文档库 最新最全的文档下载
当前位置:文档库 › 金属矿山深部开采的研究

金属矿山深部开采的研究

金属矿山深部开采的研究
金属矿山深部开采的研究

金属矿山深部开采的若干关键问题及其对策研究

北京科技大学教授蔡美峰

摘要

阐述了金属地下矿山深部开采中的深部巷道变形与支护、深部地压显现与开采动力灾害、地温升高引起作业环境恶化和露天矿山高陡边坡稳定性及合理的边坡角确定、改变传统运输方式、降低运输和生产成本等关键问题及其对策思路;介绍了以地应力为切入点的金属矿采矿优化理论、以能量聚集和演化为主线的岩爆预测及防治和深凹露天矿高陡边坡稳定性分析与设计优化的主要技术内容。

关键词金属矿山, 深部开采, 关键问题, 对策

1 影响金属矿山深部安全高效开采的主要问题

1.l 地下矿山

我国有很多重要的金属矿产资源都是通过地下开采的方式所获得, 如大多数的有色金属矿山和黄金矿山均为地下矿山。随着浅部资源的逐渐减少和消失,

地下开采的比例将越来越大, 包括现有的部分露天矿山也将转入地下开采。经过几十年的开采,目前很多地下矿山均己进入深部开采或即将进入深部开采。如铜陵狮子山铜矿的开采深度己到1100 米, 山东玲珑金矿和吉林夹皮沟金矿己到1000 米, 辽宁红透山铜矿己达

1300 米。随着开采深度的不断增加, 地质条件恶化, 破碎岩体增多, 地应力增大, 涌水量加大, 地温升高, 带来了深部地压、提升能力、作业环境恶化、通风降温和生产成本急剧增加等一系列问题, 抑制了生产能力提高和矿产资源的充分回收。

1.1.1 深部巷道变形与支护

随着开采深度的增加, 地应力随之增大。因此, 深部巷道与采场的维护原理与浅部有十分明显的区别, 这种区别的根源在于岩石所处的应力环境的区别以及由此导致的岩体力学性质的区别。在浅部十分普通的硬岩, 在深部可能表现出软岩的特征, 从而引起巷道和围岩的大变形;浅部的原岩大多处于弹性状态, 而深部的原岩处于“潜塑性”状态, 由各向不等压的原岩应力场引起的压、剪应力超过岩石强度, 造成岩石的潜在破坏状态。深部高应力环境下的巷道支护, 除了必须考虑岩石强度性质和岩体结构外, 还应重视巷道所处的应力环境。浅部中、低应力条件下的巷道支护主要考虑业己存在的地质构造等不连续面的影响, 而深部高应力岩体中巷道支护必须考虑巷道围岩因掘进造成的断裂破坏带, 即新生断裂结构的影响。所以, 深部高应力环境下的巷道支护应强调峰后破坏岩体残余强度的利用。应合理控制岩体的峰后变形, 并尽量使巷道围岩处于三向应力状态, 为此, 需采用先柔后刚的能保持和提高岩体强度的加固措施;深部巷道支护设计应更多地建立在能量分析的基础上, 而不是简单地以应力和强度作为设计准则。

11.2 深部地压显现与开采动力灾害

从根本上讲, 地应力是所有地下工程, 包括地下采场、巷道地压显现的根本来源。在没有开采工程扰动的情况下, 岩体处于原始平衡状态。地下巷道或采场的开挖, 打破地层原始平衡状态, 导致地应力的释放, 从而引起岩体的变形和向自由面的位移, 引起围岩应力的重新分布。围岩的过量位移和应力集中将导致围岩局部的或整体的失稳和破坏。这就是地压发生的过程和机理。它与岩体的受力状态、岩体结构和质量、岩体物理力学性质、工程地质条件以及时间等因素有关。深部地压主要有两种表现形式, 即:变形地压和冲击地压。变形地压是因开挖产生的围岩位移所引起的压力, 这是地压的最基本形式。在岩体条件较好的情况下, 围岩的位移和变形发展到一定程度就停止了, 可能不需要支护, 围岩自身就能维持稳定。深部高应力条件下, 围岩具有产生大变形的内外部条件, 围岩的过量变形将产生微观或

宏观破裂、岩层移动、巷道底鼓、片帮、冒顶、断面收缩、支架破坏、采场跨落等等。围岩必须通过支护才能防止过量的变形而引起的破坏。此时, 变形地压的显现特征与支护方法和支护结构密切相关。在围岩与支护结合在一体的条件下, 围岩与支护构成共同承载体, 它们相互依存、相互制约、共同变形。只有及时采取支护措施, 并且支护方法得当, 才能有效改善围岩应力分布状态, 抑制围岩变形, 阻止围岩的失稳和破坏。冲击地压是一种岩石动力学现象, 它是围岩内聚集的大量弹性变形能在一定诱因下突然释放而表现出的一种形式。在金属矿山, 冲击地压叫岩爆。产生冲击地压和岩爆主要与两方面因素有关。一是岩石的岩体的结构性质, 具有在围岩内贮存高应变能的内在

条件。一般来讲, 坚硬完整岩体容易贮存高应变能。二是有产生高应变能的外部环境, 如地应力大、围岩应力集中的地方。随着开采深度的增大, 地应力不断增大, 因而深部容易出现岩爆和冲击地压。

随着越来越多的矿山进入深部开采, 加强对岩爆的研究己刻不容缓, 研究重点在以下三个方面:

①从地应力、岩体结构、矿岩物理力学性质、采矿方法、开采过程、开采顺序、围岩能量聚集和释放规律等方面综合分析和研究岩爆机理;

②建立有效可靠的监测系统和手段, 对岩爆发生的可能性、发生的地点和大小进行预测预报;

③从防止和解除围岩高能量聚集, 避免引起高能量迅速释放的外部条件出现两方面采取防治岩爆的有效措施。

11.3 地温升高引起作业环境恶化

地下岩层温度随着深度的增加而增加。据统计, 常温带以下, 岩层温度以3℃ /loom 的梯度增加。千米以上的深井, 岩层温度将超过人体温度。如南非西部矿井,在深部3000 米处, 岩层温度高达

80 ℃;我国铜陵冬瓜山铜矿在深度1000 米处, 最高温度达

40 ℃。深井开采工作面气温的升高导致工作条件的严重恶化。在持续的高温条件下, 人员的健康和工作能力将会受到很大的损伤, 这影响到采掘工作的正常进行, 使劳动生产率大大下降。据统计资料, 超过适合人体温度后, 温度每增加1 ℃, 工人的劳动生产率将降低

7%~10%。采取经济和有效的措施, 解决深井的通风和降温问题, 使深井开采工作面保持人员和设备所能承受的温度和湿度, 并使综合开

采成本限定在可以接受的范围内, 对保证深部地下开采的正常发展

具有重要意义。

1.2 露天矿山

12.1 高陡边坡稳定性及合理的边坡角确定

我国大型金属露天矿山多始建于20 世纪50~60 年代, 现己生产多年, 其中多数逐步由山坡露天开采转为凹陷开采, 甚至深凹开采, 开采深度己延深至地表下100~ 30Om, 有的将超过400m 。如首钢水厂铁矿凹陷开采深度为430m。很多露天矿的边坡垂直高度将超过500m, 如太钢峨口的铁矿的设计边坡垂直高度为720m, 首钢水厂铁矿为670m, 形成名副其实的高陡边坡。随着边坡的加高加陡, 边坡滑移和倾倒破坏事故的发生日益增多, 边坡稳定性维护的难度越来

越大, 严重威胁矿山的安全, 制约矿山生产能力的提高。另一方面, 我国大型露天矿山与国外同类矿山相比, 边坡角普遍缓50 左右, 而年产千万吨的矿山, 边坡角每提高10 就可减少剥离量数千万吨, 节省投资上亿元, 经济效益极为显著。但边坡角加大又会给边坡稳定性维护带来更大困难。因此, 必须进行边坡设计的优化。在采取先进的综合措施在保证边坡生产安全的前提下, 最大限度提高边坡角, 就成为露天矿山降低成本, 提高效益的最重要的途径。

1.2.2 改变传统运输方式, 降低运输和生产成本露天矿进入深

凹开采以后, 重车下坡运行变为上坡运行, 运输距离加长, 运输效率

降低, 导致运输成本急剧上升, 经济效益下降。据统计分析, 目前我国大型深凹露天矿的生产总成本中, 运输一项占到40~60% 。如果开拓运输方式仍然采用目前广泛应用的铁路运输、铁路一汽车联合运输和公路汽车运输, 多数矿山将因为成本太高而无法开采。因此, 必须研究并应用适合大型深凹露天矿山的高效运输系统, 以保证矿山开采成本不增加, 从而保证矿山的正常生产。

针对这种情况, 一些矿山采用了陡坡铁路运输开采技术, 以延长铁路服务年限。这种运输方式对原有运输系统的改造和投资较少, 运输成本较低, 对于开采境界大且凹陷开采深度不超过300 米的矿山有较好的适用性。但是, 陡坡铁路运输对坡度的增加有限, 随采场深度增加, 其适用性越来越差, 开采深度超过300 米将不宜使用。目前西方发达国家普遍采用汽车一胶带半连续运输方式, 这种运输方式技术含量高, 既可发挥汽车运输的机动灵活、适应性强、短途运输经济、有利于强化开采的长处;又可发挥带式输送机运输能力大, 爬坡能力强, 运营费低的优势, 两者联合可达到最佳的经济效益。目前, 胶带的爬坡坡度可达到250~280‰, 汽车可达60~80‰, 普通铁路为20~25‰。陡坡铁路可达到40~50‰。所以胶带运输系统对大中型深凹露天矿具有普遍适用性。因此, 汽车一胶带半连续运输是我国未来深凹露天矿运输系统的重点发展方向。同时, 露天矿转入深凹开采以后, 开采条件日趋恶化, 空间作业尺寸逐渐狭窄, 干扰增大。而大型露天矿生产设备品种多、数量大, 生产设备和环节时空关系复杂, 建立自动化的生产调度和管理信息系统, 对充分发挥设备作业效率, 降

低生产成本, 提高矿山效益具有重大意义。

2 以地应力为切入点的金属矿采矿优化理论

2.1 深部开采设计存在的主要问题

由于深部开采条件的恶化和深部地压控制与支护、深部提升、深井排水、通风降温等引起的开采成本的大幅度增加, 采用传统的采矿方法, 采矿工艺, 设备己不能实现大规模生产, 不能保证开采的安全, 不能达到充分回收资源以获取所希望的经济效益的目标。为此, 必须进行适合深部开采的高效、安全、经济的采矿方法的研究, 实现采矿设计的优化。为了实现采矿设计的优化, 就必须首先实现采矿设计的产量计算和分析。由于采矿工程结构的复杂性和形状多样性, 利用理论解析解的方法进行采矿工程的计算和分析是不可能的。但是, 近20 年来大型电子计算机的应用和各种数值分析方法的不断发展, 使采矿工程迅速接近其他工程领域, 成为一门可以进行定量设计计算和分析的工程学科。采矿工程的定量设计计算比其他工程要复杂得多和困难得多, 其根本点在于工程地质条件、岩体性质的不确定性以及岩体材料受力后的应力状态具有加载途径性。采矿开挖的力学效应不仅取决于当时的应力状态, 也取决于历史上的全部应力状态。由于采矿是一个多步骤的多次开挖过程, 前面的每次开挖都对后期的开挖产生影响。施工步骤不同, 开挖顺序不同, 都有各自不同的最终力学效应, 即最终不同的稳定性状态。所以只有采用系统工程、数理统计理论, 通过大量的计算和分析, 比较各种不同开挖的支护方法、过程、步骤、顺序下的开采稳定性状态, 采用优化设计的方法, 才能确定最

经济合理的开挖设计方案。所有的计算和分析都必须在己知地应力的前提下进行, 因为金属矿床的形成过程、赋存状况和开采稳定性均受地应力场的控制, 地应力是进行采矿设计产量计算和分析必须的力学边界条件。

2.2 采矿设计优化理论与方法

以地应力为切入点的金属矿采矿优化理论就是根据实测地应力和扎实的工程地质、水文地质及矿岩物理力学性质等基础资料, 以及实际的矿体赋存和开采条件, 通过定量计算和分析, 选择合理的采矿方法, 确定最佳的开采总体布置、采场结构参数、开采顺序、支护加固和地压控制措施, 实现安全高效的开采目标。优化路线如下:基础资料采集一初选方案确定一多方案定量计算分析一多目标优化决策一工程技术实施一现场监测和反分析一修改和完善方案。该理论充分地考虑到采矿岩体的非线性特征及采矿的多段性开挖特点, 成功地应用数值分析、人工智能等现代的计算和分析技术, 为实现采矿设计从传统的经验类比向科学的定量计算转变提供了有效途径。

3. 以能量聚集和演化为主线的岩爆预测及防治

3.1 基本理论

岩爆是威胁金属矿山深部开采安全的最突出问题之一。我国在深部开采方面的经验和对岩爆、冲击地压等开采动力灾害的研究还非常欠缺。

从本质上讲, 岩爆是由地应力主导的能量聚集和演化的结果。因此, 必须从系统的地应力测量、工程地质调查、岩石力学试验和现场

监测资料的采集入手, 以能量聚集和演化为主线, 揭示岩爆的发生机理及其与采矿过程的关系, 以储存高应变能的岩石学特性和聚集高应变能的应力环境研究为核心, 对岩爆发生的时间、空间和强度进行预测; 将预测和防治融为一体进行评价和研究。同时, 以改进采矿方法、减小围岩应力集中和能量聚集为手段,

研究控制和减少岩爆发生的技术措施。

3.2 预测及评价方法〈以玲珑金矿为工程实例〉

3.2.l 采矿岩体能量聚积分析研究

以扎实的地应力测量、工程地质调查和岩石力学综合试验资料为基础, 采用大型三维非线性数值模拟方法, 定量计算和分析开采过程中, 围岩应力集中和能量聚积的分布情况, 对引发岩爆的应力环境做出评价。国内外已有研究和现场监测结果表明, 当岩体内部弹性能达到或超过1.0×105J/m3时, 将发生岩爆和冲击地压。计算表明, 玲珑金矿位于-270m 水平以下采场围岩中的最大弹性应变能均超过了这一临界数值。因而, 玲珑金矿-270m 水平以下开采时, 有发生岩爆的很大可能性。

3.2.2 岩石( 岩体) 破坏岩爆冲击性评价研究

岩石或岩体的力学性质和结构决定了它们赋存应变能的能力和在高应力条件下的冲击性倾向, 即在高应力、高能量条件下是否容易形成岩爆和冲击地压的动力学特征。

(l) 岩石单轴压缩循环加载特性评价准则岩石在压缩过程中, 试件变形将产生以弹性应变能形式聚积的能量, 而岩石的塑性变形和

内部微破裂将消耗能量。如果在岩石达到峰值强度前对试件卸载, 岩石由于受压而产生的总应变能(Wtot) 减去由于塑性变形等消耗的能量(Wsp) 便储存在岩石内部(Wst,) 。由F=, 可对岩石破坏时的冲击特性做出判断:F>5.0, 中等到强烈冲击;F=2.0-5.0, 弱到中等冲击。根据试验结果, 玲珑金矿深部花岗岩加卸载曲线基本上重合, 即Wsp →0, F →∞, 所以, 玲珑金矿深部围岩在发生破坏时, 将可能产生很大的冲击作用, 易于发生岩爆。

(2) 岩石刚性试验结果评价准则

在刚性试验所获得的全应力-应变曲线图上, 以峰值强度点为界, 曲线所围左半部分面积代表岩石在破坏前积聚的变形能We, 右半部分面积代表破坏后消耗的塑性变形能Wp。一般认为:当R= 时, 将产生冲击现象:R 值越大, 冲击能力越大。根据刚性试验结果, 计算得到玲珑金矿深部花岗岩:R=1.04-1.90, 因此, 玲珑金矿深部花岗岩具有岩爆冲击性。

(3) 线弹性能准则

在单轴压缩条件下, 岩石达到峰值强度前所贮存的弹性能计算如下:式中, σ「一一单轴抗压强度(MPa):Es 一一卸载切线弹性模量(MPa) 。根据国内外试验结果:可产生弱岩爆:100 , 可产生强烈岩爆:, 可产生极强烈岩爆。

根据试验结果, 计算出玲珑金矿深部岩石:

WQ=141.8~335.6kj/m3 。因此, 玲珑金矿深部岩石属于易产生强烈岩爆或极强烈岩爆岩石。

(4) 岩石脆性评价准则

岩石的单轴抗压强度( σ c) 与抗拉强度( σ T) 之比定义为B, 称为脆性系数, 它反映了岩石的脆性程度。根据国内外试验结果: B=26.7-40, 弱岩爆岩石:

B=14.5~26.7, 中等岩爆岩石:B<14.5, 强岩爆岩石。

通过试验得到玲珑金矿深部岩石:B=12.1~17.9 。

因此, 玲珑金矿深部岩石属于中等岩爆或强岩爆岩石。

(5) 切向应力评价准则

该准则同时考虑了岩体的应力状态和岩石的力学性质。将围岩中的切向应力( σ。)和岩石抗压强度( σ c) 之比定义为T 。

根据国内外试验结果:

T=0.3~05, 弱岩爆;

T=05~0 工中等岩爆;

T 〉0.7强烈岩爆。

根据岩石力学试验和数值模拟结果, 得到玲珑金矿-270m 水平围岩:T=0.783~0.862。因此玲珑金矿-270m 水平以下开采可能出现强烈岩爆。

(6) 岩体RQD 指标评价准则

一般情况下, 裂隙发育的岩体完整性较差, 不易引起高应力集中和能量积聚。因此, 岩体裂隙的发育程度, 从一个侧面反映了岩体产生岩爆的倾向。岩体质量系数(RQD) 是描述岩体完整性的一个简单而实用的指标, 根据岩体的RQD 值可以问接分析和掌握岩体的岩爆

倾向。

根据现场调查和试验结果, 玲珑金矿浅部岩体的平均

RQD=25~50%, 深部(>400m) 岩体平均RQD=70-90%。因此, 预示深部岩体有较大的岩爆倾向。通过以上研究, 从整体上揭示了玲珑金矿深部岩体在开采过程中具有形成高应变能聚集的环境条件和多数岩石( 岩体) 具有储存较高弹性应变能的能力, 并且这些弹性应变能释放具有很强的冲击特性。因此, 可做出结论: 玲珑金矿深部开采具有潜在的强岩爆可能性。

3.3 防治岩爆的开采工艺和技术措施建议现场在深部开采过程中, 采取必要的防治岩爆的技术措施:1) 进行合理的开采设计, 确定优化的开采顺序和开挖步骤,采用卸压开采技术,避免围岩局部应力集中和应变能聚集:2) 对采空区实施及时有效的充填, 尽量减少空区的空顶面积和体积, 减少岩爆可能发生的空间;3) 对关键部位的响室和围岩采用喷锚网、可塑性锚杆等柔性或先柔后刚的支护措施, 保证支护系统既有良好的柔性, 又有较高的初始刚度, 允许围岩的适量位移和应变能的逐步释放;4) 进行合理的爆破设计, 尽量减少爆破振动的影响, 避免引起岩爆的各种诱发因素的发生;5) 在开采过程中, 加强岩体稳定性监测和岩爆预测工作: 制订预防岩爆的措施, 建立完善的安全生产体系。

4 深凹露天矿高陡边坡稳定性分析与设计优化

4.1 基于现代三维数值模拟与三维极限平衡分析相结合的边坡稳定性分析与优化设计方法国内外传统的边坡稳定性分析和设计方

法是二维极限平衡分析法。这种方法只有一种边坡稳定性判断指标, 即“安全系数”: 只能考虑一种边坡破坏方式,即“滑坡”, 而实际边坡又多种破坏模式。这种方法不能考虑实际岩体条件, 如断层、构造的影响, 也不能考虑地应力的作用, 而这些往往对边坡稳定性起控制性作用。此外, 露天矿边坡是三维问题, 简化成二维进行分析, 会造成很大的误差。所以, 这种方法对山坡露天矿还有一定适用性, 但对深凹露天矿不适用。

针对深凹露天矿的开采特点, 必须采用基于现代三维数值模拟

与三维极限平衡分析相结合的边坡稳定性分析和优化设计方法。这种方法有如下优点:

(1) 有多种边坡稳定性判断指标, 如应力集中、塑性区、破坏区、位移量、位移速度等, 多种指标的综合分析, 就能作出比较准确的判断:

(2) 可考虑断层、构造和地应力等各种影响边坡稳定性的因素, 使计算合分析结果符合实际的岩体和应力环境条件:

(3) 三维数值模拟和三维极限平衡分析符合边坡结构的实际状况, 计算分析结果的可靠性和精度高。

通过多方案的计算、分析、比较, 就可作出优化的设计方案, 在保证开采安全的前提下, 尽可能提高边坡角、减少剥岩量, 降低生产成本, 增加矿山效益。

4.2 首钢水厂铁矿边坡设计优化( 工程应用实例〉

4.2.1 主要研究内容

l) 基础资料的调查、试验和研究

(l) 边坡工程地质勘查与试验研究

①边坡岩体工程地质岩组的划分

②结构面( 断层)

③岩体结构

④边坡破坏模式

⑤边坡工程地质分区

(2) 矿区边坡水文地质调查与渗流场分析研究

①矿区水文地质条件

②边坡深部工程地质补充钻探勘查和水文地质试验

③边坡渗流场分析

(3) 矿区地应力测量

2) 边坡稳定性分析与设计优化

(l) 稳定性分析与设计优化方法

(2) 物理力学参数

(3) 计算模型

(4) 计算方案

4.2.2 边坡设计优化结果

通过多种方法系统的边坡稳定性分析和设计优化计算, 最终推荐的水厂铁矿边坡优化设计方案见表1 。表中,“原方案”即原设计院的设计方案, 不分上、下部, 整体边坡角;现推荐方案中多数剖面采用上、下部不同边坡角,“分界标高”为上、下部岩层分界面的高

程。通过优化设计, 水厂铁矿各区的边坡角分别提高了10-60, 平均30-40 。

金属矿山地下开采

金 属 矿 床 地 下 开 采 班级:采矿09—2班 执笔人:樊高峰 25 成员:王荣发 04 刘浩 26 张恒远 27 杨社 28

第十六章崩落采矿法 第一部分为看书自学崩落采矿法,并对其中有底柱分段崩落法和无底柱分段崩落法进行了相关知识点总结 1、崩落采矿法是以崩落围岩来实现地压管理的采矿方法。 基本特征:随着崩落矿石,强制(或自然)崩落围岩充填采空区,以控制和管理地压。 崩落采矿法包括以下采矿方法: 单层崩落法浅孔落矿 分层崩落法浅孔落矿 有底柱分段崩落法深孔落矿 无底柱分段崩落法深孔落矿 阶段崩落法深孔落矿 2、有底柱分段崩落法:该方法的主要特征是:第一按分段逐个进行回采;第二在每个分段下部设有出矿专用的底部结构(底柱)。有底柱分段崩落法就是根据这两个特征命名的。分段的回采由上向下逐分段依次进行。 依照落矿方式可分为:水平深孔落矿有底柱分段崩落法与垂直深孔落矿有底柱分段崩落法两种。 水平深孔落矿有底柱分段崩落法用来开采矿石稳固、形状规整、急倾斜中厚以上的矿体较为合适。该法每次爆破矿量较大,一般不受相邻采场的牵制,有利于生产衔接。该法的缺点是,在天井与硐室中凿岩,凿岩工作条件不好;此外要求矿体条件(厚度、倾角、形状规整程度)较高,适应范围小,灵活性较差。(该法在我国使用的不多。) 在向上垂直扇形中深孔落矿有底柱分段崩落法中,广泛使用挤压爆破。按崩落矿石获得补偿空间的条件,可分为:小补偿空间挤压爆破和向崩落矿岩挤压爆破两种回采方案。 小补偿空间挤压爆破回采方案的优缺点和适用条件如下。 优点: 1)灵活性大,适应性强,一般不受矿体形态变化、相邻崩落法矿岩的状态、一次爆破范围的大小、矿岩稳固性等条件的限制。 2)对相邻矿块的工程和炮孔等破坏较小。 3)补偿空间分布比较均匀,且能按空间分布情况调整矿量,故落矿质量一般都较好,而且比较可靠。 缺点: 1)采准切割工程量大,一般都在15~22m/kt,比向崩落法矿岩方向挤压爆破的大3~5m/kt。 2)采场结构复杂,施工机械化程度低,施工条件差。 3)落矿的边界不甚整齐。 适用条件: 1)各分段的第一个矿块或相邻部位无崩落矿岩。 2)矿石较破碎或需降低对相邻矿块的破坏影响。 3)为生产或衔接的需要,要求一次崩落较大范围。

深部高应力下的资源开采与地下工程_香山会议第175次综述_赵生才

第17卷第2期2002年4月 地球科学进展 ADVANCE I N E ARTH SCIE NCES V ol.17 N o.2 Apr.,2002 文章编号:100128166(2002)022******* 深部高应力下的资源开采与地下工程① ———香山会议第175次综述 关 键 词:深部开采;地下资源;理论与技术 中图分类号:X75 文献标识码:B 随着社会与经济发展需求的日益增长和矿山工程技术体系的进步和完善,资源开采不断地在向深部发展。然而用浅部开采条件下的地质作用特征和矿压显现规律来推断深部开采地质状况,无疑远远不够且蕴含着极大的风险。因此,对深部高应力条件下的资源开采与地下工程进行统一的、三维的、系统的多元研究,以揭示其中的一系列基本科学问题,构筑我国在深部高应力条件下资源开采的相关的基础理论和地下工程技术体系,显得尤为重要。 香山科学会议于2001年11月5日至7日在北京香山召开了以“深部高应力下的资源开采与地下工程”为主题的香山科学会议第175次学术讨论会。 谢和平教授(中国矿业大学)、钱鸣高院士(中国矿业大学)、古德生院士(中南大学)被聘为本次会议执行主席。 1 矿山采掘业现状与深部资源开采的发展趋势 深部开采和地下工程是未来发展必然趋势。据不完全统计,国外开采超千米深的金属矿山有80多座,其中南非最多。南非绝大多数金矿的开采水平都在1000m以下。其中,Anglog old有限公司的西部深水平金矿,采矿深度达3700m;West Driefovten 金矿,矿体赋存地下600m,并一直延伸至6000m 以下。印度的科拉尔(K olar)金矿区,已有3座金矿采深超2400m,其中钱皮恩里夫金矿共开拓112个阶段,总深3260m。俄罗斯的克里沃罗格铁矿区,已有捷尔任斯基、基洛夫、共产国际等8座矿山采准深度达910m,开拓深度到1570m,将来要达到2000~2500m。另外,加拿大、美国、澳大利亚的一些有色金属矿山采深亦超过1000m。 我国已探明的煤炭资源量占世界总量的11.1%,今后相当长的历史时期内仍需保证煤炭的高产稳产。我国煤炭资源埋深在1000m以下的为29500万亿吨,占煤炭资源总量的53%。目前煤矿开采深度以每年8~12m的速度增加,东部矿井正以每10年100~250m的速度发展,预计在未来20年很多煤矿将进入到1000m到1500m的深度。在我国,一批金属矿山近年也已进入深部开采,例如红透山铜矿目前开采已进入900~1100m深度;冬瓜山铜矿现已建成2条超1000m竖井来进行深部开采;弓长岭铁矿设计开拓深度750m,距地表达1000m;夹皮沟金矿二道沟坑口矿体延深至1050 m;湘西金矿开拓38个中段,垂深超过850m。此外,还有寿王坟铜矿、凡口铅锌矿、金川镍矿、乳山金矿等许多矿山都将进行深部开采。 深井开采势在必行,已是国际矿业的重要研究领域。国外深井开采研究起步较早,最早观察到岩爆是在1900年的印度科拉尔金矿。美国大西洋(Atlantic)矿,1906年5月26日发生了一次较大的岩爆,当时估计的地震强度达到了里氏3.6级。美国密西根工业大学存有一份Lake Superior铜矿发生岩爆的报告(1939年出版)。南非金矿赋存较深,早在1908年就成立了专门委员会研究深井岩爆问题。加拿大于1928年在安大略(Ontario)矿首次出现岩爆,M orris on于1942年完成了一份研究报告,至今仍被视为这方面的经典岩爆研讨报告。 20世纪80年代以来,深井开采的事故越来越严重。以南非为例,在南非深部金矿的开采中,由于地震等事件诱发的岩爆、岩石冒落,使南非的采矿工业成为最危险的工业之一。一些有深井开采矿山的 ① 收稿日期:20022012181

金属矿山开采方法简介

2.金属非金属地下矿山采矿方法 根据矿石回采过程中采场管理方法的不同,金属非金属矿山地下采矿方法可分为空场采矿法、充 填采矿法和崩落采矿法等。 1)空场采矿法 空场采矿法在回采过程中,采空区主要依靠暂留或永久残留的矿柱进行支撑,采空区始终是空着的,一般在矿石和围岩很稳固时采用。根据回采时矿块结构的不同与回采作业特点,空场采矿法又可分为全面采矿法、房柱采矿法、留矿采矿活、分段矿房法和阶段矿房法等。 (1)全面采矿法。在薄和中厚的矿石和围岩均稳固的缓倾斜(倾角一般小于30°)矿体中,应用全面采矿法。该方法的特点是:工作面沿矿体走向或倾向全面推进,在回采过程中将矿体中的夹石或贫矿留下,呈不规则的矿柱以维护采空区,这些矿柱一般作永久损失,不进行回采。 (2)房柱采矿法。房柱采矿法用于开采水平和倾斜的矿体,在矿块或采空区矿房和矿柱交替布置,回采矿房时,留连续的或间断的规则矿柱,以维护顶块岩石。它比全面采矿法适用范围广,不仅能回采薄矿体,而且可以回采厚和极厚矿体。矿石和围岩均稳固的水平和缓倾斜矿体,是这种采矿方 法应用的基本条件。 (3)留矿采矿法。工人直接在矿房暴露面下的留矿堆上作业,自下而上分层回采,每次采下的矿石靠自重放出1/3左右,其余暂留在矿房中作为继续上采的工作台。矿房全部回采后,暂留在矿房中的矿石再行大量放出,即大量放矿。这种采矿方法适用于开采矿石和围岩稳固、矿石无自燃性、破 碎后不结块的急倾斜矿床。 (4)分阶段矿房法。分阶段矿房法是按矿块的垂直方向,再划分为若干分段;在每个分段水平布置矿房和矿柱,中分段采下的矿石分别从各分段的出矿巷道运出。分段矿房回采结束后,可立即回 采本分段的矿柱并同时处理采空区。 (5)阶段矿房法。阶段矿房法是用深孔回采矿房的空场采矿法。根据落矿方式的不同又可分为水平深孔阶段矿房法和垂直深孔阶段矿房法。前者要求在矿房底部进行拉底,后者除拉底外,有的还 需在矿房的全高开出垂直切割槽。 2)崩落采矿法 崩落采矿法是以崩落围岩来实现地压管理的采矿方法,即随着崩落矿石,强制(或自然)崩落围岩充填采空区,以控制和管理地压。主要包括单层崩落法、分层崩落法、分段崩落法、阶段崩落法。 (1)单层崩落法。单层崩落法主要用来开采顶板岩石不稳固、厚度一般小于3m的缓倾斜矿层。将阶段矿层划分成矿块,矿块回采工作按矿体全厚沿走向推进。当回采工作面推进一定距离后,除保留回采工作所需的空间外,有计划地回收支柱并崩落采空区的顶板,用崩落顶板岩石充填采空区,以控制顶板压力。按工作面形式可分为长壁式崩落法、短壁式崩落法和进路式崩落法。 (2)分层崩落法。分层崩落法按分层由上向下回采矿块,每个分层矿石采出之后,上面覆盖的崩落岩石下移充填采矿区。分层回采是在人工假顶保护下进行的,将矿石与崩落岩石隔开,从而保证 了矿石损失和贫化的最小化。

深部开采

深部矿井开采技术问题 摘要:本文根据我国主要深部矿区30余对矿井的实地调查、部分井下观测和25个矿务局的函调材料,对我国煤矿深部开采的基本状况及其在开采中遇到的巷道维护、冲击地压、瓦斯突出及地热等主要问题作了总结和剖析,并就今后煤矿深部开 技术问题提出了几点看法和建议。 1煤矿深部开采的现状及趋势 深井开采技术是当今世界主要深井开采国家(如德国、原苏联、波兰等)十分关注的问题之一。随着我国煤矿开采规模的扩大,开采深度的逐渐增加,深部开采中遇到的各种技术问题日益增多,对当前的煤矿生产和今后矿井建设的影响日趋严重。因此,研究深部开采问题,对安全、经济、合理地开发深部煤炭资源无疑有特别重要的意义。 我国是世界第一产煤大国,1997年原煤产量13.3亿吨。全国主要国有矿区90多个,井工开采的生产矿井588对(1996年统计)。据不完全统计,采深超过800m的深井19对,其中开滦矿务局赵各庄、沈阳矿务局彩屯矿采深超过1000m,新汶矿务局孙村矿、华丰矿、长广七矿采深超过800m。“八五”期间新打深井65个,平均深度588m,其中700~800m的井筒28个,800~1000m的井筒13个,1000m以上井有12个。 据煤炭资源开发和资源保护研究指出,在我国预测总储量中73.2%埋深在1000m 以下,浅部储量较少。因此,深井开采技术不仅是目前一些深矿井面临的问题,而且从长远看,它将是我国今后进一步开发利用深部煤炭资源的带有战略意义的问题。 2深井开采的主要技术问题 2·1矿压显现加剧,巷道维护困难随着矿井采深的不断增加,一方面,巷道断面必需加大,据对开滦矿区统计,近10年间采深平均增加100m,岩石巷道断面平均增加8.1%,煤、半煤岩巷平均增加32%;另一方面,地压增大,在深部高应力作用下,围岩移动更为剧烈,巷道产生变形破坏更为严重。在调查的超过700m的深井中,巷道矿压问题普遍严重,底鼓成为常见的地压现象,特别在采准巷道中尤其严重。失修和严重失修巷道比例增加,据开滦局调查统计,井深1000m时巷道失修率约是同条件下500~600m埋深巷道失修率的3~15倍,部分矿井巷道失修和严重失修率达20%以上。巷道维修占用大量人力物力,林西矿井深800m,巷道维修工占井下工人的比重为7.00%~10.50%。很多深部巷道由于严重破坏无法行人、行车而被迫停产反修。且常常出现前掘后修、重复反修的象。深井巷道维护问题已成为整个矿井生产系统中的最薄弱环节。 出现上述现象的主要原因是客观上井深、围岩应力增加。主观上没有充分认识深井巷道矿压规律,巷道支护形式不能适应深井巷道围岩变形的要求,支护形式、支架参数

(完整版)金属矿地下开采的步骤

金属矿地下开采的步骤 矿床进行地下开采时,一般都按照矿床开采四步骤,即按照开拓、采准、切割、回采的步骤进行,才能保证矿井正常生产。 开拓:从地表开掘一系列的巷道到达矿体,以形成矿井生产所必不可少的行人、通风、提升、运输、排水、供电、供风、供水等系统,以便将矿石、废石、污风、污水运(排)到地面,并将设备、材料、人员、动力及新鲜空气输送到井下,这一工作称为开拓。矿床开拓是矿山的地下基本建设工程。为进行矿床开拓而开掘的巷道,称为开拓巷道,例如竖井、斜井、平硐、风井、主溜井、充堵井、石门、井底车场及硐室、阶段运输平巷等。这些开拓巷道都是为全矿或整个阶段开采服务的。 采准:采准是在已完成开拓工作的矿体中掘进巷道,将阶段划分为矿块(采区),并在矿块中形成回采所必需的行人、凿岩、通风、出矿等条件。掘进的巷道称为采准巷道。D般主要的采准巷道有阶段运输平巷、穿脉巷道、通风行人天井、电耙巷道、漏斗颈、斗穿、放矿溜井、凿岩巷道、凿岩天井、凿岩硐室等。 切割:切割工作是指在完成采准工作的矿块内,为大规模回采矿石开辟自由面和补偿空间,矿块回采前,必须先切割出自由面和补偿空间。凡是为形成自由面和补偿空间而开掘的巷道,称为切割巷道,例如切割天井、切割上山、拉底巷道、斗颈等。 不同的采矿方法有不同的切割巷道。但切割工作的任务就是辟漏、拉底、形成切割槽。采准切割工作基本是掘进巷道,其掘进速度和掘进效率比回采工作低,掘进费用也高。因此,采准切割巷道工程量的大小,就成为衡量采矿方法优劣的一个重要指标,为了进行对比,通常用采切比来表示,即从矿块内每采出一千吨(或一万吨)矿石所需掘进的采准切割巷道的长度。利用采切比,可以根据矿山的年产量估算矿山全年所需开掘的采准切割巷道总量。 回采:在矿块中做好采准切割工程后,进行大量采矿的工作,称为回采。回采工作开始前,与根据采矿方法的不同,一般还要扩漏(将漏斗颈上部扩大成喇叭口),或者开掘堑沟;有的要将拉底巷道扩大成拉底空间,有的要把切割天井或切割上山扩大成切割槽。这类将切割巷道扩大成自由空间的工作,称为切割采矿(简称切采)或称补充切割。切割采矿工作是在两个自由面的情况下以回采的方式(不是掘进巷道的方式)进行的,其效率比掘进切割巷道高得多,甚至接近采矿效率。这部分矿量常计入回采工作中。 回采工作一般包括落矿、采场运搬、地压管理三项主要作业。如果矿块划分为矿房和矿柱进行两步骤开采时,回采工作还应包括矿柱回采。同样,矿柱回采时所需开掘的巷道,也应计入采准切割巷道中。

有色金属矿山采矿方法概述

有色金属矿山采矿方法 概述 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

采矿方式主要为露天、坑下开采。有色金属矿山地下开采方式按地压控制方式,分为空场法、充填法、崩落法三大类,以空场法、充填法具多。 1.空场采矿法 根据矿块或矿壁的结构不同与回采作业的特点,空场采矿法可分为全面采矿法、房柱采矿法、阶段矿房采矿法等。 (1)全面采矿法主要是用于水平和缓倾斜矿床的开采。其特点是回采工作面沿矿床走向或倾斜方向全面推进,整层回采。在回采时将矿体内所夹废石或贫矿石留下来,根据需要堆成矿柱来支撑采空区顶板。 该法优点是生产能力大,采准切割工作量较少,采矿成本低,采场通风好,能在采场处理废矿石。但采场顶板暴露面积大,容易发生大面积冒顶。只适用于水平或缓斜,矿石与顶板稳固,矿石品位分布不均匀或有夹石层的矿床,矿床厚度不大于5~7米。 (2)房柱留矿法主要是用于水平和缓倾斜矿床的开采。其特点是在矿块内矿柱和矿房交替布置,回采矿床时留下规则的,不连续或连续的带状矿柱,以此支撑采采区顶板。 该法优点主要是采准切割工作量小,工序简单,各工艺可以平行作业,通风及作业条件好,但回收率低,用于矿石和围岩稳定的倾角小于40°的矿床。 (3)分段采矿法、阶段矿房采矿法主要用于急倾斜、厚度大的矿床开采。矿房沿矿体走向或垂直方向布置,用深孔、扇形炮眼爆破落矿,由下部漏斗柱阶段平巷放矿。主要用于围岩稳固,矿石较稳固、矿体厚度在8~20米,

倾角大于矿石的自然安息角,且矿体内夹石少,矿体与围岩接触线明显的矿床。 2.充填采矿法 随着回采工作面的推进,逐步用充填料充填采空区的采矿方法叫充填采矿法。有时还用支架与充填料相配合,以维护采空区。充填采空区的目的,主要是利用所形成的充填体进行地压管理,以控制围岩崩落和地表下沉,并为回采创造安全和便利的条件。有时还用来预防有自燃矿石的内因火灾。按矿块结构和回采工作面推进方向充填采矿法又可分为单层充填采矿法、上向分层充填采矿法、下向分层充填采矿法和分采充填采矿法。按采用的充填料和输出方式不同,又可分为干式充填采矿法、水力充填采矿法、胶结充填采矿法。 (1)单层充填采矿法。此法适用于缓倾斜薄矿体,在矿块倾斜全长的壁式回采面沿走向方向、一次按矿体全厚回采,随工作面的推进、有 计划地用水力或胶结充填采空区,以控制顶板崩落。 (2)(2)上向水平分层充填采矿法。此法一般将矿块划分为矿房和矿柱,第一步回采矿房,第二步回采矿柱。回采矿房时,自下向上水 平分层进行,随着工作面向上推进,逐层充填采空区,并留出继续 上采的工作空间。充填体维护两帮围岩,并作为上采的工作平台。 崩落的矿石落在充填体的表面上,用机械方法将矿石运至溜井中。 矿房采到最上面分层时,进行接顶充填。矿柱则在采完若干矿房或 全阶段采空后,再进行回采。矿房的充填方法,可用干式充填、水 力充填或胶结充填。

金属矿山深部开采的若干关键问题及其对策研究

金属矿山深部开采的若干关键问题及其对策研究 北京科技大学教授蔡美峰 摘要 阐述了金属地下矿山深部开采中的深部巷道变形与支护、深部地压显现与开采动力灾害、地温升高引起作业环境恶化和露天矿山高陡边坡稳定性及合理的边坡角确定、改变传统运输方式、降低运输和生产成本等关键问题及其对策思路;介绍了以地应力为切入点的金属矿采矿优化理论、以能量聚集和演化为主线的岩爆预测及防治和深凹露天矿高陡边坡稳定性分析与设计优化的主要技术内容。 关键词金属矿山,深部开采,关键问题,对策 1影响金属矿山深部安全高效开采的主要问题 1.l地下矿山 我国有很多重要的金属矿产资源都是通过地下开采的方式所获得,如大多数的有色金属矿山和黄金矿山均为地下矿山。随着浅部资源的逐渐减少和消失, 地下开采的比例将越来越大,包括现有的部分露天矿山也将转入地下开采。经过几十年的开采,目前很多地下矿山均己进入深部开采或即将进入深部开采。如铜陵狮子山铜矿的开采深度己到1100米,山东玲珑金矿和吉林夹皮沟金矿己到1000米,辽宁红透山铜矿己达1300米。随着开采深度的不断增加,地质条件恶化,破碎岩体增多,地应力增大,涌水量加大,地温升高,带来了深部地压、提升能力、作业环境恶化、通风降温和

生产成本急剧增加等一系列问题,抑制了生产能力提高和矿产资源的充分回收。 1.1.1深部巷道变形与支护 随着开采深度的增加,地应力随之增大。因此,深部巷道与采场的维护原理与浅部有十分明显的区别,这种区别的根源在于岩石所处的应力环境的区别以及由此导致的岩体力学性质的区别。在浅部十分普通的硬岩,在深部可能表现出软岩的特征,从而引起巷道和围岩的大变形;浅部的原岩大多处于弹性状态,而深部的原岩处于“潜塑性”状态,由各向不等压的原岩应力场引起的压、剪应力超过岩石强度,造成岩石的潜在破坏状态。深部高应力环境下的巷道支护,除了必须考虑岩石强度性质和岩体结构外,还应重视巷道所处的应力环境。浅部中、低应力条件下的巷道支护主要考虑业己存在的地质构造等不连续面的影响,而深部高应力岩体中巷道支护必须考虑巷道围岩因掘进造成的断裂破坏带,即新生断裂结构的影响。所以,深部高应力环境下的巷道支护应强调峰后破坏岩体残余强度的利用。应合理控制岩体的峰后变形,并尽量使巷道围岩处于三向应力状态,为此,需采用先柔后刚的能保持和提高岩体强度的加固措施;深部巷道支护设计应更多地建立在能量分析的基础上,而不是简单地以应力和强度作为设计准则。 11.2深部地压显现与开采动力灾害 从根本上讲,地应力是所有地下工程,包括地下采场、巷道地压显现的根本来源。在没有开采工程扰动的情况下,岩体处于原始平衡状态。地下

深部开采冲击地压产生机理及防治技术研究

毕业专题 深部开采冲击地压产生机理及防治 技术研究 摘要:冲击地压是煤矿开采过程中,井巷和采场周围煤、岩体在一定高应力条件下释放变形能,而产生的煤岩体突然破坏、垮落或抛出现象,并伴有巨大声响和岩体震动,经常造成支架折损、片帮冒顶、巷道堵塞、人员伤亡,对安全生产威胁巨大。冲击地压对矿井生产的危害是及其巨大的,如何预防冲击地压是全世界共同面临的一个重要技术问题。冲击地压受很多因素影响,并具备一定的条件才能产生。冲击地压发生的范围比较广,而且随着采深的增加发生的几率逐渐增加。针对上述问题本文提出了对深部开采冲击地压预防采取的主要措施。 关键词:冲击地压;煤炭开采;冲击地压防治;机理

目录 1 绪论 ............................................................................ 错误!未定义书签。 1.1概述 ................................................................................................ 错误!未定义书签。 1.2灾害现状与发展状态 .................................................................... 错误!未定义书签。 2 冲击地压特征与机理 (2) 2.1冲击地压的特征 (2) 2.2冲击地压的分类 (2) 2.3冲击地压的成因机理 (3) 2.4冲击地压影响因素 (6) 3 冲击地压的防治 (6) 3.1冲击地压的防治原则 (6) 3.2冲击地压的防治措施 (6) 4 冲击地压的预测方法 (8) 5 结束语 (9) 6 参考文献 (9)

深井采矿技术在有色金属矿山中的意义分析

深井采矿技术在有色金属矿山中的意义分析 发表时间:2019-07-31T09:53:51.763Z 来源:《防护工程》2019年8期作者:韩旭日 [导读] 国民经济需要的铁、锰、铜、铅、锌、铝土矿等块状矿柱品种无法满足需求。 山东黄金矿业(莱州)有限公司三山岛金矿山东省莱州市 261417 摘要:近年来我国诸多行业在发展过程中,对于有色金属资源的需求量不断攀升,但是该资源的开采量却呈现出逐年下降的情况,究其原因为处于矿山浅表层的有色金属已经被挖掘殆尽,过少的资源数量难以满足市场过高的资源需求量;同时经过对矿山有色金属资源分布情况的勘察,可知矿山深部埋藏着储量丰富的有色金属资源,但是开采作业难度太大,常规技术无法直接对资源进行开采。针对该问题,需要矿山作业的技术人员对深部资源开采技术进行重点研究,结合开采的难点问题找出最佳的有色金属矿山深井采矿技术,有效提升此类矿山开采作业的质量和效率,依托开采获取的大量资源满足市场所需,实现矿山企业的长远可持续发展。 关键词:深井采矿技术;有色金属矿山;意义 1现状分析 国民经济需要的铁、锰、铜、铅、锌、铝土矿等块状矿柱品种无法满足需求。每年有60%以上的铁精矿、70%以上的铜精矿和50%以上的铝土矿必须从国外进口。主要金属矿产资源对国外的高度依赖,对我国国民经济的发展构成了潜在的严重威胁。更重要的是,钨、锡、钼、锑、萤石、重晶石等中国优势矿物的优势正在减弱甚至丧失,其可供储量对2020年需求的保证程度分别仅为89%、35%、85%、55%、15%、26%。与发达国家相比较,我们国家对开采技术的研究比较晚,对于深井开采技术来说,基本还处于初步阶段,只有少部分矿山进入了深井采掘作业,并在深井建井、采掘设计、采掘支护工艺、供配电、通风、排水、地压监测、岩爆防治等诸多方面取得了一定的实践经验,大部分矿山仍然处于保证回收地下资源时只注重了大规模的开采,忽略了对开采技术的深入研究。 2深井采矿技术在有色金属矿山中的意义 2.1高地应力卸荷 深井采矿中,高地应力问题是影响开采顺利进行的一个核心问题,必须得到足够的重视。在矿山回采规划中,应该运用采场局部弱化技术,做好相应的整合工作,对岩石应力的分布情况进行调整,确保应力集中部位能够从浅部转移到深部。而为了实现这一目标,技术人员必须结合具体情况,对需要承受应力荷载的岩石进行适当调整,确保其能够处于三向受力状态,避免应力过于集中导致岩体破坏,同时也能够显著提升岩体自承受能力。不仅如此,技术人员还应该运用科学合理的措施和手段,将岩层岩体承受的负荷与应力转移到深部岩石上,减少岩层承受的压力,从而满足高地应力卸荷的基本要求。 2.2保障结构稳定 深井采矿技术能够通过相应的钢纤维混凝土支护来保证巷道结构的稳定性,确保开采安全。通常情况下,钢纤维混凝土支护技术多运用于基础条件良好,不过混凝土结构开始出现开裂问题的部位,通过有效处理,能够提升混凝土基体结构的强度和韧性,对深井采矿过程中的高地应力岩爆情况进行控制。在运用钢纤维混凝土支护技术对混凝土结构进行支护处理时,需要用到许多相关设备,如混凝土搅拌设备、运输设备、喷砼作业台等,能够对工作面的稳定性进行强化,控制有害岩层松动,保证开采安全。 2.3实现通风降温 深井采矿技术在有色金属矿山开采中的通风降温主要是借助岩层与空气之间的热交换理论实现,配合智能化网络系统对于井下复杂通风环境的分析,能够提供非常有指导价值的数据信息,为井下管理提供参考,提供相对稳定且持续性的矿井巷道调热机能,有效降低采矿工作面的温度,减少其对于采矿作业的影响。运用高温矿井排热通气技术,可以对井下温度进行控制,保证深井采矿的安全性。 2.4保障矿山安全 在矿山开采中,经常会遇到一些突发状况,如果不能对其进行有效应对,则可能会引发相应的安全事故,造成经济损失甚至人员伤亡。因此,深井采矿过程中,应该高度重视安全工作,做好安全防范,制定切实可行的应急预案,确保在突发事故发生时能够做好应对工作,将风险和隐患控制在一定范围内,这就需要用到相应的矿山安全保障技术,配合丰富的理论,为深井采矿管理及控制提供系统性指导。具体来讲,包括了岩体失稳声发射预报方法、震源定位技术、地压微震检测以及岩爆倾向性多因素综合评判方法等。 2.5实现联合采矿 从目前来看,虽然我国在有色金属矿山深井采矿方面的已经进行的较长时间的研究,但是因为社会的发展以及市场需求的变化,取得的成果在推广应用方面存在一定滞后性,并不能很好地为有色金属矿山深井开采提供有效的参考和指导。随着开采深度的持续增加,开采难度的不断加大,对矿产开采技术提出了更加严格的要求,在这种情况下,做好深井采矿技术的深入研究也就变得非常重要。对于部分有色金属矿山深井开采,由于矿岩的物力力学性质、结构、产状、地质环境等变化较大,而采用单一的采矿工艺或技术进行开采,势必会增加安全风险,降低生产效率,造成矿产资源的严重浪费。通过加强对深井矿岩性质及地质环境的研究,依据矿岩的结构及特征,做好岩体分类工作,归纳总结出各类岩体所适用的采矿工艺或技术,在面对深井开采复杂地质环境时,可依据不同类别的矿岩而采用相应的采矿技术,也可在面对不同地质环境时,采用不同的采矿技术,从而实现深井联合采矿,达到预期的采矿效果。联合采矿能够充分发挥不同类型矿产的采集优势,进一步提升深井采矿的安全性。 3技术应用要点 在上述技术应用期间,工作人员需要掌握应用要点,确保技术应用价值可以得到有效的实现:首先为控制浪费问题,有色金属矿山作业中常要采用低废控制手段对于产能浪费情况加以控制,以此让采矿所得的全部资源均可以应用到需要的地方。一般情况下,针对一些品位较低的矿山会使用传统开采技术进行资源开采,但是由于采矿技术的落后性,导致资源被过多的耗费,最终开采出的资源总量远低于预计值。为了减少资源浪费,矿山企业可以依托原地破碎溶浸技术进行有色金属开采,此法可以对划定的矿块进行标准化的作业,使用钻入设备时有着较高的精确性,可以科学的控制溶浸液体、矿块,最终的低废控制效果非常好。 其次为控制岩爆问题,采矿期间由于岩石内部应力的变化,岩体会突发性的出现岩石爆炸现象,破碎的岩石会四散崩裂开,对于井下作业区

深部的概念体系及工程评价指标

万方数据

万方数据

万方数据

万方数据

万方数据

深部的概念体系及工程评价指标 作者:何满潮, HE Man-chao 作者单位:中国矿业大学(北京校区)北京,100083;中国地质大学(北京),北京,100083 刊名: 岩石力学与工程学报 英文刊名:CHINESE JOURNAL OF ROCK MECHANICS AND ENGINEERING 年,卷(期):2005,24(16) 被引用次数:46次 参考文献(13条) 1.景海河深部工程围岩特性及其变形破坏机制研究 2002 2.徐则民;黄润秋;王士天隧道的埋深划分[期刊论文]-中国地质灾害与防治学报 2000(04) 3.何满潮深部开采工程岩石力学的现状及其展望 2004 4.谢和平深部高应力下的资源开采--现状、基础科学问题与展望 2002 5.古德生金属矿床深部开采中的科学问题 2002 6.Sun Jun;Wang Sijing Rock mechanics and rock engineering in C hina:developments and current state-of-the-art 2000(37) 7.钱鸣高20年来采场围岩控制理论和实践的回顾[期刊论文]-中国矿业大学学报 2000(01) 8.钱七虎深部地下工空间开发中的关键科学问题 2004 9.钱七虎非线性岩石力学的新进展--深部岩体力学的若干问题 2004 10.Malan D F;Spottiswoode S M Time-dependent fracture zone behavior and seismicity surrounding deep level stopping operations 1997 11.Fairhurst C Deformation, yield, rupture and stability of excavations at great depth 1990 12.Kidybinski A Strata Control in Deep Mines 1990 13.SellersEJ;KlerckP Modeling of the effect of discontinuities on the extent of the fracture zone surrounding deep tunnels 2000(04) 引证文献(47条) 1.左建平.谢和平.吴爱民.刘建锋深部煤岩单体及组合体的破坏机制与力学特性研究[期刊论文]-岩石力学与工程学报 2011(1) 2.GUO Zhibiao.SHI Jianjun.WANG Jiong.CAI Feng.WANG Fuqiang Double-directional control bolt support technology and engineering application at large span Y-type intersections in deep coal mines[期刊论文]-矿业科学技术(英文版) 2010(2) 3.LI Guofeng.HE Manchao.ZHANG Guofeng.TAO Zhigang Deformation mechanism and excavation process of large span intersection within deep soft rock roadway[期刊论文]-矿业科学技术(英文版) 2010(1) 4.牟宗龙.窦林名.王绪胜.王占成.郑玉友工作面终采线附近冲击矿压综合防治技术[期刊论文]-矿业安全与环保2010(1) 5.黄文辉.杨起.唐修义.唐书恒.陈萍.敖卫华.万欢中国炼焦煤资源分布特点与深部资源潜力分析[期刊论文]-中国煤炭地质 2010(5) 6.郭志飚.王炯.蔡峰.王福强煤矿深部Y型大断面交岔点双控锚杆支护技术及工程应用[期刊论文]-岩石力学与工程学报 2010(z1)

深部矿产资源开采与利用中的挑战

Engineering 3 (2017) 432–433 https://www.wendangku.net/doc/5d12510222.html,/10.1016/J.ENG.2017.04.027 2095-8099/? 2017 THE AUTHORS. Published by Elsevier LTD on behalf of the Chinese Academy of Engineering and Higher Education Press Limited Company.This is an open access article under the CC BY-NC-ND license (https://www.wendangku.net/doc/5d12510222.html,/licenses/by-nc-nd/4.0/). Editorial Challenges in the Mining and Utilization of Deep Mineral Resources Meifeng Cai a , Edwin T. Brown b ,c a Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China b Golder Associates Pty. Ltd., Brisbane, QLD 4064, Australia c The University of Queensland, Brisbane, QLD 4072, Australia As Mote et al. [1] have noted in this journal, advances in the fields of engineering science and technology have played an indispensable role in shaping the social and economic development of humankind. However, the continuing development of science and technology, along with the world’s ever-growing population, is consuming the earth’s resources, including its mineral resources, at what may ul-timately prove to be unsustainable rates. After hundreds of years of mining, the more accessible shallow mineral resources are being depleted, and some have now been completely exhausted. This means that the economic exploitation of more of the earth’s deeper mineral resources is now required in order to meet society’s grow-ing demand for minerals. This demand is not only for the traditional metallic ores and energy sources, but also for minerals such as rare earths, which are being used at an increasing rate with the advent of new technologies in the fields of communication, power generation, and power storage, among others. The efficient mining and utiliza-tion of deep mineral resources is not one of the Grand Challenges for Engineering that were identified in recent years by the US National Academy of Engineering, the UK Royal Academy of Engineering, and the Chinese Academy of Engineering (CAE), as listed by Mote et al. [1]. However, it is clear that traditional and newer mineral resources will be required in order to develop solutions to most of the Grand Challenges that have been identified. Exploitable mineral resources exist at great depth in the form of a number of orebody types in a range of geological and geometrical settings. The current seven deepest mines in the world mine tabu-lar or stratiform gold deposits in the Witwatersrand Basin of South Africa. The deepest of these mines are now around 4 km deep. The next deepest mines in the world are two base metal mines in Cana-da, which are about 3 km deep. For the purpose of this discussion, deep mining is taken to involve mining at depths of more than 1 km. The effective development and extraction of deep mineral resources face a number of engineering challenges arising from factors such as high in situ and induced stresses, and the responses of variable rock masses to these stresses; high in situ temperatures, and the associated ventilation and cooling requirements; the dif-ficulty and cost of exploring deep, and sometimes blind, deposits; the complex and difficult mining conditions that are often encoun-tered; safety concerns leading to the desirability of developing non-entry methods of mining; and methods and costs of handling mined ore at depth and transporting it to the surface. In some extreme cases, new, low-cost, and non-traditional methods of ex-traction will be required. Against this background, deep mining has been identified as an important topic for research under China’s State Key Research and Development Program, with several State Key Laboratories hav-ing been established under that program. This special issue of the CAE’s journal, Engineering , focuses on Efficient Exploitation of Deep Mineral Resources; it follows on from a China Engineering Science and Technology Forum on the same topic that was held in Beijing in October 2016, and was sponsored by the CAE. The proceedings of that forum will be published by Higher Education Press, Beijing, in September 2017 [2]. The Guest Editors are grateful to the CAE for this opportunity to assemble this special issue of Engineering ; we also offer our thanks to those who have provided contributions and to those who have taken part in the associated review and editorial processes. This special issue contains the following five papers by selected interna-tional and Chinese authors: (1) “Some challenges of deep mining,” by Charles Fairhurst: This stimulating paper by one of the world’s most distinguished mining engineers is written from the perspective of a reader who does not necessarily have a background in mining or rock engineering, and thus provides a valuable introduction to this special issue. (2) “Monitoring, warning, and control of rockburst in deep metal mines,” by Xia-Ting Feng and colleagues: As noted by Professor Fairhurst, the understanding and alleviation of rockbursts have long provided one of the major safety and rock engineering challenges for deep mining. This paper reports on some recent advances made in Contents lists available at ScienceDirect jo ur n al h om e pag e: w w https://www.wendangku.net/doc/5d12510222.html,/locate/eng Engineering Meifeng Cai Edwin T. Brown

相关文档
相关文档 最新文档