文档库 最新最全的文档下载
当前位置:文档库 › 气敏传感器的应用

气敏传感器的应用

气敏传感器的应用
气敏传感器的应用

气敏传感器的应用

摘要:介绍其敏传感器的现状和发展趋势。随着科技技术的发展,检测技术为重要的科技手段之一。随着微电子技术的发展和普及,传感器称为新的市场需求,对传感器的性能,用途日益有着新的要求和研究价值。

引言:随着科技的发展,针对围绕着生活和工业等周围的气体中的有害物质的测定,成为了一项重要的难题。其中其敏传感器为其中味重要的科研课题。目前的气敏传感器应用到气体探测器、烟雾报警器、虚拟嗅探犬、酒精浓度测试器等领域。

1.气敏传感器的主要特征

气敏传感器大致是为了检测气体成分和含量为目的研究的传感器。包括物理和化学方法。气敏传感器主要分为,:半导体型气敏传感器、电化学型气敏传感器、固体电解质气敏传感器、接触燃烧式气敏传感器、光化学型气敏传感器、高分子气敏传感器等。还有红外吸收型、石英振荡型、光线型、热传导型、声表面波型、气体色谱法等。

电阻式半导体气敏元件是根据半导体接触到气体时其阻值的改变来检测气体的浓度;接触燃烧式气体传感器是基于强催化剂是气体在其表面燃烧时产生热量,使传感器温度上升;电容式传感器是利用敏感材料给付气体后其家电常数发生改变导致电容变化;电化学式气体传感器,主要利用两个电极之间的化学电位差,一个在气体中测量气体浓度,另一个固定的参比电极。红外吸收型传感器,当红外光通过待测气体时,这些气体分子对特定波长的红外光游戏手,其吸收关系服从朗伯比尔吸收定律,通过光强的变化测出气体的浓度。

气敏传感器的主要特征有稳定性、灵敏度、选择性、抗腐蚀性等特点。

稳定性主要表现在零点漂移区间漂移,一个传感器在连续工作条件下,每年零点漂移小于10%。灵敏度是指传感器输出变化量与被测输入变化量之比,主要取决于传感器结构所使用的技术。选择性也称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。抗腐蚀性是指传感器暴露于高体积分数目标其体重的能力。

2.气敏传感器的应用

SnO2是目前气敏传感器的广泛被利用的材料。它有灵敏度高,结构简单,体小质轻,坚固耐用等优点。SnO2 粉体的粒径大小,颗粒的形状、均匀性、稳定性都直接影响着制成的气敏器件的灵敏度、功耗、响应恢复特性及稳定性等重要参数。利用溶胶- 凝胶法合成SnO2 超微粒子主要以有机金属化合物为起始材料或以大批量有机试剂来制备SnO2 ,但有机金属

试剂较昂贵,给大量制备带来困难。因而通常是以廉价的SnCl4 为起始原料,加入少量溶胶形成助剂,促进其溶胶形式。溶胶- 凝胶法制备出粉体材料具有粒子分布均匀,纯度高,比表面积大,活性好,烧结温度低等优点。

但尽管SnO2 作为气敏材料日益受到重视,但由于其在应用中仍有一定缺陷,限制了它更为广泛的使用:低温条件下工作稳定性的控制;空气中湿度的影响;一些掺杂元素催化原理的探索;气敏特性测试手段的提高等等

3.纳米传感器及其在气敏传感器中的应用。纳米材料在气敏传感器的应用中有如下特点:①纳米固体材料具有庞大的界面,提供了大量气体通道,从而大大提高了灵敏度; ②工作温度大大降低; ③大大缩小了传感器的尺寸。

纳米传感器材料的发展展望。对于多壁碳纳米管制作的气敏传感器,虽然也可在室温下工作,但在复杂的气体环境中使传感器具有选择性却是一个亟待解决的问题。随着纳米技术的进一步发展,这些问题必将会被很好地解决,纳米传感器亦将获得巨大的发展。

4.气敏传感器的发展和展望

向多功能,低耗能,集成化方向发展。而且还有生物芯片的开发应用方面的展望,和应

用纳米技术和蓝牙技术的当今成果。一方面是由于人们安全意识增强,对环境安全性和生活舒适性要求提高;另一方面是由于传感器市场增长受到各国政府安全法规的推动。随着新材料、新工艺和新技术的应用,气体传感器的性能更趋完善,使传感器的小型化、微型化和多功能化具有长期稳定性好、使用方便、价格低廉等优点,并促进新兴气敏传感器的研制。

5.结束语

气敏传感器目前应用到一氧化碳的检测,酒精浓度的检测等方面。并且目前用于工业上的气敏传感器主要包括可燃性气敏传感器。随着新科技新工艺的开发应用。气敏传感器的性能更趋完善,使传感器的小型化、微型化和多功能化具有长期稳定性好、使用方便、价格低廉等优点。具有微处理器的气敏传感器实现了智能化、多功能化。气敏传感器将在充分利用微机械与微电子技术、计算机技术、信号处理技术、传感技术、故障诊断技术、智能技术等多学科综合技术的基础上得到发展。

[1]白春礼. 纳米科技及其发展前沿[J ] . 微纳电子技术, 2002 , (1) :2.

[2]赵全明,王广健,等. 二氧化锡膜气敏传感器最新研究成果[J ] .传感器世界,2002 ,(7) :1 - 6.

[3]郭纯生. 纳米技术- 传感器发展的新契机[J ] . 传感器技术,1998 ,17 (4) :5 - 8.

[4]张义华,等. 纳米SnO2 制备及其气敏特性分析[J ] . 传感器技术,

1999 ,18 (6) :36 - 39.

[5]刘迎春,叶湘滨. 传感器原理设计及应用[M] . 长沙:国防科技大

学出版社,2002

基于气敏传感器的酒驾测试仪)

摘要 本设计采用单片机和酒敏传感器为主要核心器件,酒精检测仪是通过电压频率转换将酒敏传感器传出的电压值转换成数字量,经单片机系统对传感器输出的非线性进行查表式校正、译码后,用软件将被测量的最大值保留并最终显示。着重介绍了该仪器的工作原理及性能特点。 本文介绍了气敏传感器检测气体的工作原理,详细讲述了系统的组成、原理和检测方法。系统采用硬件兼软件对测量过程及测量结果进行处理。与传统的检测技术相比,此种传感器检测装置有结构简单、新颖、易于实现的特点。 【关键词】 酒精检测仪8039单片机非线性校正酒敏传感器

目录 一.设计目的 (1) 1.1设计背景 (1) 二.设计任务与要求 (1) 2.1设计任务 (1) 2.2 设计要求 (3) 三.设计步骤及原理分析 (3) 3.1设计方法 (3) 3.2设计步骤 (4) 3.3设计原理分析 (5) 四.课程设计小结与体会 (7) 五. 参考文献 (8)

一.设计目的 各行各业的工作,例如机动车驾驶员酗酒后开车以及从事危险工作行业的人员酗酒后操作,都会造成严重的事故。用简便、准确、卫生的检测仪器进行检测,对违章饮酒者进行重罚,促使每个人增强遵章守纪的意识,消除隐患,对减少因酗酒造成的事故具有很大的意义。根据人呼出气体中乙醇的含量来确定酗酒的标准,从医学的角度看是可行的。人体摄入乙醇越多,血液中乙醇的溶解量就越大,从肺部呼出气体中乙醇的含量就越高。根据医学上对人饮酒的血醇含量的试验结果进行分析就可以确定酗酒的标准。而酒精的即时检测,有助于社会各方面的安全,特别是交通的安全。 二.设计任务与要求 2.1设计任务 系统的设计要求考虑到方方面面。本系统各个重要方面,如两个方面: 1.呼出气体的测量方法 对人呼出气体的测量不同于对其它气体的测量。因为人呼出一口气的时间仅一秒种左右,而且传感器感受到的乙醇气体浓度有一个从低到高再到低的过程,在这个过程中,浓度有一个最大值。 2.数据的显示方法 如果采用即时显示,检测者在短短的一秒钟内既要观察被检 1

气体传感器在工业安全领域的应用

气体传感器在工业安全领域的应用(一) 2016-02-01 10:23:24 气体传感器在工业安全领域的销量是最大的,产值大约占到60%。工业安全类的传感器的全球出货量约500万只。 工业安全的分类比较多,凡是有可能产生气体爆炸、窒息或中毒的场合都会用到,这些场合包括:煤矿、天然气、钢铁厂、石油开采、炼化、空气分离、石油化工、煤化工、氨化工等。 最近十年,中国煤矿的产能大增,随着矿难的频发,国家在煤矿安全上颁布了大量的法规和行政命令,因此用在煤矿里的气体传感器数量快速增长。主要需要检测的气体是甲烷、一氧化碳和硫化氢。甲烷传感器的用量每年约100万只,CO传感器约10万只,H2S传感器约1万只。因为雾霾天和燃煤之间关系密切,国家从环保战略考虑,要求减少燃煤。因此,从2013年下半年开始,矿用仪表企业的产品销售量呈现下跌趋势。到目前为止,还看不到缓解的趋势。 天然气行业却得益于国家的环保战略。燃煤消减的这部分能源供给,需要天然气、核电、风电、太阳能发电来填充,其中绝大部分需要天然气来填充。天然气行业所需要的检测的气体包括:甲烷、一氧化碳、硫化氢、氧气。天然气行业利润较高,因此可以接受的安全仪表价格也较高,性能要求也较高。天然气管道沿线都会有加压站、每个加压站内几乎都会配红外原理的CH4检测仪表。每个加压站之间的距离少则1、2公里,多则7、8公里,因此计算一下中国天然气管道就知道大概需要多少仪表了。除了管道,沿海的LNG船只的接气站也需要配置大量的气体监测仪表。随着燃气商用车的大量推广,车载的低成本天然气监测仪表的需求也是会有爆发式增长的。 气体传感器在工业安全领域的应用(二) 2016-02-01 10:23:42 在石油开采、除杂质、运输的过程中也会用到大量气体检测仪表和传感器。石油成分很复杂,不仅含有大量液态烃,还含有水、泥沙、甲烷CH4、一氧化碳CO、硫化氢H2S,以及挥发出来的有机物气体VOC。石油工业安全隐患有两点,一是爆炸和燃烧,二是毒气扩散导致人体中毒。所用到的传感器包括: 1. 催化燃烧原理和红外原理的CH4传感器,全中国所用到的量大约20万只,用在固定表和便携表中。 2. 电化学原理的CO和H2S的用量差不多,各5万只左右。 3. 测VOC主要靠光离子化传感器PID。和石油炼化、化工合并在一起,销量约5千只。 现如今,石油最主要的用途还是提炼成汽油、煤油、航空煤油、柴油,这个产业叫炼化。在提炼的过程中,石油裂解的成分非常复杂,而且还有加氢H2工艺。因此,所需要测的气体包括CH4、H2、CO、H2S、乙烷C2H6、乙烯C2H4、丙烯C3H6,和很多种VOC。提炼完成的油品需要大型的储油罐储存,为提供漏油预警,在储油罐和管线周边都要安装气体监测仪。油品的挥发性各不相同:汽油挥发性最强、柴油较弱、航空煤油最弱。要侦测到油品的泄露,最理想的还是用能够检测到PPB——PPM级别VOC的PID,但价格也是最贵。 气体传感器在工业安全领域的应用(三) 2016-02-01 10:24:00 钢铁冶金是气体传感器应用的大户,所用到的传感器种类不多,但数量较大。

第四篇力敏传感器

第四章力敏传感器 教学目标: 1.了解弹性敏感元件的特性和要求。 2.了解几种常用测力称重传感器的特点、 3.掌握电阻应变效应及半导体的压阻效应 4.了解电桥电路的作用。 5.掌握单臂、双臂和全桥测量电路的异同点。 6.理解压电式传感器的工作原理。了解它的特点。 7.了解它们的应用。 力敏传感器是使用很广泛的一种传感器。它是生产过程中自动化检测的重要部件。它的种类很多,有直接将力变换为电量的如压电式、压阻式等,有经弹性敏感元件转换后再转换成电量的如电阻式、电容式和电感式等。它主要用于两个方面:测力和称重。本章介绍电阻应变式传感器、压阻式和压电式传感器。 §4-1(传感器中的)弹性敏感元件 一、弹簧管压力表的组成:(如图4-1) 图4-1弹簧管压力表的组成框图 弹簧管——弹性敏感元件:将输入压力转换成自身的变形量(应变、位移或转角)。 二、弹性元件的基本特性: 1.变形:物体在外力作用下改变原来尺寸或形状的现象。 2.弹性:物体因受外力作用而产生变形,外力去掉后又恢复原状的特性。3.弹性元件:具有弹性变形特性的物体。 4.弹性变形:弹性元件受外力作用而产生的变形。 5.弹性特性:作用在元件上的外力与相应变形(应变、位移或转角)之间的关系。 (1)刚度:弹性元件产生单位变形所需的力。 (2)灵敏度:在单位力作用下弹性元件产生的变形。 刚度和灵敏度表示了弹性元件的软硬程度。元件越硬,刚度越大,单位力作用下变形越小,灵敏度越小。 6.线性弹性元件:刚度和灵敏度为常数,作用力F与变形X成线性关系。三、弹性敏感元件的基本要求及类型: 弹性元件在传感器技术中占有极其重要的地位。它首先把力、力矩或压力转换成相应的应变或位移,然后配合各种形式的传感元件,将被测力、力矩或压力变换成电量。

气敏传感器及其工作原理

气敏传感器及其工作原理 指导老师:雷家珩 汇报者:周华 汇报时间:2011.11.2

目录 ?气敏传感器定义 ?气敏传感器分类 ?气敏传感器工作原理 ?气敏传感器的应用 ?气敏传感器研究现状与发展趋势 ?参考文献

1 气敏传感器定义 气敏传感器是一种将检测到的气体成份和浓度转换为电信号的传感器。它将气体种类及其与浓度有关的信息转换成电信号,根据这些电信号的强弱就可以获得与待测气体在环境中的存在情况有关的信息,从而可以进行检测、监控、报警;还可以通过接口电路与计算机组成自动检测、控制和报警系统。

2 气敏传感器分类半导体式气敏传感器 气敏传感器 绝缘体气敏传感器 电化学气敏传感器 光干涉式气敏传感器 热传导式气敏传感器 红外线吸收散式气敏传感 器电阻型 非电阻型接触燃烧式型电容式恒电位电解式伽伐尼电池式

3 气敏传感器工作原理 3.1 半导体气敏传感器工作原理 ●半导体气敏传感器(见图1,2)由气敏部分、加热丝及防爆网 等构成,它是在气敏部分的SnO 2、Fe 2 O 2 、ZnO 2 等金属氧化物中添 加Pt、Pd等敏化剂的传感器。 ●半导体气敏传感器是利用待测气体与半导体(主要是金属氧化物)表面接触时,产生的电导率等物性变化来检测气体。半导体气敏器件被加热到稳定状态下,当气体接触器件表面而被吸附时,吸附分子首先在表面自由地扩散(物理吸附) ,失去其运动能量,其间的一部分分子蒸发,残留分子产生热分解而固定在吸附处(化学吸附)。

这时,如果器件的功函数小于吸附分子的电子亲和力,则吸附分子将从器件夺取电子而变成负离子吸附。具有负离子吸附倾向 的气体有O 2和NO x ,称为氧化型气体或电子接收性气体。如果器件 的功函数大于吸附分子的离解能,吸附分子将向器件释放电子,而成为正离子吸附。具有这种正离子吸附倾向的气体有H 2 、CO、碳氢化合物和酒类等,称为还原型气体或电子供给性气体。 图1 半导体气敏传感器结构图图2 半导体气敏传感器的符号表示

传感器论文(基于气敏传感器的厨房火灾报警系统)

传感器制作报告 基于气敏传感器的厨房火灾报警系统 摘要: 厨房是人们日常生活的重要活动场所之一。随着我国经济的飞速发展,厨房也经历了一场变革,许多市民家庭、酒楼饭店实现了厨房电气化,但同时也增加了火灾负荷。近年来因为厨房失火而造成的火灾频繁发生,不仅极大地影响了民众生活,对财产造成了极大破坏,更有可能危及人们的生命。厨房火灾的危害性不容轻视。本文基于以上考虑,通过基于气敏传感器的厨房火灾报警系统设计,旨在尽早提醒人们厨房火灾将要发生或已经发生,及早发现灾害,进行灭火措施的操作,避免火灾的发生,尽量减少其危害。该报警系统适用于一般家庭厨房、酒楼饭店较大型的厨房。 Abstract: Kitchen is one of the most important activity places in people’s life.Along with the rapid development of China's economy, kitchens are also experiencing a great change. While many families and restaurants are kitchen-electrification realized, the fire load are also increased. In recent years, fire happened in the kitchen occurs frequently, which not only greatly influence the public, leading to great loss of property, but alse endanger people's life. The damange of kitchen-fire can’t be ignored. According to the considerations mentioned above, the Design of Kitchen-fire Alarming System based on Gas Sensors, aims to alarm people the disaster of fire , trying to minus the damage. This alarming system is suitable for kitchens in normal families, as well as large kitchens in restaurants and hotels. 关键词: 厨房火灾气敏传感器报警系统 Key Words: Kitchen-Fire Gas Sensor Alarming System 一、绪论 火灾自动报警系统属于自动化范畴,是当前楼宇自动化的一个主要构成系统。其设置目的是为了防止和减少火灾危害,保护人身和财产安全。火灾报警技术是预防火灾的一项基础工作,应用范围广泛。报警早,损失少,不仅对发生火灾的单位和个人具有重要作用,而且对公安消防监督机构及时扑灭火灾、减少人员伤亡和财产损失同样具有十分重要的现实意义。 二、设计思路 火灾自动报警系统主要由探测器(传感器)、报警器、排气装置三部分组成。探测器主要对是否有火灾发生进行判断,判断标准为火灾参数:烟雾浓度、有毒气体浓度、光、火焰辐射、温度等。 在确认火灾发生后,通过报警器产生信号,如声音、灯光等方式告知人已有火灾发生。 具体设计思路如下: (1)探测器

力敏传感器.

模块二 力敏传感器及其应用练习题 一、填空题: 1、根据电容式传感器的电容量为d S C ε=可知,可分为 、 __和 三种 类型。电容式和电感式传感器常用 结构,以提高灵敏度,减小非线性。 2、用某直流电桥测量电阻Rx (注:Rx 和R3为相对桥臂电阻,R2和R4为另一对相对桥臂 电阻),三个桥臂电阻值分别为R2=50Ω, R3=100Ω,R4=25Ω,当电桥平衡时,则电阻Rx= 。 3、当压电式加速度计固定在试件上而承受振动时,质量块产生一可变力作用在压电晶片上, 由于 效应,在压电晶片两表面上就有 产生。 4、电阻应变片的测量电路主要有直流电桥和交流电桥,其中直流电桥中又有单臂电桥 和 。 5、电容式传感器利用电容器的原理,将非电量转换成 。电容式传感器可分为变 极距式、变面积式、 。 6、某些电介质当沿一定方向对其施力而变形时内部产生极化现象,同时在它的表面产生符 号相反的电荷,当外力去掉后又恢复不带电的状态,这种现象称为 ;在介质极化 方向施加电场时电介质会产生形变,这种效应又称 。 7、采用 电源供电的电桥称为交流电桥。 8、用于制作压电传感器的常用压电材料是 、 、 。 9、电感式传感器可分为 、 和电涡流三大类。 10、变面积电容传感器的输出特性是 的,因此灵敏度是常数。 11、用电涡流传感器探测地雷属于 测量。 12、自感式传感器常见的形式有变隙式,变面积式、 。 13、电容式传感器可分为 、 和 三种。 14、差动式电感传感器的优点有 、 和提高传感器的稳定性。 15、将超声波转化为电信号是利用压电材料的 。 16、压电式传感器的工作原理是以晶体的 效应为理论依据。 17、电阻应变片的工作原理是基于金属的 效应。 18、压电式传感器的工作原理是以晶体的 为理论基础。 19、电容式压力传感器是变 型的。

气敏传感器

2.3 气敏、湿敏电阻传感器 2.3.1气敏电阻 在现代社会的生产和生活中,人们往往会接触到各种各样的气体,需要对它们进行检测 和控制。比如化工生产中气体成分的检测与控制;煤矿瓦斯浓度的检测与报警;环境污染情 况的监测;煤气泄漏:火灾报警;燃烧情况的检测与控制等等。气敏电阻传感器就是一种将 检测到的气体的成分和浓度转换为电信号的传感器。 1.气敏电阻的工作原理及其特性 气敏电阻是一种半导体敏感器件,它是利用气体的吸附而使半导体本身的电导率发生变 化这一机理来进行检测的。人们发现某些氧化物半导体材料如SnO2、ZnO、Fe2O3、MgO、NiO、BaTiO3等都具有气敏效应。 以SnO2气敏元件为例,它是由0.1~10μm的晶体集合而成,这种晶体是作为N型半导 体而工作的。在正常情况下,是处于氧离子缺位的状态。当遇到离解能较小且易于失去电子 的可燃性气体分子时,电子从气体分子向半导体迁移,半导体的载流子浓度增加,因此电导 率增加。而对于P型半导体来说,它的晶格是阳离子缺位 状态,当遇到可燃性气体时其电导率则减小。 气敏电阻的温度特性如图2.26所示,图中纵坐标为 灵敏度,即由于电导率的变化所引起在负载上所得到的值 号电压。由曲线可以看出,SnO2在室温下虽能吸附气体, 但其电导率变化不大。但当温度增加后,电导率就发生较 大的变化,因此气敏元件在使用时需要加温。此外,在气 敏元件的材料中加入微量的铅、铂、金、银等元素以及一 些金属盐类催化剂可以获得低温时的灵敏度,也可增强对 图2.26 气敏电阻灵敏度与温度的关系气体种类的选择性。 2.常用的气敏电阻 气敏电阻根据加热的方式可分为直热式和旁热式两种,直热式消耗功率大,稳定性较差,故应用逐渐减少。旁热式性能稳定,消耗功率小,其结构上往往加有封压双层的不锈钢丝网 防爆,因此安全可靠,其应用面较广。 (1)氧化锌系气敏电阻 ZnO是属于N型金属氧化物半导体,也是一种应用较广泛的气敏器件。通过掺杂而获 得不同气体的选择性,如掺铂可对异丁烷、丙烷、乙烷等气体有较高的灵敏度,而掺钯则对氢、一氧化碳、甲烷,烟雾等有较高的灵敏度。ZnO气敏电阻的结构如图2.27所示。这种 气敏元件的结构特点是:在圆形基板上涂敷ZnO主体成分,当中加以隔膜层与催化剂分成 两层而制成。例如生活环境中的一氧化碳浓度达0.8~1.15 ml/L时,就会出现呼吸急促, 脉搏加快,甚至晕厥等状态,达1.84ml/L时则有在几分钟内死亡的危险,因此对一氧化碳 检测必须快而准。利用SnO2金属氧化物半导体气敏材料,通过对颗粒超微细化和掺杂工艺 制备SnO2纳米颗粒,并以此为基体掺杂一定催化剂,经适当烧结工艺进行表面修饰,制成 旁热式烧结型CO敏感元件,能够探测0.005%~0.5%范围的CO气体。

基于气敏传感器的传感器课设

课程设计任务书 分院(系)信息学院专业测控技术与仪器学生姓名李东宾学号1003020223 设计题目气敏传感器及其应用——酒精测试仪 内容及要求: 1)根据AT89C51及其敏传感器,设计酒精测试仪。 2)能够显示吹入气体量的大小是否合格。 3)当酒精超标时有相应报警装置。 4)测量电路应包括A/D转换器、LCD及报警电路。 要求在课程设计报告中给出: 1)装置的结构和电路原理图。 2)调试过程,说明发现的向题及处理过程。 3)分析存在的问题。 4)收获与改进方案。 进度安排: 下达任务时间: 2012年12月10日 文件检索及方案设计: 2012年12月10日——16日 写报告、答辩、原理设计及仿真: 2013年1月7日——13日 指导教师(签字): 年月日分院院长(签字): 年月日

成绩评定表 学生姓名李东宾班级学号1003020223 专业测控技术与 仪器课程设计题目气敏传感器及其应 用——酒精测试仪 评 语 组长签字: 成绩 日期20 年月日

目录 1、引言 (4) 2、系统总体设计方案 (4) 3、系统硬件与软件设计 (5) 3.1、硬件 (5) 3.1.1、传感器选择 (5) 3.1.2、A/D转换器 (7) 3.1.3、 MCS-51系列单片 (10) 3.1.4、LED显示电路 (12) 3.1.5、键盘电路 (13) 3.1.6、报警电路 (13) 3.2、软件设计 (13) 3.2.1、主程序框图 (14) 3.2.2、数据采集子程序程序框图 (14) 3.2.3、报警子程序程序框图 (15) 4、主要器件清单: (16) 5、系统调试与测试结果: (16) 6、测量结果分析: (17) 7、总结: (17) 参考文献: (17)

气敏传感器的现状及发展趋势

1国内外气敏传感器的产生与发展 气敏传感器又称“气体传感器”,是指利用各种化学、物理效应将气体成分、浓度按一定规律转换成电信号输出的传感器件,是化学传感器中最活跃的一种。早在20世纪30年代人们就已发现金属氧化物具有气敏效应,而半导体气敏元件则是在60年代初期研制成功的,最先研制的ZnO薄膜元件,它是利用ZnO薄膜电阻接触的可燃性气体浓度增加而下降,实现对可燃性气体检测。继而又发现在SnO2中添加Pt或Pd等贵重金属做增感剂能提高其灵敏度[1]。 日本气体传感器经过20多年的发展,其制造技术与产品水平已提高到相当水准,由日本费加罗技术研究公司规模生产的SnO2系列气敏传感器达21种规格,广泛用于11种气体的测量。在美国,氧传感器主要用于汽车发动机空/燃比控制和家用报警器。英国电气阀门公司生产的催化燃烧型气敏传感器,德国DraegerwerkAG生产的医用薄膜型气敏传感器,瑞士CerbertlsLlmited生产的火灾报警用气敏传感器等,都是世人所熟悉的[2]。 20世纪70年代中期我国开始研制金属氧化物半导体气敏传感器和钯栅MOS场效应氢敏晶体管,并开始在家用燃气报警器和电力工业变压器油变质监测上应用。近年来我国的气敏传感器技术飞速发展,全国有30多所高等院校和研究所研究开发各种类型的气敏传感器,在工艺方面引入表面掺杂、表面覆膜以及制作表面催化反应层和修隔离层等工艺;另外新研究的AL2O3气敏材料、石英晶体和有机半导体也开始用于气敏材料。但与国外发达国家相比还有较大差距,主要体现在产品生产技术和产业化等方面。 2工作原理 气敏电阻的材料是金属氧化物,在合成材料时,通过化学计量比的偏离和杂志缺陷制成,金属氧化物半导体分N型半导体,如氧化锡、氧化锌等,P型半导体,如氧化钴、氧化铅等。为了提高某种气敏元件对某些气体成分的选择性和灵敏度,合成材料有时还掺入了钯、铂、银等催化剂。 金属氧化物在常温下是绝缘的,制成半导体后却显示气敏特性。通常器件工作在空气中,空气中的氧和二氧化氮这样的电子兼容性大的气体,接受来自半导体材料的电子而吸附负电荷,结果使N型半导体材料的表面空间电荷层区域的传导电子减少,使表面电导减小,从而使器件处于高阻状态。一旦元件与被测还原性气体接触,就会与吸附的氧起反应,将氧束缚的电子释放出来,敏感膜表面电子增加,使元件电阻减小。该类气敏元件通常工作在高温状态(200~450℃),目的是为了加速上述的氧化还原反应[3]。 例如用于家庭或工业可燃性气体的检测、简陋报警器电路中所采用的MQ-5型气敏传感器就属于可燃性气敏传感器,如图1所示。它对液化气、天然气、城市煤气等具有较高的灵敏度,而对乙醇、烟雾几乎不起反应,并且具有灵敏度高,响应速度快,稳定性好,寿命长,驱动电路简单等优点。 图1MQ-5型气敏传感器 MQ-5型气敏传感器由微型氧化铝陶瓷管、氧化锌敏感层、测量电极和加热器构成。敏感元件固定在塑料或不锈钢制成的腔体内,加热器为气敏元件提供了必要的工作条件。封装好的气敏元件有6个管脚,其中4个用于信号输出,2个用于提供加热电流。MQ-5型气敏传感器引脚排布图如图2所示,MQ-5型气敏传感器使用接线图(如图3所示)。 图2MQ-5型气敏传感器引脚排布图 图2中H-H表示加热极(如5V),A-A、B-B表示传感器敏感元件的两个极。 图3MQ-5型气敏传感器使用接线图 图3中“V”为传感器的工作电压,同时也是加热电压。当气敏传感器加热后,环境中的可燃气体浓度加大时,传感器的内阻将迅速减小,利用该特性结合分压原理,可知输出电压的值将逐渐增大,当超过设定的阀值时,可产生相应的操作。 3主要应用 近年来,气敏传感器的应用越来越广泛,其中最主要的任务是防止突发事故,提高生活质量,保障生产过程安全性。 3.1用于监控易燃气体泄漏和检测有害气体成分 气敏传感器主要用于测定气体浓度,当安装在厨房、工厂、矿山以及其它公共场所的气敏传感器检测到有害气体浓度达到一定值时,会给出相应信号,并发出声音报警,提醒人们注意。 3.2用于检测环境质量 在办公室、住宅、汽车、飞机等较密闭环境安装气敏传感器,一方面由于即使少量的有害气体也会对人体造成伤害,所以可用于检测环境质量;另一方面也可用于检测二氧化碳浓度是否超标,提醒人们注意通风换气。 3.3用于检测酒精气体浓度 陶瓷气敏传感器可用于分析酒精蒸汽的含量。当酒后驾驶员对准传感器检测口吹气时,由于其血液中含有一定的酒精成分,传感器中电阻会发生与酒精浓度成比例的变化,并显示相应数值。 3.4用于检测气味和食物原料分类 气味检测是气敏传感器未来的主流方向之一,最有潜力的应用领域是食品工业和医学,还有家住环境和舒适度的调节(下转第312页) 气敏传感器的研究现状及发展趋势 鲁珊珊1李立峰2 (1.内蒙古机电职业技术学院,内蒙古呼和浩特010018;2.内蒙古电力勘测设计院,内蒙古呼和浩特010018) 【摘要】本文以气敏传感器为研究对象,介绍了国内外气敏传感器的产生及现状,详细分析了气敏传感器的工作原理,阐述了主要应用领域,并最终依据现状总结出气敏传感器的未来发展趋势。 【关键词】气敏传感器;应用;发展趋 势 作者简介:鲁珊珊(1981.9—),女,山东潍坊人,硕士,内蒙古机电职业技术学院,教师。李立峰(1981.5—),男,山东淄博人,博士,内蒙古机电力勘测设计院。 282

SnO2材料气敏性能研究进展

SnO2材料气敏性能研究进展 1.气体传感器的定义与研究意义 气体传感器是传感器领域的一个重要分支,是一种将气体的成分、浓度等信息转换成可以被人员、仪器仪表、计算机等使用的信息的装置。它主要用来检测气体的种类和浓度,对接触气体产生响应并转化成电信号从而达到对气体进行定量或半定量检测报警的目的。气体传感器现已在人类的生产生活中得到了广泛的应用,在民用方面,主要是检测天然气、煤气的泄露,二氧化碳气体含量、烟雾杂质和某些难闻的气味及火灾发生等;在工业方面,主要是检测硫化物、氮氧化物、CH4、CO、CO2及Cl2等有毒或有害的气体,检测有机溶剂和磷烷、砷烷等剧毒气体,检测电力变压器油变质而产生的氢气,检测食品的新鲜度,检测空燃比或废气中的氧气的含量以及检测驾驶员呼气中酒精含量等;在农业生产上,主要是检测温度和湿度、CO2,土壤干燥度、土壤养分和光照度。因此,气敏传感器的研究具有非常重要的意义。 2.气体传感器的分类 按基体材料的不同,气敏传感器还可分为固体电解质气体传感器、有机高分子半导体传感器,金属氧化物半导体气体传感器;按被检测的气体不同,气敏传感器可分为酒敏器件、氢敏器件、氧敏器件等。固体电解质气体传感器使用固体电解质做气敏材料,主要是通过测量气敏材料通过气体时形成的电动势而测量气体浓度。这种传感器电导率高,灵敏度和选择性好,得到了广泛的应用。高分子气敏传感器通过测量气敏材料吸收气体后的电阻、电动势、声波在材料表面传播速度或频率以及重量的变化来测量气体浓度。高分子气体传感器具有许多的优

点,如对特定气体分子灵敏度高,选择性好,且结构简单,能在常温下使用,可以补充其它气体传感器的不足。金属氧化物半导体气体传感器是一类研究时间较长、应用前景较好的传感器,它主要根据材料表面接触气体后电阻发生变化的原理来检测气体。因为金属氧化物半导体中多数载流子的不同而分为P型和N型。N型半导体材料中,主要是晶格内部存在氧离子的缺位或阳离子的填隙,此类材料主要包括SnO、ZnO、In2O3、a-Fe2O3、WO3、ZnFe2O4、CdO和TiO2等。在P 型半导体材料中,晶格内部存在阳离子的缺位,即空穴导电,这类材料主要包括LaFeO3、MoO2、Cr2O3、CuO、SnO、Cu2O和NiO等。还有一些金属氧化物半导体如ZnO、V2O5、NiO和In2O3等既可以为N型,也可为P型,这取决于材料的结构和制备方法等因素。 3.金属氧化物半导体气体传感器的气敏机理 关于半导体氧化物的气敏特性机理的研究,目前已提出的理论模型可归纳为:表面电阻控制模型(吸附氧理论)、晶界势垒模型、空间电荷层调制理论、晶粒尺寸效应机理和催化剂的作用机理、体电阻控制模型。主要介绍第一种模型。吸附氧理论也属于表面电阻控制模型的一种,我们以N型金属氧化物半导体为例来加以解释。空气中的氧分子物理吸附在N型半导体气敏元件的表面,随着工作温度的升高在材料表面转化为化学吸附氧,和半导体接触后从半导体表面获得电子,形成O2-, O-, O2-等,如下图所示,从而束缚材料表面的自由电子,导致材料表面的电阻增大;还原性气体如乙醇、H2和CO等,与材料表面形成的氧负离子相接触时,气体分子失去电子,如式1-2,1-3和1-4所示,失去的电子重新回到半导体中去,表面电阻下降电导增加。当前研究最多的是N型半导体,这种模型也是最常用机理模型。

气敏传感器的应用

气敏传感器的应用 摘要:介绍其敏传感器的现状和发展趋势。随着科技技术的发展,检测技术为重要的科技手段之一。随着微电子技术的发展和普及,传感器称为新的市场需求,对传感器的性能,用途日益有着新的要求和研究价值。 引言:随着科技的发展,针对围绕着生活和工业等周围的气体中的有害物质的测定,成为了一项重要的难题。其中其敏传感器为其中味重要的科研课题。目前的气敏传感器应用到气体探测器、烟雾报警器、虚拟嗅探犬、酒精浓度测试器等领域。 1.气敏传感器的主要特征 气敏传感器大致是为了检测气体成分和含量为目的研究的传感器。包括物理和化学方法。气敏传感器主要分为,:半导体型气敏传感器、电化学型气敏传感器、固体电解质气敏传感器、接触燃烧式气敏传感器、光化学型气敏传感器、高分子气敏传感器等。还有红外吸收型、石英振荡型、光线型、热传导型、声表面波型、气体色谱法等。 电阻式半导体气敏元件是根据半导体接触到气体时其阻值的改变来检测气体的浓度;接触燃烧式气体传感器是基于强催化剂是气体在其表面燃烧时产生热量,使传感器温度上升;电容式传感器是利用敏感材料给付气体后其家电常数发生改变导致电容变化;电化学式气体传感器,主要利用两个电极之间的化学电位差,一个在气体中测量气体浓度,另一个固定的参比电极。红外吸收型传感器,当红外光通过待测气体时,这些气体分子对特定波长的红外光游戏手,其吸收关系服从朗伯比尔吸收定律,通过光强的变化测出气体的浓度。 气敏传感器的主要特征有稳定性、灵敏度、选择性、抗腐蚀性等特点。 稳定性主要表现在零点漂移区间漂移,一个传感器在连续工作条件下,每年零点漂移小于10%。灵敏度是指传感器输出变化量与被测输入变化量之比,主要取决于传感器结构所使用的技术。选择性也称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。抗腐蚀性是指传感器暴露于高体积分数目标其体重的能力。 2.气敏传感器的应用 SnO2是目前气敏传感器的广泛被利用的材料。它有灵敏度高,结构简单,体小质轻,坚固耐用等优点。SnO2 粉体的粒径大小,颗粒的形状、均匀性、稳定性都直接影响着制成的气敏器件的灵敏度、功耗、响应恢复特性及稳定性等重要参数。利用溶胶- 凝胶法合成SnO2 超微粒子主要以有机金属化合物为起始材料或以大批量有机试剂来制备SnO2 ,但有机金属 试剂较昂贵,给大量制备带来困难。因而通常是以廉价的SnCl4 为起始原料,加入少量溶胶形成助剂,促进其溶胶形式。溶胶- 凝胶法制备出粉体材料具有粒子分布均匀,纯度高,比表面积大,活性好,烧结温度低等优点。 但尽管SnO2 作为气敏材料日益受到重视,但由于其在应用中仍有一定缺陷,限制了它更为广泛的使用:低温条件下工作稳定性的控制;空气中湿度的影响;一些掺杂元素催化原理的探索;气敏特性测试手段的提高等等 3.纳米传感器及其在气敏传感器中的应用。纳米材料在气敏传感器的应用中有如下特点:①纳米固体材料具有庞大的界面,提供了大量气体通道,从而大大提高了灵敏度; ②工作温度大大降低; ③大大缩小了传感器的尺寸。 纳米传感器材料的发展展望。对于多壁碳纳米管制作的气敏传感器,虽然也可在室温下工作,但在复杂的气体环境中使传感器具有选择性却是一个亟待解决的问题。随着纳米技术的进一步发展,这些问题必将会被很好地解决,纳米传感器亦将获得巨大的发展。 4.气敏传感器的发展和展望 向多功能,低耗能,集成化方向发展。而且还有生物芯片的开发应用方面的展望,和应

基于气敏传感器的酒精测试系统

《传感器原理及应用》 创新性应用课题研究报告 题目:基于气敏传感器的酒精测试系统学院:自动化工程学院 年级专业:2012级电子信息科学与技术 姓名:韩佳林、罗荣伟、于帅、孙建超任课教师:迟宗涛 2015年12月20 日

目录 1 绪论 (1) 1.1 呼吸气体酒精浓度检测报警仪开发背景 (4) 1.2呼吸气体酒精浓度检测报警仪的简介 (4) 1.3呼吸气体酒精浓度检测报警仪课程设计基本要求与设计简介 (5) 2 单片机最小系统介绍 (6) 2.1 STC89C52简介 (6) 2.2 复位电路介绍 (8) 2.3 晶振电路介绍 (9) 3 信号采集和AD转换过程的软硬件设计 (10) 3.1 MQ-3酒精浓度传感器模块简介 (10) 3.2 AD转换软硬件件设计 (11) 3.2.1 ADC0804简介 (11) 3.2.2 本设计中ADC0804外围硬件连接 (13) 3.2.3 本设计中AD转换软件实现 (14) 4 显示模块软硬件设计 (16) 4.1 LCD1602简介 (16) 4.2 本设计中LCD1602的硬件连接介绍 (17) 4.3 本设计中LCD1602的软件设计 (17) 4.3.1 本设计的液晶写命令子函数和写数据子函数程序分析 (17) 4.3.2 本设计中用到的液晶指令介绍 (19) 4.3.3 本设计中的字符串显示和数据实时更新的实现方法 (19) 5. 其它外围设备软硬件设计 (22) 5.1 报警电路软硬设计 (22) 5.1.1 硬件部分设计 (22) 5.1.2 软件部分设计 (22) 5.2 待机指示灯软硬件设计 (23) 5.2.1 硬件部分设计 (23) 5.2.2 软件部分设计 (23)

基于单片机气敏传感器测试系统的设计说明

基于单片机的气敏传感器测试系统 [摘要] 本文介绍一种新型的气敏传感器测试系统的设计方法。该系统基于具有语音处理功能的凌阳SPCE061A单片机,能同时进行多路传感器测试、过程控制,及用虚拟仪器完成数据处理,并能用语音直接播报测试结果,克服了目前气敏传感器人工操作测试带来的效率低、误差大、操作人员长时间工作等问题。 [关键词] 气敏传感器单片机语音播报 一、引言 气敏传感器是能够感知环境中某种气体及其浓度的一种敏感器件,它将气体成分、浓度等有关的信息转换成电信号,从而可以进行检测、监控、报警;还可以通过接口电路与计算机组成自动检测、控制和报警系统。目前,人们对气敏传感器的测试方法主要停留在用人工手动的方式来操作,开发出一种实用高效的智能化传感器测试装置是极为必要的。而语音信号是信息的又一主要载体,如果在这些测量场合能用语音直接报出结果,将给操作人员带来极大方便,下面就介绍一种具有新功能的新型的气敏传感器测试系统。 二、气敏传感器测量原理 作为气体敏感材料的半导体氧化物的气—电转换机理是:在不同气体中,半导体氧化物材料发生的氧化—还原反应不同,从而引起材料电导(电导与电阻互为倒数)的不同变化,使传感器分辨出被测气体。因此,只要能测量出已知气体中气体传感器电导的变化,就可测量出该气敏传感器的性能指标。气敏传感器的测试电路如图1所示,负载电阻R L串联在传感器中,串联回路施加工作电压V C,V F 为热丝两端加热电压。在洁净空气中,传感器的电阻R O较大,在负载电阻R L上的输出电压 图1 气敏传感器的测试电路 较小;当在待测气体中时,传感器的电阻 R O变得较小,则负载电阻R L上的输出电压较大,其电压值与V RL器件的电阻值R O之间的关系如下: R O= RL L RL C V R V V) ( 式中:为V C测量电压,一般为5V;V RL为负载电压;为R L负载电阻(已知);R O为元件的电阻值。随着已知气体浓度不同,负载电压产生不同变化,传感器的元件阻值也会产生相应的变化,而根据不同气体环境下元件电阻的阻值,就可判断出该传感器的指标是否符合标准值。 三、系统硬件设计 气敏传感器测试系统如图2所示,由元件测试箱和PC微机两部分组成。元件测试箱主要

传感器工作原理及故障判断方法

传感器工作原理及故障判断方法 概述 综合录井技术是在钻井过程中应用电子技术、计算机技术及分析技术,借助分析仪器进行各种石油地质、钻井工程及其它随钻信息的采集(收集)、分析处理,进而达到发现油气层、评价油气层和实时钻井监控目的的一项随钻石油勘探技术。应用综合录井技术可以为石油天然气勘探开发提供齐全、准确的第一性资料,是油气勘探开发技术系列的重要组成部分。 综合录井技术主要作用为随钻录井、实时钻井监控、随钻地质评价及随钻录井信息的处理和应用。 综合录井技术的特点有:录取参数多、采集精度高、资料连续性强、资料处理速度快、应用灵活、服务范围广等。 目前国际国内先进的综合录井仪参数的检测精度上有了大幅度的提高,也扩展了计算机系统功能,形成了随钻计算机实时监控和数据综合处理网络,部分综合录井仪还配套了随钻随测(MWD)系统,增加了远程传输等功能,实现了数据资源的共享。其原理框图见图1。 图1:综合录井仪基本结构图

1、传感器 亦称一次仪表,是将一种物理量转换为另一种物理量的设备。其输入信号为待测物理量,如温度、密度、压力、电阻率、距离等,输出信号为可以被二次仪表或计算机接收的物理量,如电流、电压、电阻等。传感器是综合录井仪的最基础部分,其工作性能的好坏直接影响着录井质量。 2、气体检测仪 气体检测仪主要包括烃类检测仪、非烃组分检测仪(或二氧化碳检测仪)等气体检测设备,以及脱气器、氢气发生器、空气压缩机等辅助设备。烃类检测仪主要是利用FID技术测量钻井液中的烃类气体含量;非烃组分检测仪是利用热导池鉴定器测量钻井液中CO2、H2等其它气体的含量。 3、计算机系统 随着计算机技术的发展及应用,目前综合录井仪的计算机系统不仅担负着参数的采集、处理、存储和输出的任务。其存储的资料还可以按照用户的要求,应用其它专用软件进行进一步处理,以完成地质勘探、钻井监控及其它录井目的。同时其联机系统已形成多用户的网络化计算机系统,实现多用户、网络化数据管理,具有携带近程或远程工作站的功能,以便于大型应用软件的使用和数据资源的共享。 4、输出设备 综合录井仪输出设备主要有显示器、记录仪、打印机、绘图仪等等。其用途是将计算机采集、处理的信息通过直观的方式呈现给用户以进行进一步的应用。

基于ARM的高阻气敏传感器测试电路

收稿日期:2006-04-16 收修改稿日期:2006-05-30 基于ARM 的高阻气敏传感器测试电路 潘国峰,刘兰普,孙以材,何 平 (河北工业大学,天津 300130) 摘要:将ARM7应用到气敏传感器中,利用其强大的数据计算处理能力及控制能力,结合气敏薄膜材料的高阻值特 点,设计出了显示气敏元件阻值及其所处气体浓度的测试电路。该电路以LPC2131实时监测电源电压,自动调整占空比,实现对温度的准确控制,并测量气敏薄膜的电阻。经气体浓度和元件阻值的校准后,电路可显示被测气体浓度,同时提供一个友好的用户界面,并具备报警功能,实现了智能气敏传感器的测量电路。完全满足气敏测试需要,电阻的测量精度达到±012%。 关键词:ARM ;高阻测量;气敏传感器中图分类号:TP212.6;TP216 文献标识码:A 文章编号:1002-1841(2006)10-0045-03 N e w Testing Circult B ased on ARM for H igh Eesistance G as Sensors PAN G uo 2feng ,LI U Lan 2pu ,S UN Y i 2cai ,HE Ping (H ebei U niversity of T echnology ,Tianjin 300130,China) Abstract :The increasingly popular ARM microprocess or was applied to the testing circuit for gas sens ors.C ombining the powerful data calculation and control capability of ARM with the high resistance characteristic of gas sensitive film ,the microprocess or LPC2131controls instantly power πs v oltage ,the functions of the circuit are controlling the gas sens ors w orking temperatures ,and measuring the re 2sistance of gas sensitive film.A fter calibration of relationship between the gas concentration and component resistance ,this circuit not on 2ly can display the gas sens or πs resistance and the tested gas concentration ,but als o can provide us with a user πs interface very friendly ,it fulfill the needs of gas sens or test perfectly ,the resistance measuement precision is 012%.K ey w ords :ARM ;high resistance test ;gas sens ors 0 引言 近些年来,我国的气敏传感器研究发展迅速,对气敏传感器的检测与应用也越来越普遍[1-3]。文中采用了当前普遍用于工业控制与测量中的具有ARM7内核的LPC2131,成功设计了高阻值气敏传感器测量电路。ARM7系列为低功耗32位微控制器,最适用于低价位、低功耗和高敏感器件的应用,它具有嵌入式在线仿真调试逻辑,非常低的功耗,能提供0.9MIPS/MH z 的3级流水线和冯?诺依曼结构。用带ARM7核的微处理器为核心构成的系统,可以大大简化主机电路和外围电路的设计,真正做到根据仪器、仪表的功能需求进行配置、裁剪、扩充和移植,以实现强实时和高可靠性[4]。1 气敏传感器的工作原理 气敏传感器以陶瓷管为框架,外覆一层敏感膜的材料,利用膜两端的镀金引脚进行测量。敏感膜的材料最常用的有金属氧化物、高分子聚合物材料和胶体敏感膜等。它的两个关键部分是加热电阻和气体敏感膜,其结构原理如图1所示。金电极连接气敏材料的两端,使其等效为一个阻值随外部待测气体浓度变化的电阻。当待测气体的浓度发生变化时,电阻阻值也相应发生变化[6],该电路即以测量气敏传感器的电阻值为基础,通过中心处理单元———带有ARM7内核的LPC2131,进行数据处理、误差补偿,经校准气体的浓度和元件的阻值后,间接得到气体的浓度值,将其输出到显示电路进行显示。 图1 气敏传感器结构原理 2 系统设计2.1 系统总体设计 系统共分为6个部分:电源电路、加热电路、传感器信号采集电路、中心处理电路、显示电路、电压转换电路。总体电路框图如图2所示。 图2 系统原理框图 2.2 电源电路 该系统为9V 单电源供电,但由于系统内各芯片工作电压 及对电源稳定性的要求不同,所以电源部分由几部分构成: (1)微控制器的工作电压为313V ,采用的AS1117进行电  2006年 第10期 仪表技术与传感器 Instrument T echnique and Sens or 2006  N o 110

第10章 气敏传感器及其应用

第10章气敏传感器及其应用 在现代社会的生产和生活中,人们往往会接触到各种各样的气体,需要对它们进行检测和控制。比如化工生产中气体成分的检测与控制;煤矿瓦斯浓度的检测与报警;环境污染情况的监测;煤气泄漏:火灾报警;燃烧情况的检测与控制等等。 气敏传感器是一种检测特定气体的传感器。它主要包括半导体气敏传感器、接触燃烧式气敏传感器和电化学气敏传感器等,其中用的最多的是半导体气敏传感器。它的应用主要有:一氧化碳气体的检测、瓦斯气体的检测、煤气的检测、氟利昂(R11、R12)的检测、呼气中乙醇的检测、人体口腔口臭的检测等等。 它将气体种类及其与浓度有关的信息转换成电信号,根据这些电信号的强弱就可以获得与待测气体在环境中的存在情况有关的信息,从而可以进行检测、监控、报警;还可以通过接口电路与计算机组成自动检测、控制和报警系统。 气敏传感器的实物如图10-1所示。 图10-1 气敏传感器实物图 10.1气敏电阻 气敏电阻就是一种将检测到的气体的成分和浓度转换为电信号的传感器。 10.1.1气敏传感器的工作原理 由于气体与人类的日常生活密切相关,对气体的检测已经是保护和改善生态居住环境不可缺少手段,气敏传感器发挥着极其重要的作用。例如生活环境中的一氧化碳浓度达0.8~1.15 ml/L时,就会出现呼吸急促,脉搏加快,甚至晕厥等状态,达1.84ml/L时则有在几分钟内死亡的危险,因此对一氧化碳检测必须快而准。 利用SnO2(氧化锡)金属氧化物半导体气敏材料,通过颗粒超微细化和掺杂工艺制备SnO2纳米颗粒,并以此为基体掺杂一定催化剂,经适当烧结工艺进行表面修饰,制成旁热式烧结型CO敏感元件,能够探测0.005%~0.5%范围的CO气体。还有许多易爆可燃气体、酒精气体、汽车尾气等有毒气体的进行探测的传感器。 常用的主要有接触燃烧式气体传感器、电化学气敏传感器和半导体气敏传感器等。接触燃烧式气体传感器的检测元件一般为铂金属丝(也可表面涂铂、钯等稀有金属催化层),使用时对铂丝通以电流,保持300℃~400℃的高温,此时若与可燃性气体接触,可燃性气体就会在稀有金属催化层上燃烧,因此铂丝的温度会上升,铂丝的电阻值也上升;通过测量铂

相关文档
相关文档 最新文档