文档库 最新最全的文档下载
当前位置:文档库 › 桩基承载力计算公式

桩基承载力计算公式

桩基承载力计算公式
桩基承载力计算公式

一、嵌岩桩单桩轴向受压容许承载力计算公式

采用嵌岩的钻(挖)孔桩基础,基础入持力层1~3倍桩径,但不宜小于,其单桩轴向受压容许承载力[P]建议按《公路桥涵地基与基础设计规范》JTJ024—85第条推荐的公式计算。

公式为:[P]=(c1A+c2Uh)Ra

公式中,[P]—单桩轴向受压容许承载力(KN);

Ra—天然湿度的岩石单轴极限抗压强度(KPa),按表查

取,粉砂质泥岩:Ra =14460KPa;砂岩:Ra =21200KPa

h—桩嵌入持力层深度(m);

U—桩嵌入持力层的横截面周长(m);

A—桩底横截面面积(m2);

c1、c2—根据清孔情况、岩石破碎程度等因素而定的系数。挖孔桩取c1=,c2=;钻孔桩取c1=,c2=。

二、钻(挖)孔桩单桩轴向受压容许承载力计算公式

采用钻(挖)孔桩基础,其单桩轴向受压容许承载力[P]建议按《公路桥涵地基与基础设计规范》JTJ024—85第条推荐的公式计算。

公式为:[]()R

p

A

Ul

τ+

=

2

1

公式中,[P] —单桩轴向受压容许承载力(KN);

U —桩的周长(m);

l—桩在局部冲刷线以下的有效长度(m);

A —桩底横截面面积(m2),用设计直径(取计算;

p τ— 桩壁土的平均极限摩阻力(kPa),可按下式计算:

∑==n i i i p l l 11ττ n — 土层的层数;

i l — 承台底面或局部冲刷线以下个土层的厚度(m); i τ— 与i l 对应各土层与桩壁的极限摩阻力(kPa),按表查取;

R σ— 桩尖处土的极限承载力(kPa),可按下式计算: {[]()}322200-+=h k m R γσλσ

[]0σ— 桩尖处土的容许承载力(kPa),按表查取; h — 桩尖的埋置深度(m); 2k — 地面土容许承载力随深度的修正系数,据规范表取为;

2γ— 桩尖以上土的容重(kN/m 3); λ— 修正系数,据规范表,取为; 0m — 清底系数,据规范表,钻孔灌注桩取为,人工挖孔桩取为。

地基承载力计算公式

地基承载力计算公式-CAL-FENGHAI.-(YICAI)-Company One1

地基承载力计算公式 地基承载力计算公式很多,有理论的、半理论半经验的和经验统计的,它们大都包括三项: 1. 反映粘聚力c的作用; 2. 反映基础宽度b的作用; 3. 反映基础埋深d的作 用。 在这三项中都含有一个数值不同的无量纲系数,称为承载力系数,它们都是内摩擦角φ的函数。 下面介绍三种典型的承载力公式。 a.太沙基公式 式中: P u——极限承载力,K a c ——土的粘聚力,KP a γ——土的重度,KN/m,注意地下水位下用浮重度; b,d——分别为基底宽及埋深,m; N c ,N q ,N r——承载力系数,可由图中实线查取。 图 2

对于松砂和软土,太沙基建议调整抗剪强度指标,采用 c′=1/3c , 此时,承载力公式为: 式中N c′,N q′,N r′——局部剪切破坏时的承载力系数,可由图中虚线查得。 对于宽度为b的正方形基础 对于直径为b′的圆形基础 b.汉森承载力公式 式中Nr,Nq,Nr——无量纲承载力系数,仅与地基土的内摩擦角有关,可查表c,N q,N r值 N c N q N r N c N q N r 024 226 428 630 832 1034 1236 1438 1640 1842 2044 3

2246 S c,S q,S r——基础形状系数,可查表 表基础形状系数S c,S q,S r值 基础形状S c S q S r 条形 圆形和方形1+N q/N c1+tanφ 矩形(长为L,宽为b)1+b/L×N q/N c1+b/LtanφL d c,d q,d r——基础埋深系数,可查表 表埋深系数d c,d q,d r d/b 埋深系数 d c d q d r ≤ 〉 i c,i q,i r——荷载倾斜系数,可查表 i c i q i r 注: H,V——倾斜荷载的水平分力,垂直分力,KN ; F——基础有效面积,F=b'L'm; 当偏心荷载的偏心矩为e c和e b,则有效基底长度, L'=L-2e c;有效基底宽度:b'=b-2e b。 c.我国地基规范提供的承载力公式 当荷载偏心矩e≤时,可用下列公式: 4

地基承载力计算公式

地基承载力计算公式很多,有理论的、半理论半经验的和经验统计的,它们大都包括三项: 1. 反映粘聚力c的作用; 2. 反映基础宽度b的作用; 3. 反映基础埋深d的作用。 在这三项中都含有一个数值不同的无量纲系数,称为承载力系数,它们都是内摩擦角φ的函数。下面介绍三种典型的承载力公式。 a.太沙基公式 式中: Pu——极限承载力,Ka c ——土的粘聚力,KPa γ——土的重度,KN/m,注意地下水位下用浮重度; b,d——分别为基底宽及埋深,m; Nc,Nq,Nr——承载力系数,可由图8.4.1中实线查取。 图8.4.1

对于松砂和软土,太沙基建议调整抗剪强度指标,采用 c′=1/3c , 此时,承载力公式为: 式中Nc′,Nq′,Nr′——局部剪切破坏时的承载力系数,可由图8.4.1中虚线查得。 对于宽度为b的正方形基础 对于直径为b′的圆形基础 b.汉森承载力公式 式中Nr,Nq,Nr——无量纲承载力系数,仅与地基土的内摩擦角有关,可查表8.4.1 表8.4.1承载力系数Nc,Nq,Nr值 Nc Nq Nr Nc Nq Nr 0 5.14 1.00 0.00 24 19.32 9.60 6.90 2 5.6 3 1.20 0.01 26 22.25 11.85 9.53 4 6.19 1.43 0.0 5 28 25.80 14.72 13.13 6 6.81 1.72 0.14 30 30.14 18.40 18.09 8 7.53 2.06 0.27 32 35.49 23.18 24.95 10 8.35 2.47 0.47 34 42.16 29.44 34.54 12 9.28 2.97 0.76 36 50.59 37.75 48.06 14 10.37 3.59 1.16 38 61.35 48.93 67.40 16 11.63 4.34 1.72 40 75.31 64.20 95.51 18 13.10 5.26 2.49 42 93.71 85.38 136.76 20 14.83 6.40 3.54 44 118.37 115.31 198.70

最新桩基地基承载力计算公式方法

地基承载力计算公式 对于宽度为b的正方形基础 对于直径为b′的圆形基础 b.汉森承载力公式 式中Nr,Nq,Nr——无量纲承载力系数,仅与地基土的内摩擦角有关,可查表8.4.1 S c ,S q ,S r ——基础形状系数,可查表8.4.2

d c ,d q ,d r ——基础埋深系数,可查表8.4.3 c q r 注: H,V——倾斜荷载的水平分力,垂直分力,KN ; F——基础有效面积,F=b'L'm; 当偏心荷载的偏心矩为e c和e b,则有效基底长度, L'=L-2e c;有效基底宽度:b'=b-2e b。 地基承载力计算公式很多,有理论的、半理论半经验的和经验统计的,它们大都包括三项: 1. 反映粘聚力c的作用; 2. 反映基础宽度b的作用; 3. 反映基础埋深d的作用。 在这三项中都含有一个数值不同的无量纲系数,称为承载力系数,它们都是内摩擦角φ的函数。 下面介绍三种典型的承载力公式。 a.太沙基公式

式中: P u ——极限承载力,K a c ——土的粘聚力,KP a γ——土的重度,KN/m,注意地下水位下用浮重度;b,d——分别为基底宽及埋深,m; N c ,N q ,N r ——承载力系数,可由图8.4.1中实线查取。 图8.4.1 对于松砂和软土,太沙基建议调整抗剪强度指标,采用 c′=1/3c , 此时,承载力公式为:

式中N c ′,在这三项中都含有一个数值不同的无量纲系数,称为承载力系数,它们都是内摩擦角φ的函数。 下面介绍三种典型的承载力公式。 N q ′,N r ′——局部剪切破坏时的承载力系数,可由 图8.4.1中虚线查得。 对于宽度为b的正方形基础 对于直径为b′的圆形基础 b.汉森承载力公式 式中Nr,Nq,Nr——无量纲承载力系数,仅与地基土的内摩擦角有关,可查表8.4.1

地基承载力(轻、重型计算公式)

小桥涵地基承载力检测 《公路桥涵施工技术规范》JTJ041-2000(P28)“小桥涵的地基检验可采用直观法或触探方法,必要时可进行土质试验”。就我国在建高速公路桥涵地基承载力而言,设计单位在施工图中多给出了地基承载力要求,如圆管涵基底承载力要求100kpa、箱涵250 kpa等等。因此承建单位一般采用(动力)触探法对基底进行检验。 触探法可分为静力触探试验、动力触探试验及标准贯入试验,那么它们分别是怎样定义的?适用范围又是什么呢?我想我们检测人 员是应该搞清楚的。 1、静力触探试验:指通过一定的机械装置,将某种规格的金属触探头用静力压入土层中,同时用传感器或直接量测仪表测试土层对触探头的贯入阻力,以此来判断、分析确定地基土的物理力学性质。静力触探试验适用于粘性土,粉土和砂土,主要用于划分土层,估算地基土的物理力学指标参数,评定地基土的承载力,估算单桩承载力及判定砂土地基的液化等级等。(多为设计单位采用)。 2、动力触探试验:指利用锤击功能,将一定规格的圆锥探头打入土中,根据打入土中的阻抗大小判别土层的变化,对土层进行力学分层,并确定土层的物理力学性质,对地基土作出工程地质评价。动力触探试验适用于强风化、全风化的硬质岩石,各种软质岩及各类土;动力触探分为轻型、重型及超重型三类。目前承建单位一般选用轻型和重型。①轻型触探仪适用于砂土、粉土及粘性土地基检测,(一般要求土中不含碎、卵石),轻型触探仪设备轻便,操作简单,省人省

力,记录每打入30cm的锤击次数,代用公式为R=(0.8×N-2)×9.8(R-地基容许承载力Kpa , N-轻型触探锤击数)。②重型触探仪:适用于各类土,是目前承建单位应用最广泛的一种地基承载力测试方法,该法是采用质量为63.5kg的穿心锤,以76cm的落距,将触探头打入土中,记录打入10cm的锤击数,代用公式为y=35.96x+23.8( y-地基容许承载力Kpa , x-重型触探锤击数)。 3、标准贯入试验:标准贯入试验是动力触探类型之一,其利用质量为63.5 kg的穿心锤,以76cm的恒定高度上自由落下,将一定规格的触探头打入土中15cm,然后开始记录锤击数目,接着将标准贯入器再打入土中30 cm,用此30 cm的锤击数(N)作为标准贯入试验指标,标准贯入试验是国内广泛应用的一种现场原位测试手段,它不仅可用于砂土的测试,也可用于粘性土的测试。锤击数(N)的结果不仅可用于判断砂土的密实度,粘性土的稠度,地基土的容许承载力,砂土的振动液化,桩基承载力,同时也是地基处理效果的一种重要方法。(多为测试中心及设计单位采用)。

管桩桩身的竖向极限承载力标准值设计值与特征值的关系

管桩桩身的竖向极限承载力标准值设计值与特 征值的关系 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

管桩桩身的竖向极限承载力标准值、设计值 与特征值的关系 (一)、计算公式: 管桩桩身的竖向极限承载力标准值Qpk、桩身竖向承载力设计值Rp与单桩竖向承载力最大特征值Ra的计算: 1、管桩桩身竖向承载力设计值Rp的确定: 根据03SG409《预应力混凝土管桩》国家标准图集中的说明第6.2.5条的计算式可以计算出桩身竖向承载力设计值Rp:Rp=AfcΨc。式中Rp—管桩桩身竖向承载力设计值KN;A—管桩桩身横截面积mm2; fc—混凝土轴心抗压强度设计值MPa; Ψc—工作条件系数,取Ψc=0.70 。 2、单桩竖向承载力最大特征值Ra的确定: 根据03SG409《预应力混凝土管桩》国家标准图集中的说明第6.2.6条的计算式可以计算出单桩竖向承载力最大特征值Ra:Ra= Rp/1.35。 3、管桩桩身的竖向极限承载力标准值Qpk的确定: 第一种确定方法:根据GB50007—2002《建筑地基基础设计规范》附录中单桩竖向桩身极限承载力标准值Qpk=2 Ra。

第二种确定方法:根据以下公式计算Qpk=(0.8fck-0.6σpc)A。式中Qpk—管桩桩身的竖向极限承载力标准值KN; A—管桩桩身横截面积mm2; fck—混凝土轴心抗压强度标准值MPa;σpc—桩身截面混凝土有效预加应力。 管桩桩身的竖向极限承载力标准值Qpk相当于工程施工过程中的压桩控制力。 4、综合以上计算公式,管桩桩身的竖向极限承载力标准值Qpk、桩身竖向承载力设计值Rp与单桩竖向承载力最大特征值Ra的关系如下: Ra= Rp/1.35; Qpk=2 Ra=2 Rp/1.35约等于1.48 Rp。 (二)、举例说明: 一、例如,根据03SG409《预应力混凝土管桩》国家标准图集标准,现对PC —A500(100)的管桩分别计算管桩桩身的单桩竖向极限承载力标准值、设计值与特征值如下,以验证以上公式的正确性: 1、管桩桩身竖向承载力设计值Rp的计算: Rp=AfcΨc=125660 mm2×27.5 MPa×0.7=2419KN;03SG409《预应力混凝土管桩》中为2400 KN,基本相符。 2、单桩竖向承载力最大特征值Ra的计算: Ra= Rp/1.35=2419 KN/1.35=1792 KN。 3、管桩桩身的竖向极限承载力标准值Qpk的计算:

承载力计算方法

承载力计算方法 1.计算公式 V A q Q n ?+?=1γ 其中, Q —— 极限承载力; 1γ—— 桩靴排开土的水下溶重; V —— 桩靴体积; A —— 桩靴面积; 2. 桩端阻力 n q —— 确定方法如下: 2.1 对于粘性土(不排水土) u c n S N q ?= 其中, c N ——承载力系数 9)2 .01(6≤+=B D N c 最大值不能超过9 D ——桩靴入泥深度; B ——与桩靴面积相当的圆的直径; u S ——不排水剪切强度。 2.2 对于砂性土(排水颗粒土) )1(3.002-+??=q r n N p N B q γ 其中, 2γ——桩靴底面下0.5B 处土壤水下溶重; B ——与桩靴面积相当的圆的直径; 0P ——桩靴底面处压强;

q N ——承载力系数 )2 45(tan 2 tan φ φ π+ =e N q r N ——承载力系数 φt a n )1(2+=q r N N 其中, φ——内摩擦角。 3 算例: 桩靴底面积70m 2 桩靴型深:2m 桩靴入泥土深度:10m 桩靴体积:105m 3 算例1:(粘性土质 表1) V A q Q n ?+?=1γ q n =N C ×S u Nc=6(1+0.2D/B) D=10m B=2*sqr(A/3.14)=2*sqr(70/3.14)=9.443m Nc=14.54>9 , 所以取9 Nc =9 Su=9kPa q n =9*9000=81000 pa r 1=9kN/m 3 V=105m 3 Q=81000*70+9000*105=6615kN=675t

地基承载力计算公式

地基承载力计算公式的说明:f=fk+ηbγ(b-3)+ηdγο(d-0.5) fk——垫层底面处软弱土层的承载力标准值(kN/m2) ηb、ηd——分别为基础宽度和埋深的承载力修正系数 b--基础宽度(m) d——基础埋置深度(m) γ--基底下底重度(kN/m3) γ0——基底上底平均重度(kN/m3) 地基的处理方法 利用软弱土层作为持力层时,可按下列规定执行:1)淤泥和淤泥质土,宜利用其上覆较好土层作为持力层,当上覆土层较薄,应采取避免施工时对淤泥和淤泥质土扰动的措施;2)冲填土、建筑垃圾和性能稳定的工业废料,当均匀性和密实度较好时,均可利用作为持力层;3)对于有机质含量较多的生活垃圾和对基础有侵蚀性的工业废料等杂填土,未经处理不宜作为持力层。局部软弱土层以及暗塘、暗沟等,可采用基础梁、换土、桩基或其他方法处理。在选择地基处理方法时,应综合考虑场地工程地质和水文地质条件、建筑物对地基要求、建筑结构类型和基础型式、周围环境条件、材料供应情况、施工条件等因素,经过技术经济指标比较分析后择优采用。 地基处理设计时,应考虑上部结构,基础和地基的共同作用,必要时应采取有效措施,加强上部结构的刚度和强度,以增加建筑物对地基不均匀变形的适应能力。对已选定的地基处理方法,宜按建筑物地基基础设计等级,选择代表性场地进行相应的现场试验,并进行必要的测试,以检验设计参数和加固效果,同时为施工质量检验提供相关依据。 经处理后的地基,当按地基承载力确定基础底面积及埋深而需要对地基承载力特征值进行修正时,基础宽度的地基承载力修正系数取零,基础埋深的地基承载力修正系数取1.0;在受力范围内仍存在软弱下卧层时,应验算软弱下卧层的地基承载力。对受较大水平荷载或建造在斜坡上的建筑物或构筑物,以及钢油罐、堆料场等,地基处理后应进行地基稳定性计算。结构工程师需根据有关规范分别提供用于地基承载力验算和地基变形验算的荷载值;根据建筑物荷载差异大小、建筑物之间的联系方法、施工顺序等,按有关规范和地区经验对地基变形允许值合理提出设计要求。地基处理后,建筑物的地基变形应满足现行有关规范的要求,并在施工期间进行沉降观测,必要时尚应在使用期间继续观测,用以评价地基加固效果和作为使用维护依据。复合地基设计应满足建筑物承载力和变形要求。地基土为欠固结土、膨胀土、湿陷性黄土、可液化土等特殊土时,设计要综合考虑土体的特殊性质,选用适当的增强体和施工工艺。复合地基承载力特征值应通过现场复合地基载荷试验确定,或采用增强体的载荷试验结果和其周边土的承载力特征值结合经验确定。 常用的地基处理方法有:换填垫层法、强夯法、砂石桩法、振冲法、水泥土搅拌法、高压喷射注浆法、预压法、夯实水泥土桩法、水泥粉煤灰碎石桩法、石灰桩法、灰土挤密桩法和土挤密桩法、柱锤冲扩桩法、单液硅化法和碱液法等。 1、换填垫层法适用于浅层软弱地基及不均匀地基的处理。其主要作用是提高地基承载力,减少沉降量,加速软弱土层的排水固结,防止冻胀和消除膨胀土的胀缩。

管桩基础搅拌站各基础承载力和配筋等演算

搅拌站基础设计及验算 **项目部拟采用HZS100和HZS75搅拌站各一台,现在根据厂家图纸和现场地基条件设计和验算搅拌站基础。 搅拌站基础主要分五大基础:筒仓基础、主机架基础、送料系统基础、操作室基础和配料系统基础。计算中,筒仓考虑风荷载并根据地质条件使用钢管桩增强抗拔。其他基础均根据图纸采用混凝土扩大基础,其中土质承载力根据《工程地质勘察报告》,地基承载力取90kPa。 1.筒仓基础设计及验算 根据肇花项目东岸搅拌站选址地质情况,筒仓基础拟采用钢管桩配上混凝土承台作为承载基础。 图1.1 筒仓基础结构 混凝土扩大基础拟采用□3.5m×3.5m×0.5m的混凝土结构。钢管桩拟采用直径Ф630mm,壁厚为6mm。 将混凝土如图均分4份,根据北江特大桥勘探资料,表面土层为素填土,允许承载力为90kPa。 1.1抗拔及承压工况计算 根据实际工作分析,抗拔最大工况为风荷载最大且筒仓空载:

如图所示,风荷载作用位置H=15m ,风级按12级风,风压p 取1.3kPa : kN kPa F 21.54)]8.03(35.0123[3.1=+??+??=; 风荷载产生弯矩:m kN FH M ?=?==15.8131521.54; 另外,考虑m e 1.0=偏心,其中筒仓空载载荷载取kN g m k 200=,kN g m m 1400=,则:m kN kN m M ek ?=?=202001.0,m kN kN m M em ?=?=14014001.0 对钢管桩产生附加荷载F ?的计算: 0='++=∑M M M M e ,Fd M ?='; 风向平行钢管所在正方形的边长和对角线时,力偶臂分别为:m d 95.11=和 m d 76.22=。 故,kN m m kN d M M d M F e 6.21395.1215.83322111=??=+='= ?; kN m m kN d M M d M F e 9.30176.215.833222=?=+='= ?; 所以,钢管桩承载力: 每份混凝土质量:kN vg g m t 8.39105.075.175.16.2=????==ρ kN g m R m 7.6919.3018.394max =++= ,kN g m R k 1.2128.394 9.301min =--=(方向向上)。 图1.2 筒仓风荷载 每份混凝土承压:kN A R h 6.2759075.175.1=??==σ

地基承载力计算.docx

地基承载力计算 5. 2.1 基础底面的压力,应符合下列规定: 1 当轴心荷载作用时 p k ≤ f a ( 5.2.1-1) 式中: p k ——相应于作用的标准组合时,基础底面处的平均压力值( f a ——修正后的地基承载力特征值( kPa )。 kPa ); 2 当偏心荷载作用时,除符合式(5.2.1-1 )要求外,尚应符合下式规定: p kmax ≤ 1.2f a ( 5.2.1-2) 式中: p kmax ——相应于作用的标准组合时,基础底面边缘的最大压力值( kPa )。 5. 2.2 基础底面的压力,可按下列公式确定: 1当轴心荷载作用时 F k G k ( 5.2.2-1) p k A 式中: F k ——相应于作用的标准组合时,上部结构传至基础顶面的竖向力值( kN ); G k ——基础自重和基础上的土重( kN ); A ——基础底面面积( m 2)。 2 当偏心荷载作用时 F k G k M k (5.2.2-2) p k max A W F k G k M k (5.2.2-3) p k min W A 式中: M k ——相应于作用的标准组合时,作用于基础底面的力矩值( kN · m ); W ——基础底面的抵抗矩( m 3); p kmin ——相应于作用的标准组合时,基础底面边缘的最小压力值( kPa )。 3 当基础底面形状为矩形且偏心距e >b/6 时(图 5.2.2 )时, p kmax 应按下式计算: 2(F k G k ) (5.2.2-4) p k max 3la 式中: l ——垂直于力矩作用方向的基础底面边长( m ); a ——合力作用点至基础底面最大压力边缘的距离( m )。

管桩检测及承载力计算

管桩检测及承载力计算 管桩检测 1、管桩检测规范应严格按照《基桩高应变动力检测规程》(JGJ 106-97)中相关规定执行。 2、检测仪器管桩高应变动力检测仪器目前国内市场种类较多,所选进口或国产仪器均应满足规程中相关规定。目前国外引进的仪器有瑞典PID打桩分析仪、荷兰TNO基桩诊断系统、美国桩基动力学公司PDA打桩分析仪,国内的有中国建筑科学研究院FEI-C型桩基动测分析系统、中交三航局SDF-1型打桩分析仪、中科院武汉岩土所RSM系列动测仪、武汉岩海工程技术有限公司RS系列桩基动测仪等型号。武汉岩海公司 RS-1616K(PLUS)/1616K动测仪高应变系统主要用途: ?高应变测桩主要特点: ?电性能指标高,机械故障率低?即现速度、力曲线和承载力与打击力?高应变实时监控大于130锤/分钟存取信号?任选RS模式和PDA模式从事高应变检测?自动实现连续采集、叠加、平衡调节功能?兼容速度计和国产或进口内装式加速度计中科院武汉岩土所RSM—24FD浮点工程动测仪是针对目前市政工程、铁路交通、地质勘察等检测工作研制开发的产品,应用多项最新技术,能有效完成基桩高低应变法检测;单孔波速、振动、瑞雷波测试;其它工程动态信号检测;…。是目前我国工程界广泛采用的主流机型,深得广大用户的喜爱。美国桩基动力学公司PAK型PDA高应变桩基动测专用仪器 Case法承载力。侧摩阻力和端阻力。最大压应力、加速度和位置。桩身最大拉应力。计算的桩端应力。桩身结构完整性,缺损程度及位置。传递给桩的最大能量。锤垫层刚度(蒸汽锤/钢桩)每分钟锤击数,检验打桩系统。可显示力、速度、动能、位移、阻力、上下行波的时标曲线,可以用

500管桩单桩水平承载力特征值计算书

管桩单桩水平承载力(地震)特征值计算书 一.基本资料 桩类型:125A -PHC500 桩顶约束情况:铰接,半固接 混凝土强度等级: C80 二.系数取值 1.桩入土深度 h = 15.000~25.000m 2 桩侧土水平抗力系数的比例系数 44/5000/5m KN m MN m ==(松散或稍密填土)44/2500/5.2m KN m MN m ==(淤泥或淤泥质土) 3.桩顶容许水平位移a X 0= 10mm 4.砼弹性模量C E = 38000N/mm 2=7108.3?KN/m 2 三.执行规范 《建筑桩基技术规范》(JGJ 94-2008) 《先张法预应力混凝土管桩基础技术规程》(DBJ13-86-2007) 四.计算内容 1.管桩截面惯性矩: 64)1(44απ-=D I =64) 50.01(5.014.344-?=3 1087.2-?m 4 其中,α==D d 500.0500250= D ——管桩外径,d ——管桩内径 2.管桩截面抗弯刚度: EI =237927011087.2108.385.085.0m KN I E C ?=????=- 3.管桩桩身计算宽度:

m 125.10.5)0.9(1.5D b0=+= 4.管桩水平变形系数: 5 0I E mb c =α=5 92701125.15000?=)/1(571.0m 5.管桩桩顶水平位移系数: 桩的换算深度al >4.0 查表得:441.2=x V 6.单桩水平承载力设计值: a x C H X V I E R 03α==KN 701.7001.0441 .292701571.03=?? 7.单桩水平承载力特征值: KN R R H Ha 5337.5235.1/701.70/≈===γ 五.结论: 根据《福建省结构设计暂行规定》第4条规定: (1) 单桩和两桩承台基础中的单桩水平承载力特征值取值为: KN R Ha 53= (2) 三桩及三桩以上承台基础(非单排布置)中的单桩水平承载力 特征值取值为:KN KN R Ha 4.775346.1'=?= 注:桩顶约束为固接时,940.0=x V ,故,桩顶约束介于铰接与固接之间 假定桩顶水平位移系数为线性变化(供参考): 675.12 940.0441.2'=+=x V ,KN R V V R Ha x x Ha 24.7753675.1441.2''=?=?= (3) 当地基土为淤泥或淤泥质土(44/2500/5.2m KN m MN m ==)时, KN R Ha 5.34=,KN R Ha 3.50'=

2019年各地区计算地基承载力方法.doc

我们高速公路使用的是4.5X+24,设计院给的,是“铁”字辈的,。以前工程是8X-20。 N10型触探仪的适用范围是100~230KPa,在这个范围内用这个公式是对的,这个公式本来就是用这些数据回归出来的,所以出了这个范围就不能用这个公式,否则就不准确啦,但现在各个项目的地基承载力不一定在这个范围,为了方便检测,就用这个公式外延计算,我个人认为这样是不合理的. [/quote] 我也同意此观点,我觉得对于地基为粘土和亚粘土,并且呈可塑状或者硬塑状时是实用的,对其他土质只有指导作用,是不实用的。工地上为了达到简单,才使用N10型触探仪测试其承载力。 同意此意见,我们以前在高速公路中,有时业主也要求做空隙比,根据空隙比查看承载力,这样比较精确,操作上也不是很麻烦。 N10型触探仪的适用范围是100~230KPa,在这个范围内用这个公式是对的,这个公式本来就是用这些数据回归出来的,所以出了这个范围就不能用这个公式,否则就不准确啦,但现在各个项目的地基承载力不一定在这个范围,为了方便检测,就用这个公式外延计算,我个人认为这样是不合理的. 近几年,我国高速公路发展迅猛,由于高速公路是全封闭的,所以需要修建许多的构造物,如机耕通道、人行通道及排水涵、盖板涵等。因为地基承载力不足,结构物局部不均匀沉降时有发生。因此应该引起高度重视。以下结合本人多年从事公路工程试验检测工作的切身体会,片面地谈谈非桩基础的小桥涵地基承载力检测。 1、小桥涵地基承载力的检测方法(仅针对土质地基)小桥涵地基检测方法是多种多样的,建设单位一般建议采用标准贯入法,该法是采用质量为63.5Kg穿心锤,以76cm的落距,将一定规格的标准贯入器先打入土中15cm,然后开始记录锤击数目,将标准贯入器再打入土中30cm,用此30cm的锤击数作为标准贯入试验的指标。而目前施工单位更多的采用一种叫N10的轻型触探仪,此方法更为方便经济,适用于砂类土、粘性土地基,代用公式为R=(0.8×N-2)×9.8(R-地基容许承载力Kpa , N-轻型触探锤击数)。 2、为确保地基承载力质量,基坑开挖应注意哪些?⑴基坑开挖一定要结合当地天气预报,基坑开挖至基底30-50cm时,可根据天气情况来安排下一步工序,在天气晴朗时,将预留部分挖除,随即进行基坑检查,检验合格后马上进行基础的施工。⑵挖至标高的土质基坑不得长期暴露、拢动或浸泡,并应及时检查基坑尺寸、高程、基地承载力,符合要求后,应立即进行基础施工。⑶应避免超挖。如超挖,应将松动部分清除,其处理方案应报监理、设计单位批准。 3、土质地基达不到承载力要求时如何处理? 一般采用换填法加固(本节3条引自公路桥涵施工技术规范实施手册P46) ⑴深度小于2m的基坑中淤泥、淤泥质土、湿陷性黄土等,宜全部挖除,挖除宽度应比基础各边宽出0.5m。当渗水难以排干时,则应换填水稳性好的中砂、粗砂、砂砾石、碎石等材料,并分层夯实,压实度应达到90%-95%;当渗水能排干时,可换填强度较高的土或灰土。 ⑵单独使用砂砾垫层、矿渣垫层或灰土垫层,其厚度应由软弱下卧土层的允许

地基承载力计算方法

一.地基承载力计算方法:按《建筑地基基础设计规范》(GBJ7-89) 1.野外鉴别法 岩石承载力标准值f k(kpa) 注:1.对于微风化的硬质岩石,其承载力取大于4000kpa时,应由试验确定; 2.对于强风化的岩石,当与残积土难于区分时按土考虑。 碎石承载力标准值f k(kpa) 注:1.表中数值适用于骨架颗粒空隙全部由中砂、粗砂或硬塑、坚硬状态的粘土或稍湿的粉土所充填的情况; 2.当粗颗粒为中等风化或强风化时,可按其风化程度适当降低承载力,当颗粒间呈半胶结状时,可适当提高承载力; 3.对于砾石、砾石土均按角砾查承载力。 2.物理力学指标法 粉土承载力基本值f(kpa) 注:1.有括号者仅供内插用; 2.折算系数§=0。 粘性土承载力基本值f(kpa) 注:1.有括号者仅供内插用; 2.折算系数§=0.1。

沿海地区淤泥和淤泥质土承载力基本值f(kpa) 注:对于内陆淤涨和淤泥质土,可参照使用。 红粘土承载力基本值f(kpa) 注:1.本表仅适用于定义范围内的红粘土; 2.折算系数§=0.4。 素填土承载力基本值f(kpa) 注:本表只适用于堆填时间超过10年的粘性土,以及超过5年的粉土;所查承载需经修正计算。3.标准贯入试验法 砂土承载力标准值f k(kpa) 注:1.砾砂不给承载力; 2.粉细砂按粉砂项给承载力;3.中粗砂按中砂项给承载力; 4.细中砂按细砂项给承载力; 5.粗砾砂按粗砂项给承载力; 6.N63.5需修正后查承载力. 粘性土承载力标准值f k(kpa) 注:N63.5需经修正后查承载力。 花岗岩风化残积土承载力基本值f(kpa) 注:花岗岩风化残积土的定名: 2mm含量≥20%为砾质粘性土; 2mm含量<20%为砂质粘性; 2mm含量=0为粘性土

预应力混凝土管桩的计算

预应力混凝土管桩的计算 C.1预应力混凝土管桩的预应力损失及桩身混凝土有效预压应力值的计算方法,按照现行《混凝土结构设计规范》GB50010的规定计算。根据管桩的生产工艺特点,预应力损失一般考虑管桩中直线预应力钢棒由于锚夹具变形和钢棒内缩引起的预应力损失值ii;预应力钢棒 的应力松驰引起的预应力损失14;管桩混凝土收缩、徐变引起预应 力损失|5。 1、预应力钢筋由于锚夹具变形和钢筋内缩引起的预应力损失值 按下列公式计算: |1= 式中a—张拉端锚具变形和钢筋内缩值(伽); L—单节管桩长度或单根和模长度(mm); Es—预应力钢筋的强性模量(2.0 X 105N/m 2)。 2、预应力钢筋的应力松驰引起的预应力损失值14按下列公式计算: 11=0.025 con 式中con —预应力钢筋张拉控制应力(N/m 2); 0.025 —松驰系数,按低松驰螺旋槽钢棒确定。 3、混凝土收缩、徐变引起的预应力损失值15按下列公式计算: 60+340 opc i f 'u l 5= 1 + 15 式中pc i —管桩横截面上预应力钢棒合力点处的混凝土法向应力 ( pc i = ( con- 11- |4) A P/ A o)

f施加预应力时的混凝土立方体抗压强度; —管桩横截面上预应力钢筋的配筋率。 4、管桩横截面上混凝土有效预压力值应按下式计算: pc= ( con- J A p/A o 式中:con—预应力钢筋张拉控制应力(一般取con =0.70f ptk) 1—钢筋的总预应力损失值(1=(11+ 14+ 15) A p—管桩横截面上预应力钢筋总截面积; A o—管桩换算横截面面积。 C.2管桩在纯弯状态下的抗弯承载力设计值和抗弯承载力极限值分别 按下规定计算: 1、管桩的抗弯承载力设计值按下式计算 Sn兀a Sn n a Sn兀 a M = a i f c A(r i+r2)—+ f Py A p r p (f '- po)A p「p 2 n n n 式中:f py A p a= a f c A+f py A p+1.5(f py- po)A p a t =1-1.5 a A—管桩有效横截面面积(m^); A—预应力钢棒的总横截面面积(mm ; 「1、「2—管桩截面的内、外半径(mr); 九一纵向预应力钢筋重心所在圆周的半径(mr); a—受压区混凝土截面面积与全截面面积的比值; a t—纵向受拉钢筋截面面积与全部纵向钢筋截面面积的比值, 当a> 2/3 时,取a t =0 a 1—受压力混凝土矩形应力图的应力值与混凝土轴心抗压强

桩基承载力计算公式

一、嵌岩桩单桩轴向受压容许承载力计算公式 采用嵌岩的钻(挖)孔桩基础,基础入持力层1~3倍桩径,但不宜小于,其单桩轴向受压容许承载力[P]建议按《公路桥涵地基与基础设计规范》JTJ024—85第条推荐的公式计算。 公式为:[P]=(c1A+c2Uh)Ra 公式中,[P]—单桩轴向受压容许承载力(KN); Ra—天然湿度的岩石单轴极限抗压强度(KPa),按表查 取,粉砂质泥岩:Ra =14460KPa;砂岩:Ra =21200KPa h—桩嵌入持力层深度(m); U—桩嵌入持力层的横截面周长(m); A—桩底横截面面积(m2); c1、c2—根据清孔情况、岩石破碎程度等因素而定的系数。挖孔桩取c1=,c2=;钻孔桩取c1=,c2=。 二、钻(挖)孔桩单桩轴向受压容许承载力计算公式 采用钻(挖)孔桩基础,其单桩轴向受压容许承载力[P]建议按《公路桥涵地基与基础设计规范》JTJ024—85第条推荐的公式计算。 公式为:[]()R p A Ul Pσ τ+ = 2 1 公式中,[P] —单桩轴向受压容许承载力(KN); U —桩的周长(m); l—桩在局部冲刷线以下的有效长度(m); A —桩底横截面面积(m2),用设计直径(取计算;

p τ— 桩壁土的平均极限摩阻力(kPa),可按下式计算: ∑==n i i i p l l 11ττ n — 土层的层数; i l — 承台底面或局部冲刷线以下个土层的厚度(m); i τ— 与i l 对应各土层与桩壁的极限摩阻力(kPa),按表查取; R σ— 桩尖处土的极限承载力(kPa),可按下式计算: {[]()}322200-+=h k m R γσλσ []0σ— 桩尖处土的容许承载力(kPa),按表查取; h — 桩尖的埋置深度(m); 2k — 地面土容许承载力随深度的修正系数,据规范表取为; 2γ— 桩尖以上土的容重(kN/m 3); λ— 修正系数,据规范表,取为; 0m — 清底系数,据规范表,钻孔灌注桩取为,人工挖孔桩取为。

500管桩单桩水平承载力特征值计算书

管桩单桩水平承载力(地震)特征值计算书 一.基本资料 桩类型:PHC500-125A桩顶约束情况:铰接,半固接 混凝土强度等级:C80 二.系数取值 1.桩入土深度h=15.000~25.000m 2桩侧土水平抗力系数的比例系数45000/4 m5MN/mKNm(松散或 稍密填土)42500/4 m2.5MN/mKNm(淤泥或淤泥质土) 3.桩顶容许水平位移X0=10mm a 4.砼弹性模量E=38000N/mm2= C 2= 37KN/m .81037KN/m 2 三.执行规范 《建筑桩基技术规范》(JGJ94-2008) 《先张法预应力混凝土管桩基础技术规程》(DBJ13-86-2007) 四.计算内容 1.管桩截面惯性矩: 44 D(1) I= 64 3.14 4 0.5(1 64 4 0.50) = 34 2.8710m 其中,α= d D 250 500 0.500 D——管桩外径,d——管桩内径 2.管桩截面抗弯刚度: EI= 72.871092701 32 0.85E C I0.853.810KNm 3.管桩桩身计算宽度:

b00.9(1.5D0.5)1.125m 2.管桩水平变形系数: 5 mb 0 EI c = 5 50001.125=0.571(1/m) 92701 3.管桩桩顶水平位移系数: 桩的换算深度al>4.0 查表得:2.441 V x 4.单桩水平承载力设计值: 3 EI C R H X 0 a V x 3 5.92701 =0.0170.701KN 3. 5.单桩水平承载力特征值: R Ha R H /70.701/1.3552.3753KN 五.结论: 根据《福建省结构设计暂行规定》第4条规定: (1)单桩和两桩承台基础中的单桩水平承载力特征值取值为: R Ha 53KN (2)三桩及三桩以上承台基础(非单排布置)中的单桩水平承载力 特征值取值为:R H a '1.4653KN77.4KN 注:桩顶约束为固接时,V0.940,故,桩顶约束介于铰接与固接之间 x 假定桩顶水平位移系数为线性变化(供参考): 3.150.940V2.441 V'1.675,R Ha 'R Ha 5377.24KN xx 2V1.675 x' (3)当地基土为淤泥或淤泥质土( m)时,

地基承载力特征值的计算例题

1、某建筑物基础底面尺寸为3m^4m,基础理深d=1.5m,拟建场地地下水位距地表1.0m,地基土分布:第一层为填土,层厚为1米,丫 =18.0kN/m3;第二层为粉质粘土,层厚为5米,尸19.0kN/m3,氐 =22o C k=16kPa;第三层为淤泥质粘土,层厚为6米,尸17.0kN/m3, 氐=110 C k=10kPa;。按《地基基础设计规范》(GB50007—2002)的理论公式计算基础持力层地基承载力特征值f a,其值最接近下列哪一个数值?_B (A) 184kPa; (B) 191kPa; (C) 199 kPa; (D) 223kPa。 2.某建筑物的箱形基础宽9m,长20m,埋深d =5m,地下水位距地表 2.0m,地基土分布:第一层为填土,层厚为1.5米,Y= 18.0kN/m3; 第二层为粘土,层厚为10米,水位以上Y=18.5kN/m3、水位以下丫 =19.5kN/m3, I L=0.73, e=0.83由载荷试验确定的粘土持力层承载力特征值f ak =190kPa。该粘土持力层深宽修正后的承载力特征值f a最接 近下列哪个数值? D _ (A)259kPa; (B)276kPa; (C)285kPa; (D)292kPa。 计算题 某建筑物的箱形基础宽8.5m,长20m,埋深4m, 土层情况见下表所示,由荷载试验确定的粘土持力层承载力特征值fak=189kPa,已知地 下水位线位于地表下2m处。求该粘土持力层深宽修正后的承载力特征值fa 层次土类层底埋深(m) 土工试验结果 1填土 1.80~3~ Y =17.8kN/m 3 2粘土 2.00 3 0=32.0% 3 L=37.5%3 P=17.3% d s=2.72 水位以上丫= 18.9kN/m 3 水位以下丫 = 19.2kN/m 3 7.80 解:(1)先确定计算参数 因箱基宽度b=8?5m>6.0m,故按6m考虑;箱基埋深d=4m。 由于持力层为粘性土,根据《建筑地基基础设计规范》 (GB 50007—2002)表5?2?4,确定修正系数n, n的指标为孔隙比e和液性指数IL ,它们可以根据土层条件分别求得: ” d s (1 」0)w十 272 (1 g) 9.8 _心0.83 -0.73 由于I L=0?73<0?85,e=0?83<0.85,从规范 表 5.2.4查得%=0.3 , n=1.6 因基础埋在地下水位以下,故持力层的丫取有效 容重为: 19.2 32.0 -17.3 37.5 -17.3

地基承载力计算

拌合站地基承载力计算 拌合站配备2台拌和机,拌和机配置8个水泥罐,单个罐在装满材料时均按照80吨计算,主楼JS1000拌和机按照15吨计算。拌合站处于祠村老玉鹭水泥厂院内,此位置位于国道319附近。 一.计算公式 1、地基承载力 P/A=σ≤σ0 P—储蓄罐重量 KN A—基础作用于地基上有效面积mm2 σ—土基受到的压应力 MPa σ0—土基容许的应力 MPa 根据设计单位工程地质勘查报告中提供数据持力层为碎块状强风化岩,基容许的应力为600KPa=0.6MPa,具体见两阶段施工图附册《工程地质勘查报告》。 2、风荷载强度 W=K1K2K3W0= K1K2K31/1.6V2 W —风荷载强度 Pa W0—基本风压值 Pa K1、K2、K3—风荷载系数,查表分别取0.8、2.09、1.0。 V—风速 m/s,取20.7m/s(8级风力) σ—土基受到的压应力 MPa σ0—土基容许的应力 MPa

3、基础抗倾覆计算 K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×(7+7)≥1.5 即满足要求 M1—抵抗弯距 KN?M M2—抵抗弯距 KN?M P1—储蓄罐与基础自重 KN P2—风荷载 KN 4、基础抗滑稳定性验算 K0= P1×f/ P2≥1.3 即满足要求 P1—储蓄罐与基础自重 KN P2—风荷载 KN f-----基底摩擦系数,查表得0.40; 5、基础承载力 P/A=σ≤σ0 P—储蓄罐单腿重量 KN A—储蓄罐单腿有效面积mm2 σ—基础受到的压应力 MPa σ0—砼容许的应力 MPa 二、储料罐基础验算 1、储料罐地基开挖及浇筑 根据厂家提供的拌和站安装施工图,现场平面尺寸如下:地基开挖尺寸为 3.5*14米的长方形呈扇形分布拌合站北侧,浇筑深度为

地基承载力计算公式

地基承载力计算公式 分享 首次分享者:∮★龙★∮已被分享5次评论(0)复制链接分享举报 地基承载力计算公式很多,有理论的、半理论半经验的和经验统计的,它们大都包括三项: 1. 反映粘聚力c的作用; 2. 反映基础宽度b的作用; 3. 反映基础埋深d的作用。 在这三项中都含有一个数值不同的无量纲系数,称为承载力系数,它们都是内摩擦角φ的函数。 下面介绍三种典型的承载力公式。 a.太沙基公式 式中: P u ——极限承载力,K a c ——土的粘聚力,KP a γ——土的重度,KN/m,注意地下水位下用浮重度;b,d——分别为基底宽及埋深,m; N c ,N q ,N r ——承载力系数,可由图8.4.1中实线查取。 图8.4.1

对于松砂和软土,太沙基建议调整抗剪强度指标,采用 c′=1/3c , 此时,承载力公式为: 式中N c ′,N q ′,N r ′——局部剪切破坏时的承载力系数,可由图8.4.1中虚线 查得。 对于宽度为b的正方形基础 对于直径为b′的圆形基础 b.汉森承载力公式 式中Nr,Nq,Nr——无量纲承载力系数,仅与地基土的内摩擦角有关,可查表8.4.1 S c ,S q ,S r ——基础形状系数,可查表8.4.2

c q r c q r 注: H,V——倾斜荷载的水平分力,垂直分力,KN ; F——基础有效面积,F=b'L'm; 当偏心荷载的偏心矩为e c和e b,则有效基底长度, L'=L-2e c;有效基底宽度:b'=b-2e b。 c.我国地基规范提供的承载力公式 当荷载偏心矩e≤0.033b时,可用下列公式: 式中: f v ——由土的抗剪强度指标确定的地基承载力设计值: M b ,M d ,M c ——承载力系数,按表; b——基础底面宽度,大于6m按6m考虑,对于砂土,小于3m时按3m考虑; γ0——基础底面以上土的加权系数平均值,地下水位以下取有效重度; γ——基础底面以下土的重度,地下水位以下取有效重度; C k ——基底下一倍基宽深度内土的粘聚力标准值。 上述公式一般只适用于浅基础,即d/b≤1,当d/b=3~4时,应按深基础考虑;上述公式只适用于均质地基,对成层地基,可近似采用地基各层的抗剪强度指标加权平均值代入公式计算;公式: 都是指地基极限承载力,设计时需除以安全系数K后作为地基承载力。 表8.4.5

相关文档