推动活塞作功,再通过曲柄连杆机构或其他机构将机械功输出,驱动从动机械工作。 内燃机的发展历史 活塞式内燃机自19世纪60年代问世以来,经过不断改进和发展,已是比较完善的机械。它热效率高、功率和转速范围宽、配套方便、机动性好,所以获得了广泛的应用。全世界各种类型的汽车、拖拉机、农业机械、工程机械、小型移动电站和战车等都以内燃机为动力。海上商船、内河船舶和常规舰艇,以及某些小型飞机也都由内燃机来推进。世界上内燃机的保有量在动力机械中居首位,它在人类活动中占有非常重要的地位。 活塞式内燃机起源于用火药爆炸获取动力,但因火药燃烧难以控制而未获成功。1794年,英国人斯特里特提出从燃料的燃烧中获取动力,并且第一次提出了燃料与空气混合的概念。1833年,英国人赖特提出了直接利用燃烧压力推动活塞作功的设计。 之后人们又提出过各种各样的内燃机方案,但在十九世纪中叶以前均未付诸实用。直到1860年,法国的勒努瓦模仿蒸汽机的结构,设计制造出第一台实用的煤气机。这是一种无压缩、电点火、使用照明煤气的内燃机。勒努瓦首先在内燃机中采用了弹力活塞环。这台煤气机的热效率为4%左右。 英国的巴尼特曾提倡将可燃混合气在点火之前进行压缩,随后又有人著文论述对可燃混合气进行压缩的重要作用,并且指出压缩可以大大提高勒努瓦内燃机的效率。1862年,法国科学家罗沙对内燃机热力过程进行理论分析之后,提出提高内燃机效率的要求,这就是最早的四冲程工作循环。

凸轮机构

第三章凸轮机构 案例导入:通过内燃机的配气凸轮机构、绕线凸轮机构导入凸轮机构的概念,从中观察发现:从动件的运动规律是由凸轮轮廓曲线决定的,只要凸轮轮廓设计得当,就可以使从动件实现任意给定的运动规律。在实际生产中,通常是根据需要对从动件的运动规律提出要求,再由从动件的运动规律设计凸轮轮廓,这就是本章的重点。 第一节概述 一、凸轮机构的应用、组成和特点 在各种机器中,为了实现各种复杂的运动要求经常用到凸轮机构,在自动化和半自动化机械中应用更为广泛。 图3-1所示为内燃机配气凸轮机构。凸轮1以等角速度回转,它的轮廓驱使从动件2(阀杆)按预期的运动规律启闭阀门。 图3-2所示为绕线机中用于排线的凸轮机构,当绕线轴3快速转动时,经齿轮带动凸轮1缓慢地转动,通过凸轮轮廓与尖顶A之间的作用,驱使从动件2往复摆动,因而使线均匀地缠绕在轴上。 图3-3为应用于冲床上的凸轮机构示意图。凸轮1固定在冲头上,当冲头上下往复运动时,凸轮驱使从动件2以一定的规律水平往复运动,从而带动机械手装卸工件。 图3-4为自动送料机构。当带有凹槽的凸轮1转动时,通过槽中的滚子,驱使从运件2作往复移动。凸轮每回转一周,从动件即从储料器中推出一个毛坯,送到加工位置。 图3-1内燃机配气凸轮机构图3-2 绕线机的凸轮机构 从以上的例子可以看出:凸轮机构主要由凸轮、从动件和机架三个基本构件组成。 凸轮机构的优点为:只需设计适当的凸轮轮廓,便可使从动件得到所需的运动规律,并且结构简单、紧凑、设计方便。它的缺点是凸轮轮廓与从动件之间为点接触或线接触,易于磨损,所以通常多用于传力不大而需要实现特殊运动规律场合。 二、凸轮机构的分类 根据凸轮和从动件的不同形状和形式,凸轮机构可按如下方法分类。 1.按凸轮的形状分

内燃机噪声源的形成及其控制措施

内燃机噪声源的形成及其控制措施 曹志芬 (漳州职业技术学院,福建漳州363000) 摘要:根据内燃机噪声产生的性质不同,分别对噪声源的形成进行分析,探讨降噪的相应措施。关键词:内燃机;机械噪声;燃烧噪声;气体动力噪声 中图分类号:TK401文献标识码:A 文章编号:1000-6494(2008)06-0043-04 The Formation of Noise Source and the Measure to Control It CAO Zhi-fen (Zhangzhou Institute of Technology,Zhangzhou 363000,China) Abstract:According to different properties of noise produced in internal combustion engine,this paper analyses separately the formation of noise source and studies the relevant measures. Key words:internal combustion engine;mechanical noise;combustion noise;noise of gas power 随着世界工业化和经济一体化的不断加快,世界能源危机和环境污染问题日趋严重,可持续发展的呼声越来越高,节约能源,保护生态环境,减少污染已成为世界各国的共识。噪声污染是当今世界三大公害之一,据国外有关资料表明,城市噪声的70%来源于交通噪声,而交通噪声主要是汽车噪声,约占交通噪声的80%左右,内燃机噪声和振动对汽车整车的噪声有着决定性的影响。因此,内燃机噪声是城市环境噪声污染的主要声源,其在生理和心理两方面都对人类产生严重的危害。为此应对内燃机噪声进行控制,从声源控制、噪声传播路径控制方面入手,积极采取降噪技术措施。 1主要噪声源的形成及其控制措施 内燃机是以周期性完成工作循环的动力机,这 种周期性包括空气工质运动以及发出动力的周期性,因而就形成了空气运动和机械部件的振动激励源,从而引起噪声。内燃机噪声按产生的性质可分为气体动力噪声、燃烧噪声、机械噪声三种,气体动力噪声主要是在进气和排气过程中产生,它直接向大气幅射,而机械噪声和燃烧噪声则是通过内燃机的外表面向外幅射。通常柴油机噪声较汽油机高,非增压内燃机噪声较增压机高,风冷内燃机噪声较水冷 机高些。 1.1燃烧噪声 燃烧噪声是内燃机噪声的主要声源,气缸内可 燃混合物燃烧而引起气体压力周期性的急剧变化,使活塞、气缸盖、气缸体、连杆、活塞销、曲轴等零件受到一定强度的动力载荷,从而产生结构振动和噪声,通过缸盖、活塞、连杆、曲轴、机体向外幅射。燃烧噪声与内燃机的燃烧方式和燃烧速度密切相关,由于燃烧过程进行的方式不同,在汽油机中,如果发生爆燃和表面点火等不正常燃烧时,将产生较大的燃烧噪声。在柴油机的燃烧过程中,滞燃期对燃烧过程影响很小,在急燃期内由于燃烧室内气体压力急剧上升,致使发动机各部件振动而引起噪声,压力升高率是激发燃烧噪声的一个根本困素。汽油机由于热力工作过程较为柔和平稳,最高爆发压力低,因此汽油机的燃烧噪声比柴油机小。 1.1.1燃烧噪声的主要影响因素1.1.1.1 结构因素 燃烧室的结构型式及整个燃烧系统的设计对压 力升高率、最高燃烧压力及气缸压力频谱曲线有明显的影响,故对燃烧噪声的影响很大,影响滞燃期的因素也将直接影响燃烧噪声,因此要控制燃烧噪声,在设计燃烧系统时必须尽可能地缩短滞燃期。一般而言,汽油机以半球形燃烧室噪声较高,浴盆形燃烧室较低。柴油机用直接喷射式燃烧室比用间接喷射式燃烧室噪声要高,半分开式的球形燃烧室以油膜蒸发混合方式为主,压力升高率小,燃烧噪声最低。 作者简介:曹志芬(1962-),女,高级工程师,主要从事柴油机研发与教学工作。 收稿日期:2008-07-26 内燃机 Internal Combustion Engines 第6期2008年12月 No.6Dec.2008

配气机构的作用及组成

1.配气机构的作用及组成 一、功用: 是按照发动机每一气缸内所进行的工作循环或发火次序的要求,定时开启和关闭各气缸的进、排气门,使新鲜可燃混合气或空气得以及时进入气缸,废气得以及时从气缸排出。 二、组成: 气门组:气门及与之关联的零件; 气门传动组:从正时齿轮到推动气门动作的所有零件。 2.为什么要预留气门间隙?什么是气门间隙?为什么要留气门相位? 在气门杆尾端与摇臂端(侧置式气门机构为挺杆端)之间留有气门间隙,是为补偿气门受热后的膨胀之需的. 发动机发动时,气门将因气温升高而膨胀。如果气门以其传动件之间在冷态时无间隙或间隙过小,则在热态下,气门及其传动件的受热膨胀势必引起气门关闭不严,造成发动机在压缩和作功行程中的漏气,从而使功率下降,严重时甚至不易启动。为了消除这种现象,通常在发动机冷态装配时,在气门与其传动机构中预留一定的间隙,以补偿气门受热后的膨胀量。这一间隙被称为气门间隙。 但是,如果气门间隙留得太大,冷态下传动零件之间以及气门和气门座之间产生撞击,而且加速磨损,同时使得气门开启的持续时间减少,汽缸的充气情况变坏。 所以高级轿车上都采用液压挺柱,挺柱长度能自动变化,随时补偿气门的热膨胀量,故不需要预留气门间隙。 3.为什么有的配气机构中采用两个套装的气门弹簧 你所指两套装置的气门弹簧我可否理解成控制气门开闭的弹簧。 所有的气门弹簧都是大簧套小簧;并且是是旋向相反。 采取这种结构的原因是防止因为气门弹簧旋向的原因产生谐振,造成气门关闭不严,所以设置成旋向相反的两个气门弹簧,让它们的谐振频率相反进行抵消,消除谐振引起的气门关闭不严的现象 4.什么是点火提前角,其过大或过小有什么危害 点火提前角:从点火时刻起到活塞到达压缩上止点,这段时间内曲轴转过的角度称为点火提前角。 点火过早,会造成爆震,活塞上行受阻,效率降低,磨损加剧。点火过迟,气体做功效率低,排气声大。不论点火过早或过迟,都会影响转速的提升。 若点火提前角过大,则活塞还在向上止点运动时,气体压力已达很大的数值,活塞受到迎面而来的反向压力的作用,压缩行程的负功增加使发动机功率下降,甚至有时造成曲轴反转使发动机不能工作。而且点火提前角过大也易于发生不正常燃烧--爆燃。 若点火提前角过小,混合气的燃烧将在逐渐增大的容积内进行,因而燃烧最高压力降低,而且补燃增加,热损失增大,于是发动机功率下降,油耗增加,并使发动机过热 5.膜片弹簧式离合器特点? 6.从动盘摩擦片上的铆钉为什么要沉入摩擦片平面以下? 如果不沉头,摩擦的就不是摩擦片,而是铆钉了。 五、问答题 1.汽油机燃料供给系的作用是什么? 2.化油器的作用是什么? 3.主供油装置的作用是什么?它在哪些工况下参加供油? 4.为什么把加浓装置称为省油器? 5.在加速泵活塞与连接板之间为什么利用弹簧传力?

基于PROE的四缸内燃机凸轮配气机构的结构设计及运动仿真分析

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 湖北文理学院 毕业设计(论文)正文题目 基于PRO/E的四缸内燃机凸轮配气机构的结 构设计及运动仿真分析 专业机械设计制造及其自动化 班级机制0812班 姓名李旭东 学号08116249 指导教师 职称 李梅 副教授 2012年5 月23日

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊基于PRO/E的四缸内燃机凸轮配气机构的结构设计及运动仿 真分析 摘要:配气机构作为内燃机的重要组成部分,其设计合理与否直接关系到内燃机的动力性能、经济性能、排放性能及工作的可靠性、耐久性。随着内燃机高功率、高速化,人们对其性能指标的要求越来越高,要求其在高速运行的条件下仍然能够平稳、可靠地工作,因而对其配气机构提出了更高的要求。配气凸轮型线是配气机构的核心部分,配气凸轮型线设计是配气机构优化设计的重要途径之一。模拟计算和实验研究是内燃机配气机构研究两种重要手段。 运用多体力学的方法对配气机构进行了动态仿真分析,采用数字多体程 序的方法,建立了配气系统的理论模型,进行配气机构的运动学、动力学分析,除了得到气门的升程、速度、加速度外,还考虑了摇臂与气门之间的碰撞,以及摇臂支座的柔性。因此得到气门与摇臂之间的碰撞力,摇臂支座的柔性衬套的受力,气门弹簧力,凸轮轴支座反力,气门座反力及凸轮与摇臂之间的压力角等。为凸轮型线、摇臂形状和整个配气机构的设计改进提供了重要依据。 利用pro/e强大的分析仿真功能, 对凸轮式配气机构的运动特性以及弹簧刚度对系统运动的影响进行了仿真分析, 得出弹簧刚度与气门振动的关系图, 为改善系统动力学性能和关键零部件设计提供了依据。利用计算机软件仿真, 有利于降低研发成本并缩短产品的开发周期。 关键词:内燃机;配气机构;凸轮型线;优化设计;汽车;发动机;配气系统;顶置凸轮;动态仿真

发动机台架振动噪声试验规范

发动机台架 振动噪声 试验规范 湖南大学 先进动力总成技术研究中心

1.适用范围 本标准适用于缸径100mm以内,功率在150kW以内的往复活塞式发动机。 2.规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 1859-2000 往复式内燃机辐射空气噪声测量工程法及简易法。 GB/T 往复式内燃机性能第1部分:标准基准状况,功率、燃油消耗和机油消耗的标定及试验方法。 GB/T 往复式内燃机性能第3部分:试验测量。 3.试验目的 在发动机消声室试验台架上进行发动机振动噪声测试,评价发动机振动噪声水平。 4.测试设备 传声器应该符合GB/T3785规定的1级仪器要求,其测量装置必须至少覆盖20Hz~20000Hz的频率范围。 加速度传感器应该符合GB/T3785规定的1级仪器要求,其测量仪器频率范围至少为10Hz~2000Hz,并应包括发动机最低稳定转速到lO倍最高转速的激励频率。传声器、加速度传感器在测量前必须进行标定。 测量前后,仪器应该按照规定进行校准,两次校准值不应超过1dB。 发动机转速的测试仪器的准确度应优于1%。 5.安装条件和运转工况 发动机工作条件 测试前确保发动机为工作正常且油位、水位正常。 在测量过程中,发动机的所有运行条件,应该符合制造厂家的规定。测量开始前,发动机应该稳定在正常工作温度范围内。 发动机状态 发动机不带空气滤清器和排气消声器,引出进、排气噪声。

汽车NVH振动与噪声分析

汽车NVH介绍

1.NVH现象与基本问题 2.噪声与振动源 3.NVH传递通道 4.NVH的响应与评估 5.NVH试验 6.NVH的CAE分析 7.NVH开发 8.汽车声品质

动态性能 静态性能 汽车的性能 ?汽车的外观造型及色彩 ?汽车的内室造型、装饰、色彩?内室及视野 ?座椅及安全带对人约束的舒适性 ?娱乐音响系统?灯光系统?硬件功能 ?维修保养性能?重量控制 ?噪声与振动(NVH )?碰撞安全性能?行驶操纵性能?燃油经济性能?环境温度性能?乘坐的舒适性能?排放性能?刹车性能?防盗安全性能?电子系统性能?可靠性能 NVH 是汽车最重要的指标之一

汽车所有的结构都有NVH问题 ?车身 ?动力系统 ?底盘及悬架 ?电子系统 ?…… 在所有性能领域(NVH,安全碰撞、操控、燃油经 济性、等)中,NVH是设及面最广的领域。

什么是NVH? NVH : N oise, V ibration and H arshness ?噪声Noise: ●是人们不希望的声音 ●注解: 声音有时是我们需要的 ●是由频率, 声级和品质决定的 ●频率范围: 20-10,000 Hz ?振动Vibration ●人身体对运动的感觉, 频率通常在0.5-200 Motion sensed by the body, mainly in .5 hz-50 hz range ●是由频率, 振动级和方向决定的 ?不舒服的感觉Harshness ●-Rough, grating or discordant sensation

为什么要做NVH? ?NVH对顾客非常重要 ?NVH的好坏是顾客购买汽车的一个非常重要的因素. ?NVH影响顾客的满意度 ?在所有顾客不满意的问题中, 约有1/3是与NVH有关. ?NVH影响到售后服务 ?约1/5的售后服务与NVH有关

内燃机发动机噪声文献综述

内燃机燃烧噪声与机械噪声对整机噪声影响综述在整车噪声中,发动机运行产生的噪声比例最大,尤其是在卡车或柴油机车上,发动机噪声占整车噪声的75%以上。2002年7月阎效东[12]综述了车用内燃机噪声控制技术的发展历程、现状和最新发展趋势,指出我国内燃机噪声控制技术在保护环境中的地位,也提到内燃机由很多零部件组成,它们刚性地连接在一起,相互作用产生噪声,所以识别内燃机噪声就变得很困难。 内燃机噪声一般可以分为机械噪声、燃烧噪声和空气动力性噪声,空气动力性噪声又包括进气噪声和排气噪声,它们可以通过消声器来控制,其中机械噪声和燃烧噪声合称为内燃机表面噪声[1]。由于不同噪声产生的机理不同,控制的方法也有所不同,所以正确识别和分离内燃机噪声源是开展发动机噪声控制的基础。其中燃烧噪声是从机体表面辐射出的噪声,它是由于气缸内压力突然增大,发动机各机械零部件相互碰撞产生振动进而引发出的噪声。空气动力性噪声主要是指进气噪声、排气噪声,由于这些声辐射源空间位置分隔较远,容易进行识别。但机械噪声和燃烧噪声都发生于内燃机内部并经内燃机结构表面向外辐射,两者在发生的时间、空间、传播的途径和信号的基本频域特征等方面都重叠交织在一起,如何识别和分离这两类噪声并计算其对整机噪声的贡献度是柴油机噪声控制领域的重要任务之一[6]。 传统的识别方法多是用来识别发动机的主要辐射噪声部件,但不能识别辐射噪声的类型。新型方法可以分离柴油机的燃烧噪声与机械噪声,并识别出了柴油机在不同的运行工况下燃烧噪声与机械噪声对整机噪声声功率的贡献度。除了进排气噪声,柴油机的主要噪声是燃烧噪声和机械噪声。当我们测量整机声功率和燃烧噪声声功率时,机械噪声声功率就可以通过整机声功率减去燃烧噪声声功率得到,进而燃烧噪声和机械噪声占整机噪声的比例就可以通过燃烧噪声声功率或者机械噪声声功率求得。有文献研究表明,在高辐射噪声运行工况时,机械噪声是发动机噪声的主要成份,因此,针对柴油机的噪声控制首先要控制柴油机的机械噪声。 国内外学者对内燃机噪声源识别做了一些研究[2-5],目前国内采用较多的是分别运行法[3]和盲源分离技术[5]等。 文献[3]魏凯等通过研究摩托车发动机的振动发现,发动机转速不变时,随

内燃机配气机构系统动力学分析_张晓蓉

第31卷第3期重庆大学学报 Vo.l 31 No .3 2008年3月 Jour nal of Chongqi n g U niversity M ar .2008 文章编号:1000-582X (2008)03-0294-05 内燃机配气机构系统动力学分析 张晓蓉1,2 ,朱才朝2 ,吴佳芸 2 (1.重庆科技学院机械学院,重庆400042;2.重庆大学机械传动国家重点实验室,重庆400030) 摘 要:内燃机配气机构直接影响着内燃机的性能和可靠性。论文对顶置四气门配气机构工作过程进行了分析,采用理论计算和实验方法确定了配气机构动力学模型的主要参数,利用AVL / TYCON 分析软件建立了顶置配气机构凸轮轴)摇臂)气门系统的一维动力学分析模型,并对其动态特性进行了数值仿真,验证了动力学模型及分析结果的正确性,为配气机构动态性能的评价和优化提出了理论依据。 关键词:内燃机;配气机构;动力学 中图分类号:TH 132.47 文献标志码:A System Dynam ic Analysis of Engine Valve -train ZHANG X i a o-ro ng 1,2 ,ZHU C a i -cha o 2 ,W U J i a -yun 2 (1.C ollege o fM echan ical Eng i n eeri n g ,Chongqi n g U niversity o f Science and Techno l o gy ,Chongqing 400042,P .R .China ; 2.State K ey Laboratory o fM echan ica lTrans m issi o n ,Chongqing University ,Chongq i n g 400030,P .R.Ch i n a)Abst ract :Va l v e tra i n is the key factor for the perfor m ance and reliab ility of eng ine .W e analyze the w or k i n g m echanis m of over head va l v e train w ith four valves ,and obtained the m a i n para m eters o f dyna m ic m odeli n g w ith t h eore tica l and experi m ental m ethods .On the basis of the above stud i e s ,w e buil d the m odel o f ca m shaf-t rocke-t valve syste m w ith AVL /TYCON soft w are .Its dyna m ic characteristics is si m ulated and ver ified by experi m ents .Th is paper prov ides a theoretical approach for the evaluati o n and opti m izati o n of dyna m ic perfor m ance of valve tra i n .K ey w ords :eng i n e ;va lve -train ;dyna m ics 配气机构是内燃机的重要组成部分,其设计优良与否直接影响内燃机的性能指标。这些指标不仅包括动力性、经济性,也包括运转性能如内燃机的振动、噪声、排放指标和可靠性等,因而开展配气机构系统动力学研究具有重要意义。 配气凸轮机构一直是内燃机研究的重要组成部分,研究内容已从最初单纯的凸轮经验设计,拓展到整个配气机构的运动学与动力学的综合研究。国外自20世纪初就有许多学者开始进行这方面的深入 研究;相比而言,国内则起步较迟,20世纪70年代起才开始全面研究凸轮设计与动力学分析,研究的重点放在凸轮型线设计、多质量动力学研究方面 [1-3] 。目前,国际上已有各种配气凸轮设计软件, 国内也出现了一些类似的软件,这些软件在速度与计算精度上都有所提高。文中以顶置四气门配气机构为例,通过理论计算和利用实验方法确定了配气机构动力学模型的主要参数,利用TYCON 分析软件建立了该配气机构的凸轮轴)摇臂)气门系统动力

发动机结构振动及噪声预测

发动机结构振动及噪声预测 作者:奇瑞发动机工程研究邓晓龙 发动机是影响汽车NVH性能的最主要的因素,在发动机的设计阶段就深入进行振动噪声性能的预测与优化,已经成为发动机开发的基本流程,是发动机自主研发过程中的重要工作。 国内外对发动机结构噪声的预测做了大量研究,中低频结构噪声预测方法已趋成熟。结构振动响应与辐射噪声之间的关系非常复杂,目前根据强迫振动响应计算辐射噪声的计算方法主要有平板理想化法、有限元法和边界元法等。噪声预测技术的发展使得发动机在设计阶段进行噪声评价成为可能。 本文探讨了适于进行动力总成振动及结构噪声预测的方法;建立了动力总成各主要部件的有限元模型,通过AVL EXCITE软件进行了动力学分析,并计算发动机的振动响应。进行NVH的性能提升的最重要的就是首先要找到主要振动及噪声源,并开展有针对性的工作。为了更明确发动机的主要声源,采用自编软件,根据表面振动速度结果进行了主要表面的辐射声功率排序,最后进行结构噪声预测。 发动机结构振动预测 进行发动机结构振动及噪声预测,涉及到大量的研究工作,主要工作包括各部件有限元建模、子结构模态提取,EXCITE模型搭建,主要激励计算,动力学分析,振动响应计算,表面辐射声源排序,声边界元建模和空间声场预测等工作。 1. 动力总成有限元模型 动力总成有限元模型包括缸体、框架、缸盖、油底壳、缸套、进气歧管、排气歧管、气门室罩盖、4个悬置支架、变速器壳体、变速器传动轴及齿轮等。由于研究的动力总成的4个悬置支架中有3个是安装在变速器上,所以加入变速器壳体的有限元模型,这样可以更准确地模拟动力总成的振动情况,特别是怠速工况下的振动。图1所示为动力总成的有限元网格。同样需建立曲轴组件的有限元网格,曲轴组件包括曲轴、飞轮、扭转减振器、皮带轮和正时齿轮等部件。

汽车内燃机配气机构毕业设计

本科专业职业生涯设计 姓名 学号 年级 专业 系(院) 指导教师 2010年 4 月 15 日

目录 第一部分 同舟共济,自强不息,我的汽车工程师之路 (5) 前言 (5) 1 自我探索 (5) 1.1 职业兴趣 (5) 1.1.1 自我评估的结果:ECR (5) 1.1.2 职业测评的结果:SRI (6) 1.1.3 职业兴趣探索小结 (6) 1.2 职业能力 (7) 1.2.1 自我评估的结果:RIC (7) 1.2.2 职业测评的结果:RIS (7) 1.2.3 360度评估结果 (8) 1.2.4 职业能力探索小结 (8) 1.3 职业价值观 (9) 1.3.1 职业价值观测评结果 (9) 1.3.2 职业价值观小结 (9) 1.4 个性特征 (9) 2 了解和分析职业 (10) 2.1 世界大背景 (10) 2.2 国内汽车行业行情 (10) 2.3 汽车行业人才需求情况 (11) 3 匹配抉择 (11) 3.1 性格与爱好的匹配 (11) 3.2 性格与价值取向的匹配 (11) 3.3 爱好与价值取向的匹配 (11) 3.4 我的职业目标 (12) 3.4.1 同济大学汽车学院简介 (12) 3.4.2 执行路线 (13)

4 自我监控和调整 (13) 4.1 监控 (13) 4.1.1 目的 (13) 4.1.2 内容要素 (14) 4.2 修正方案 (14) 5 结束语 (14) 第二部分 汽车内燃机配气机构的优化设计 (15) 摘要 (15) ABSTRACT (16) 1 课题背景 (16) 1.1 配气机构的研究历程 (17) 1.2 配气机构优化设计的目的及意义 (17) 2 配气机构简介 (18) 2.1配气机构概述 (18) 2.2配气机构采用的新技术 (20) 2.2.1顶置凸轮轴技术 (20) 2.2.2 多气门技术 (20) 2.2.3 可变气门正时配气机构(VVA) (21) 3 总布置设计 (22) 3.1 气门的布置形式 (22) 3.1.1 气门顶置式配气机构 (22) 3.2 凸轮轴的布置形式 (22) 3.3 凸轮轴的传动方式 (22) 3.4 每缸气门数及其排列方式 (22) 3.5 气门间隙 (23) 4 配气定时工作原理 (23) 5 配气机构的零件和组件 (24) 5.1 气门组 (24)

车用发动机设备噪声形成原因及控制措施(新编版)

车用发动机设备噪声形成原因及控制措施(新编版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0038

车用发动机设备噪声形成原因及控制措施 (新编版) 1.噪声的主要危害 噪声污染不仅对人们的自我感觉和工作能力产生消极的影响,而且能导致健康严重失调、疲劳、早期失聪、高血压、神经疾病等。 2.车用发动机噪声的形成与对策 发动机噪声主要包括燃烧噪声、机械噪声、进排气噪声、冷却风扇及其他部件发出的噪声。燃烧噪声是在可燃混合气体燃烧时,因气缸内气体压力急剧上升冲击发动机各部件,使之振动而产生的噪声。柴油中的十六烷值不合适或喷油时间过于提前,会引起发动机工作粗暴,使噪声急剧增大。汽油机由于过热、汽油品质不良和点火提前角过大等原因造成高频爆炸声、敲缸。 发动机内部的燃烧过程和结构振动所产生的噪声,是通过发动

机外表面以及与发动机外表面刚性连接结构的振动向大气辐射的,因此称为发动机表面噪声。根据发动机表面噪声产生的机理,又可分为燃烧噪声和机械噪声。燃烧噪声主要是由于气缸内周期性变化的压力作用而产生的,与发动机的燃烧方式和燃烧速度密切相关;机械噪声是发动机工作时各运动件之间及运动件与固定件之间作用的周期性变化的力所引起的,它与激发力的大小和发动机结构动态特性等因素有关。一般来说,低转速时,燃烧噪声占主导地位,高转速时,机械噪声占主导地位。 降低燃烧噪声,需改善燃烧条件,提高燃烧质量,以达到圆滑的压力波形。采用合理布置火花塞和气门以及采用合适的燃烧室型式和冷却方式即可以达到最有效的燃烧。在燃油方面,汽油的辛烷值越高,点火质量及抗爆振性能越好;对柴油机来说,要选择合适的十六烷值的柴油,如果达不到,可加入点火加速剂,提高点火质量,这样可有效地防治因燃油燃烧引起的噪声。 机械噪声包括活塞敲击声、气门机构冲击声、正时齿轮运转声等。减小活塞敲击声,可采取减小活塞与缸壁之间的间隙和使活塞

发动机噪声与振动

发动机运转时,燃烧噪声,机械噪声和空气动力噪声是主要噪声源。 通常把燃烧时气缸压力通过活塞、连杆、曲轴、主轴承传至机体,以及通过气缸盖等引起发动机结构表面振动而辐射出来的这部分噪声,称为燃烧噪声。发动机的燃烧噪声,是在气缸中产生的。燃烧过程中,气缸内的压力波冲击燃烧室壁,气体自身产生的振动,这种振动及辐射噪声呈高频特性。气缸内压力在一个工作循环内呈周期变化,激起气缸内部机件的振动,其频率与发动机转速有关,通过发动机机体向外辐射噪声,这种振动及辐射噪声呈低频特性。其强弱程度,取决于压力增长率及最高压力增长率的持续时间。 发动机的机械噪声,是指在气体压力和惯性力的作用下,使运动部件产生冲击和振动而激发的噪声。主要有活塞敲击噪声、供油系噪声、配气机构噪声、正时系统噪声、辅机系统噪声、轴承噪声、不平衡惯性力引起的机体振动和噪声等。发动机工作时,由于冲击、摩擦、旋转不均匀和不平衡力作用等原因,激起零部件的机械振动而产生噪声。特别是当激振力频率与零部件的固有频率相一致时,会引起激烈的共振和噪声。发动机的机械噪声随转速的提高而迅速增加。 空气动力噪声,是气体流动(如周期性进气、排气)或物体在空气中运动,空气与物体撞击,引起空气产生的涡流,或者由于空气发生压力突变,形成空气扰动与膨胀(如高压气体向空气中喷射)等而产生的噪声。一般说来,空气动力噪声是直接向大气辐射的。主要分成进气噪声、排气噪声和风扇噪声。 汽车噪音改善材料和方法: 1、发动机噪,路噪,胎噪都属于结构噪音,它的主要产生是震动,最合理的解决办法就是制震。加入减振板配合吸音垫,能很好解决路噪和胎噪。弓I擎噪这个问题我们应理性去看待,引擎声的大小随发动机转速的不同而产生程度不同的噪音,它没有一个恒定的标准,但是,引擎的转速是由车辆行驶状态和驾驶人员操控的。对引擎的声音除了驾驶人员的控制外,汽车隔音工程还能再进一步的改善,具体施工部分如下:(1)引 擎盖的施工能延缓前盖板因温度过高而掉漆,并能减少发动机噪音通过上盖传出的噪音。(2)挡火墙内外部分施工可改善引擎发动后低频音的传入。施工后引擎声变得更加纯净,驾驶人员会有更好的操纵感。如果要引擎声有较明显的改善,施工部分是比较复杂的,具有一定高难度的作业,具体施工部分与步骤有以下几点:①拆开仪表台,完全处理挡火墙内部②卸下发动机,完全处理档火墙外部这个施工对引擎噪音的减少 效果是比较明显的,但是施工过程可能会对车体原有设备造成改变和影响,笔者一般不建议对此部分进行施工操作,对于引擎声应理性善待,不应过分追求引擎声的控制,让引擎发挥它应有的动力感。 2、路噪和胎噪是因为轮胎和路面摩擦产生震动和噪音,所以减震是最好的方法,用减振板或专用减振板和吸音垫及车门密封条对叶子板和车地板及车门进行全面施工可以从减震、吸音、隔音三个源头改善胎噪和路噪。 3、风噪是因为风的压力超过车门的密封抗阻力而形成,所以加强密封阻力是最直接最根本的解决方法,车门密封条和内心密封条就能很好解决这一问题。

内燃机噪声标准总结

目录 1. 背景说明 (2) 2. 目的 (2) 3 内燃机噪声标准 (2) 3.1 中国内燃机噪声测量方法标准 (2) 3.2 中国内燃机噪声限值标准 (4) 4 总结 (6)

1. 背景说明 随着交通运输业的发展,噪声问题日益严重,已成为危害人类身心健康的主要公害之一。汽车所产生的噪声是城市交通的主要噪声源,国外工业发达国家自上世纪60年代末和70年代初就已经以法规和标准的形式来控制车辆的噪声: ?欧共体自1969年制定噪声法规以来已经修改4次,限值变化在8~12dB; ?日本从1971年制定噪声法规以来已经修改了10次,限值变化在8~10dB; ?美国自1970年制定噪声法规以来已经修改4次; 中国在1979年制定噪声法规,2002年出台新标准。 发动机的噪声是汽车噪声的主要成分之一,对车辆噪声的贡献很大,已引起国家和行业主管部门的高度视。 2. 目的 整理、对比国内有关内燃机的噪声标准,了解噪声法规的发展演变,学习现行法规的内容,为以后利用标准指导CAE分析工作打好基础。 3 内燃机噪声标准 3.1 中国内燃机噪声测量方法标准 我国从1980年开始实施GB1859-1980《内燃机噪声测定方法》标准,此后国家相关部门相继修订出台了多部相关标准,推动噪声测量方法标准逐步与国际接轨。表1列出了我国内燃机噪声测量方法标准的演变历程。 从表1可见我国内燃机噪声测量标准对测量方法的规定越来越严格,对修正系数影响因素考虑的也越来越全面。 最新实行的标准GB/T1859-2000等同采用了ISO6789:1995《往复式内燃机辐射的空气噪声量》,是GB8194-1987和GB1859-1989两项标准的综合。此标准对声学环境和测量不确定度进行进行修正和规定,见表2和表3。

配气机构文献综述

文献综述 题目 168F汽油机设计——配气机构 二级学院车辆工程学院 专业能源与动力工程 班级 112040601 学生姓名彭元平学号 11204060117 指导教师屈翔职称副教授 时间 2016-3-20

摘要: 配气机构作为内燃机的重要组成部分其设计合理与否直接关系到内燃机的动力性、经济性能、排放性能及工作的可靠性、耐久性。本文综述了汽油机配气机构的发展现状,论述了对配气机构优化设计的必要性,阐述了发动机配气机构优化设计的发展方向。 关键词:配气机构、凸轮型线、配气相位、气门弹簧。 Abstract: As important part of the internal combustion engine, valve mechanism with right design is a must, for it is directly relevant to power, economic performance, emission performance, reliability and durability of the internal combustion engine. This paper reviewed the gasoline engine valve mechanism from the aspects of the state-of-the-art and the necessities of its optimization design, and set forth the development of engine valve mechanism optimization design. Key words:Air distribution mechanism Cam type line Gas distribution phase Valve spring 1.前言 配气机构是汽油机最重要的组成部分它的功能是实现换气过程,即根据气缸的工作次序,定时的开启和关闭进、排气门,以保证换气充分。一台汽油机的工作是否稳定可靠[1],噪声与振动是否控制在较低的水平,都与其配气机构设计合理的是密不可分的。配气机构要使各气缸都保持换气良好的状态,使充气系数尽可能的提高,按照工作的需要,科学的开启与关闭进气门和排气门。 随着人们的需求,发动机的设计趋于高速化、高功率化。人们对其性能的要求也越来越高,配气机构作为发动机的配给系统,很大程度的决定了发动机的优劣[2]。所以想要提高发动机的性能,配气机构的优化设计也是必不可少的。随着前人的不断积累,配气机构的供给能力及结构形式都发生了很多改观,下面我将介绍配气机构的发展现状及主要优化形式。 2.凸轮型线的优化 内燃机配气凸轮机构是由配气凸轮驱动的,所以配气机构的这些性能指标在很大程度上取决于配气凸轮的结构。尤其是当发动机转速提高以后,凸轮型线设计的好坏对发动机的充气性能和动力性能的影响更大[3]。最近,海马轿车有限公司的王艳芳、王少辉[4]等汽车工程师做了相应的实验,他们选择了三种不同型线的进气凸轮轴和同

相关文档