文档库 最新最全的文档下载
当前位置:文档库 › 数字荧光频谱技术DPX

数字荧光频谱技术DPX

数字荧光频谱技术DPX
数字荧光频谱技术DPX

数字荧光频谱技术DPX?在频谱监测中的应用

摘要

在频谱监测与管理工作中,对瞬变信号频谱的捕获与定位一直是悬而未决的难题,实时频谱分析仪中的数字荧光技术DPX?是频谱显示的革命性突破,可以揭示传统频谱分析仪和矢量信号分析仪完全漏掉的信号细节。数字荧光技术DPX?是所有泰克实时频谱分析仪(RTSA)中的标配功能,本文主要介绍DPX?技术在频谱监测与管理中的应用,但DPX?的应用远不仅局限于此,用户如果想对DPX?技术的应用做更深入的了解,可以参阅泰克公司相关技术文章或咨询泰克公司工程师。

图1在更新1 次(左)和更新9 次(右)后维位图(bitmap)数据库实例。每一栏都包含相同的“命中”总数。

DPX?技术简介

DPX可以简单地描述为每秒执行数万次频谱测量,然后以生动的实时速率更新屏幕,这种高变换速率

对检测不频繁的事件至关重要,但它的速度太快了,液晶显示器不能跟上这一速度,也大大超过了人眼能够感受到的水平。因此进入的频谱会以全速写入位图(bitmap)数据库中,然后以看得到的速率传送到屏幕上。通过把频谱图划分成表示轨迹幅度值的行和针对频率轴上各点的列,可以绘制成位图(bitmap)数据库图像,格中的每个单元包含着进入该格的频谱命中的次数。数字荧光通过跟踪这些次数来实现配比,从而可以用眼睛把罕见的瞬变与正常信号和背景噪声区分开来。

实时频谱分析仪中的实际位图数据库包含着几百个列和行,但我们用11X10 矩阵来说明这一概念。图1 显示了在单个频谱映射到数据库中之后数据库单元可能包含的内容。空单元格包含的值为零,意味着频谱中没有任何点落入里面。右面的格显示了在已经执行另外八次频谱变换及结果存储在单元中之后,我们简化的数据库中可能包含的值。在没信号的时间内,恰好计算了九个频谱中的一个频谱,本底噪声中的一串“1”值表明了这一点。

在把发生数量值与颜色标度对映起来时,数据会转换成信息。图2中的表格显示了这一实例将使用的颜色对映算法。暖色(红色、橙色、黄色)表明发生频次较高。还可以使用其它强度等级方案。图3 是根据九个频谱写入次数绘制的数据库单元格颜色。通过在屏幕上显示带颜色的单元格、每个像素一个单元格,可以得到非常壮观的DPX 显示画面。

图2

图3 带色码的低分辨率实例(左)和实际DPX 显示(右)

DP X?的意义

简而言之,DPX技术在短时间内累积显示数以万计的频谱图,累积效果用位图的颜色来表示,从这个意义上说,DPX相当于电影中慢镜头回放,将快速变化的过程清晰地展现出来,因此,DPX技术是侦测瞬变信号的唯一有效的手段,这里所说的瞬变速度可以达到微妙级,为此,我们定义100%侦听概率来衡量不同类型仪表的侦测能力。

侦听概率

在频谱分析仪上查看异常信号的概率有多大?为确定这一概率,我们将比较各类分析仪的侦听概率(POI)。扫频调谐频谱分析仪和步进调谐频谱分析仪不能为不连续存在的信号提供100% 的POI,其主要原因是它们在每次扫描期间,只用很短的时间调谐频率跨度中很小的部分。如果在该时点调谐的地方之外的任何跨度部分发生事件,那么将不能检测或显示该事件。另外在每次扫描之间还有一段时间,分析仪不会注意输入信号。基于FFT 的分析仪,包括矢量信号分析仪,还会漏掉采集数据块之间的信号。其POI 取决于多种因素的组合,包括SPAN、FFT 点数、采集时间和扫描速率。

泰克实时频谱分析仪中的DPX 技术保证了100% 的侦听概率,不同型号的实时频谱仪的POI指标不同,

RSA6114可以在110M带宽内最多每秒处理超过290000个频谱,100% 捕获最短10.3 μs 的偶发信号事件,它的应用已经不限于频谱监测领域。H500/SA2500可以在20M带宽内最多每秒处理10000个频谱,100% 捕获最

短125μs的偶发信号事件,在便携式仪表中绝无仅有,是频谱监测与管理的有效工具。

同频干扰信号的区分

由于DPX技术利用颜色表示累积频谱出现的频率,所以只要同一SPAN内叠加在一起的信号出现的概率不同,DPX频谱中就会显现出多个不同颜色的信号。图4是测试阻断器频谱淹没正常CDMA下行信号的实例。用普通频谱模式只能显示高幅度的阻断器信号,但用DPX模式显示后,由于CDMA信号为常发信号,在高幅度阻断器信号下仍然可以清晰地发现。

图 4 左图为正常频谱只能显示阻断器频谱,右图显示在阻断器频谱下的CDMA下行信号频谱

最大限度地利用DPX 频谱显示

下面介绍了在实时频谱分析仪中设置DPX 频谱显示及与其它功能一起使用的部分技巧。

DPX频谱显示为调节位图(bitmap)、突出特定信号类型及获得用户希望的特定外观提供了一系列控制功能。

余辉

通过关闭余辉,DPX位图(bitmap)可以清屏,以每秒大约30 次的速度用新数据重新绘图。无穷大余辉可以一直累积数据,直到按Clear按钮或使用Run按钮开始新一轮操作。在这一设置下,在增加新数据时不会擦除任何数据,因此在视图中将保持所有信号。可变余辉可以控制显示的点以多快或多慢的速度从屏幕上衰落。余辉有助于突出短事件和/ 或罕见事件,旧点衰落可以防止挡住到达的感兴趣的新数据。

图5 不同余辉设置显示的效果

强度

尽管是以数字方式实现的,但其看上去仍类似于优秀的老式模拟CRT控制功能。提高强度可以使样点变亮,从而可以查看可能已经变暗的偶发事件。在噪声包围的连续信号中,可以调低强度,去加重噪声。

图6 强度调节显示效果

调色板

使DPX位图(bitmap)画面非常直观的功能之一是强度等级。用户可以选择调色板,应用到数据中,高强度颜色和/ 或亮度与计数高的点的位置对应,较暗的冷色则表明计数低的点。H500/SA2500中提供了色温、光谱和单色三种调色板,色温与光谱调色板的颜色正好相反,因为选择色温时,DPX频谱显示将出现概率高的信号频谱显示为高色温的红色,而可见光谱中红色的波长最长,频率最低,所以在光谱调色板中,用紫色表示高概率事件,红色表示低概率事件,这完全以操作者的习惯而设定,H500/SA2500预置调色板为色温。

颜色标度

最大值和最小值调节像素数据库中的“发生百分比”值怎样映射到颜色标度上。在默认情况下,发生数量为零

的任何单元格都会涂上标度最底部的颜色 (黑色),而包含最高数量的单元格则涂上标度最顶部的颜色,降低最大值设置可以使低于最大值的数量值到达颜色标度的顶部。用户可以使用全系列颜色,把重点放在中低发生数量的事件上。类似的,提高最小值设置时,不频繁的事件将变成黑色,就象没有收到事件的点的背景色一样。这不是常用设置,但可以筛选出对当前任务不重要的发生数量低的信号(图7)。

图7 颜色标度设置不同的效果

DPX 技术的应用

瞬变信号频谱的监测与定位

所谓瞬变信号,指的是随时间快速变化的信号,这种变化超过毫秒甚至达到微妙级。由于宽带数字调制及跳频技术的广泛应用,这种信号已经非常普遍,例如WLAN信号。这种信号每625μs一帧,每帧之间间隔

250μs。如果用传统频谱仪监测该信号频谱,即使用扫描速度较快的台式频谱仪,其结果也是像图8a所示,频谱为杂乱脉冲,随时间跳变,必须利用图8b最大保持数十秒才能得到该信号完整的频谱。在监测过程中,我们往往需要计算各信道频谱占用度,用最大保持法将耗费大量时间,无法满足ITU规定的要求。另一方面,如果我们遇到类似WLAN的干扰信号,用传统频谱仪既不能用正常频谱模式监测到该干扰信号的完整频谱,更不能用最大保持方式去定位干扰信号的方向。图8c为H500/SA2500 DPX显示,在1秒钟内,WLAN信号频谱完全显示出来,转动定向天线,我们就可以定位这类干扰信号的方向。

图 8a 图 8b 图8c

雷达信号的干扰查找

雷达信号是一种脉冲跳频信号,由于脉冲间隔为微妙级,用传统频谱仪测试时,雷达信号的频谱将持续显示。图9a为一款高端频谱仪显示的雷达信号频谱,图9b为H500/SA2500正常频谱模式下显示的雷达信号频谱。对比图9a与图9b,可以发现高端频谱仪显示的雷达信号频谱细节比H500/SA2500普通频谱显示模式更加丰富。但是,如果该雷达信号受到干扰,当干扰信号的幅度小于雷达信号时,即使用图9a的高端频谱仪,我们也无能为力。图9c为H500/SA2500发现的某机场二次雷达受某工厂监控录像无线传输干扰的实测DPX频谱图,该干扰肆虐两年多,用多种高档频谱仪都无法查到,飞机在进入该工厂空域后,由于收到干扰信号而无法收到机场雷达的讯问脉冲,一直处于等待状态而不发出应答脉冲,塔台便失去飞机位置信息,给飞行安全造成极大隐患。用传统频谱仪一直无法查到干扰信号,或许将传统频谱仪放在飞机上用飞机的接收天线可以发现该干扰频谱,但这是不可完成的任务。用DPX技术可以轻松解决这一问题,雷达信号在普通频谱显示下类似常发信号,实际上每个脉冲持续时间很短,DPX显示出的频谱色温仅仅是蓝色,而干扰信号幅度虽然远低于雷达信号,但它是常发信号,利用DPX频谱很明显就发现了。

图9a 图9b 图9c

阻断干扰源同时的定位

阻断器的应用在重大事件进行时日益普遍,图4是阻断器一个频谱,监测到干扰信号存在时,阻断器可以将该干扰信号阻断,但如果利用传统手段,我们也无法进一步查找干扰信号的来源。如果用DPX,我们在阻断的同时,通过定向天线的旋转,我们仍然可以在阻断干扰信号的同时,继续定位干扰源。

信号定位的新手段

定向系统虽然是定位信号的利器,但最终找到干扰源,往往仍然需要便携式仪器。传统定位信号的手段,通常用定向天线配合便携式接收机或频谱仪的音频啸叫功能或时频图功能找到该信号最强的方向。当然,对图8这类信号,传统方法已经无所适从,但即使对常见的一般信号,DPX频谱显示也是定位的一种手段。图10a的时

频图显示某干扰信号为断续慢变化信号,对用传统手段定位该信号有一定影响,DPX可以将这种“准稳态信号”显示为稳态信号,转动定向天线可以轻松找到干扰信号的最强方向。

图10a 图10b

图11更可以说明DPX频谱定位信号的方便及有效。该干扰信号为GSM移动通信上行频段的非法直放站,由于该频段存在许多正常的手机信号,给定位直放站类干扰造成一定困难。图11a为普通频谱显示,这种频谱与阻断器频谱非常类似,但用DPX频谱显示后发现,直放站干扰在DPX频谱中没有隐藏在高幅度信号下的其它信号,从这点还可以判定干扰信号的性质。当定向天线指向左边时,低频段底噪抬升明显,说明左边存在一个针对中国移动的直放站(图11b),当定向天线指向右边时,低频段底噪降低,高频段底噪抬起,说明右侧存在一个针对中国联通的直放站。由此可见,DPX频谱显示为我们增加了一种定位信号的行之有效的新手段。

图11a 图11b 图11c

总结

DPX技术是泰克公司专利的革命性技术,它为频谱监测及干扰查找与定位工作提供了有效的,传统手段无法解决的新方法。H500/SA2500是唯一具有DPX技术的便携式实时频谱分析仪,是频谱监测必不可少的工具之一。

频谱分析仪的设计方案及实际应用案例汇总

频谱分析仪的设计方案及实际应用案例汇总 频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。现代频谱分析仪能以模拟方式或数字方式显示分析结果,能分析1 赫以下的甚低频到亚毫米波段的全部无线电频段的电信号。仪器内部若采用数字电路和微处理器,具有存储和运算功能;配置标准接口,就容易构成自动测试系统。 基于MSP430 的FM 音频频谱分析仪的设计方案 本文中主要提出了以MSP43 处理器为核心的音频频谱分析仪的设计方案。以数字信号处理的相关理论知识为指导,利用MSP430 处理器的优势来进行音频频谱的设计与改进,并最终实现了在TFT 液晶HD66772 上面显示。 基于NIOS II 的频谱分析仪的设计与研制 本设计完全利用FPGA 实现FFT,在FPGA 上实现整个系统构建。其中CPU 选用Altera 公司的Nios II 软核处理器进行开发, 硬件平台关键模块使用Altera 公司的EDA 软件QuartusIIV8.0 完成设计。整个系统利用Nios II 软核处理器通过Avalon 总线进行系统的控制。 基于频谱分析仪二代身份证读卡器测量 本文所介绍使用频谱仪检测RFID 读卡器的应用实例也是一种通用检测 方案,可广泛应用在RFID 读卡器和主动式电子标签研发过程中的调试、产线 的检验等多个方面。 基于频谱分析仪分析手机无线测试 本文将对手机无线通信中遇到的问题提出相应的解决方案。手机在进行通信时存在着频段控制、通信质量检测和信号大小控制等问题。被射频工程师

1 原子荧光光谱法的基本原理

1 原子荧光光谱法的基本原理 1.1 原子荧光光谱法原理 原子荧光光谱法(AFS)是原子光谱法中的一个重要分支,是介于原子发射(AES)和原子吸收(AAS)之间的光谱分析技术,它的基本原理就是:固态、液态样品在消化液中经过高温加热,发生氧化还原、分解等反应后样品转化为清亮液态,将含分析元素的酸性溶液在预还原剂的作用下,转化成特定价态,还原剂 KBH 4 反应产生氢化物和氢气,在载气(氩气)的推动下氢化物和氢气被引入原子化器(石英炉)中并原子化。特定的基态原子(一般为蒸气状态)吸收合适的特定频率的辐射,其中部分受激发态原子在去激发过程中以光辐射的形式发射出特征波长的荧光,检测器测定原子发出的荧光而实现对元素测定的痕量分析方法。1.2 原子荧光的类型 原子荧光是一种辐射的去活化(decactivation)过程。当有原子吸收由一合适的激发光源发射出的特征波长辐射后被激发,接着辐射区活化而发射出荧光。基本上,荧光线的波长和激发线的波长相同,也有可能比激发线的波长长,但比激发线波长短的情况也有,但不多。原子荧光有5中基本类型:①共振荧光。即激发波长与产生的荧光波长相同时,这种荧光称为共振荧光,是原子荧光分析中最常用的一种荧光;②直跃线荧光。即激发波长大于产生的荧光波长相同时,这种荧光称为直跃线荧光;③阶跃线荧光。即激发波长小于产生的荧光波长相同 时,这种荧光称为阶跃线荧光;④热助阶跃线荧光.既原子吸收能量由基态E 激发 至E 2能级时,由于受到热能的进一步激发,电子可能跃迁至于E 2 相近的较高能级 E 3,当其由E 3 跃迁到较低能级E 1 时所发射的荧光,称为热助阶跃线荧光;⑤热助 反Stokes荧光。即电子从基态E 0邻近的E 2 能级激发至E 3 能级时,其荧光辐射 过程可能是由E 3回到E 所发出的荧光成为热助反Stokes荧光。 1.3 汞的检测方法 汞及其化合物属于剧毒物质,是国际国内进出口商品中一项重要理化指标。汞在体内达到一定量时,将对人的神经系统、肾、肝脏产生严重的损害。汞测定方法有冷原子吸收光谱法、二硫腙比色法、原子荧光光谱分析法、电热原子吸收

基于stm32f1的频谱分析仪

单片机课程设计 基于STM32F1 的频谱分析仪 班级:电子信息工程1111班(学号): 指导老师:

题目:基于STM32F1 的频谱分析仪 关键词:频谱分析仪,STM32F1,快速傅立叶变换,FFT,双色点阵 摘要 本设计是基于STM32F1的频谱分析仪。以STM32F103RBT6为控制核心,双色点阵屏为显示器。硬件上由电源管理,通信模块,放大电路,以及单片机最小系统组成。算法上采用简洁稳定的快速傅立叶变换作为主要的核心算法,辅以自动增益控制,实现信号从时域到频域的变换。通过双色点阵屏显示,具有直观,清晰等特点。 1.引言 目前,由于频谱分析仪价格昂贵,学校里只有少数实验室配有频谱仪。 但是电子信息类教学,如果没有频谱仪辅助观察,同学们只能从书本中抽象理解信号的特征,严重影响教学实验效果。 正对这种现状,提出了一种基于STM32F1的简易频谱分析仪的设计方案,其优点是成本低,能够直观的反映信号在频域的特征。 2.系统方案 本设计采用STM32F1作为核心处理器,该处理器核架构ARM Cortex-M3,具有高性能、低成本、低功耗等特点。

主控板包括电源模块、红外通信模块、TDA2822放大模块等;信号经过放大电路放大之后,由芯片自带的ADC将模拟信号转换为数字信号,再由主控芯片对数字信号进行快速傅立叶变换,驱动双色点阵屏显示。 软件算法的核心容就是快速傅立叶变换。如下图为本设计总体框图。 ↓ ↓ ↓ ↓ ↓

↓ ↓ ↓ 3.系统硬件设计 针对前面提出的整体设计方案,本设计采取模块化策略,将各个功能部分开来设计,最后组合起来。 3.1 电源管理模块 系统的核心芯片为STM32F103,常用工作电压为3.3V,同时部的ADC 工作的参考电压也是3.3V,一般的外部电源的电压都为5V,要使系统正常工作,需要将5V的电源电压稳压到3.3V。常用的78系列稳压芯片已不再适用,必须选择性能更好的稳压芯片。 经综合考虑,本电路采用LM1117-3.3作为电源部分的核心芯片。外部电源5V输入LM1117-3.3稳压为3.3V。由于点阵屏显示部分的电流较大,但是不在我们主控板上,所以暂不做考虑。电路图如下。

简易频谱分析仪课程设计

东北石油大学课程设计 2014年7月18 日

东北石油大学课程设计任务书 课程通信电子线路课程设计 题目简易频谱分析仪 专业姓名学号 主要内容、基本要求、主要参考资料等 主要内容: 设计一个测量频率范围覆盖为10MHz-30MHz,可根据用户需要设定显示频谱的中心频率和带宽,还可以识别调幅,调频和等幅波信号的简易频谱分析仪。基本要求: (1)频率测量范围为10MHz--30MHz; (2)频率分辨力为10kHz,输入信号电压有效值为20mV±5mV,输入阻抗为50Ω; (3)可设置中心频率和扫频宽度; (4)借助示波器显示被测信号的频谱图,并在示波器上标出间隔为1MHz 的频标。 主要参考资料: [1]谢家奎.电子线路(非线性部分)[M].北京:高等教育出版社. [2] 张建华.数字电子技术[M].北京:机械工业出版社. [3] 陈汝全.电子技术常用器件应用手册[M].北京:机械工业出版社. 完成期限2014.7.14 — 2014.7.18 指导教师 专业负责人 2014年7 月14 日

摘要 系统利用SPCE061A单片机作为主控制器,采用外差原理设计并实现频谱分析仪:利用DDS芯片生成10KHz步进的本机振荡器,AD835做集成混频器,通过开关电容滤波器取出各个频点(相隔10KHz)的值,再配合放大,检波电路收集采样值,经凌阳单片机SPCE061A的处理,最后送示波器显示频谱。测量频率范围覆盖10MHz-30MHz,可根据用户需要设定显示频谱的中心频率和带宽,还可以识别调幅,调频和等幅波信号。 关键词:SPCE061A;DDS;频谱分析仪

频谱仪的简单操作使用方法

. R3131A频谱仪简单操作使用方法 一.R3131A频谱仪简介。 R3131A频谱仪是日本ADVANTEST公司的产品,用于测量高频信号,可测量的频率范围为9K —3GHz。对于GSM手机的维修,通过频谱仪可测量射频电路中的以下电路信号, (维修人员可以通过对所测出信号的幅度、频率偏移、干扰程度等参数的分析,以判断出故障点,进行快速有效的维修): 1.手机参考基准时钟(13M,26M等); 2.射频本振(RFVCO)的输出频率信号(视手机型号而异); 3.发射本振(TXVCO)的输出频率信号(GSM:890M—915M;DCS:1710—1785M); 4.由天线至中频芯片间接收和发射通路的高频信号; 5.接收中频和发射中频信号(视手机型号而异)。 面板上各按键(如图-1所示)的功能如下: A区:此区按键是其他区功能按键对应的详细功能选择按键,例如按下B区的FREQ键后,会在屏幕的右边弹出一列功能菜单,要选择其中的“START”功能就可通过按下其对应位置的键来实现。 屏幕亮度调节旋钮数值微调旋钮

A区 D区 E区 (图-1)连接测试探针端口 B区:此区按键是主要设置参数的功能按键区,包括:FREQ—中心频率; SPAN—扫描频率宽度;LEVEL—参考电平。此区中按键只需直接按下对应键输入数值及单位即可。 C区:此区是数字数值及标点符号选择输入区,其中“1”键的另一个功能是“CAL(校.. . ”-),此功能要先按下“SHIFT(蓝色键”后再按下“1”键进行相应选择才起作用;“准)”是退格删除键,可删除错误输入。确ENTER(时间的单位,其中“Hz”键还有“频率、D区:参数单位选择区,包括幅度、电平、”的作用。认),二功能选择键有键控制区,较常使用的“SHIFT”第:E区系统功能按”调用存储的设置信息键,SHIFT+CONFIG(PRESET)“RECALL”选择系统复位功能,“)”选择将设置信息保存功能。“SHIFT+RECALL(SA VE区:信号波形峰值检测功能选择区。F”扫描时SWEEP其他参数功能选择控制区,常用的有“区:BW”信号带宽选择及“G”是指显示屏幕从左边到右边扫描一次的时间。,“SWEEP间选择)-2所示。显示屏幕上的信息(如图参考电平线REF LEVEL=15dBm 输入预衰减值A TT=20dB 日期 参数数值每格代表峰值状态的电平SPAN=10MHz 10dB 902.4M-5M=897.4M 902.4M+5M=917.4M -2)

简易频谱分析仪

简易频谱分析仪[ 2005年电子大赛二等奖] 摘要:本设计以凌阳16位单片机SPCE061A为核心控制器件,配合Xilinx Virtex-II FPGA及Xilinx公司提供的硬件DSP高级设计工具System Generator,制作完成本数字式外差频谱分析仪。前端利用高性能A/D对被测信号进行采集,利用FPGA高速、并行的处理特点,在FPGA内部完成数字混频,数字滤波等DSP 算法。 SPCE061A单片机是整个设计的核心控制器件,根据从键盘接受的数据控制整个系统的工作流程,包括控制FPGA工作以及控制双路D/A在模拟示波器屏幕上描绘频谱图。人机接口使用128×64液晶和4×4键盘。本系统运行稳定,功能齐全,人机界面友好。 关键字:SPCE061A 简易频谱分析仪 一、方案论证 频谱分析仪是在频域上观察电信号特征,并在显示仪器上显示当前信号频谱图的仪器。从实现方式上可分为模拟式与数字式两类方案,下面对两种方案进行比较: 方案一:模拟式频谱分析仪 模拟方式的频谱仪以模拟滤波器为基础,通常有并行滤波法、顺序滤波法,可调滤波法、扫描外差法等实现方法,现在广泛应用的模拟频谱分析仪设计方案多为扫描外差法,此方案原理框图如图1.1:

图 1.1 模拟外差式频谱仪原理框图 图中的扫频振荡器是仪器内部的振荡源,当扫频振荡器的频率在一定范围内扫动时,输入信号中的各个频率分量在混频器中产生差频信号 (),依次落入窄带滤波器的通带内(这个通带是固定的),获得中频增益,经检波后加到Y放大器,使亮点在屏幕上的垂直偏移正比于该频率分量的幅值。由于扫描电压在调制振荡器的同时,又驱动X放大器,从而可以在屏幕上显示出被测信号的线状频谱图。这是目前常用模拟外差式频谱仪的基本原理。模拟外差式频谱仪具有高带宽和高频率分辨率等优点,但是模拟器件调试复杂,短期实现有难度,尤其是在对频谱信息的存储和分析上,逊色于新兴的数字化频谱仪方案。 方案二:数字式频谱分析仪 数字式频谱仪通常使用高速A/D采集当前信号,然后送入处理器处理,最后将得到的各频率分量幅度值数据送入显示器显示,其组成框图如图1.2: 图 1.2 数字式频谱仪组成框图

第四章原子吸收光谱法与-原子荧光光谱法

第四章原子吸收光谱法与原子荧光光谱法 4-1 . Mg原子的核外层电子31S0→31P1跃迁时吸收共振线的波长为285.21nm,计算在2500K 时其激发态和基态原子数之比. 解: Mg原子的电子跃迁由31S0→31P1 ,则 g i/g0=3 跃迁时共振吸收波长λ=285.21nm ΔEi=h×c/λ =(6.63×10-34)×(3×108)÷(285.31×10-9) =6.97×10-19J 激发态和基态原子数之比: Ni/N0=(g i/g0)×e-ΔEi/kT 其中: g i/g0=3 ΔEi/kT=-6.97×10-19÷〔1.38×10-23×2500〕 代入上式得: Ni/N0=5.0×10-9 4-2 .子吸收分光光度计单色器的倒线色散率为1.6nm/mm,欲测定Si251.61nm的吸收值,为了消除多重线Si251.43nm和Si251.92nm的干扰,应采取什么措施? 答: 因为: S1 =W1/D = (251.61-251.43)/1.6 = 0.11mm S2 =W2/D =(251.92-251.61)/1.6 =0.19mm S1<S2 所以应采用0.11mm的狭缝. 4-3 .原子吸收光谱产生原理,并比较与原子发射光谱有何不同。 答: 原子吸收光谱的产生:处于基态原子核外层电子,如果外界所提供特定能量(E)的光辐射恰好等于核外层电子基态与某一激发态(i)之间的能量差(ΔEi)时,核外层电子将吸收特征能量的光辐射有基态跃迁到相应激发态,从而产生原子吸收光谱。 原子吸收光谱与原子发射光谱的不同在于: 原子吸收光谱是处于基态原子核外层电子吸收特定的能量,而原子发射光谱是基态原子通过电、热或光致激光等激光光源作用获得能量;原子吸收光谱是电子从基态跃迁至激发态时所吸收的谱线,而原子发射光谱是电子从基态激发到激发态,再由激发态向基态跃迁所发射的谱线。

频谱仪的简单操作使用方法

R3131A频谱仪简单操作使用方法 一.R3131A频谱仪简介。 R3131A频谱仪是日本ADV ANTEST公司的产品,用于测量高频信号,可测量的频率范围为9K—3GHz。对于GSM手机的维修,通过频谱仪可测量射频电路中的以下电路信号, (维修人员可以通过对所测出信号的幅度、频率偏移、干扰程度等参数的分析,以判断出故障点,进行快速有效的维修): 1.手机参考基准时钟(13M,26M等); 2.射频本振(RFVCO)的输出频率信号(视手机型号而异); 3.发射本振(TXVCO)的输出频率信号(GSM:890M—915M;DCS:1710—1785M); 4.由天线至中频芯片间接收和发射通路的高频信号; 5.接收中频和发射中频信号(视手机型号而异)。 面板上各按键(如图-1所示)的功能如下: A区:此区按键是其他区功能按键对应的详细功能选择按键,例如按下B区的FREQ 键后,会在屏幕的右边弹出一列功能菜单,要选择其中的“START”功能就可通过按下其对 (图-1) B区:此区按键是主要设置参数的功能按键区,包括:FREQ—中心频率; SPAN—扫描频率宽度;LEVEL—参考电平。此区中按键只需直接按下对应键输入数值及单位即可。 C区:此区是数字数值及标点符号选择输入区,其中“1”键的另一个功能是“CAL(校

准)”,此功能要先按下“SHIFT(蓝色键)”后再按下“1”键进行相应选择才起作用; “-”是退格删除键,可删除错误输入。 D 区:参数单位选择区,包括幅度、电平、频率、时间的单位,其中“Hz ”键还有“ENTER(确认)”的作用。 E 区:系统功能按键控制区,较常使用的有“SHIFT ”第二功能选择键,“SHIFT+CONFIG(PRESET )”选择系统复位功能,“RECALL ”调用存储的设置信息键,“SHIFT+RECALL(SA VE )”选择将设置信息保存功能。 F 区:信号波形峰值检测功能选择区。 G 区:其他参数功能选择控制区,常用的有“BW ”信号带宽选择及“SWEEP ”扫描时间选择,“SWEEP ”是指显示屏幕从左边到右边扫描一次的时间。 显示屏幕上的信息(如图-2所示)。 二.一般操作步骤。[“ ”表示的是菜单面板上直接功能按键,“ ” 表 示单个菜单键的详细功能按键(在显示屏幕的右边)]: 1) 按Power On 键开机。 2) 每次开始使用时,开机30分钟后进行自动校准,先按 Shift+7(cal ) ,再选择 cal all 键,校准过程中出现“Calibrating ”字样,校准结束后如通过则回复校准前状态。校准过程约进行3分钟。 3) 校准完成后首先按 FREQ 键,设置中心频率数值,例如需测中心频率为902.4M 的信

史上最好的频谱分析仪基础知识(收藏必备)

频谱分析是观察和测量信号幅度和信号失真的一种快速方法,其显示结果可以直观反映出输入信号的傅立叶变换的幅度。信号频域分析的测量范围极其宽广,超过140dB,这使得频谱分析仪成为适合现代通信和微波领域的多用途仪器。频谱分析实质上是考察给定信号源,天线,或信号分配系统的幅度与频率的关系,这种分析能给出有关信号的重要信息,如稳定度,失真,幅度以及调制的类型和质量。利用这些信息,可以进行电路或系统的调试,以提高效率或验证在所需要的信息发射和不需要的信号发射方面是否符合不断涌现的各种规章条例。 现代频谱分析仪已经得到许多综合利用,从研究开发到生产制造,到现场维护。新型频谱分析仪已经改名叫信号分析仪,已经成为具有重要价值的实验室仪器,能够快速观察大的频谱宽度,然后迅速移近放大来观察信号细节已受到工程师的高度重视。在制造领域,测量速度结合通过计算机来存取数据的能力,可以快速,精确和重复地完成一些极其复杂的测量。 有两种技术方法可完成信号频域测量(统称为频谱分析)。 1.FFT分析仪用数值计算的方法处理一定时间周期的信号,可提供频率;幅度和相位信息。这种仪器同样能分析周期和非周期信号。FFT 的特点是速度快;精度高,但其分析频率带宽受ADC采样速率限制,适合分析窄带宽信号。 2.扫频式频谱分析仪可分析稳定和周期变化信号,可提供信号幅度和频率信息,适合于宽频带快速扫描测试。

图1 信号的频域分析技术 快速傅立叶变换频谱分析仪 快速傅立叶变换可用来确定时域信号的频谱。信号必须在时域中被数字化,然后执行FFT算法来求出频谱。一般FFT分析仪的结构是:输入信号首先通过一个可变衰减器,以提供不同的测量范围,然后信号经过低通滤波器,除去处于仪器频率范围之外的不希望的高频分量,再对波形进行取样即模拟到数字转换,转换为数字形式后,用微处理器(或其他数字电路如FPGA,DSP)接收取样波形,利用FFT计算波形的频谱,并将结果记录和显示在屏幕上。 FFT分析仪能够完成多通道滤波器式同样的功能,但无需使用许多带通滤波器,它使用数字信号处理来实现多个独立滤波器相当的功能。从概念上讲,FFT方法

原子荧光光谱仪的操作步骤

原子荧光光谱仪的操作步骤及注意事项 原子荧光光谱法具有原子吸收和原子发射光谱两种技术的优势,克服了单一技术在某些方面的缺点,对一些元素具有分析灵敏度高、干扰少、线性范围宽、可多元素同时分析等特点,这些优点使得该方法在冶金、地质、石油、农业、生物医学、地球化学、材料科学、环境科学等各个领域内获得了相当广泛的应用。 原子荧光是原子蒸气受具有特征波长的光源照射后,其中一些自由原子被激发跃迁到较高能态,然后去活化回到某一较低能态(常常是基态)而发射出特征光谱的物理现象。各种元素都有其特定的原子荧光光谱,根据原子荧光强度的高低可测得试样中待测元素的含量。现将原子荧光光谱仪上机操作步骤和使用注意事项逐一介绍。 一、操作步骤: Ar气→电脑→主机→双泵→水封→As灯/Hg灯→调光→设置参数→点火→做标准曲线→测样→清洗管路→熄火→关主机→关电脑→关Ar气。 二、注意事项: 1.在开启仪器前,一定要注意先开启载气。 2.检查原子化器下部去水装置中水封是否合适。可用注射器或滴管添加蒸馏水。 3.一定注意各泵管无泄露,定期向泵管和压块间滴加硅油。 4.实验时注意在气液分离器中不要有积液,以防液体进入原子化器。 5.在测试结束后,一定在空白溶液杯和还原剂容器内加入蒸馏水,运行仪器清洗管路。关闭载气,并打开压块,放松泵管。 6.从自动进样器上取下样品盘,清洗样品管及样品盘,防止样品盘被腐蚀。 7.更换元素灯时,一定要在主机电源关闭的情况下,不得带电插拔灯。 8.当气温低及湿度大时,Hg灯不易起辉时,可在开机状态下,用绸布反复摩擦灯外壳表面,使其起辉或用随机配备的点火器,对灯的前半部放电,使其起辉。 9.调节光路时要使灯的光斑照射在原子化器的石英炉芯的中心的正上方;要使灯的光斑与光电倍增管的透镜的中心点在一个水平面上。 10.氩气:0.2~0.3 之间。 关机之前先熄火,换灯之前先熄火,退出程序时先熄火。

原子荧光光谱仪操作步骤及原理分析2012

氢化物(蒸气)发生 -原子荧光 原子荧光的发展史 ●原子荧光谱法(AFS)是原子光谱法中的一个重要分支。从其发光机理看属于一种原子发 射光谱(AES),而基态原子的受激过程又与原子吸收(AAS)相同。因此可以认为AFS是AES和AAS两项技术的综合和发展,它兼具AES和AAS的优点。 ●1859年Kirchhoof研究太阳光谱时就开始了原子荧光理论的研究,1902年Wood等首 先观测到了钠的原子荧光,到20世纪20年代,研究原子荧光的人日益增多,发现了许多元素的原子荧光。用锂火焰来激发锂原子的荧光由BOGROS作过介绍,1912年WOOD 年用汞弧灯辐照汞蒸气观测汞的原子荧光。Nichols和Howes用火焰原子化器测到了钠、锂、锶、钡和钙的微弱原子荧光信号,Terenin研究了镉、铊、铅、铋、砷的原子荧光。 1934年Mitchll和Zemansky对早期原子荧光研究进行了概括性总结。1962年在第10次国际光谱学会议上,阿克玛德(Alkemade)介绍了原子荧光量子效率的测量方法,并予言这一方法可能用于元素分析。1964年威博尼尔明确提出火焰原子荧光光谱法可以作为一种化学分析方法,并且导出了原子荧光的基本方程式,进行了汞、锌和镉的原子荧光分析。 ●美国佛罗里达州立大学Winefodner教授研究组和英国伦敦帝国学院West教授研究 小组致力于原子荧光光谱理论和实验研究,完成了许多重要工作。 ● 20世纪70年代,我国一批专家学者致力于原子荧光的理论和应用研究。西北大学杜 文虎、上海冶金研究所、西北有色地质研究院郭小等均作出了贡献。尤其郭小伟致力于氢化物发生(HG)与原子荧光(AFS)的联用技术研究,取得了杰出成就,成为我国原子荧光商品仪器的奠基人,为原子荧光光谱法首先在我国的普及和推广打下了基础。 幻灯片3 国外AFS仪器发展史 *1971年Larkins用空心阴极灯作光源,火焰原子化器,采用泸光片分光,光电倍增管检测。测定了A u、B i、Co、H g、M g、N i 等20多种元素; *1976年Technicon公司推出了世界上第一台原子荧光光谱仪AFS-6。该仪器采用空心阴极灯作光源,同时测定6个元素,短脉冲供电,计算机作控制和数据处理。由于仪器造价高,灯寿命短,且多数被测元素的灵敏度不如AAS和ICP-AES,该仪器未能成批投产,被称之为短命的AFS-6。 *20世纪80年代初,美国Baird公司推出了AFS-2000型ICP-AFS仪器。该仪器采用脉冲空心阴极灯作光源,电感耦合等离子体(ICP)作原子化器,光电倍增管检测,12道同时测量,计算机控制和数据处理。该产品由于没有突出的特点,多道同时测定的折衷条件根本无法满足,性能/价格比差,在激烈的市场竞争中遭到无情的淘汰。 *20世纪90年代,英国PSA公司开始生产HG-AFS。

简易频谱分析仪

简易频谱分析仪 摘要:本系统采用TI 公司的16位单片机MSP430F149作为控制核心,采用外差原理设计并实现频谱分析仪,基于DDS 技术得到10 kHz 步进的本机振荡器,采用AD835进行混频,通过低通滤波器取出差频信号分量,再配合放大、检波电路得到各个频点的信号有效值。单片机MSP430F149与扫频同步输出锯齿波扫描电压,利用示波器X-Y 方式显示信号频谱分布。测量频率范围覆盖1MHz-30MHz ,可设定中心频率和带宽,还可以识别调幅,调频和等幅波信号。 关键词:MSP430F149,DDS ,混频,频谱分析 一、 系统方案 1. 方案比较与选择 1.1频谱分析仪的实现 方案一 :模拟式频谱分析仪 模拟方式的频谱仪以模拟滤波器为基础,通常有并行滤波法、顺序滤波法,可调滤波法、扫描外差法等实现方法,现在广泛应用的模拟频谱分析仪设计方案多为扫描外差法,此方案原理框图如图1: U 图1 模拟外差式频谱仪原理框图 图中的扫频振荡器是仪器内部的振荡源,当扫频振荡器的频率f L 在一定范围内扫动时,输入信号中的各个频率分量f x 在混频器中产生差频信号(f o = f x -f L ),依次落入窄带滤波器的通带内(这个通带是固定的),获得中频增益,经检波后加到Y 放大器,使亮点在屏幕上的垂直偏移正比于该频率分量的幅值。由于扫描电压在调制振荡器的同时,又驱动X 放大器, 从而可以在屏幕上显示出被测信号的线状频谱图。这是目前常用模拟外差式频谱仪的基本原理。模拟外差式频谱仪具有高带宽和高频率分辨率等优点,但是模拟器件调试复杂,短期实现有难度。 方案二:数字式频谱分析仪 数字式频谱仪通常使用高速A/D 采集当前信号,然后送入处理器处理,最后将得到的各频率分量幅度值数据送入显示器显示,其组成框图如图3: 图3 数字式频谱仪组成框图 信号经高速A/D 采集送入处理器,通过硬件乘法器与本地由DDS 产生的本振扫频信号混频,变频后信号不断移入低通数字滤波器,然后提取通过低通滤波器的信号幅度,根据当前频率和提取到的幅度值,即可以绘制当前信号频谱图。但缺点是频率越高,对DSP 芯片的速度要求越高,相应价格也越昂贵。 根据实际条件和成本上的考虑,在满足题目要求的前提下,我们选择方案一

基于DSP的简易频谱仪设计方案

基于DSP的简易频谱仪 设计方案 指导老师:姚振东 班级:信处092 姓名:苟海军 2009021109 朱鑫 2009021114 郑顺 200902 二零一二年四月二十八日

摘要 本文设计了一种实时信号频谱分析系统,该系统以TMS320VC5402DSP作为系统数据处理核心,首先对信号作滤波处理,再通过AD9200高速模数转换芯片对数据信号进行采样,最后通过串口在PC机上完成对数据的显示。其中,DSP芯片完成数模转换和FFT变换。应用DSP芯片,可以完全胜任较高频率信号处理的工作,在本系统中的信号频率为2MHz。另外,本系统的设计能够实现对信号的实时频谱分析并显示。 关键词:频谱分析DSP FFT

Abstract This paper introduces the design of a real time signal spectrum analysis system,the system uses TMS320VC5402DSP as the core of data processing system,to complete the signal filter processing at frist and sampling the data signal by the high speed analog to digital conversion chip-AD9200.At last,the system will display the data by USART on the computer. What need points out is that DSP chip completes the conversion and FFT transform mainly. Application of DSP device can be fully qualified for the job that processing the high frequency signal.In addition,the frequency of the signal is about 2MHz.What's more,the design of this system can complete the real-time signal spectrum analysis and display. Keywords:Spectrum analysis DSP FFT

基于DSP的简易频谱分析仪设计

基于DSP的简易频谱分析仪设计 摘要 我们对一个信号的认识只在时间域是远远不够的,所以还要在频域去认识和分析它。在电子测量中,测量网络阻抗特性以及传输特性是经常遇到的问题问题,其中,幅频特性、增益和衰减特性、相频特性等是属于传输特性内的。它很大程度方便了调整,校准被测网络及排除故障。 本此设计制作了一个简易频谱分析仪从而可以更直观的看到信号的特性。为了实现这一目标,我们需要利用快速傅里叶变换(FFT)来实现对信号的频谱分析。由于DSP可以处理比较复杂的算法本次设计采用FFT算法通过DSP分析显示输入波形的频率值。 关键词:频谱分析DSP FFT 显示频率

The Simple Spectrum Analyzer Design Based on DSP Abstract We can’t know a signal only in the time domain .It is far from enough, so we also recognize and analyze it in the frequency domain. In the electronic measurement, impedance and transmission characteristics of the network are often encountered in the measurement problems; Transmission characteristics include the gain characteristics, attenuation characteristics, amplitude-frequency characteristic and phase frequency characteristics. It provides a great convenience for the adjustment of the network under test, calibration and troubleshooting. We design a simple spectrum analyzer to see the characteristics of the signal more intuitively. In order to achieve this goal, we need to use the fast Fourier transform ,that is FFT which make spectrum analysis of the signal. Since the DSP can solve the more complex algorithms than others. Hence, we designed a simple spectrum analyzer using the FFT algorithm by DSP to show the frequency of the input waveform. Key word s: Spectrum Analyzer ; DSP; FFT ; Frequency Display

原子荧光光谱仪

原子荧光光谱仪 原子荧光光谱仪,测量元素的原子蒸气在辐射能激发下所发射的荧光强度,以测定物质成分中元素含量的仪器。 编辑摘要 由激发光源(高强度空心阴极灯或无极放电灯),原子化器,单色仪或用干涉滤光片配合使用“日盲”光电倍增管和光电检测系统组成。其原理是:分析试样在原子化器中转化为低能级的原子蒸气,吸收由一合适的激发光源发射出的同类原子特征光辐射后,一部分被激发至高能级,在跃迁至低能级的过程中,以辐射的形式释放出能量,形成原子荧光。原子荧光经光电检测系统转换为电信号被记录下来。原子荧光的强度与激发态的原子数有关,也即与试样中分析元素的浓度成正比。原子荧光光谱仪的优点是能同时测定多种元素,特别是As,Sb,Bi,Cd,Hg等元素。一般情况下,测定下限比原子吸收法低。在地质学中用于测定岩石、矿石和矿物中易挥发元素和硒、碲等元素。 原子荧光光谱仪- 原子荧光光谱仪-概述 atomic fluorescence spectrometry 利用原子荧光谱线的波长和强度进行物质的定性与定量分析的方法。原子蒸气吸收特征波长的辐射之后,原子激发到高能级,激发态原子接着以辐射方式去活化,由高能级跃迁到较低能级的过程中所发射的光称为原子荧光。当激发光源停止照射之后,发射荧光的过程随即停止。原子荧光可分为3类:即共振荧光、非共振荧光和敏化荧光,其中以共振原子荧光最强,在分析中应用最广。共振荧光是所发射的荧光和吸收的辐射波长相同。只有当基态是单一态,不存在中间能级,才能产生共振荧光。非共振荧光是激发态原子发射的荧光波长和吸收的辐射波长不相同。非共振荧光又可分为直跃线荧光、阶跃线荧光和反斯托克斯荧光。直跃线荧光是激发态原子由高能级跃迁到高于基态的亚稳能级所产生的荧光。阶跃线荧光是激发态原子先以非辐射方式去活化损失部分能量,回到较低的激发态,再以辐射方式去活化跃迁到基态所发射的荧光。直跃线和阶跃线荧光的波长都是比吸收辐射的波长要长。反斯托克斯荧光的特点是荧光波长比吸收光辐射的波长要短。敏化原子荧光是激发态原子通过碰撞将激发能转移给另一个原子使其激发,后者再以辐射方式去活化而发射的荧光。

简易频谱分析仪1

简易频谱分析仪[2005年电子大赛二等奖] 文章来源:凌阳科技教育推广中心 作者:国防科技大学李楠刘亮李俊发布时间:2006-8-30 11:46:44 摘要:本设计以凌阳16位单片机SPCE061A为核心控制器件,配合Xilinx Virtex-II FPGA及Xilinx公司提供的硬件DSP高级设计工具System Generator,制作完成本数字式外差频谱分析仪。前端利用高性能A/D对被测信号进行采集,利用FPGA高速、并行的处理特点,在FPGA内部完成数字混频,数字滤波等DSP 算法。 SPCE061A单片机是整个设计的核心控制器件,根据从键盘接受的数据控制整个系统的工作流程,包括控制FPGA工作以及控制双路D/A在模拟示波器屏幕上描绘频谱图。人机接口使用128×64液晶和4×4键盘。本系统运行稳定,功能齐全,人机界面友好。 关键字:SPCE061A 简易频谱分析仪 一、方案论证 频谱分析仪是在频域上观察电信号特征,并在显示仪器上显示当前信号频谱图的仪器。从实现方式上可分为模拟式与数字式两类方案,下面对两种方案进行比较: 方案一:模拟式频谱分析仪 模拟方式的频谱仪以模拟滤波器为基础,通常有并行滤波法、顺序滤波法,可调滤波法、扫描外差法等实现方法,现在广泛应用的模拟频谱分析仪设计方案多为扫描外差法,此方案原理框图如图1.1:

图 1.1 模拟外差式频谱仪原理框图 图中的扫频振荡器是仪器内部的振荡源,当扫频振荡器的频率在一定范围内扫动时,输入信号中的各个频率分量在混频器中产生差频信号(),依次落入窄带滤波器的通带内(这个通带是固定的),获得中频增益,经检波后加到Y放大器,使亮点在屏幕上的垂直偏移正比于该频率分量的幅值。由于扫描电压在调制振荡器的同时,又驱动X放大器,从而可以在屏幕上显示出被测信号的线状频谱图。这是目前常用模拟外差式频谱仪的基本原理。模拟外差式频谱仪具有高带宽和高频率分辨率等优点,但是模拟器件调试复杂,短期实现有难度,尤其是在对频谱信息的存储和分析上,逊色于新兴的数字化频谱仪方案。 方案二:数字式频谱分析仪 数字式频谱仪通常使用高速A/D采集当前信号,然后送入处理器处理,最后将得到的各频率分量幅度值数据送入显示器显示,其组成框图如图1.2: 图 1.2 数字式频谱仪组成框图 按照对信号处理方式的不同,数字式频谱仪可分为以下三种: (1)基于FFT技术的数字频谱仪: 这种频谱仪利用快速傅里叶变换可以将被测信号分解成分立的频率分量,达到与传统频谱分析仪同样的结果。这种新型的频谱分析仪采用数字方法直接由模拟/数字转换器(ADC)对输入信号取样,再经FFT处理后获得频谱分布图。FFT技术的数字式频谱分析仪在速度上明显超过传统的模拟式频谱分析仪,能够进行实时分析。但由于FFT所取的是有限长度,运算的点数也是有限的,因此,实现高扫频宽度和高频率分辨率需要高速A/D转换器和高速数字器件的配合。

80MHz-100MHz频谱仪(E题)

2015年全国大学生电子设计竞赛试题 参赛注意事项 (1)8月12日8:00竞赛正式开始。本科组参赛队只能在【本科组】题目中任选一题;高 职高专组参赛队在【高职高专组】题目中任选一题,也可以选择【本科组】题目。 (2)参赛队认真填写《登记表》内容,填写好的《登记表》交赛场巡视员暂时保存。 (3)参赛者必须是有正式学籍的全日制在校本、专科学生,应出示能够证明参赛者学生 身份的有效证件(如学生证)随时备查。 (4)每队严格限制3人,开赛后不得中途更换队员。 (5)竞赛期间,可使用各种图书资料和网络资源,但不得在学校指定竞赛场地外进行设 计制作,不得以任何方式与他人交流,包括教师在内的非参赛队员必须迴避,对违纪参赛队取消评审资格。 80MHz~100MHz 频谱分析仪(E 题) 【本科组】 一、任务 设计制作一个简易频谱仪。频谱仪的本振源用锁相环制作。频谱仪的基本结构图如图1所示。 二、要求 1. 基本要求 制作一个基于锁相环的本振源: (1)频率范围 90MHz~110MHz ; (2)频率步进 100kHz ; (3)输出电压幅度 10~100mV ,可调; (4)在整个频率范围内可自动扫描;扫描时间在1~5s 之间可调;可手动 扫描;还可预置在某一特定频率;

(5)显示频率; (6)制作一个附加电路,用于观测整个锁定过程; (7)锁定时间小于1ms。 2. 发挥部分 制作一个80MHz~100MHz频谱分析仪: (1)频率范围80MHz~100MHz; (2)分辨率100kHz; (3)可在频段内扫描并能显示信号频谱和对应幅度最大的信号频率; (4)测试在全频段内的杂散频率(大于主频分量幅度的2%为杂散频率)个数; (5)其他。 三、说明 在频谱仪滤波器的输出端应有一个测试端子,便于测量。

原子荧光复习题

原子荧光法复习题 一、填空: 1.原子荧光分析中,荧光类型有、、、热助线荧光和敏化原子荧光等。 答案:共振荧光、直跃线荧光、阶跃线荧光 2.原子荧光光谱仪中,目前有和两类仪器。 答案:色散系统、非色散系统 3.七十年代末,由于、及各种高效原子化器的使用,AFS技术得到了较大发展。 答案:高强度空心阴极灯、激光器 4.荧光猝灭的程度与及有关。 答案:被测元素、猝灭剂的种类 5.在原子荧光分析中,原子浓度较高时容易发生,它可使荧光信号变化和荧光谱线,从而峰值强度。 答案:自吸、变宽、减少 6.在原子荧光分析中,无论是连续光源或者线光源,光源强度越高,其测量线性工作范围。答案:越宽 7.原子荧光光谱仪的检测部分主要包括、以及放大系统和输出装置。 答案:分光系统、光电转换装置 8.在原子荧光分析中,石英原子化器炉温过高会使降低、增高,但较高的炉温又有利于消除干扰,所以应根据实际情况确定原子化温度。 答案:灵敏度、噪声、气相 9.在原子荧光分析中,测定灵敏度随观测高度增加而,观测高度太低时,会增加,观测高度太高时,会使和下降。 答案:降低、噪声、灵敏度、精度 10.原子荧光光谱仪中,以供电的空心阴极灯,可以使增强几十至几百倍。 答案:脉冲、谱线 11.在原子荧光分析的实际工作中,会出现空白大于样品强度的情况,这是因为空白溶液中不存在的原因。 答案:荧光、干扰 12.在原子荧光分析中,样品分析时,标准溶液的应和样品完全一致,同时必须做。 答案:介质、空白 13.在原子荧光分析中,当光电倍增管的负高压增加时,和水平同时增加,当灵敏度可以满足要求时,应尽量采用的负高压。 答案:信号、噪声、较低 14. 原子荧光光谱仪一般由四部分组成:、、和。 答案:光源(激发光源)、原子化器、光学系统(单色仪)、检测器 15.石英原子化器的外屏蔽气是用以防止周围的进入,产生,以保证较高及稳定的。

原子荧光光谱法

原子荧光光谱法 原子荧光谱(AFS)是介于原子发射光谱(AES)和原子吸收光谱(AAS)之间的光谱分析技术,它的基本原理就是:基态原子(一般蒸气状态)吸收合适的特定频率的辐射而被激发至高能态,而后激发过程中以光辐射的形式发射出特征波长的荧光。 一、原子荧光光谱法原理 1.1原子荧光的类型以及荧光猝灭 (1)共振荧光 当原子受到波长为λA的光能照射时,处于基态E0(或处于E0邻近的亚稳态E1)的电子跃迁到激发态E2,被激发的原子由E2回到基态E0(或亚稳态E1)时,它就放出波长λF的荧光。这一类荧光称为共振荧光。 (2)直跃线荧光 荧光辐射一般发生在二个激发态之间,处于基态E0的电子被激发到E2能级,当电子回到E1能级时,放出直跃荧光。 (3)阶跃线荧光 当处于激发态E2的电子在放出荧光之前,由于受激碰撞损失部分能量而至E1回到基态时,放出阶跃线荧光。 (4)热助阶跃线荧光 原子通过吸收光辐射由基态E0激发至E2能级,由于受到热能的进一步激发,电子可能跃迁至E2相近的较高能级E3,当其E3跃迁至较低的能级E1(不是基态E0)时所发射的荧光称为热助阶跃荧光。小于光源波长称为反stoke效应。 (5)热助反stokes荧光 (略) 某一元素的荧光光谱可包括具有不同波长的数条谱线。一般来说,共振线是最灵敏的谱线。处于激发态的原子寿命是十分短暂的。当它从高能级阶跃到低能级时原子将发出荧光。 M*→M+hr 除上述以外,处于激发态的原子也可能在原子化器中与其他分子、原子或电子发生非弹性碰撞而丧失其能量。在这种情况下,荧光将减弱或完全不产生,这种现象称为荧光的猝灭。荧光猝灭有下列几类型: 1)与自由原子碰撞 M*+X=M+X M*→激发原子X、M→中性原子 2)与分子碰撞 M*+AB=M+AB 这是形成荧光猝灭的主要原因。AB可能是火焰的燃烧产物; 3)与电子碰撞 M*+e-=M+E- 此反应主要发生在离子焰中 4)与自由原子碰撞后,形成不同激发态 M*+A=M×+A M*、M×为原子M的不同激发态 5)与分子碰撞后,形成不同的激发态 M*+AB= M×+AB 6)化学猝灭反应 M*+AB=M+A+B

相关文档