文档库 最新最全的文档下载
当前位置:文档库 › 专题06 数列(第01期)-决胜2016年高考全国名校试题理数分项汇编(北京特刊)(原卷版)

专题06 数列(第01期)-决胜2016年高考全国名校试题理数分项汇编(北京特刊)(原卷版)

专题06 数列(第01期)-决胜2016年高考全国名校试题理数分项汇编(北京特刊)(原卷版)
专题06 数列(第01期)-决胜2016年高考全国名校试题理数分项汇编(北京特刊)(原卷版)

第六章 数列

一.基础题组

1.(2015年北京市昌平区高三二模理3)已知等差数列{}n a 的公差是2,若134,,a a a 成等比数列,则1a 等

于( )

A. 4-

B. 6-

C. 8-

D. 10-

2.(北京市东城区2015届高三5月综合练习(二)理3)已知{}n a 为各项都是正数的等比数列,若484a a ?=,

则567a a a ??=( )

(A )4 (B )8 (C )16 (D )64

3.(北京市丰台区2014-2015学年度第二学期统一练习(一)理2)在等比数列}{n a 中,344a a +=,22a =,

则公比q 等于( )

A .-2

B .1或-2

C .1

D .1或2

4.(北京市顺义区

2015届高三第一次统一练习(一模)理11)已知无穷数列{}n a 满足:

1110,2()n n a a a n N *+=-=+∈.则数列{}n a 的前n 项和的最小值为 .

二.能力题组

1.(北京市石景山区2015届高三3月统一测试(一模)理6)等差数列{}n a 中,1

1

,m k a a k m

==

()m k ≠,则该数列前mk 项之和为( ) A .

12mk - B .2mk C .12mk + D .

12

mk

+ 2.(北京市西城区2015届高三一模考试理12)若数列{}n a 满足12a =-,且对于任意的*

,m n ∈N ,都有

m n m n a a a +=?,则3a =___;数列{}n a 前10项的和10S =____.

3.(北京市朝阳区2015届高三第二次综合练习理13)已知点()11,1a A ,()22,2a A ,???,()

,n n a n A (n *∈N )在函数

13

log y x =的图像上,则数列

的通项公式为__________;设O 为坐标原点,点

,则,

中,面积的最大值是__________.

4.(北京市海淀区

101中学2014年高三上学期期中模拟考试理10)在公差为正数的等差数列}{n a 中,

n S a a a a ,0,011101110<<+且是其前n 项和,则使n S 取最小值的n 是 .

5.(北京市丰台区2015届高三5月统一练习(二)理18)已知数列{}n a 满足110a =,

1212,2,1log ,21

n a n n n k a a n k --?==?-+=+?*(N )k ∈,其前n 项和为n S .

(Ⅰ)写出3a ,4a ;

(Ⅱ)求数列{}n a 的通项公式; (Ⅲ)求n S 的最大值.

6.(北京市海淀区101中学2014年高三上学期期中模拟考试理20)已知数列}{n a 中,22=a ,前n 项和

为.2

)

1(,+=

n n n a n S S 且 (I )证明数列}{1n n a a -+是等差数列,并求出数列}{n a 的通项公式; (II )设)

12)(12(1

-+=

n n n a a b ,数列}{n b 的前n 项和为n T ,求使不等式57k T n >对一切*N n ∈都成

立的最大正整数k 的值。

7.(北京市海淀区2015届高三下学期期中练习(一模)理20)有限数列12:,,,.(3)n n A a a a n ???≥同时满

足下列两个条件:

① 对于任意的,i j (1i j n ≤<≤),i j a a <;

② 对于任意的,,i j k (1i j k n ≤<<≤),i j a a ,j k a a ,i k a a 三个数中至少有一个数是数列n A 中的项. (Ⅰ)若4n =,且11a =,22a =,3a a =,46a =,求a 的值; (Ⅱ)证明:2,3,5不可能是数列n A 中的项; (Ⅲ)求n 的最大值.

8.(北京市石景山区2015届高三3月统一测试(一模)理20)设数列{}n a 满足:

①11a =;

②所有项*N a n ∈;

③1211......n n a a a a +=<<<<<.

设集合{},*m n A n|a m m N =≤∈,将集合m A 中的元素的最大值记为m b ,即m b 是数列{}n a 中满足不等式

n a m ≤的所有项的项数的最大值.我们称数列{}n b 为数{}n a 的伴随数列.例如,数列1,3,5的伴随数列

为1,1,2,2,3.

(Ⅰ)若数列{}n a 的伴随数列为1,1,1,2,2,2,3,请写出数列{}n a ; (Ⅱ)设1

3

n n a -=,求数列{}n a 的伴随数列{}n b 的前30项之和;

(Ⅲ)若数列{}n a 的前n 项和2

n S n c =+(其中c 常数),求数列{}n a 的伴随数列{}m b 的前m 项和m T .

三.拔高题组

1.(北京市顺义区2015届高三第一次统一练习(一模)理20)已知二次函数()y f x =

的图象的顶点坐标

为1

(1,)3

--,且过坐标原点O .数列{}n a 的前n 项和为n S ,点(,)()n n S n N *∈在二次函数()y f x =的图象上.

(I )求数列{}n a 的通项公式;

(II )设1cos(1),()n n n b a a n n N π*+=+∈,数列{}n b 的前n 项和为n T ,若2n T tn ≥对n N *∈恒成立,求实数t 的取值范围;

(III )在数列{}n a 中是否存在这样一些项:123,,,

,,

k n n n n a a a a 123(1n n n =<<

,)k n k N *<

<<

∈,这些项都能够构成以1a 为首项,(05,)q q q N *<<∈为公比的等比数列

{},k n a k N *∈?若存在,写出k n 关于k 的表达式;若不存在,说明理由.

2.(北京市丰台区2014-2015学年度第二学期统一练习(一)理20)如果数列A :1a ,2a ,…,m a (Z m ∈,

且3)m ≥,满足:①Z i a ∈,22

i m m

a -≤≤(1,2,,)i m =; ②121m a a a +++=,那么称数列A

为“Ω”数列.

(Ⅰ)已知数列M :-2,1,3,-1;数列N :0,1,0,-1,1.试判断数列M ,N 是否为“Ω”数列; (Ⅱ)是否存在一个等差数列是“Ω”数列?请证明你的结论;

(Ⅲ)如果数列A 是“Ω”数列,求证:数列A 中必定存在若干项之和为0.

3.(北京市房山区2015年高三第一次模拟考试理20)下表给出一个“等差数阵”:

数列历年高考真题分类汇编

专题六 数列 第十八讲 数列的综合应用 答案部分 2019年 1.解析:对于B ,令2 104x λ-+=,得12 λ=, 取112a = ,所以211 ,,1022n a a == ?? ?…, 10n n a a +->,{}n a 递增, 当4n … 时,11132122 n n n n a a a a +=+>+=,

所以54 65109 323232a a a a a a ?>???> ???? ?>??M ,所以6 10432a a ??> ???,所以107291064a > >故A 正确.故选A . 2.解析:(1)设数列{}n a 的公差为d ,由题意得 11124,333a d a d a d +=+=+, 解得10,2a d ==. 从而* 22,n a n n =-∈N . 由12,,n n n n n n S b S b S b +++++成等比数列得 () ()()2 12n n n n n n S b S b S b +++=++. 解得()2 121n n n n b S S S d ++= -. 所以2* ,n b n n n =+∈N . (2 )*n c n = ==∈N . 我们用数学归纳法证明. ①当n =1时,c 1=0<2,不等式成立; ②假设() *n k k =∈N 时不等式成立,即12h c c c +++

高考文科数学数列经典大题训练(附答案)

1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列; (2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式. ; 2.(本小题满分12分) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式. 2.设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ???? 的前项和. … 3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S 。

~ 4.已知等差数列{a n}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n. % 5.已知数列{a n}满足,,n∈N×. (1)令b n=a n+1﹣a n,证明:{b n}是等比数列; (2)求{a n}的通项公式. {

、 ~

、 1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得14 3 n n a a -=. 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a . 所以{}n a 是首项为1,公比为4 3 的等比数列. 7分 (2)解:因为14 ()3 n n a -=, ' 由1(1,2,)n n n b a b n +=+=,得114 ()3 n n n b b -+-=. 9 分 由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b

高考数列专题练习精选文档

高考数列专题练习精选 文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

1..等比数列}{n a 为递增数列,且,324=a 9 20 53= +a a ,数列2log 3n n a b =(n ∈N ※) (1)求数列}{n b 的前n 项和n S ; (2)122221-++++=n b b b b T n ,求使0>n T 成立的最小值n . 2.已知数列{ n a }、{ n b }满足:112 1 ,1,41n n n n n b a a b b a +=+==-. (1)求1,234,,b b b b ; (2)求数列{ n b }的通项公式; (3)设1223341...n n n S a a a a a a a a +=++++,求实数a 为何值时4n n aS b <恒成立 3.在数列{}n a 中,n S 为其前n 项和,满足2,(,*)n n S ka n n k R n N =∈∈+-. (I )若1k =,求数列{}n a 的通项公式; (II )若数列{21}n a n --为公比不为1的等比数列,且1>k ,求n S . 4.已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令b n = 2 1 1 n a -(*n ∈N ),求数列{}n b 的前n 项和n T 。 5,已知递增的等比数列{}n a 满足234328,2a a a a ++=+且是24,a a 的等差中项。 (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若n n n S a b ,12log +=是数列{}n n a b 的前n 项和,求.n S 6.已知数列{}n a 中,14a =,12(1)n n a a n +=-+,(1)求证:数列{}2n a n -为等比数列。 (2)设数列{}n a 的前n 项和为n S ,若22n n S a n ≥+,求正整数列n 的最小值。 7.已知数列{}n a 的前n 项和为n S ,若1 1 2,.n n n n n n a S a n b a a +-=+=且 (1)求证:{1}n a -为等比数列;

2017高考试题分类汇编-数列

数列 1(2017山东文)(本小题满分12分) 已知{}n a 是各项均为正数的等比数列,且121236,a a a a a +==. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ) {}n b 为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ??????的前n 项和n T . 2(2017新课标Ⅰ文数)(12分) 记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6. (1)求{}n a 的通项公式; (2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列。 3((2017新课标Ⅲ文数)12分) 设数列{}n a 满足123(21)2n a a n a n +++-=K . (1)求{}n a 的通项公式; (2)求数列21n a n ????+?? 的前n 项和. 4(2017浙江)(本题满分15分)已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n N *∈). 证明:当n N *∈时,

(Ⅰ)0<x n +1<x n ; (Ⅱ)2x n +1? x n ≤12 n n x x +; (Ⅲ)112 n -≤x n ≤212n -. 112()2 n n n n x x x x n *++-≤∈N . 5(2017北京理)(本小题13分) 设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--???-(1,2,3,)n =???, 其中12max{,,,}s x x x ???表示12,,,s x x x ???这s 个数中最大的数. (Ⅰ)若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列; (Ⅱ)证明:或者对任意正数M ,存在正整数m ,当n m ≥时, n c M n >;或者存在正整数m ,使得12,,,m m m c c c ++???是等差数列. 6(2017新课标Ⅱ文)(12分) 已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+=. (1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S . 7(2017天津文)(本小题满分13分) 已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于 0,

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; ( (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; ` (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,

(1)写出c1,c2,c3,c4; (2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 * (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; ] (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1.

历年数列高考题汇编精选

历年数列高考题汇编 1、(全国新课标卷理) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (1)求数列{}n a 的通项公式. (2)设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ?? ??的前项和. 解:(Ⅰ)设数列{a n }的公比为q ,由 2 3 26 9a a a =得 3234 9a a =所以 21 9q = .有条件可知a>0,故 13q = . 由 12231 a a +=得 12231 a a q +=,所以 113a = .故数列{a n }的通项式为a n =13n . (Ⅱ ) 111111 log log ...log n b a a a =+++ (12...)(1)2 n n n =-++++=- 故12112()(1)1n b n n n n =-=--++ 12111111112...2((1)()...())22311n n b b b n n n +++=--+-++-=-++ 所以数列1{}n b 的前n 项和为21n n - + 2、(全国新课标卷理)设数列{}n a 满足21112,32n n n a a a -+=-=g (1) 求数列{}n a 的通项公式;

(2) 令n n b na =,求数列的前n 项和n S 解(Ⅰ)由已知,当n ≥1时, 111211 [()()()]n n n n n a a a a a a a a ++-=-+-++-+L 21233(222)2n n --=++++L 2(1)12n +-=. 而 12, a =所以数列{ n a }的通项公式为 21 2n n a -=. (Ⅱ)由 21 2n n n b na n -==?知 3521 1222322n n S n -=?+?+?++?L ① 从而 235721 21222322n n S n +?=?+?+?++?L ② ①-②得 2352121 (12)22222n n n S n -+-?=++++-?L . 即 211 [(31)22] 9n n S n +=-+ 3.设}{n a 是公比大于1的等比数列,S n 为数列}{n a 的前n 项和.已知S 3=7,且 a 1+3,3a 2,a 3+4构成等差数列.(1)求数列}{n a 的通项公式;(2)令Λ2,1,ln 13==+n a b n n ,求数列}{n b 的前n 项和T n . . 4、(辽宁卷)已知等差数列{a n }满足a 2=0,a 6+a 8=-10

高考数学数列大题训练答案版

高考数学数列大题训练 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 解析: (1)设该等差数列为{}n c ,则25a c =,33a c =,42a c =Q 533222()c c d c c -==- ∴2334()2()a a a a -=-即:223111122a q a q a q a q -=- ∴12(1)q q q -=-,Q 1q ≠, ∴121, 2q q ==,∴1164()2n a -=g (2)121log [64()]6(1)72n n b n n -==--=-g ,{}n b 的前n 项和(13)2n n n S -= ∴当17n ≤≤时,0n b ≥,∴(13)2 n n n n T S -== (8分) 当8n ≥时,0n b <,12789n n T b b b b b b =+++----L L 789777()()2n n n S b b b S S S S S =-+++=--=-L (13)422 n n -=- ∴(13)(17,)2(13)42(8,)2 n n n n n T n n n n -?≤≤∈??=?-?-≥∈??**N N 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 解:(1)由151241=+=-a a a n n 及知,1234+=a a 解得:,73=a 同理得.1,312==a a (2)由121+=-n n a a 知2211+=+-n n a a

高考数列专题练习(精选课件)

高考数列专题练习 数列综合题 1.已知等差数列{}n a 满足:3 7a =,5726a a +=,{}n a 的前n 项 和为n S . ?(Ⅰ)求n a 及n S ; ?(Ⅱ)令b n = 21 1 n a -(*n ∈N ),求数列{}n b 的前n 项和n T 。 2.已知递增的等比数列{}n a 满足234328,2a a a a ++=+且是2 4 ,a a 的 等差中项。 ?(Ⅰ)求数列{}n a 的通项公式; ?(Ⅱ)若n n n S a b ,12log +=是数列{}n n a b 的前n 项和,求.n S 3.等比数列}{n a 为递增数列,且, 3 24=a 9 2053= +a a ,数列 2 log 3n n a b =(n ∈N ※ ) (1)求数列}{n b 的前n 项和n S ; (2)12 22 21-++++=n b b b b T n ,求使0>n T 成立的最小值n . 4.已知数列{ n a }、{ n b }满足:112 1,1,4 1n n n n n b a a b b a +=+== -. (1)求1,2 3 4 ,,b b b b ; (2)求数列{ n b }的通项公式; (3)设1223341...n n n S a a a a a a a a +=++++,求实数a 为何值时4n n aS b <

恒成立 5.在数列{}n a 中,n S 为其前n 项和,满足 2,(,*)n n S ka n n k R n N =∈∈+-。 (I)若1k =,求数列{}n a 的通项公式; (II)若数列{21}n a n --为公比不为1的等比数列,且1>k ,求n S . 6.已知数列{}n a 中,1 4a =,12(1)n n a a n +=-+,(1)求证:数列 {}2n a n -为等比数列。 (2)设数列{}n a 的前n 项和为n S ,若22n n S a n ≥+,求正整数列 n 的最小值。? 7.已知数列{}n a 的前n 项和为n S ,若1 12,.n n n n n n a S a n b a a +-=+=且 ?(1)求证:{1}n a -为等比数列; (2)求数列{}n b 的前n 项和. 8.已知数列{}n a 中,113 a =,当2n ≥时,其前n 项和n S 满足 2 221 n n n S a S = -. (1)求n S 的表达; (2)求数列{}n a 的通项公式; 9.已知数列{}n a 的首项135 a =,1 231+= +n n n a a a ,其中*∈N n . (1)求证:数列11n a ?? -???? 为等比数列; (2)记12111n n S a a a = ++,若100n S <,求最大的正整数n .

高考数学数列题型专题汇总

高考数学数列题型专题 汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

高考数学数列题型专题汇总 一、选择题 1、已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列 条件中,使得()*∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

A .{}n S 是等差数列 B .2{}n S 是等差数列 C .{}n d 是等差数列 D .2{}n d 是等差数列 【答案】A 二、填空题 1、已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则 6=S _______.. 【答案】6 2、无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意 *∈N n ,{}3,2∈n S ,则k 的最大值为________. 【答案】4 3、设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2a n 的最大值 为 . 【答案】64 4、设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则 a 1= ,S 5= . 【答案】1 121

高考数学数列大题专题

高考数学数列大题专题 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 3.已知数列{}n a 的前n 项和为n S ,且有12a =,11353n n n n S a a S --=-+(2)n ≥ (1)求数列n a 的通项公式; (2)若(21)n n b n a =-,求数列n a 的前n 项的和n T 。 4.已知数列{n a }满足11=a ,且),2(22*1N n n a a n n n ∈≥+=-且. (Ⅰ)求2a ,3a ;(Ⅱ)证明数列{n n a 2}是等差数列; (Ⅲ)求数列{n a }的前n 项之和n S

5.已知数列{}n a 满足31=a ,1211-=--n n n a a a . (1)求2a ,3a ,4a ; (2)求证:数列11n a ??? ?-?? 是等差数列,并写出{}n a 的一个通项。 622,,4,21121+=-===++n n n n n b b a a b a a . 求证: ⑴数列{b n +2}是公比为2的等比数列; ⑵n a n n 221-=+; ⑶4)1(2221-+-=++++n n a a a n n Λ. 7. .已知各项都不相等的等差数列}{n a 的前六项和为60,且2116a a a 和为 的等比中项. (1)求数列}{n a 的通项公式n n S n a 项和及前; (2)若数列}1{,3),(}{11n n n n n b b N n a b b b 求数列且满足=∈=-*+的前n 项和T n .

(word完整版)全国高考数列大题专题.doc

高考中的数列—最后一讲 (内部资料勿外传)1.已知数列 {a n} 、 {b n} 、 {c n} 足. ( 1) c n=3n+6, {a n} 是公差 3 的等差数列.当b1 =1 ,求 b2、 b3的; ( 2),.求正整数 k,使得一切 * n∈N,均有 b n≥b;k ( 3),.当b1=1,求数列{b n}的通公式.2. {a } 是公比正数的等比数列 a =2, a =a +4. n 13 2 (Ⅰ)求 {a n} 的通公式; (Ⅱ) {b n } 是首 1,公差 2 的等差数列,求数列 n n n {a +b } 的前 n 和 S . 3.已知公差不0 的等差数列 {a n} 的首 a1a( a∈R)数列的前n 和 S n,且,,成等比数列. 矚 慫润厲钐瘗睞枥庑赖。 (Ⅰ)求数列 {a n} 的通公式及S n; (Ⅱ) A n=+++?+,B n=++?+,当a≥2,比 A n与 B n的大小. 4.已知等差数列 {a } 足 a =0, a +a = 10 n 2 6 8 ( I)求数列 {a n} 的通公式; ( II )求数列 { } 的前 n 和. 5.成等差数列的三个正数的和等于15,并且三个数分加上2、5、 13 后成等比数列{b n} 中的 b3、 b4、 b5. 聞 創沟燴鐺險爱氇谴净。 (I)求数列 {b n} 的通公式; (II )数列 {b n} 的前 n 和 S n,求:数列 {S n+ } 是等比数列. 6.在数 1 和 100 之插入 n 个数,使得 n+2 个数构成增的等比数列,将n+2个数的乘作T n,再令 a n=lgT n,

高考理科数学试题汇编(含答案)数列大题

(重庆)22.(本小题满分12分,(1)小问4分,(2)小问8分) 在数列{}n a 中,()2 1113,0n n n n a a a a a n N λμ+++=++=∈ (1)若0,2,λμ==-求数列{}n a 的通项公式; (2)若()0 001,2,1,k N k k λμ+= ∈≥=-证明:01 0011 223121 k a k k ++<<+++ 【答案】(1)132n n a -=?;(2)证明见解析. 试题分析:(1)由02λμ==-,,有212,(n N )n n n a a a ++=∈

若存在某个0n N +∈,使得0n 0a =,则由上述递推公式易得0n 10a +=,重复上述过程可得 10a =,此与13a =矛盾,所以对任意N n +∈,0n a ≠. 从而12n n a a +=()N n +∈,即{}n a 是一个公比q 2=的等比数列. 故11132n n n a a q --==?. (2)由0 1 1k λμ= =-,,数列{}n a 的递推关系式变为 21101 0,n n n n a a a a k +++ -=变形为2101n n n a a a k +??+= ?? ?()N n +∈. 由上式及13a =,归纳可得 12130n n a a a a +=>>>>>>L L 因为22220010000 11111 1 11n n n n n n n a a k k a a k k k a a a k k +-+= = =-+? ++ +,所以对01,2n k =L 求和得() () 00011211k k k a a a a a a ++=+-++-L 01000010200000011111 111111112231313131 k a k k k k a k a k a k k k k k ??=-?+?+++ ? ?+++????>+?+++=+ ? ++++??L L 另一方面,由上已证的不等式知001212k k a a a a +>>>>>L 得 00110000102011111 111k k a a k k k k a k a k a +??=-?+?+++ ? ?+++?? L 0000011111 2221212121 k k k k k ??<+ ?+++=+ ?++++??L 综上:01001 12231 21 k a k k ++ <<+ ++ 考点:等比数列的通项公式,数列的递推公式,不等式的证明,放缩法.

高考数列大题专题精选

高考数列大题专题 (内部资料勿外 传) 1.已知数列{a n}、{b n}、{c n}满足. (1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 4.已知等差数列{a n}满足a2=0,a6+a8=﹣10

(I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 5.成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 6.在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作T n,再令a n=lgT n ,n≥1. (I)求数列{a n}的通项公式; (Ⅱ)设b n=tana n?tana n+1,求数列{b n}的前n项和S n. 7.设a1,d为实数,首项为a1,公差为d的等差数列{a n}的前n项和为S n,满足S5S6+15=0. (Ⅰ)若S5=5,求S6及a1; (Ⅱ)求d的取值范围. 8.已知等差数列{a n}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n.

2020年高考试题分类汇编(数列)

2020年高考试题分类汇编(数列) 考法1等差数列 1.(2020·全国卷Ⅱ·理科)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心由一块圆心石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一层多 9块, 已知每层的环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石) A .3699块 B .3474块 C .3402块 D .3339块 2.(2020·全国卷Ⅱ·文科)记n S 是等差数列{}n a 的前n 项的和,若12a =-,262a a +=,则10S = . 3. (2020·山东卷)将数列{21}n -与{32}n -的公共项从小到大排列得到数列{}n a ,则{}n a 的前n 项和为 . 4.(2020·上海卷)已知{}n a 是公差不为零的等差数列,且1109a a a +=,则12910 a a a a +++= . 5.(2020·浙江卷)已知等差数列{}n a 的前n 项和n S ,公差0d ≠, 11a d ≤.记12b S =,122n n n b S S ++=-,n N *∈,下列等式不可能成立的是 A.4262a a a =+ B.4262b b b =+ C. 2428a a a =? D.2428b b b =? 6.(2020·北京卷)在等差数列{}n a 中,19a =-,31a =-.记12n n T a a a =(1,2,n =),则数列{}n T A.有最大项,有最小项 B.有最大项,无最小项 C.无最大项,有最小项 D.无最大项,无最小项

2020年高考数学 大题专项练习 数列 三(15题含答案解析)

2020年高考数学 大题专项练习 数列 三 1.已知数列{a n }满足a n+1=λa n +2n (n ∈N *,λ∈R),且a 1=2. (1)若λ=1,求数列{a n }的通项公式; (2)若λ=2,证明数列{n n a 2 }是等差数列,并求数列{a n }的前n 项和S n . 2.设数列{}的前项和为 .已知=4,=2+1,.(1)求通项公式 ;(2)求数列{}的前项和. 3.已知数列{a n }是等差数列,a 2=6,前n 项和为S n ,数列{b n }是等比数列,b 2=2,a 1b 3=12,S 3+b 1=19. (1)求{a n },{b n }的通项公式; (2)求数列{b n cos(a n π)}的前n 项和T n .

4.设等差数列{a n }的前n 项和为S n ,且a 5+a 13=34,S 3=9. (1)求数列{a n }的通项公式及前n 项和公式; (2)设数列{b n }的通项公式为b n =,问:是否存在正整数t ,使得b 1,b 2,b m (m≥3,m an an +t ∈N)成等差数列?若存在,求出t 和m 的值;若不存在,请说明理由. 5.已知数列满足:,。数列的前n 项和为,且 .⑴求数列、的通项公式;⑵令数列满足,求其前n 项和为 6.已知{a n }是递增数列,其前n 项和为S n ,a 1>1,且10S n =(2a n +1)(a n +2),n ∈N *. (1)求数列{a n }的通项a n ; (2)是否存在m ,n ,k ∈N *,使得2(a m +a n )=a k 成立?若存在,写出一组符合条件的m ,n ,k 的值;若不存在,请说明理由.

历年数列高考题(汇编)答案

历年高考《数列》真题汇编 1、(2011年新课标卷文) 已知等比数列{}n a 中,113a =,公比13q =. (I )n S 为{}n a 的前n 项和,证明:12n n a S -= (II )设31323log log log n n b a a a =+++L ,求数列{}n b 的通项公式. 解:(Ⅰ)因为.31)31(311n n n a =?=-,23113 11)311(3 1n n n S -=--= 所以,2 1n n a S -- (Ⅱ)n n a a a b 32313log log log +++=Λ ).......21(n +++-= 2)1(+-=n n 所以}{n b 的通项公式为.2 )1(+-=n n b n 2、(2011全国新课标卷理) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (1)求数列{}n a 的通项公式. (2)设 31323log log ......log ,n n b a a a =+++求数列1n b ?????? 的前项和. 解:(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32349a a =所以219 q =。有条件可知a>0,故13 q =。 由12231a a +=得12231a a q +=,所以113a = 。故数列{a n }的通项式为a n =13n 。 (Ⅱ )111111log log ...log n b a a a =+++ 故12112()(1)1 n b n n n n =-=--++ 所以数列1{ }n b 的前n 项和为21n n -+ 3、(2010新课标卷理)

数列大题部分-高考数学解题方法归纳总结专题训练

专题08 数列大题部分 【训练目标】 1、 理解并会运用数列的函数特性; 2、 掌握等差数列,等比数列的通项公式,求和公式及性质; 3、 掌握根据递推公式求通项公式的方法; 4、 掌握常用的求和方法; 5、 掌握数列中简单的放缩法证明不等式。 【温馨小提示】 高考中一般有一道小题,一道大题,小题侧重于考等差数列与等比数列的性质,熟练的灵活的使用数列的性质会大大减少计算量;大题则侧重于考查根据递推公式求通项公式,求和的方法。总之,此类题目难度中等,属于必拿分题。 【名校试题荟萃】 1、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设数列{}n a 的前n 项和, 且123,1,a a a +成等差数列. (1)求数列{}n a 的通项公式; (2)记数列1 { }n a 的前n 项和n T ,求使得成立的n 的最小值. 【答案】(1)2n n a = (2)10 (2)由(1)可得 112n n a ?? = ??? ,所以,

由 ,即21000n >,因为 ,所以10n ≥,于是使得 成立的n 的最小值为10. 2、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上(*n N ∈) 。 (1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为1 2ln 2-,求数列{}n n a b 的前n 项和n T . 【答案】(1) (2) (2)由 函数()f x 的图象在点22(,)a b 处的切线方程为 所以切线在x 轴上的截距为21 ln 2 a -,从而,故22a = 从而n a n =,2n n b =, 2n n n a n b =

高三数列专题练习30道带答案

高三数列专题训练二 学校:___________姓名:___________班级:___________考号:___________ 一、解答题 1.在公差不为零的等差数列{}n a 中,已知23a =,且137a a a 、、成等比数列. (1)求数列{}n a 的通项公式; (2)设数列{}n a 的前n 项和为n S ,记,求数列{}n b 的前n 项和n T . 2.已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; 1,公比为3的等比数列,求数列{}n b 的前n 项和n T . 3.设等比数列{}n a 的前n 项和为n S ,,2S ,3S 成等差数列,数列{}n b 满足2n b n =. (1)求数列{}n a 的通项公式; (2)设n n n c a b =?,若对任意*n N ∈,求λ的取值范围. 4.已知等差数列{n a }的公差2d =,其前n 项和为n S ,且等比数列{n b }满足11b a =, 24b a =,313b a =. (Ⅰ)求数列{n a }的通项公式和数列{n b }的前n 项和n B ; (Ⅱ)记数列的前n 项和为n T ,求n T . 5.设数列{}n a 的前n 项和为n S ,且满足()21,2,3,n n S a n =-=. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足11b =,且1n n n b b a +=+,求数列{}n b 的通项公式; (3)设()3n n c n b =-,求数列{}n c 的前n 项和n T .

全国卷数列高考题汇总附答案

数列专题 高考真题 (2014·I) 17. (本小题满分12分) 已知数列{}的前项和为,=1, , ,其中为常数. (Ⅰ)证明:; (Ⅱ)是否存在,使得{}为等差数列并说明理由. (2014·II) 17.(本小题满分12分) 已知数列 满足=1, . (Ⅰ)证明是等比数列,并求 的通项公式; (Ⅱ)证明: . (2015·I)(17)(本小题满分12分) 为数列的前项和.已知, (Ⅰ)求的通项公式: (Ⅱ)设 ,求数列 的前项和。 (2015·I I)(4)等比数列 满足 ,135a a a ++ =21,则357a a a ++= ( )

(A )21 (B )42 (C )63 (D )84 (2015·I I)(16)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________. (2016·I)(3)已知等差数列 前9项的和为27, ,则 (A )100 (B )99 (C )98 (D )97 (2016·I)(15)设等比数列满足 的最大值为 __________。 (2016·II)(17)(本题满分12分) S n 为等差数列的前项和,且=1 ,=28 记 ,其中表示不超过的最大整数, 如 . (I )求,, ; (II )求数列的前1 000项和. (2016·III)(12)定义“规范01数列” 如下: 共有项,其中项为0,项为1,且对任意, 中0的个数不少于1的个数.若 ,则不同的“规范01数列”共有 (A )18个 (B )16个 (C )14个 (D )12个 (2016·III)(17)(本小题满分12分) 已知数列的前项和 ,其中 (I )证明是等比数列,并求其通项公式; (II )若 ,求. (2017·I)4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1 B .2 C .4 D .8 (2017·I)12.几位大学生响应国家的创业号召,开发了一款应用软件。为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列

高考数列专项大题与答案

高考数列专项大题与答 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考数列大题专项 1.(北京卷)设数列{a n }的首项a 1=a ≠41,且 11 为偶数21 为奇数 4n n n a n a a n +???=??+??, 记 211 4n n b a -=- ,n ==l , 2,3,…·. (I )求a 2,a 3; (II )判断数列{b n }是否为等比数列,并证明你的结论; (III )求123lim() n n b b b b →∞ +++ +. 2.(北京卷)数列{a n }的前n 项和为S n ,且a 1=1, 11 3n n a S +=,n =1,2,3,……,求 (I )a 2,a 3,a 4的值及数列{a n }的通项公式; (II )2462n a a a a +++ +的值. 3.(福建卷)已知{n a }是公比为q 的等比数列,且231,,a a a 成等差数列. (Ⅰ)求q 的值; (Ⅱ)设{ n b }是以2为首项,q 为公差的等差数列,其前n 项和为S n ,当n ≥2时,比较S n 与b n 的 大小,并说明理由.

4. (福建卷)已知数列{a n }满足a 1=a , a n+1=1+n a 1 我们知道当a 取不同的值时,得到不同的数列,如 当a =1时,得到无穷数列:. 0,1,21:,21;,35,23,2,1---=得到有穷数列时当a (Ⅰ)求当a 为何值时a 4=0; (Ⅱ)设数列{b n }满足b 1=-1, b n+1=) (11 +∈-N n b n ,求证a 取数列{b n }中的任一个数,都可以得到一个有穷数列{a n }; (Ⅲ)若)4(223 ≥<

相关文档
相关文档 最新文档