文档库 最新最全的文档下载
当前位置:文档库 › 蒙特卡罗算法实验报告

蒙特卡罗算法实验报告

蒙特卡罗算法实验报告
蒙特卡罗算法实验报告

多核软件设计——实验指导蒙特卡洛算法求 项目

开发者:

开发时间:

版本号:

一、问题描述

蒙特卡洛算法可理解为通过大量实验,模拟实际行为,来收集统计数据。本例中,算法随机产生一系列点,模拟这些点落在如下图所示的正方形区域内的情况。其几何解释如下

1

1

图1

如图1所示,正方形边长为1,左下顶点与原点重合,两边分别与x ,y 轴重合。曲线为1/4圆弧,圆

心位于原点,与正方形左下定点重合,半径为1。正方形面积S 1=1,圆弧内面积S 2=ππ4

1412=r 。

算法模拟大量点随机落在此正方形区域内,落在圆弧内的点的数量(n 2)与点的总数(n 1)的比例与面积

成正比关系。即

π

42121==S S n n (1) 由此可得

1

2

4n n =

π (2)

因此,只要计算出落在圆弧内的点的数量在点总数中所占的比例,就能求出π的值。

由图1可知,所有点均落在正方形范围内,因此点的x 坐标满足10≤≤x 。又,当点落在圆弧范围内,则点的二维坐标关系满足122

≤+y x 。检验每一个点是否满足此关系即可判定改点是否落在

圆弧内。

二、串行算法描述

本项目中使用了标准C 语言库中的产生随机数函数。该函数原型为:

int rand( void );

此函数产生随机数列,每次调用时均返回0到RAND_MAX 之间的一个整数。 void srand( unsigned int seed );

此函数为rand ()函数所生成的伪随机数序列设置起始点,使之产生不同的伪随机数。 算法:

产生2n 个随机数据,范围[0,1],对每个数据点计算其坐标是否满足122

≤+y x

统计满足此关系的点的数量count ,则n

count

4=π

示例见附件Serial.c

三、并行算法

3.1 并行算法描述

算法步骤:

1、确定需要产生的点的个数n ,参与运行的处理器数m ;

2、对每一个处理器,生成两个随机数x ,y ,范围[0,1];

3、判断两个随机数x ,y 是否满足12

2

≤+y x ;

4、若满足,则变量COUNT i ++;

5、重复步骤2-4,直至每个处理器均生成n/m 个随机点;

6、收集COUNT i 的值,并累加至变量COUNT 中,此即为随机点落在圆弧内的数量;

7、通过(2)式计算π的值。

3.2 并行算法的一个例子

在这个实验中,采用Linux 操作系统pthread 接口来实现程序的并行化。这些接口函数和数据类型都在头文件中声明。因为pthread 并没有包含在C 的标准库中,编译的时候需要加上-lpthread 选项,

使程序链接到libpthread,才能编译成功。

例子程序参见附件Parallel.c。

3.3 并行算法正确性证明

本并行算法只是简单的把独立的任务进行分派,经多次试验测试,结果正确。

四、实验结果

硬件平台:惠普刀片集群

编译器:gcc&g++

操作系统:Linux

测试数据集合:由随机数函数产生的数据集合

4.1 算法运行时间

表1

[注]:N:算法生成随机点的个数

算法运行时间为某一次运行时间,非多次运行之平均时间

4.2 算法计算量时间比、加速比

并行、串行算法运算量时间比、加速比如下图所示

2

五、实验结果分析

如表1、图3所示,加速比在(0.6,0.9)区间,与理论上的值2相去甚远。

对同一运算量多次运行并行算法得到如下表2所示结果。(图4)

图4

而对同样的运算量多次运行串行算法得到如下表3所示结果。(图5)

表3

图5

如图4图5所示,对同一计算量,串行算法每次运行时间相差较小,而并行算法则相差明显。因此,通过分析源代码可得出以下结论: 程序所用的rand ()函数在同一时间只允许一个处理器调用,当两个处理器都需调用rand ()函数时,后调用的将被挂起,等待另一个处理器运行完毕。两线程在就绪和执行态之间不断变化,浪费了大量CPU 时间,因此对同一运算量,并行程序运行时间反而比串行程序慢,而且线程状态转换次数范围为[0,n],平均为2

n

次,因此,相比于串行程序的无状态转换,并行算法的运行时间才会有如此大的波动。

六、 并行算法改进

为了改进并行算法,得到更高的加速比,有两种途径可以尝试:减少线程状态转化次数和使用可并行的随机数产生算法。简介如下:

6.1 减少线程转态转换次数

此方法具体为:在并行程序中使用互斥锁,当某一线程进入临界区后,一次性产生m 个随机点,然后再退出临界区,开始对m 个点进行计算;与此同时,若另一线程也要进入临界区,则被挂起,等待该线程退出。如此循环,直至两个线程均计算完所要求的点的个数,则计算输出π值,程序结束。 算法: 1、确定产生点n 的个数和缓冲区m (m<=n )的值,声明互斥锁

2、某一线程进入临界区,上锁

3、该线程一次性生成m 个数,其他线程若想进入则挂起等待

4、该线程退出临界区,解锁 ,开始对刚才生成的随机点进行计算

5、重复2-4步,直至每个线程均完成对所要求点的操作

6、统计COUNT i 的值

7、计算π的值

在此算法中,每一线程因为争用rand ()函数而产生的状态转化次数范围为[0,

m n ],平均次数为m

n

2,调整m 的值,使生成m 个随机点的时间与对m 个随机点进行计算的时间相等时,则算法执行速度可达到

最大值,即加速比最大。

示例程序参见附件Pmutex.c 。

6.2 使用可并行的随机数生成函数

生成随机数最常用的方法为线性同余法,其C 语言源代码如下:

//myrand()用的种子 unsigned static Y =568731; unsigned d=1<<31; //生成伪随机数算法 double inline myrand() {

Y=(15625*Y+22221)%d;

return (double)Y/(double)(d-1);

}

通过改变种子的值,算法可生成不同的伪随机数列并且可以满足多个处理器同时调用。但调用所需时间略大于调用系统库函数rand ()。(调用myrand()函数的串行算法,见附件Smyrand.c)

示例程序见附件Pmyrand.c

蓝书刘汝佳算法竞赛入门经典勘误

#《算法竞赛入门经典》勘误 关于勘误?下面的勘误很多来自于热心读者,再次向他们表示衷心的感谢!我并不清楚这些错误实际是在哪个版本中改正过来的,所以麻烦大家都看一下。 有发现新错误的欢迎大家在留言中指出,谢谢! 一些一般性的问题?运算符?已经被废弃,请用min、max代替(代码仓库中的代码已更新,g++ 4.6.2下编译通过) 重大错误?p24. 最后一行,“然后让max=INF,而min=-INF”应该是“然后让max=-INF, 而min=INF”。 (感谢imxivid) p43. 最后,判断s[i..j]是否为回文串的方法也不难写出:int ok = 1; for(k = i; i<=j; i++)应该为for(k = i; k<=j; k++) (感谢imxivid) p45. 第七行和第九行i-j+1应为i+j+1。修改后: 1. { 2. for (j = 0; i - j >= 0 && i + j < m; j++) 3. { 4. if (s[i - j] != s[i + j]) break; 5. if (j*2+1 > max) { max = j*2+1; x = p[i - j]; y = p[i + j];} 6. } 7. for (j = 0; i - j >= 0 && i + j + 1 < m; j++) 8. { 9. if (s[i - j] != s[i + j + 1]) break; 10. if (j*2+2 > max) 11. {max = j*2+2; x = p[i - j]; y = p[i + j + 1]; } 12. } 13. }p53. 例题4-1. 组合数. 输入非负整数n和m,这里的n和m写反了。应是“输入非负整数m和n”。 p54. 举例中的m和n也写反了(真是个悲剧),且C(20,1)=20。 p71. 《周期串》代码的第8行,j++应为i++。 p72. 代码的第7行,“return”改为“break”以和其他地方一致。 p81. k为奇数和偶数的时候,分子和分母的顺序是不一样的。正确代码为: #include int main() { int n; while(scanf("%d", &n) == 1) { int k = 1, s = 0; for(;;) { s += k; if(s >= n) { if(k % 2 == 1) printf("%d/%d\n", s-n+1, k-s+n); else printf("%d/%d\n", k-s+n, s-n+1); break; } k++; } } return 0; }以及: #include #include int main() { int n; while(scanf("%d", &n) == 1) { int k = (int)floor((sqrt(8.0*n+1)-1)/2 - 1e-9)+1; int s = k*(k+1)/2; if(k % 2 == 1) printf("%d/%d\n", s-n+1, k-s+n); else printf("%d/%d\n", k-s+n, s-n+1); } return 0; }上述代码已经更新到代码仓库中。 p83. 应为am * an = am+n。 (感谢zr95.vip) p85. 两张插图下面的文字“顺时针”、“逆时针”反了。 (感谢zr95.vip) p107. dfs函数有误,应为: void dfs(int x, int y) { if(!mat[x][y] || vis[x][y]) return; // 曾经访问过这个格子,或者当前格子是白色vis[x][y] = 1; // 标记(x,y)已访问过dfs(x-1,y-1); dfs(x-1,y); dfs(x-1,y+1); dfs(x ,y-1); dfs(x ,y+1); dfs(x+1,y-1); dfs(x+1,y); dfs(x+1,y+1); // 递归访问周围的八个格子}(感谢zhongying822@https://www.wendangku.net/doc/5d12868743.html,) p124. 图7-5最右边的有两个结点(3,1,*,*),应该只有一个。下面一段第一行的“它只有18

蒙特卡罗算法的简单应用

一、蒙特卡洛算法 1、含义的理解 以概率和统计理论方法为基础的一种计算方法。也称统计模拟方法,是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法,它是将所求解的问题同一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解。 2、算法实例 在数值积分法中,利用求单位圆的1/4的面积来求得Pi/4从而得到Pi 。单位圆的1/4面积是一个扇形,它是边长为1单位正方形的一部分。只要能求出扇形面积S1在正方形面积S 中占的比例K=S1/S 就立即能得到S1,从而得到Pi 的值。怎样求出扇形面积在正方形面积中占的比例K 呢?一个办法是在正方形中随机投入很多点,使所投的点落在正方形中每一个位置的机会相等看其中有多少个点落在扇形内。将落在扇形内的点数m 与所投点的总数n 的比m/n 作为k 的近似值。P 落在扇形内的充要条件是 221x y +≤ 。 已知:K= 1s s ,K ≈m n ,s=1,s1=4P i ,求Pi 。 由1 s m s n ≈,知s1≈*m s n =m n , 而s1=4P i ,则Pi=*4m n 程序: /* 利用蒙特卡洛算法近似求圆周率Pi*/ /*程序使用:VC++6.0 */ #include #include #include #define COUNT 800 /*循环取样次数,每次取样范围依次变大*/ void main() { double x,y; int num=0; int i; for(i=0;i

x=rand()*1.0/RAND_MAX;/*RAND_MAX=32767,包含在中*/ y=rand()*1.0/RAND_MAX; i f((x*x+y*y)<=1) num++; /*统计落在四分之一圆之内的点数*/ } printf("Pi值等于:%f\n",num*4.0/COUNT); printf("RAND_MAX=%d\n",RAND_MAX); 3、应用的范围 蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运 计算、量子热力学计算、空气动力学计算)等领域应用广泛。 4、参考书籍 [1]蒙特卡罗方法及其在粒子输运问题中的应用[2]蒙特卡罗方法引论

浅析蒙特卡洛方法原理及应用

浅析蒙特卡洛方法原理及应用 于希明 (英才学院1236103班测控技术与仪器专业6120110304) 摘要:本文概述了蒙特卡洛方法产生的历史及基本原理,介绍了蒙特卡洛方法的最初应用——蒲丰投针问题求圆周率,并介绍了蒙特卡洛方法在数学及生活中的一些简单应用,最后总结了蒙特卡洛方法的特点。 关键词:蒙特卡洛方法蒲丰投针生活应用 蒙特卡洛方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。它是以概率统计理论为基础, 依据大数定律( 样本均值代替总体均值) , 利用电子计算机数字模拟技术, 解决一些很难直接用数学运算求解或用其他方法不能解决的复杂问题的一种近似计算法。蒙特卡洛方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。 一、蒙特卡洛方法的产生及原理 蒙特卡洛方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。在这之前,蒙特卡洛方法就已经存在。1777年,法国数学家蒲丰(Georges Louis Leclere de Buffon,1707—1788)提出用投针实验的方法求圆周率π。这被认为是蒙特卡洛方法的起源。 其基本原理如下:由概率定义知,某事件的概率可以用大量试验中该事件发生的频率来估算,当样本容量足够大时,可以认为该事件的发生频率即为其概率。因此,可以先对影响其可靠度的随机变量进行大量的随机抽样,然后把这些抽样值一组一组地代入功能函数式,确定结构是否失效,最后从中求得结构的失效概率。蒙特卡洛法正是基于此思路进行分析的。 设有统计独立的随机变量Xi(i=1,2,3,…,k),其对应的概率密度函数分别为fx1,fx2,…,fxk,功能函数式为Z=g(x1,x2,…,xk)。首先根据各随机变量的相应分布,产生N组随机数x1,x2,…,xk值,计算功能函数值Zi=g(x1,x2,…,xk)(i=1,2,…,N),若其中有L组随机数对应的功能函数值Zi≤0,则当N→∞时,根据伯努利大数定理及正态随机变量的特性有:结构失效概率,可靠指标。 二、蒲丰投针问题 作为蒙特卡洛方法的最初应用, 是解决蒲丰投针问题。1777 年, 法国数学家蒲丰提出利用投针实验求解圆周率的问题。设平面上等距离( 如为2a) 画有一些平行线, 将一根长度为2l( l< a) 的针任意投掷到平面上, 针与任一平行线相交的频率为p 。针的位置可以用针的中心坐标x 和针与平行线的夹角θ来决定。任意方向投针, 便意味着x与θ可以任意取一值, 只是0≤x ≤a, 0≤θ≤π。那么, 投针与任意平行线相交的条件为x ≤ l sinθ。相交频率p 便可用下式求

最新算法竞赛入门经典各章(第二版)前4章课后习题答案电子教案

第一章习题1-1 #include int main() { int a,b,c; double d; scanf("%d%d%d",&a,&b,&c); d=(double)(a+b+c); printf("%.3lf\n",d/3.0); return 0; } 习题1-2 #include int main() { int f; double c; scanf("%d",&f); c=5*(f-32)/9; printf("%.3lf\n",c); return 0;

习题1-3 #include int main() { int n; scanf("%d",&n); printf("%d\n",(n*(1+n))/2); return 0; } 习题1-4 #include #include #define pi 4.0*atan(1.0) int main() { int n; scanf("%d",&n); printf("%lf\n",sin((pi*n)/180)); printf("%lf\n",cos((pi*n)/180)); return 0;

习题1-5 #include int main() { double x1,y1,x2,y2,a; scanf("%lf %lf %lf %lf",&x1,&y1,&x2,&y2); a=sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)); printf("%lf\n",a); return 0; } 习题1-6 #include int main() { int n; scanf("%d",&n); if(n%2==0) { printf("YES\n"); }

蒙特卡罗 算法

1、蒙特卡罗定位 足球机器人中自定位方法是由Fox提出的蒙特卡罗定位。这是一种概率方法,把足球机器人当前位置看成许多粒子的密度模型。每个粒子可以看成机器人在此位置定位的假设。在多数应用中,蒙特卡罗定位用在带有距离传感器的机器人设备上,如激光扫描声纳传感器。只有一些方法,视觉用于自定位。在足球机器人自定位有些不同,因为机器人占的面积相对比较小,但是机器人所在位置的面积必须相当准确的确定,以便允许同组不同机器人交流有关场地物体信息和遵守比赛规则。这种定位方法分为如下步骤,首先所有粒子按照一起那机器人的活动的运动模型移动。概率pi取决于在感知模型的基础上所有粒子在当前传感器上的读数。基于这些概率,就提出了所谓的重采样,将更多粒子移向很高概率的采样位置。概率平均分布的确定用来表示当前机器人的位置的最优估计。最后返回开始。 2、蒙塔卡罗 基本思想 当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。 工作过程 蒙特卡罗方法的解题过程可以归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗方法解题过程的三个主要步骤: (1)构造或描述概率过程 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 2)实现从已知概率分布抽样 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。 (3)建立各种估计量

大师兄教你如何过华为机试

大师兄教你如何过华为机试 宝典1—内功心法 大华为这个大数据时代土豪金海量式的招聘又要开始了!!! 近期听说大华为的校招机试马上就要开始了,由于华为软件岗位的招聘只有技术面跟机试是与技术有关的内容,所以机试的地位非常重要。对于机试,除了长期积累的软件基本功以外,还有很多可以短期训练的东西,类似于考试之前的突击,可以迅速提高机试成绩,就像在我西电大杨老师考前最后一堂课一定要去,那个重点就是考点阿。 这篇机试葵花宝典的内容是针对华为软件类上机准备的,如果你认真看了本宝典,如果你是真正通过自己能力考上西电的话,想不过都难。同样想拿高级题的同学,请移步 https://www.wendangku.net/doc/5d12868743.html,/land/或者https://www.wendangku.net/doc/5d12868743.html,,刷上200道题,机试不想拿满分都难。 对于机试,首先应该调整好自己的心态,不要觉得写程序很难,机试题很难,也不要去考虑,万一机试考到自己不会的内容怎么办,要相信,机试题永远是考察每个人的基础,基础是不会考的很偏的,会有人恰好做过某个题而做出来那个题,但不会有人恰好没做过一个题而做不出来那个题。 机试之前,应该做的准备有: 1、买一本《算法竞赛入门经典》,这本书不同于普通的算法或者编程语言的书籍,这 本书既讲语言,又讲算法,由浅入深,讲的很好,能看完前几章并且把例题都做 会,想通过机试就很简单了 2、调整好心态,时刻告诉自己,哪些小错误是自己以前经常犯的,最好用笔记本记录 下来,写每道题前再看一遍,如果遇到代码调不出来了,先想想自己是否犯过以 前那些错误。还有就是,看了题目以后,先仔细想清楚细节,在纸上写清楚自己 需要用到的变量,以及代码的基本框架,不要急于动手去写代码 3、不要惧怕任何一道看起来很难的题目,有不会的就去问身边会的人,让别人给自己 讲清楚 4、心中默念10遍C++跟C除了多了两个加号其实没有区别,会C就能上手C++ 5、大量的练习是必要且有效的 6、看完这篇宝典,预过机试、必练此功。 在这里推荐一个帖子,是机试归来的学长写的,写的很不错,里面的例题在后面的攻略

蒙特卡罗方法学习总结

图1-1 蒙特卡罗方法学习总结 核工程与核技术2014级3班张振华20144530317 一、蒙特卡罗方法概述 1.1蒙特卡罗方法的基本思想 1.1.1基本思想 蒙特卡罗方的基本思想就是,当所求问题的解是某个事件的概率,或者是某个随机变量的数学期望,或者是与概率、数学期望有关的量时,通过某种试验方法,得出该事件发生的频率,或者该随机变量若干个具体观察值的算术平均值,通过它得到问题的解。 1.1.2计算机模拟打靶游戏 为了能更为深刻地理解蒙特卡罗方法的基本思想,我们学习了蒲丰氏问题和打靶游戏两大经典例子。下面主要对打靶游戏进行剖析、计算机模拟(MATLAB 程序)。 设某射击运动员的弹着点分布如表1-1 所示, 首先用一维数轴刻画出已知该运动员的弹 着点的分布如图1-1所示。研究打靶游戏,我 们不用考察子弹的运动轨迹,只需研究每次“扣动扳机”后的子弹弹着点。每一环数对应唯一确定的概率,且注意到概率分布函数有单调不减和归一化的性质。首先我们产生一个在(0,1)上均匀分布的随机数(模拟扣动扳机),然后将该随机数代表的点投到P 轴上(模拟子弹射向靶上的一个确定点),得到对应的环数(即子弹的弹着点),模拟打靶完成。反复进行N 次试验,统计出试验结果的样本均值。样本均值应当等于数学期望值,但允许存在一定的偏差,即理论计算值应该约等于模拟试验结果。 clear all;clc; N=100000;s=0; for n=1:N %step 4.重复N 次打靶游戏试验

x=rand(); %step 1.产生在(0,1)上均匀分布的随机数if(x<=0.1) %step 2.若随机数落在(0.0,0.1)上,则代表弹着点在7环g=7; s=s+g; %step 3.统计总环数elseif(x<=0.2) %step 2.若随机数落在(0.1,0.2)上,则代表弹着点在8环g=8;s=s+g; elseif(x<=0.5) %step 2.若随机数落在(0.2,0.5)上,则代表弹着点在9环g=9;s=s+g; else %step 2.若随机数落在(0.5,1.0)上,则代表弹着点在10环 g=10;s=s+g; end end gn_th=7*0.1+8*0.1+9*0.3+10*0.5; %step 5.计算、输出理论值fprintf('理论值:%f\n',gn_th); gn=s/N; %step 6.计算、输出试验结果 fprintf('试验结果:%f\n',gn);1.2蒙特卡罗方法的收敛性与误差 1.2.1收敛性 由大数定律可知,应用蒙特卡罗方法求近似解,当随机变量Z 的简单子样数N 趋向于无穷大(N 充分大)时,其均值依概率收敛于它的数学期望。 1.2.2误差 由中心极限定理可知,近似值与真值的误差为N Z E Z N αλ<-)(?。式中的αλ的值可以根据给出的置信水平,查阅标准正态分布表来确定。 1.2.3收敛性与误差的关系 在一般情况下,求具有有限r 阶原点矩()∞

题目蒙特卡洛算法的设计和实现

题目:蒙特卡洛算法的设计和实现 班别:12accp2班 组员姓名:蔡添来杨善挺 时间:2013.6.28

应用数学二期末考核 项目设计说明书 项目名称:蒙特卡洛算法的设计和实现 人员情况 (注:写上组员的姓名、学号) 蔡添来-010******* 杨善挺-010******* 人员分工情况 (注:写上每个组员完成那个部分的详细情况) N-S图和代码蔡添来负责编写,杨善挺参与讨论,杨善挺负责写摘要问题分析、问题总结以及饼状图的代码编写及处理等等,主要结果及其分析讨论部分由蔡添来写,该部分一些问题杨善挺参与讨论。 蒙特卡洛算法的设计和实现 摘要 (注:请写上你对本项目题目的基本认识和介绍,解决该问题用的的方法和算法的基本思想和原理,以及本问题的主要结论及对结论的简单总结和分析) 本文根据蒙特卡洛算法以实验为基础阐述其算法的设计思路和实现过程,可以通过反复多次的实验,利用数学的的N-S算法,以及MATLAB编程等,并联系实际生活情况,分析蒙特卡洛算法给现实世界带来的各种好处,并提出合理的的建议。 针对本项目问题,首先从抽奖的本质出发,分析该问题到底能让哪方获益,估算抽奖者得到各种结果的概率,以及设奖者受益情况。首先从硬币的分值来分析,列出抽取10枚硬币的总和,再计算每种情况出现的概率,再给予一定的奖罚,这样才能即吸引抽奖者,又可以让设奖者盈利,让抽奖者的损失尽可能少。既可以达到娱乐的效果,又可以得到大家都认可。 最后总结蒙特卡洛算法在数学方面的运用以及对现代社会的经济等方面的推动作用,并给出一些建议。

关键词:模拟概率大量统计 蒙特?卡罗的背景介绍和发展 (注:请介绍你对本项目的背景和发展历史等相关内容) 蒙特?卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。 蒙特卡洛算法对于本身就具有随机性质的问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 蒙特卡罗方法的验证需要次数较多的实验和多次的验证。实验越接近理想状态,所得到的实验结果才越精确。所谓理想的实验次数,就是实验次数尽可能的多和用同样的验证方法验证多次,并取他们的平均值,以便减少误差。而且蒙特卡罗方法每次得到的结果具有随机性,因此,现实生活中该算法又可以为人们的生活娱乐带来乐趣,又可以为商家带来赚钱对的好机会。 当实验对象是某种随机事件出现的概率时,或者是某个随机变量的期望值时,可以进行反复“实验”,以这种事件出现的频率估计这一随机事件的概率,并计算全部概率的均值,或者得到这个随机变量的某些数字特征,并将其作为问题的解。以便减少实验误差。 对于本项目的实验对象,利用蒙特卡罗方法以同样的方法反复实验,方便快捷可以得到我们想要的结果,,这是典型的蒙特卡罗方法的运用,而近代也有不少科学家解决同样的问题。例如:1777年,法国数学家布丰(Georges Louis Leclere de Buffon,1707—1788)提出用投针实验的方法求圆周率π。而这被认为是蒙特卡罗方法的起源。 利用蒙特.卡罗方法对该抽签将活动模拟问题分析和数学模型 (注:请介绍你对本项目的解决方法的思路和方法,要求:必须具有对问题解决方法的数学模型(数学模型:数学表达式或算法)的介绍和为什么使用该模型?若问题能求出理论解,在此地方必须给出理论解) 利用N-S图分析思路,再利用MATLAB程序代码运行得到具体结果,结合高中数学的组合运算,因涉及概率等等问题,以及局限于我们的知识,我们只有利用高中的组合运算和大学一年级的N-S图来分析问题,并且利用这几个经典的数学方法,我们可以轻松的解决这个抽奖问题。

(完整)信息学奥赛(NOIP)必看经典书目汇总,推荐文档

信息学奥赛(NOIP)必看经典书目汇总! 小编整理汇总了一下大神们极力推荐的复习资料!(欢迎大家查漏补缺) 基础篇 1、《全国青少年信息学奥林匹克分区联赛初赛培训教材》(推荐指数:4颗星) 曹文,吴涛编著,知识点大杂烩,部分内容由学生撰写,但是对初赛知识点的覆盖还是做得相当不错的。语言是pascal的。 2、谭浩强老先生写的《C语言程序设计(第三版)》(推荐指数:5颗星) 针对零基础学C语言的筒子,这本书是必推的。 3、《骗分导论》(推荐指数:5颗星) 参加NOIP必看之经典 4、《全国信息学奥林匹克联赛培训教程(一)》(推荐指数:5颗星) 传说中的黄书。吴文虎,王建德著,系统地介绍了计算机的基础知识和利用Pascal语言进行程序设计的方法 5、《全国青少年信息学奥林匹克联赛模拟训练试卷精选》 王建德著,传说中的红书。 6、《算法竞赛入门经典》(推荐指数:5颗星) 刘汝佳著,算法必看经典。 7、《算法竞赛入门经典:训练指南》(推荐指数:5颗星) 刘汝佳著,《算法竞赛入门经典》的重要补充 提高篇 1、《算法导论》(推荐指数:5颗星) 这是OI学习的必备教材。

2、《算法艺术与信息学竞赛》(推荐指数:5颗星) 刘汝佳著,传说中的黑书。 3、《学习指导》(推荐指数:5颗星) 刘汝佳著,《算法艺术与信息学竞赛》的辅导书。(PS:仅可在网上搜到,格式为PDF)。 4、《奥赛经典》(推荐指数:5颗星) 有难度,但是很厚重。 5、《2016版高中信息学竞赛历年真题解析红宝书》(推荐指数:5颗星) 历年真题,这是绝对不能遗失的存在。必须要做! 三、各种在线题库 1、题库方面首推USACO(美国的赛题),usaco写完了一等基本上就没有问题,如果悟性好的话甚至能在NOI取得不错的成绩. 2、除此之外Vijos也是一个不错的题库,有很多中文题. 3、国内广受NOIP级别选手喜欢的国内OJ(Tyvj、CodeVs、洛谷、RQNOJ) 4、BJOZ拥有上千道省选级别及以上的题目资源,但有一部分题目需要购买权限才能访问。 5、UOZ 举办NOIP难度的UER和省选难度的UR。赛题质量极高,命题人大多为现役集训队选手。

1蒙特卡罗算法举例

MC方法计算阴影部分面积 计算阴影部分面积。 一个古人要求一个图形的面积,他把图形画在一块方形布上,然后找来一袋豆子,然后将所有豆子洒在布上,落在图形内豆子的重量比上那块布上所有豆子的重量再乘以布的面积就是他所要求的图形的面积。 两种编程思路来计算这个面积: 方法一:将整个坐标轴看成一个边长为12的正方形,然后均匀的这个正方形分成N(N的大小取决于划分的步长)个点,然后找出N个点中有多少个点是属于阴影部分中,假设这个值为k,则阴影部分的面积为:k/N*12^2 方法二:将整个坐标轴看成一个边长为12的正方形,然后在(-6,6)中随机出N(N越大越好,至少超过1000)个点,然后找出这N个点中有多少个点在阴

影区域内,假设这个值为k,则阴影部分的面积为:k/N*12^2。然后重复这个过程100次,求出100次面积计算结果的均值,这个均值为阴影部分面积。 对比分析:以上两个方法都是利用蒙特卡罗方法计算阴影部分面积,只是在处理的细节有一点区别。前者是把豆子均匀分布在布上;后者则是随机把豆子仍在布上。就计算结果的精度而言,前者取决点的分割是否够密,即N是否够大;后者不仅仅通过N来控制精度,因为随机的因素会造成单次计算结果偏高和偏小,所以进行反复多次计算最后以均值来衡量阴影部分面积。 附上MATLAB程序: 方法一: clear x=-6:0.01:6; y=x; s=size(x); zs=s(1,2)^2; k=0; for i=1:s(1,2) for j=1:s(1,2) a1=(x(i)^2)/9+(y(j)^2)/36; a2=(x(i)^2)/36+y(j)^2; a3=(x(i)-2)^2+(y(j)+1)^2;

蒙特卡罗方法简介

第三章蒙特卡罗方法简介 3.1 Monte Carlo方法简介 Monte Carlo方法是诺斯阿拉莫斯实验室在总结其二战期间工作(曼哈顿计划)的基础上提出来的。Monte Carlo的发明,主要归功于Enrico Fermi、Von Neumann和Stanislaw Ulam等。自二战以来,Monte Carlo方法由于其在解决粒子输运问题上特有的优势而得到了迅速发展,并在核物理、辐射物理、数学、电子学等方面得到了广泛的应用。Monte Carlo的基本思想就是基于随机数选择的统计抽样,这和赌博中掷色子很类似,故取名Monte Carlo。 Monte Carlo方法非常适于解决复杂的三维问题,对于不能用确定性方法解决的问题尤其有用,可以用来模拟核子与物质的相互作用。在粒子输运中,Monte Carlo技术就是跟踪来自源的每个粒子,从粒子产生开始,直到其消亡(吸收或逃逸等)。在跟踪过程中,利用有关传输数据经随机抽样来决定粒子每一步的结果[6]。 3.2 Monte Carlo发展历程 MCNP程序全名为Monte Carlo Neutron and Photon Transport Code (蒙特卡罗中子-光子输运程序)。Monte Carlo模拟程序是在1940年美国实施“发展核武器计划”时,由洛斯阿拉莫斯实验室(LANL)提出的,为其所投入的研究、发展、程序编写及参数制作超过了500人年。1950年Monte Carlo方法的机器语言出现, 1963年通用性的Monte Carlo方法语言推出,在此基础上,20世纪70年代中期由中子程序和光子程序合并,形成了最初的MCNP程序。自那时起,每2—3年MCNP更新一次, 版本不断发展,功能不断增加,适应面也越来越广。已知的MCNP程序研制版本的更新时间表如下:MCNP-3:1983年写成,为标准的FORTRAN-77版本,截面采用ENDF /B2III。 MCNP-3A:1986年写成,加进了多种标准源,截面采用ENDF /B2I V[20]。

BIG NUMBER 算法竞赛入门经典 刘汝佳

424-Integer Inquiry One of the first users of BIT's new supercomputer was Chip Diller.He extended his exploration of powers of3to go from0 to333and he explored taking various sums of those numbers. ``This supercomputer is great,''remarked Chip.``I only wish Timothy were here to see these results.''(Chip moved to a new apartment,once one became available on the third floor of the Lemon Sky apartments on Third Street.) Input The input will consist of at most100lines of text,each of which contains a single VeryLongInteger.Each VeryLongInteger will be100or fewer characters in length,and will only contain digits(no VeryLongInteger will be negative). The final input line will contain a single zero on a line by itself. Output Your program should output the sum of the VeryLongIntegers given in the input. Sample Input 123456789012345678901234567890 123456789012345678901234567890 123456789012345678901234567890 Sample Output 370370367037037036703703703670 10106–Product The Problem The problem is to multiply two integers X,Y.(0<=X,Y<10250) The Input The input will consist of a set of pairs of lines.Each line in pair contains one multiplyer. The Output For each input pair of lines the output line should consist one integer the product. Sample Input 12 12 2 222222222222222222222222 Sample Output 144 444444444444444444444444 465–Overflow Write a program that reads an expression consisting of two non-negative integer and an operator.Determine if either integer or the result of the expression is too large to be represented as a``normal''signed integer(type integer if you are working Pascal,type int if you are working in C). Input An unspecified number of lines.Each line will contain an integer,one of the two operators+or*,and another integer. Output For each line of input,print the input followed by0-3lines containing as many of these three messages as are appropriate: ``first number too big'',``second number too big'',``result too big''. Sample Input 300+3 9999999999999999999999+11 Sample Output 300+3 9999999999999999999999+11 first number too big

蒙特卡罗方法的解题过程可以归结为三个主要步骤

蒙特卡罗方法的解题过程可以归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗方法解题过程的三个主要步骤: (1)构造或描述概率过程 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 (2)实现从已知概率分布抽样 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。 (3)建立各种估计量 一般说来,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计。建立各种估计量,相当于对模拟实验的结果进行考察和登记,从中得到问题的解。 蒙特卡洛法模拟蒲丰(Buffon)投针实验-使用Matlab 2010年03月31日星期三8:47 蒲丰投针实验是一个著名的概率实验,其原理请参见此页: https://www.wendangku.net/doc/5d12868743.html,/reese/buffon/buffon.html 现在我们利用Matlab来做模拟,顺便说一下,这种随机模拟方法便是传说中的“蒙特-

算法工程师本科生学习计划

算法工程师成长计划 大学期间必须要学好的课程:C/C++两种语言(或JA V A)、高等数学、线性代数、数据结构、离散数学、数据库原理、操作系统原理、计算机组成原理、人工智能、编译原理、算法设计与分析。 大一上学期: 1.C语言基础语法必须全部学会,提前完成C语言课程设计。 2.简单数学题:求最大公约数、筛法求素数、康托展开、同余定理、次方求模等。 3.计算机课初步:三角形面积,三点顺序等等。 4.学会计算简单程序的时间复杂度和空间复杂度。 5.二分查找、贪心算法经典算法。 6.简单的排序算法:冒泡排序法、插入排序法。 7.高等数学。 8.操作系统应用:DOS命令,学会Windows系统的一些小知识,学会编辑注册表, 学会使用组策略管理器(gpedit.msc)管理组策略等。 大一下学期: 1.掌握C++部分语法,如引用类型、函数重载等,基本明白什么是类。 2.学会使用栈和队列等线性结构。 3.掌握BFS和DFS以及树的前序、中序、后序遍历。 4.学会分治策略。 5.掌握排序算法:选择排序、归并排序、快速排序、计数、基数排序等等。 6.动态规划:最大子串和、最长公共子序列、最长单调递增子序列、01背包、完全背 包等。 7.数论:扩展欧几里德算法、求逆元、同余方程、中国剩余定理。 8.博弈论:博弈问题与SG函数的定义、多个博弈问题SG值的合并。 9.图论:图的存储、欧拉回路的判定、单源最短路Bellman-Ford算法及Dijkstra算法、 最小生成树Kruskal算法及Prim算法。 10.学会使用C语言进行网络编程与多线程编程。 11.高等数学、线性代数:做几道“矩阵运算”分类下的题目。 12.学习matlab,如果想参加数学建模大赛,需要学这个软件。 大一假期: 1.掌握C++语法,并熟练使用STL(重要)。 2.试着实现STL的一些基本容器和函数、使自己基本能看懂STL源码。 3.数据结构:字典树、并查集、树状数组、简单线段树。 4.图论:使用优先队列优化Dijkstra算法及Prim算法,单源最短路径之SPFA,差分 约束系统,多源多点最短路径之FloydWarshall算法,求欧拉回路(圈套圈算法)。 5.拓扑排序:复杂BFS和DFS搜索、复杂模拟题训练。 6.动态规划:多重背包、分组背包、依赖背包等各种背包问题(参见背包九讲)。 7.计算几何:判断点是否在线段上、线段相交、圆与矩形的关系、点是否在多边形内、 点到线段的最近点、多边形面积、求多边形重心、求凸包、点在任意多边形内外的 判定。 8.学习使用C/C++连接数据库、学习一种C++的开发框架来编写一些窗体程序(如 MFC、Qt)。

算法竞赛入门经典授课教案第7章 暴力求解法

第7章暴力求解法 【教学内容相关章节】 7.1简单枚举 7.2枚举排列 7.3子集生成 7.4回溯法 7.5隐式图搜索 【教学目标】 (1)掌握整数、子串等简单对象的枚举方法; (2)熟练掌握排列生成的递归方法; (3)熟练掌握用“下一个排列”枚举全排列的方法; (4)理解解答树,并能估算典型解答树的结点数; (5)熟练掌握子集生成的增量法、位向量法和二进制法; (6)熟练掌握回溯法框架,并能理解为什么它往往比生成-测试法高效; (7)熟练掌握解答树的宽度优先搜索和迭代加深搜索; (8)理解倒水问题的状态图与八皇后问题的解答树的本质区别; (9)熟练掌握八数码问题的BFS实现; (10)熟练掌握集合的两种典型实现——hash表和STL集合。 【教学要求】 掌握整数、子串等简单对象的枚举方法;熟练掌握排列生成的递归方法;熟练掌握用“下一个排列”枚举全排列的方法;理解子集树和排列树;熟练掌握回溯法框架;熟练掌握解答树的宽度优先搜索和迭代搜索;熟练掌握集合的两种典型实现——hash表和STL集合。【教学内容提要】 本章主要讨论暴力法(也叫穷举法、蛮力法),它要求调设计者找出所有可能的方法,然后选择其中的一种方法,若该方法不可行则试探下一种可能的方法。介绍了排列生成的递归方法;在求解的过程中,提出了解答树的概念(如子集树和排列树);介绍了回溯法的基本框架;介绍了集合的两种典型实现——hash表和STL集合。 【教学重点、难点】 教学重点: (1)熟练掌握排列生成的递归方法; (2)理解解答树,并能估算典型解答树的结点数; (3)熟练掌握子集生成的增量法、位向量法和二进制法; (4)熟练掌握回溯法框架,并能理解为什么它往往比生成-测试法高效; (5)熟练掌握解答树的宽度优先搜索和迭代搜索; (6)熟练掌握集合的两种典型实现——hash表和STL集合。 教学难点: (1)熟练掌握子集生成的增量法、位向量法和二进制法; (2)熟练掌握回溯法框架,并能理解为什么它往往比生成-测试法高效; (3)熟练掌握解答树的宽度优先搜索和迭代搜索; (4)熟练掌握集合的两种典型实现——hash表和STL集合。 【课时安排】 7.1简单枚举 7.2枚举排列 7.3子集生成 7.4回溯法 7.5隐式图搜索

蒙特卡洛算法详讲

Monte Carlo 法 §8.1 概述 Monte Carlo 法不同于前面几章所介绍的确定性数值方法,它是用来解决数学和物理问题的非确定性的(概率统计的或随机的)数值方法。Monte Carlo 方法(MCM ),也称为统计试验方法,是理论物理学两大主要学科的合并:即随机过程的概率统计理论(用于处理布朗运动或随机游动实验)和位势理论,主要是研究均匀介质的稳定状态[1]。它是用一系列随机数来近似解决问题的一种方法,是通过寻找一个概率统计的相似体并用实验取样过程来获得该相似体的近似解的处理数学问题的一种手段。运用该近似方法所获得的问题的解in spirit 更接近于物理实验结果,而不是经典数值计算结果。 普遍认为我们当前所应用的MC 技术,其发展约可追溯至1944年,尽管在早些时候仍有许多未解决的实例。MCM 的发展归功于核武器早期工作期间Los Alamos (美国国家实验室中子散射研究中心)的一批科学家。Los Alamos 小组的基础工作刺激了一次巨大的学科文化的迸发,并鼓励了MCM 在各种问题中的应用[2]-[4]。“Monte Carlo ”的名称取自于Monaco (摩纳哥)内以赌博娱乐而闻名的一座城市。 Monte Carlo 方法的应用有两种途径:仿真和取样。仿真是指提供实际随机现象的数学上的模仿的方法。一个典型的例子就是对中子进入反应堆屏障的运动进行仿真,用随机游动来模仿中子的锯齿形路径。取样是指通过研究少量的随机的子集来演绎大量元素的特性的方法。例如,)(x f 在b x a <<上的平均值可以通过间歇性随机选取的有限个数的点的平均值来进行估计。这就是数值积分的Monte Carlo 方法。MCM 已被成功地用于求解微分方程和积分方程,求解本征值,矩阵转置,以及尤其用于计算多重积分。 任何本质上属随机组员的过程或系统的仿真都需要一种产生或获得随机数的方法。这种仿真的例子在中子随机碰撞,数值统计,队列模型,战略游戏,以及其它竞赛活动中都会出现。Monte Carlo 计算方法需要有可得的、服从特定概率分布的、随机选取的数值序列。 §8.2 随机数和随机变量的产生 [5]-[10]全面的论述了产生随机数的各类方法。其中较为普遍应用的产生随机数的方法是选取一个函数)(x g ,使其将整数变换为随机数。以某种方法选取 0x ,并按照)(1k k x g x =+产生下一个随机数。最一般的方程)(x g 具有如下形式: m c ax x g mod )()(+= (8.1) 其中 =0x 初始值或种子(00>x ) =a 乘法器(0≥a ) =c 增值(0≥c ) =m 模数

相关文档