文档库 最新最全的文档下载
当前位置:文档库 › 无理数的由来

无理数的由来

无理数的由来
无理数的由来

无理数的由来

数学家——毕达哥拉斯认为:世界上只存在整数和分数,除此以外,没有别的什么数了.可是不久就出现了一个问题:当一个正方形的边长是1的时候,对角线的长m等于多少?是整数呢,还是分数?毕达哥拉斯和他的门徒费了九牛二虎之力,也不知道这个m究竟是什么数.世界上除了整数和分数以外还有没有别的数?这个问题引起了学派成员希伯斯的兴趣,他花费了很多的时间去钻研,最终希伯斯断言:m既不是整数也不是分数,是当时人们还没有认识的新数.

从希伯斯的发现中,人们知道了除了整数和分数以外,还存在着一种新数,就是一个新数.给新发现的数起个什么名字呢?当时人们觉得,整数和分数是容易理解的,就把整数和分数合称“有理数”,而希伯斯发现的这种新数不好理解,就取名为“无理数”.

希伯斯的发现,推翻了毕达哥拉斯学派的理论,动摇了这个学派的基础,为此引起了他们的恐慌.为了维护学派的威信,他们严密封锁希伯斯的发现,如果有人胆敢泄露出去,就处以极刑——活埋.然而真理是封锁不住的,尽管毕达哥拉斯学派规矩森严,希伯斯的发现还是被许多人知道了.他们追查泄密的人,追查的结果,发现泄密的不是别人,正是希伯斯本人!这还了得!希伯斯竟背叛老师,背叛自己的学派.毕达哥拉斯学派按着规矩,要活埋希伯斯.希伯斯听到风声逃跑了.

希伯斯在国外流浪了好几年,由于思念家乡,他偷偷地返回希腊.在地中海的一条海船上,毕达哥拉斯的忠实门徒发现了希伯斯,他们残忍地将希伯斯扔进地中海.之后它被称为无理数之父,为无理数的一切奠定了基础。

有理数基本概念

有理数的概念 知识点一、有理数的概念及分类 1、正数与负数: 正数:像1,1.1,517,2009 等大于0 的数,叫做正数; 负数:像-1,-1.1,-517,-2009 等在正数前面加上“-”负号的数,叫做负数。 正数都大于零,负数都小于零,即正数>0>负数。 “0”既不是正数,也不是负数。 在实际生活中,用正数、负数表示相反意义的量: 向东走100 米记作-100 米,则向西走五十米记作+50 米。 盈利100 元记作+100 元,则亏损100 元记作什么? 水位升高1.2 米,下降0.7 米,如何用有理数表示? 2、有理数:整数与分数统称为有理数 注:(1)任意有限小数和无限循环小数都是分数; (2)无限不循环小数不是有理数,如π ; (3)正数和零统称为非负数;

注意:0 既不是正数,也不是负 数,是唯一的中性数 (4)0 是正数和负数的分界点,但不是最小的有理数。 3、数集:把一些具备同一特征的数放在一起,就组成数的集合,简称数集。 例如:所有的有理数组成的数集叫有理数集;所有的整数组成的数集叫整数集。 4、有理数“0”的作用: 随堂练习 1、气温下降2度记?2°C,那么上升3度表示为°C . 2、用+20米表示前进20米,那么?15米表示. 3、如果向北走10 m记作+10 m,那么?6 m表示(). A 、向东走6 m B、向西走6 m C、向南走6 m D、向北走6 m 4、有理数包括(). A 、整数、分数和零 B 、正有理数、负有理数和零 C 、正数和负数D、正数和分数 5、下列说法中,正确的是(). A 、在有理数中,零的意义表示没有 B 、一个数不是正数就是负数

实数的概念及分类

6.3 《实数的概念及分类》导学案 教学目标: 认知目标:1.了解无理数和实数的概念,会对实数进行分类, 2.了解实数与数轴上点的一一对应关系。 过程目标:1.在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩 充到实数的范围,从而总结出实数的分类, 2.通过实数与数轴上点的对应关系的探究,体验“数形结合”思想。 情感目标: 经历探索从有理数到实数的扩充过程,培养探究精神,激发求知热 情;通过实数的分类,培养分类思想,发展分类意识。 教学重点:无理数,实数的概念及实数的分类; 教学难点:无理数概念及实数与数轴上点的一一对应关系 教学过程: 【知识回顾,创设情境】 1、把下列各数按要求填在横线上: 整数 ;分数 ;正数 2、有理数是怎样定义的? 有理数分类有哪两类标准?请与他人交流 。 【合作交流,探究新知】 有理数包括整数和分数,把下列有理数写成小数的形式,你有什么发现? 3= ,35 = ,478= ,911= ,119 = 59= 我们发现,上面的有理数 归纳:任何一个有理数都可以写成有限小数或无限循环小数的形式。 猜想:有限小数或无限循环小数都能转化为分数吗? 验证:下列有限小数能化为分数吗? 5、2.3、0.25、1.334 无限循环小数能转化为分数吗? 阅读下列材料 设x=0.3=0.333…① 则10x =3.333… ② 则②-①得9x=3,解得x=1/3,即0.3=1/3 结论:有限小数或无限循环小数都能转化为分数 拓展:有限小数或无限循环小数就是有理数 问题:我们在求一个数的平方根或立方根时,发现有些数的平方根或立方 根是这样的小数,如=3.1415926552374 …, 1.101001000100001. …, … 这些小数有什么共同点?它们是有理数吗?如果不是,它们是什么数呢? .

有理数的由来

由来古埃及人约于公元前17世纪初已使用分数,中国《九章算术》中也载有分数的各种运算。分数的使用是由于除法运算的需要。除法运算可以看作求解方程px=q(p0),如果p,q是整数,则方程不一定有整数解。为了使它恒有解,就必须把整数系扩大成为有理系。关于有理数系的严格理论,可用如下方法建立。在Z(Z -{0})即整数有序对(但第二元不等于零)的集上定义的如下等价关系:设 p1,p2 Z,q1,q2 Z - {0},如果p1q2=p2q1。则称(p1,q2)~(p2,q1)。Z(Z -{0})关于这个等价关系的等价类,称为有理数。(p,q)所在的有理数,记为。一切有理数所成之集记为Q。令整数p对应一于,即(p,1)所在的等价类,就把整数集嵌入到有理数的集中。因此,有理数系可说是由整数系扩大后的数系。有理数集合是一个数域。任何数域必然包含有理数域。即有理数集合是最小的数域。有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。采用度量,有理数构成一个度量空间,这是上的第三个拓扑。幸运的是,所有三个拓扑一致并将有理数转化到一个拓扑域。有理数是非局部紧致空间的一个重要的实例。这个空间也是完全不连通的。有理数不构成完备的度量空间;实数是的完备集。p进数除了上述的绝对值度量,还有其他的度量将转化到拓扑域:设p是素数,对任何非零整数a设 | a | p= p- n,这里pn是p的最高次幂除a另外 | 0 | p= 0。对任何有理数,设。则在上定义了一个度量。度量空间不完备,它的完备集是p进数域。一个困难的问题:有理数的边界在哪里? 根据定义,无限循环小数和有限小数(整数可认为是小数点后是0的小数),统称为有理数,无限不循环小数是无理数。但人类不可能写出一个位数最多的有理数,对全地球人类,或比地球人更智慧的生物来说是有理数的数,对每个地球人来说,可能是无法知道它是有理数还是无理数了。因此有理数和无理数的边界,竟然紧靠无理数,任何两个十分接近的无理数中间,都可以加入无穷多的有理数,反之也成立。竟然没有人知道有理数的边界,或者说有理数的边界是无限接近无理数的。定理:位数最多的非无限循环有理数是不可能被写出的,尽管它的定义是有有限位,但它是无限趋近于无理数的,以致于没有手段进行判断。证明:假设位数最多的非无限循环有理数被写出,我们在这个数的最后再加一位,这个数还是有限位有理数,但位数比已写出有理数多一位,证明原来写出的不是位数最多的非无限循环有理数。所以位数最多的非无限循环有理数是不可能被写出的。

无理数与实数的概念

《无理数与实数的概念》教学设计 一、教学目标 1.了解无理数和实数的意义,掌握实数的分类,能够判断一个数是有理数还是无理数; 2.了解实数绝对值的意义,了解实数与数轴上的点一一对应的关系; 3.通过实数的分类,是学生进一步领会分类的思想; 4.通过实数与数轴上的点一一对应关系,使学生了解数形结合思想,提高思维能力; 5.数形结合体现了数学的统一性的美. 二、教学重点和难点 教学重点:使学生了解无理数和实数的意义及性质,实数的运算律和运算性质. 教学难点:无理数意义的理解. 三、教学方法 讲练结合 四、教学手段 多媒体 五、教学过程 (一)复习提问 什么叫有理数?有理数如何分类?由学生回答,教师帮助纠正: 1.整数和分数统称为有理数. 2.有理数的分类有两种方法: 第一种:按定义分类:第二种:按大小分类:

(二)引入新课 同学们,有理数由整数和分数组成,下面我们用小数的观点来看,整数可以看做是小数点后面是0的小数,如3可写做3.0、3.00;而分数,我们可以将分数化为有限小数或无限循环小数,由此我们可以看到有理数总是可以用有限小数或无限循环小数表示。如3=3.0,,,但是是不是所有的数都可以写成有限小数或无限循环小数形式呢? 答案是否定的,我们来看这样一组数: 我们会发现这些数的小数位数是无限的,而且是不循环的,这样的小数叫做无限不循环小数,显然它不属于有理数的范围.这就是我们今天要学习的一个新的概念:无理数. 1.定义:无限不循环小数叫做无理数. 请同学们判断以下说法是否正确? (1)无限小数都是无理数. (2)无理数都是无限小数. (3)带根号的数都是无理数. 答:(1)错,无限不循环小数都是无理数. (2)错,无理数是无限不循环小数. 现在我们不仅学过了有理数,而且又定义了无理数,显然我们所学的数的范围又扩大了,我们把有理数和无理数统称为实数,这是我们今天学习的又一新的概念.

实数可以分为有理数和无理数两类

最后一条是区分实数和有理数的关键。例如所有平方小于 2 的有理数的集合存在有理数上界,如 1.5;但是不存在实数上界(因为 不是有理数)。 实数通过上述性质唯一确定。更准确的说,给定任意两个有序域 R1 和 R2,存在从 R1 到 R2 的唯一的域同构,即代数学上两者可看作是相同的。 5相关性质 基本运算 实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。 4 图册 四则运算封闭性 实数集R对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。 有序性 实数集是有序的,即任意两个实数a、b必定满足下列三个关系之一: ab. 传递性 实数大小具有传递性,即若a>b,b>c,则有a>c.

阿基米德性 实数具有阿基米德(Archimedes)性,即对任何a,b ∈R,若b>a>0,则存在正整数n,使得na>b. 稠密性 实数集R具有稠密性,即两个不相等的实数之间必有另一个实数,既有有理数,也有无理数. 唯一性 如果在一条直线(通常为水平直线)上确定O作为原点,指定一个方向为正方向(通常把指向右的方向规定为正方向),并规定一个单位长度,则称此直线为数轴。任一实数都对应与数轴上的唯一一个点;反之,数轴上的每一个点也都唯一的表示一个实数。于是,实数集R与数轴上的点有着一一对应的关系。 完备性 作为度量空间或一致空间,实数集合是个完备空间,它有以下性质: 一.所有实数的柯西序列都有一个实数极限。 有理数集合就不是完备空间。例如,(1, 1.4, 1.41, 1.414, 1.4142, 1.41421, ...) 是有理数的柯西序列,但没有有理数极限。实际上,它有个实数极限√2。实数是有理数的完备化——这亦是构造实数集合的一种方法。 极限的存在是微积分的基础。实数的完备性等价于欧几里德几何的直线没有“空隙”。 二.“完备的有序域” 实数集合通常被描述为“完备的有序域”,这可以几种解释。 首先,有序域可以是完备格。然而,很容易发现没有有序域会是完备格。这是由于有序域没有最大元素(对任意元素 z,z + 1 将更大)。所以,这里的“完备”不是完备格的意思。 另外,有序域满足戴德金完备性,这在上述公理中已经定义。上述的唯一性也说明了这里的“完备”是指戴德金完备性的意思。这个完备性的意思非常接近采用戴德金分割来构造实数的方法,即从(有理数)有序域出发,通过标准的方法建立戴德金完备性。 这两个完备性的概念都忽略了域的结构。然而,有序群(域是种特殊的群)可以定义一致空间,而一致空间又有完备空间的概念。上述完备性中所述的只是一个特例。(这里采用一致空间中的完备性概念,而不是相关的人们熟知的度量空间的完备性,这是由于度量空间的定义依赖于实数的性质。)当然,R 并不是唯一的一致完备的有序域,但它是唯一的一致完备的阿基米德域。实际上,“完备的

无理数的常见形式

无理数的常见形式,科学计数法 无理数 概念:无理数即无限不循环小数。 明确无理数的存在无理数来自实践,无理数并不“无理”,也不是人们臆想出来的,它是实实在在存在的,例如: (1)一个直角三角形,两条直角边长分别为1和2,由勾股定理知,它的斜边长为; (2)任何一个圆,它的周长和直径之比为一常数等等; 像这样的数,在我们周围的生活中,不是只有少数几个,而是像有理数一样有无限个。 概念剖析:无限不循环小数叫无理数,这说明无理数是具有两个基本特征的小数:一是小数位数是无限的;二是不循环的。这对初学者来说有一定难度,因此,我们必须掌握它的表现形式。 无理数的常见形式:在初中阶段,无理数表现形式主要有以下几种: 1. 无限不循环的小数,如0.1010010001……(两个1之间依次多一个0) 2. 含的数,如:,,等。 3. 开方开不尽而得到的数,如,等。 4. 某些三角函数值:如,等。 无理数与有理数的区别:1、把有理数和无理数都写成小数形式时,有理数能写成整数、小数或无限循环小数,比如4=4.0,4/5=0.8,1/3=0.33333……。而无理数只能写成无限不循环小数,比如√2=1.414213562…………。根据这一点,人们把无理数定义为无限不循环小数; 2、无理数不能写成两整数之比。 错误辨析: 1. 无限小数都是无理数; 2. 无理数包括正无理数、负无理数和零; 3.带根号的数是无理数; 4. 无理数是用根号形式表示的数; 5.无理数是开方开不尽的数; 6. 两个无理数的和、差、积、商仍是无理数; 7.无理数与有理数的乘积是无理数; 8. 有些无理数是分数; 9. 无理数比有理数少;10. 一个无理数的平方一定是有理数。 综上,学习无理数应把握住无理数的三个特征:(1)无理数是小数;(2)无理数是无限小数;(3)无理数是不循环小数。判断一个数是否是无理数对照这三个特征一个不能少。另外,还应注意无理数的几种常见的表示形式,才是弄清无理数概念的关键。

数的由来和发展——从自然数到有理数

数的由来和发展——从自然数到有理数 原始社会时,古人用小石子检查放牧归来的羊的只数;用结绳的方法统计 猎物的个数;用在木头上刻道的方法记录捕鱼的数量等等。这些原始的计数方 法表明:人类很早就产生了一一对应的思想,于是产生了像1、2、3、4、 5这样的自然数。 在自然数的符号表示方面,古罗马的数字相当特别,现在许多老式挂钟上 还常常使用它们。罗马数字的符号一共只有7个,分别是:I(代表1)、V (代表5)、X(代表10)、L(代表50)、C代表100)、D(代表500)、M (代表1,000)。这7个符号位置上不论怎样变化,它所代表的数字都是不变的。如: 1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍。如: III表示3;XXX表示30。 2.右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表 示大数字加小数字,如VI表示6,DC表示600。一个代表大数字的符号左边附 一个代表小数字的符号,就表示大数字减去小数字的数目,如IV表示4,XL表示40,VD表示495。 3.上加横线:在罗马数字上加一横线,表示这个数字的一倍。与古罗马不同,其他国家和地区的人民普遍认同十位进制的记数符号,即1、2、3、4、5、6、7、8、9,遇到零就用黑点?表示,比如6708,就可以表示为67?8。后来 这个表示零的?,逐渐变成了0。 后来人们发现,仅仅能表示自然数是远远不行的,比方说:如果分配猎获 物时,5个人分4件东西,每个人该得多少呢?于是分数就产生了。自然数、 分数和零,通称为算术数。自然数也称为正整数。 随着社会的发展,人们又发现很多数量具有相反的意义,比如增加和减少、前进和后退、上升和下降、向东和向西。为了表示这样的量,又产生了负数。 正整数、负整数和零,统称为整数。如果再加上正分数和负分数,就统称为有 理数。有了这些数字表示法,人们计算起来感到方便多了。 从自然数到有理数,只是数的发展的初级阶段。有理数之后,依次还出现 了无理数、实数、虚数这些数的概念。这些数的发现、发展,是与各个历史阶 段的劳动人民和一大批科学家所作出的努力是分不开的,他们的贡献,犹如一 颗颗璀灿的明珠,将永远闪耀在人类文明的发展史上。

有理数的概念知识点整理

。圆周率不是有理数;

(3)自然数<==>0和正整数;a>0 <==>a是正数;a<0 <==>a是负数; a≥0<==>a是正数或0<==>a是非负数;a≤0<==>a是负数或0<==>a是非正数。 3、数轴【重点】 (1)、用一条直线上的点表示数,这条直线叫做数轴。它满足以下要求: ①在直线上任取一个点表示数0,这个点叫做原点; ②通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向; ③选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3…;从原点向左,用类似的方法依次表示-1,-2,-3… (2)、数轴的三要素:原点、正方向、单位长度。 (3)、画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度);四标(标数字)。数轴的规范画法:是条直线,数字在下,字母在上。 注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数。 (4)、一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。 4、相反数 (1)、只有符号不同的两个数叫做互为相反数。如:5和-5,-2和2,它们数字相同符号相反,所以互为相反数。 求任何一个数或式子的相反数,只需要在这个数或式子前面加上“负号”,然后适当化简即可。 如:a+b的相反数是-(a+b)=-a-b (2)、一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,他们分别在原点的两侧,表示a和-a,我们说这两点关于原点对称。 (3)、a和-a互为相反数。0的相反数是0,正数的相反数是负数,负数的相反数是正数。相反数是它本身的数只有0.

无理数与实数的概念

茅塔中学数学实数教案 教师:_______ 年级:______ 授课时间:_____年___月___日_____ 一、授课目的与考点分析:无理数与实数 知道实数的相反数、绝对值的意义,并会求一个实数的相反数和绝对值;会比较两个实数的大小。 二、授课内容及过程: 问题:把下列有理数写成小数的形式,你有什么发现? 3 , 35- ,478 ,911 ,119 ,59 ,5,0 结论: 任何一个有理数都可以写成有限小数或无限循环小数的形式。反过来,任何有限小数或无限循环小数也都是有理数。无限不循环小数又叫无理数, 3.14159265π=也是无理数; 1.无理数:无限不循环小数叫做无理数,如π=3.1415926…,2 1.414213 =,-1.010010001…,都是无理数。 例1 在实数3.14,25 ,3.3333,3,0.412?? ,0.10110111011110…,π,256- 中,哪些是有理数,哪些是无理数? 注意:①既是无限小数,又是不循环小数,这两点必须同时满足; ②无限不循环小数与有限小数、无限循环小数的本质区别是:前者不能化成分数,而后两者都可以化成分数; ③凡是整数的开不尽的方根都是无理数,如2、3等。 像有理数一样,无理数也有正负之分。例如2,33,π是正无理数,2-,33-,π-是负无理数。 2.实数:有理数和无理数统称为实数。由于非0有理数和无理数都有正负之分,实数也可以这样分类: (1)????????????????????????? 正有理数有理数零有限小数或无限循环小数负有理数实数正无理数无理数无限不循环小数负无理数(2)0???????????????正有理数正实数正无理数实数负有理数负实数负无理数 例2 下列说法中,正确的是( ) A .带根号的数是无理数 B .无理数都是开不尽方的数 C .无限小数都是无理数 D .无限不循环小数是无理数 3.实数的几个有关概念:①相反数:a 与-a 互为相反数,0的相反数是0。a+b=0?a 、b 互为相反数。 ②倒 数:若0a ≠,则1a 称为a 的倒数,0没有倒数。1ab a =?、b 互为倒数。 ③绝对值:一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0。即()()() 0000a a a a a a >??==??-

经典数学故事

经典数学故事----高斯的故事 高斯有许多有趣的故事,故事的第一手资料常来自高斯本人,因为他在晚年时总喜欢谈他小时後的事,我们也许会怀疑故事的真实性,但许多人都证实了他所谈的故事。 高斯的父亲作泥瓦厂的工头,每星期六他总是要发薪水给工人。在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然後他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆. 高斯常常带笑说,他在学讲话之前就已经学会计算了,还常说他问了大人字母如何发音後,就自己学着读起书来。 七岁时高斯进了 St. Catherine小学。大约在十岁时,老师在算数课上出了一道难题:「把 1到 100的整数写下来,然後把它们加起来!」每当有考试时他们有如下的习惯:第一个做完的就把石板﹝当时通行,写字用﹞面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完後,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最後,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为101的数目,所以答案是50×101=5050。由此可见高斯找到了算术级数的对称性,然後就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。 经典数学故事----“无理数”的由来 公元前500年,古希腊毕达哥拉斯(Pythagoras)学派的弟子希勃索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形边长是1,则对角线的长不是一个有理数)这一不可公度性与毕氏学派“万物皆为数”(指有理数)的哲理大相径庭。这一发现使该学派领导人惶恐、恼怒,认为这将动摇他们在学术界的统治地位。希勃索斯因此被囚禁,受到百般折磨,最后竞遭到沉舟身亡的惩处。 不可通约的本质是什么?长期以来众说纷坛,得不到正确的解释,两个不可通约的比值也一直被认为是不可理喻的数。15世纪意大利著名画家达.芬奇称之为“无理的数”,17世纪德国天文学家开普勒称之为“不可名状”的数。

无理数练习题

【知识要点】 1.无理数: 定义:无限不循环小数叫做无理数,如π=3.1415926 1.414213= ,-1.010010001…,都是无理数。 注意: ①既是无限小数,又是不循环小数,这两点必须同时满足; ②无限不循环小数与有限小数、无限循环小数的本质区别是:前者不能化成分数,而后两者都可以化成分数; 2.实数:有理数和无理数统称为实数。 ????????????????????????? 正有理数有理数零有限小数或无限循环小数负有理数实数正无理数无理数无限不循环小数负无理数 3.实数的几个有关概念: ①相反数:a 与-a 互为相反数,0的相反数是0。a+b=0?a 、b 互为相反数。 ②倒 数:若0a ≠,则1a 称为a 的倒数,0没有倒数。1ab a =?、b 互为倒数。 ③绝对值:一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0。 即()()()0000a a a a a a >??==??-

④无理数乘以有理数是无理数; ⑤无理数除以有理数是无理数; ⑥有理数除以无理数是无理数。 A .0个 B .2个 C .4个 D .6个 4.判断(正确的打“√”,错误的打“×”) ①带根号的数是无理数;( ) ( ) ③绝对值最小的实数是0;( ) ④平方等于3 ( ) ⑤有理数、无理数统称为实数;( ) ⑥1的平方根与1的立方根相等;( ) ⑦无理数与有理数的和为无理数;( ) ⑧无理数中没有最小的数,也没有最大的数。( ) 5.a ) A .有理数 B .正无理数 C .正实数 D .正有理数 6.下列四个命题中,正确的是( ) A .倒数等于本身的数只有1 B .绝对值等于本身的数只有0 C .相反数等于本身的数只有0 D .算术平方根等于本身的数只有1 7.下列说法不正确的是( ) A .有限小数和无限循环小数都能化成分数 B .整数可以看成是分母为1的分数 C .有理数都可以化为分数 D .无理数是开方开不尽的数 8.代数式 21a +y ,()21a -中一定是正数的有( ) A .1个 B .2个 C .3个 D .4个 9 ) A .m 是完全平方数 B .m 是负有理数 C .m 是一个完全平方数的相反数 D .m 是一个负整数 10.已知a 为有理数,b 为无理数,则a+b 为( ) A .整数 B .分数 C .有理数 D .无理数 11 215 的大小关系是( ) A 215< B .215<<215<<215<< 12的相反数之和的倒数的平方为 。 13、设a 、b 互为相反数,但不为0;c 、d 互为倒数;m 的倒数等于它本身,化简111c m m m d a b ??÷++- ???的结果是 。

无理数定义及其研究

存档编号_ _______ 赣南师范学院科技学院学士学位论文 无理数定义及其比较研究 系别数学与信息科学系 届别 2014届 专业数学与应用数学 学号 1020151208 姓名××× 指导老师××× 完成日期 2014年4月

目录 内容摘要 (1) 关键词 (1) Abstract (1) Key words (1) 1引言 (2) 2 无理数的定义 (2) 2.1戴得金分割定义 (3) 2.2柯西基本序列定义 (4) 2.3有理区间套定义 (5) 2.4十进制小数定义 (6) 2.5有界单调有理数列定义 (9) 3无理数定义对比研究 (10) 3.1无理数定义的异同点 (10) 3.2无理数定义的优缺点 (11) 3.3无理数定义的等价性 (11) 参考文献 (14)

内容摘要:无理数是有理数域扩充到实数域的重要内容,也是贯穿在我们中学及大学学习过程的重要内容。只有完全了解无理数,才能更好地掌握无理数的定义。本文主要谈及无理数的各种定义,并且对于这些定义作出对比及研究。通过对无理数定义的不断比较研究,发现这些定义有着我们意想不到的地方。找到无理数的定义之后,接下来就去探索定义对于中学生的影响。 关键词:无理数定义研究 Abstract: irrational number is a rational number domain extension to the important content of the real number, is run through our secondary and university education an important part of the learning process. Only fully understand irrational numbers, in order to better grasp the definition of irrational numbers. This concerns mainly the various definitions of the irrational number, and these definitions for comparison and study. Continually through the definition of the irrational number a comparative study, found that those definitions had never imagined. After you find the definition of the irrational number, next to explore the definition of influence of middle school students. Key words:irrational number definition study

“数学”简介、含义、起源、历史与发展

数学 数学是研究现实世界中数量关系和空间形式的,简单地说,是研究数和形的科学。 由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。在中国,至迟在商代,即已出现用十进制数字表示大数的方法;又至迟至秦汉之际,即已出现完满的十进位值制。在成书不迟于1世纪的《九章算术》中,已载有只有位值制才有可能的开平、立方的计算法则,并载有分数的各种运算以及解线性联立方程组的方法,还引入了负数概念。刘徽在他注解的《九章算术》(3世纪)中,还提出过用十进小数表示无理数平方根的奇零部分,但直至唐宋时期(欧洲则在16世纪S.斯蒂文以后)十进小数才获通用。在这本著作中,刘徽又用圆内接正多边形的周长逼近圆周长,成为后世求圆周率更精确值的一般方法。虽然中国从来没有过无理数或实数的一般概念,但在实质上,那时中国已完成了实数系统的一切运算法则与方法,这不仅在应用上不可缺,也为数学初期教育所不可少。至于继承了巴比伦、埃及、希腊文化的欧洲地区,则偏重于数的性质及这些性质间的逻辑关系的研究。早在欧几里得的《几何原本》中,即有素数的概念和素数个数无穷及整数惟一分解等论断。古希腊发现了有非分数的数,即现称的无理数。16世纪以来,由于解高次方程又出现了复数。在近代,数的概念更进一步抽象化并依据数的不同运算规律而对一般的数系统进行独立的理论探讨,形成数学中的若干不同分支。 开平方和开立方是解最简单的高次方程。在《九章算术》中,已出现解某种特殊形式的二次方程。发展至宋元时代,引进了“天元”(即未知数)的明确观念,出现了求高次方程数值解与求多至四个未知数的高次代数联立方程组的解的方法,通称为天元术与四元术。与之相伴出现的多项式的表达、运算法则以及消去方法,已接近于近世的代数学。在中国以外,9世纪阿拉伯的花拉子米的著作阐述了二次方程的解法,通常被视为代数学的鼻祖,其解法实质上与中国古代依赖于切割术的几何方法具有同一风格。中国古代数学致力于方程的具体求解,而导源于古希腊、埃及传统的欧洲数学则不同,一般致力于探究方程解的性质。16世纪时,F.韦达以文字代替方程系数,引入了代数的符号演算。对代数方程解的性质的探讨,则从线性方程组导致行列式、矩阵、线性空间、线性变换等概念与理论的出现;从代数方程导致复数、对称函数等概念的引入以至伽罗瓦理论与群论的创立。而近代极为活跃的代数几何,则无非是高次联立代数方程组解所构成的集体的理论研究。 形的研究属于几何学的范畴。古代民族都具有形的简单概念而往往以图画来表示,形之成为数学对象是由工具的制作与测量的要求所促成。规矩以作圆方,中国古代夏禹治水时即已有规、矩、准、绳等测量工具。《墨经》中对一系列的几何概念,有抽象概括,作出了科学的定义。《周髀算经》与刘徽《海岛算经》给出了用矩观天测地的一般方法与具体公式。在《九章算术》及刘徽注解的《九章算术》中,除勾股理论外,还提出了若干一般原理以解多种问题。例如出入相补原理以求任意多边形面积;阳马鳖臑的二比一原理(刘徽原理)以求多面体的体积;5世纪祖暅提出“幂势既同则积不容异”的原理以求曲形体积特别是球的体积;还有以内接正多边形逼近圆周长的极限方法(割圆术)。但自五代(约10世纪)以后,中国在几何学方面的建树不多。中国几何学以测量与面积体积的量度为中心,古希腊的传统则重视形的性质与各种性质间的相互关系。欧几里得的《几何原本》,建立了用定义、公理、定理、证明构成的演绎体系,成为近代数学公理化的楷模,影响及于整个数学的发展。特别是平行公理的研究,导致了19世纪非欧几里得几何学的产生。欧洲自文艺复兴时期起出现了射影几何学。18世纪,G.蒙日应用分析方法于形的研究,开微分几何学的先河。C.F.高斯的曲面论与(G.F.)B.黎曼的流形理论开创了脱离周围空间以形作为独立对象的研究方法;

第1讲有理数的概念和性质和答案

新苏教版七升八数学第一讲有理数的概念和性质 一、【概念和性质】 1、正数和负数 正数:比0大的数。如+3、+1.5、+1 2、+584(正号可以省略) 负数:比0小的数。如-3、-1.5、-1 2、-584(负号不可以省略) 零:既不是正数,也不是负数。零是正数和负数的分界。 【实际意义】如“零上”和“零下”“高出”和“低于” “上升”和“下降”“超出”和“不足” “盈利”和“亏损”“收入”和“支出” ▲如正数表示某种意义,那么负数表示它的相反的意义。 例:用正数表示向南,那么向北3km可以用负数表示为-3km, 向南-5km表示向北5km 填空(1)若汽车向东行驶2.5千米记作+2.5千米,则向西行驶1.5千米记作; 汽车原地不动记作。 (2)某人转动转盘,如果+2圈表示沿顺时针转2圈,那么圈-3表示。 2、整数和分数统称为有理数。 ▲有理数可以写成 m n( m、n是整数,n≠0)。 ▲有理数的两种分类: ①按定义分: ②按符号分(常用): 整数 分数 正整数 负整数 正分数 负分数 有理数 正有理数 正整数 正分数 有限小数 无限小数 分数(分子是1时,这个分数就是正数) 无限循环小数 无限不循环小数(无理数) 小数 自然数

几个重要概念 (1)非负数:正数和零 (2)非正数:负数和零 (3)非负整数:正整数和零 (4)非正整数:负整数和零 3、规定了原点、正方向和单位长度的直线叫做数轴。 所有有理数都可以用数轴上的点表示,但不是数轴上所有点都是有理数。 左边的数 〈 右边的数 ▲ 正数大于0,0大于负数,正数大于负数。 两个负数,绝对值大的反而小。 4、绝对值的意义与性质: ① 数轴上表示a 的点与原点的距离叫做a 的绝对值,记作||a 。 一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。 ② ③ 非负性 2(||0,0)a a ≥≥ ④ 非负数的性质: i )非负数的和仍为非负数。 ii )几个非负数的和为0,则他们都为0。 5、绝对值相同,符号相反的两个数叫做互为相反数。0的相反数是0。 ▲ 几何特征:关于原点对称(到原点的距离相等) 6、乘积是1的两个数是互为倒数(0没有倒数) 乘积是-1的两个数是互为负倒数 ▲ 正数的倒数是正数,负数的倒数仍是负数 ▲ 除以一个不为0的数,等于乘以这个数的倒数。 【思考】 已知a 为有理数,判断下列语句是否正确: ① (a+12 )2是正数; ② -(a -12 )2 是负数; 111 -2 -1 0 1 2 大 小

有理数概念、知识点汇总

(4).实数的相关概念:①整数:正整数、零、负整数统称整数;②分数:正分数和负分数统称分数;③有理数:整 数和分数统称有理数(即:整数、分数、有限小数、无限循环小数都是有理数);☆④无理数:无限不循环小数称为无理数(即:圆周率π、开不尽的方根、无限不循环小数都是无理数)☆⑤实数:有理数和无理数统称实数。 ⑺.非负数:非负数就是不是负数的数,也就是零和正数;数的绝对值、数的偶次幂、算术根等都是常见的非负 数;几个非负数的和为零,则这几个非负数必同时为零。(非正数:非正数就是不是正数的数,也就是零和负数) ⑻.有理数的运算法则: ○1加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;○2互为相反数的两个数相加得零;

○ 3减法法则:减去一个数,等于加上这个数的相反数; ○ 4乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零。 ○ 5除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;零除以任何一个不等于零的数,都得零;(零不能作除数) ⑼.有理数的乘方:一般地,n 个相同的因数a 相乘,即 记作n a ,读作a 的n 次方;像这样求n 个相同因 数的积的运算,叫做乘方,乘方的结果叫做幂;在n a 中,a 叫做底数,n 叫做指数, 读作a 的n 次方,当n a 看作a 的n 次方的结果时,也可读作a 的n 次幂;当指数 是1时,通常省略不写.【a ?a 可简记为a 2,读作a 的平方(或二次方);a ?a ?a 可简 记为a 3,读作a 的立方(或三次方)】 正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;零的任何非零次幂都是0;零的零次幂没有意义;任何不等于零的数的零次幂都等于1,即()010≠=a a ;☆任何不等于零的数的-P (P 是正整数)次幂,等于这个数的P 次幂的倒数,即 p p a a 1=-(a ≠0,P 是正整数). ⑽.有理数的混合运算顺序:○ 1先算乘方,再算乘除,最后算加减;○2同级运算,按照从左至右的顺序进行;○3如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。(加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方(今后将会学到)叫做第三级运算。)(进行分数的乘除运算,一般要把带分数化为假分数,把除法转化为乘法.) 知识点复习 1、整数包括哪些数?自然数是什么?什么叫有理数? 答:整数包括正整数、零、负整数;零和正整数(即非负整数)又叫自然数;正整数、零、负整数、正分数、负分数(即整数和分数)统称为有理数。 2、什么叫数轴?在数轴上如何表示数? 答:数轴是一条带有方向、原点和规定长度单位的直线。一个有理数在数轴上总可以找出一点和它对应。表示方向的箭头在直线的右端。数轴上方或右方是正数、原点的左方或下方是负数、原点是零。 3、什么叫相反数?什么是绝对值?如何判定有理数的大小? 答:到原点距离相等的两个数叫互为相反的数。零的相反数是零。数轴上表示的数a 到原点的距离叫数a 的绝对值。一个正数的绝对值是它本身、一个负数的绝对值是它相反数、零的绝对值是它本身。正数大于零,零大于负数,正数大于负数、两个负数绝对值大的反而小。 4、有理数加法法则是什么? 答:符号相同的两数相加,和的符号与加数的符号相同,并把它们的绝对值相加;绝对值不等的异号两数相加,和的符号取绝对值较大的那个加数的符号,并把较大的绝对值减去较小的绝对值;互为相反的数相加,和为零;任何数与零相加,和就是这个数。

无理数练习题1上课讲义

无理数练习题1

【实数知识要点】 1.无理数: 定义:无限不循环小数叫做无理数。 如π=3.1415926 1.414213=,-1.010010001…,都是无理数。 注意:①既是无限小数,又是不循环小数,这两点必须同时满足; ②无限不循环小数与有限小数、无限循环小数的本质区别是:前者不能化成分数,而后两者都可以化成分数; ③凡是整数的开不尽的方根都是无理数,如 2.实数:有理数和无理数统称为实数。 ????????????????????????? 正有理数有理数零有限小数或无限循环小数负有理数实数正无理数无理数无限不循环小数负无理数 3.实数的几个有关概念: ①相反数:a 与-a 互为相反数,0的相反数是0。a+b=0?a 、b 互为相反数。 ②倒 数:若0a ≠,则1a 称为a 的倒数,0没有倒数。1ab a =?、b 互为倒数。 ③绝对值:一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0。 即()()() 0000a a a a a a >??==??-

3.下列命题中,正确的个数是( ) ①两个有理数的和是有理数; ②两个无理数的和是无理数; ③两个无理数的积是无理数; ④无理数乘以有理数是无理数; ⑤无理数除以有理数是无理数; ⑥有理数除以无理数是无理数。 A .0个 B .2个 C .4个 D .6个 4.判断(正确的打“√”,错误的打“×”) ①带根号的数是无理数;( ) 一定没有意义;( ) ③绝对值最小的实数是0;( ) ④平方等于3 ) ⑤有理数、无理数统称为实数;( ) ⑥1的平方根与1的立方根相等;( ) ⑦无理数与有理数的和为无理数;( ) ⑧无理数中没有最小的数,也没有最大的数。( ) 5.a ) A .有理数 B .正无理数 C .正实数 D .正有理数 6.下列四个命题中,正确的是( ) A .倒数等于本身的数只有1 B .绝对值等于本身的数只有0 C .相反数等于本身的数只有0 D .算术平方根等于本身的数只有1 7.下列说法不正确的是( ) A .有限小数和无限循环小数都能化成分数 B .整数可以看成是分母为1的分数 C .有理数都可以化为分数 D .无理数是开方开不尽的数 8.代数式21a +,,y ,()21a -中一定是正数的有( ) A .1个 B .2个 C .3个 D .4个 9. ) A .m 是完全平方数 B .m 是负有理数 C .m 是一个完全平方数的相反数 D .m 是一个负整数 10.已知a 为有理数,b 为无理数,则a+b 为( ) A .整数 B .分数 C .有理数 D .无理数

子主题四有理数与无理数的发展历史(精)

子主题四有理数与无理数的发展历史 学习目标 知识与技能 通过一系列的探究活动,了解有理数的发展,会进行有理数的分类.并通过查阅资料、折纸、拼图活动,让学生感受无理数产生的实际背景和引入的必要性.进一步理解数的本质属性,破除对无理数的神密感与畏惧感. 过程与方法 探讨有理数的产生、应用,借助计算器探索圆周率是无限不循环小数,并从中体会无理数的本质属性与无限逼近的思想,感受数学对事物量的刻画从粗放到精细再到精准的变化过程,体验数学表达事物的特有的方法(说不清的事物,不便于表达的事物引入概念用符号表示出来,再为其建立一套法则). 情感态度与价值观 通过经历探究活动,获得解决实际问题的成功体验;培养现代社会学习、生活、工作、研究应具备的基本态度和交流合作意识.由数的发展过程的变迁感受人类在面对问题时,那种不断追问、不断追求、不断创造的求索精神.树立用符号表示事物的信心. 重难点分析 重点 查阅文献和资料,探究有理数产生、分类和发展过程。了解有理数和无理数对数学的作用,进一步理解有理数本质属性. 难点 理解无理数产生的背景,以及对无理数的本质属性的认识. 探究数的发展历史不仅可以使学生对数的产生和发展有一个初步的认识,同时,也有利于学生更深刻地理解有理数、无理数的意义与价值,形成科学的学习态度,因此,探究有理数和无理数的起源、发展及作用及其本质属性成为这一子主题的重点.由于无限不循环小数的产生与学生的实际生活联系不太密切,且极易与无限循环小数产生混淆,还有,一些历史资料学生阅读起来比较困难,因此,探究无理数产生的背景及其本质属性成为这一活动的难点,建议老师在活动中要

进行必要的指导和示范,同时,对学生搜集到的资料要根据学生的认知水平进行适当地解释和说明,以帮助学生更好地理解和使用资料. 活动建议方案 《有理数与无理数的发展历史》活动建议方案 一、活动流程框图 二、活动过程 2.1活动任务 探究有理数的概念、意义、作用、地位;探究无理数的产生与价值,及有理数与无理数联系与区别,揭示其本质属性. 本探究子主题设计以下三个活动: 2.2活动1:有理数的分类 2.2.1活动内容 明确探究任务 任务一:查阅关于有理数产生、分类的资料,并提出自己的想法与困惑.任务二:探究有理数产生的过程,及有理数名称的由来; 任务三:探究已学过的数哪些是有理数,试给出有理数的定义,理清你所学过的数与有理数之间的关系. 分组探究: 学生分组对任务进行探究,教师在学生完成任务探究之后组织进行交流和汇报,每项任务分别选择两个小组进行汇报,其他组进行完善与补充.参考资料 1.有理数的产生 很久很久以前,人类的祖先群居在森林里、山洞中,身上披的是兽皮和树叶,吃的是山上的野兽、树上的野果和河里的鱼,终年靠狩猎为生.那时候,虽然每

相关文档