文档库 最新最全的文档下载
当前位置:文档库 › 柔性体

柔性体

柔性体
柔性体

柔性体的概念

刚体在受力后不会发生任何变形,缸体上任意两点间的距离不会发生任何变化,但实际中不存在刚体,任何物体受力后,都会或多或少地产生形变,而我们在大多数情况下,都会将构件作刚体进行处理,计算结果不会产生太大误差,与实际结果差异很小,这样的误差通常是允许的。但是,对于某些精密仪器,或对模型精度要求较高的情况下,用刚体计算无法达到实际所需求的精度,这时就需要将刚体转化成柔性体,柔性体在受力后会发生变形,经计算能达到实际所要求的精度。

柔性体与离散柔性连接件也有本质上的区别,离散柔性连接件是把一个刚性构件离散成几个小的刚性构件,小刚性构件通过柔性梁连接,离散柔性连接件变形的实质是连接各个小刚形体的柔性梁变形,而不是小刚形体的变形,小刚性构件任意两点之间不发生相对位移,因此,离散柔性连接件本质上仍是刚形体。而本节介绍的柔性体是利用有限元软件ANSYS 对构件进行模态分析得到的。

在计算构件模态时,按照有限元理论,首先需将构件离散成一定数量的单元,但与那数量越多,计算精度就越高,单元之间通过共用一个节点来传递作用力,在一个单元上的两个节点之间可以产生相对位移,在通过材料单元属性,可以进一步计算出构件的内应力和内应变。

模态的概念

ADAMS中的柔性体的载体是包含构件模态信息的模态中性文件,构件的模态是构件自身的一个物理属性,一个构建一旦制造出来,它的模态就是自身的一种属性。要得到构件模态属性,需要将一个构件离散成有限元模型,有限元模型是由许多细小单元和节点构成。也就是将一个有无限多自由度(变形)简化成只有有限个自由度(变形),用有限的自由度来研究构件的变形,有限元模型单元和节点越多,其表示的自由度就越多,就越接近真实情况。

在将一个刚体转换成柔性体时,需要对构件进行离散,将刚体离散成许多个小单元和节点,同时要对每个单元和节点进行编号,以便于将节点的位移按编号组成一个矢量,也就是构件的变形,根据线性系统理论,任何一个矢量可以由一组相互垂直的线性无关的同维矢量通过线性组合得到,这组相互垂直的线性无关的同维矢量就是构建的模态。模态对应的频率

是共振频率(特征值),模态实际上是有限元模型各节点位移的一种比例关系,不同莫泰之间相互垂直,它们构成了一个线性空间,这个线性空间的坐标轴就是由构件模态构成的。构件变形可以在物理空间中通过直接积分得到,也可以在模态空间中通过模态线性叠加而得到,这种线性叠加关系可以用下式来表示:

Φq u ==∑=i m

i i q 1φ

其中,i φ是第i 阶模态向量(阵型);i q 是位移u 在第i 阶模态的坐标值;Φ是由各个i φ构成的矩阵;q 是由i q 构成的向量。

将几何模型离散成有限元模型后,有限元模型各个节点有一定的自由度,这样所有节点自由度和就构成了有限元模型的自由度,一个有限元模型有多少自由度,它就有多少阶模态。由于各个构件节点的实际位移是模态按一定比例的线性叠加,这个比例就是一个系数,通常称为模态参与因子,参与因子越大,对应模态对构件变形的贡献量就越多,因此对构件振动分析,可以从构件模态参与因子的大小来分析,如果构件在振动时,某阶模态参与因子大,就可以通过改进设计,抑制该阶模态对振动贡献量,就可以明显降低构件振动。

柔性体是由模态构成的,要得到柔性体,需要计算构件模态。不过,柔性体模态与有限元中计算的模态有很大区别,柔性体模态与有限元软件中模态计算方法不同。

由于结构的振动特性决定结构对于各种动力载荷的响应情况,所以在进行动力分析之前进行模态分析。

柔性多体系统的运动变形描述

柔性多体系统的运动变形描述 柔性多体系统运动的描述方式,按其所选取的参照系不同,可分为绝对描述和相对描述两种类型[]。绝对描述以某一个指定的惯性系为参考系,系统中每一个物体在每一个时刻的位形都在此惯性系中确定。而在相对描述中对每一个物体都按某种方式选定一个随动参考系,物体的位形是相对于自己的动参照系确定的。这些参照系通常是惯性的。这两种描述方式导致两种不同的动力学模型。相对描述的显著优点在于处理物体变形很方便。它的一个缺点是在各加速度项中出现整体刚性运动和变形之间的耦合,这种耦合导致质量阵中出现与变形坐标有关的项。这些项的存在大大增加了动力学方程数值求解的难度,并且是引起数值病态的主要原因之一。 【补充】相对描述方法特别适合于由小变形物体所组成的系统。此时可以适当地选取动参考系,使得物体相对于动参考系的运动(变形)总是小的。这样,对小变形可按通常的线性,例如进行模态展开和截断等。将描述变形的弹性坐标和描述刚性运动的参数合起来,作为系统的广义坐标,就可以按通常的离散系统分析动力学方法建立动力学方程。相对描述方法的核心问题为物体变形与整体刚性运动的相互作用。这种相互作用可以通过规范场论的方法完全确定。于是动力学方程分为互相耦合的两类,一类控制物体的整体刚性运动,另一类控制物体的相对变形。 [] 陆佑方.柔性多体系统动力学.高等教育出版社.1996 对于如何描述系统变形模式方面,大致有下列三种方法。 1 经典的瑞利-里兹(Reyliegh-Ritz)法 这个方法是对所研究的弹性体,构造一个假设位移场,该位移场必须满足相容性和完备性要求。若假设位移场用(,,)x y z Φ表示,并取12[...]n Φ=ΦΦΦ,称为里兹函数矩阵, 用以描述物体变形模式,则物体上各点的变形向量f μ可表示为 f f q μ=Φ 式中,()f f q q t =为对应的弹性变形广义坐标向量。 这是弹性连续力学近似解的最基本方法,但对于复杂形状、复杂边界和复杂载荷的情况,要构造出一个适合的位移场式非常困难的,甚至可能做不到。

多体动力学软件和有限元软件的区别(优.选)

有限元软件与多体动力学软件 数值分析技术与传统力学的结合在结构力学领域取得了辉煌的成就,出现了以ANSYS 、NASTRAN 等为代表的应用极为广泛的结构有限元分析软件。计算机技术在机构的静力学分析、运动学分析、动力学分析以及控制系统分析上的应用,则在二十世纪八十年代形成了计算多体系统动力学,并产生了以ADAMS 和DADS 为代表的动力学分析软件。两者共同构成计算机辅助工程(CAE )技术的重要内容。 商业通用软件的广泛应用给我们工程师带来了极大的便利,很多时候我们不需要精通工程问题中的力学原理,依然可以通过商业软件来解决问题,不过理论基础的缺失还是会给我们带来不少的困扰。随着动力有限元与柔性多体系统分析方法的成熟,有时候正确区分两者并不是很容易。 机械领域应用比较广泛的有两类软件,一类是有限元软件,代表的有:ANSYS, NASTRAN, ABAQUS, LS-DYNA, Dytran 等;另一类是多体动力学软件,代表的有ADAMS, Recurdyn , Simpack 等。在使用时,如何选用这两类软件并不难,但是如果深究这两类软件根本区别并不容易。例如,有限元软件可以分析静力学问题,也可以分析“动力学”问题,这里的“动力学”与多体动力学软件里面的动力学一样吗?有限元软件在分析动力学问题时,可以模拟物体的运动,它与多体动力学软件中模拟物体运动相同吗?多体动力学软件也可以分析柔性体的应力、应变等,这与有限元软件分析等价吗? 1 有限元软件 有限单元法是一种数学方法,不仅可以计算力学问题,还可以计算声学,热,磁等多种问题,我们这里只探讨有限元法在机械领域的应用。 计算结构应力、应变等的力学基础是弹性力学,弹性力学亦称为弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而为工程结构或构件的强度、刚度设计提供理论依据和计算方法。也就是说用有限元软件分析力学问题时,是用有限元法计算依据弹性力学列出的方程。 考虑下面这个问题,在()0t , 时间内给一个结构施加一个随时间变化的载荷()P t ,我们希望得到结构的应力分布,在刚刚施加载荷的时候,结构中的应力会有波动,应力场是变化的,但很久以后,应力场趋于稳定。 如果我们想得到载荷施加很久以后,稳定的应力场分布,那么应该用静力学分析方法分析

多体系统动力学简介20081202

多体系统动力学简介

多体系统动力学研究对象——机构 工程中的对象是由大量零部件构成的系统。在对它们进行设计优化与性态分析时可以分成两大类 一类为结构 ——正常工况下构件间没有相对运动(房屋建筑,桥梁等) ——关心的是这些结构在受到载荷时的强度、刚度与稳定 一类为机构 ——系统在运动过程中这些部件间存在相对运动(汽车,飞机起落架。机器人等)——力学模型为多个物体通过运动副连接的系统,称为多体系统 多体系统动力学俄研究的对象——机构(复杂机械系统)

不考虑系统运动起因的情况下研究各部件的位置与姿态及其变化速度和加速度的关系 典型案例:平面和空间机构的运动分析 系统各部件间通过运动副与驱动装置连接在一起 数学模型:各部件的位置与姿态坐标的非线性代数方程,以及速度与加速度的线性代数方程

当系统受到静载荷时,确定在运动副制约下的系统平衡位置以及运动副静反力 典型案例:机车或汽车中安装有大量的弹簧阻尼器,整车设计中必须考虑系统在静止状态下车身的位置与姿态,为平稳性与操纵稳定性的研究打下基础 数学模型:非线性微分代数方程组

讨论载荷和系统运动的关系 研究复杂机械系统在载荷作用下各部件的动力学响应是工程设计中的重要问题 动力学正问题——已知外力求系统运动的问题 动力学逆问题——已知系统运动确定运动副的动反力,是系统各部件强度分析的基础 动力学正逆混合问题——系统的某部分构件受控,当它们按照某已知规律运动时,讨论在外载荷作用下系统其他构件如何运动 数学模型:非线性微分代数方程组

机械系统的多体系统力学模型 在对复杂机械系统进行运动学与动力学分析前需要建立它的多体系统力学模型。对系统如下四要素进行定义: ?物体 ?铰链 ?外力(偶) ?力元 实际工程中的机械系统多体系统力学模型的定义取决于研究的目的 模型定义的要点是以能揭示系统运动学与动力学性态的最简模型为优 性态分析的求解规模与力学模型的物体与铰的个数有关

柔性多体动力学建模

柔性多体动力学建模 、仿真与控制 近二十年来,柔性多体系统多力学(the dynamics of the flexible multibody systems)的研究受到了很大的关注。多体系统正越来越多地用来作为诸如机器人、机构、链系、缆系、空间结构和生物动力学系统等实际系统的模型。huston认为: “多体动力学是目前应用力学方面最活跃的领域之一,如同任何发展中的领域一样,多体动力学正在扩展到许多子领域。最活跃的一些子领域是: 模拟、控制方程的表述法、计算机计算方法、图解表示法以及实际应用。这些领域里的每一个都充满着研究机遇。”多柔体系统动力学近年来快速发展的主要推动力是传统的机械、车辆、军械、机器人、航空以及航天工业现代化和高速化。传统的机械装置通常比较粗重,且*作速度较慢,因此可以视为由刚体组成的系统。而新一代的高速、轻型机械装置,要在负载/自重比很大,*作速度较高的情况下实现准确的定位和运动,这是其部件的变形,特别是变形的动力学效应就不能不加以考虑了。在学术和理论上也很有意义。 关于多柔体动力学方面已有不少优秀的综述性文章。 在多体系统动力学系统中,刚体部分: 无论是建模、数值计算、模拟前人都已做得相当完善,并已形成了相应的软件。但对柔性多体系统的研究才开始不久,并且柔性体完全不同于刚性体,出现了很多多刚体动力学中不呈遇到的问题,如: 复杂多体系统动力学建模方法的研究,复杂多体系统动力学建模程式化与计算效率的研究,大变形及大晃动的复杂多体系统动力学研究,方程求解的stiff数值稳定性的研究,刚柔耦合高度非线性问题的研究,刚-弹-液-控制组合的复杂多体系统的运动稳定性理论研究,变拓扑结构的多体系统动力学与控,复杂多体系统动力学中的离散化与控制中的模态阶段的研究等等。柔性多体动力学而且柔性多体动力学的发展又是与当代计算机和计算技术的蓬勃发展密切相关的,高性能的计算机使复杂多体动力学的仿真成为可能,特别是计算机的功

柔性多体系统动力学讲稿(theory)

多体动力学 摘要 采用笛卡尔绝对坐标通过动静法建立多刚体系统的动力学方程。 目录 I 问题概述 (3) 1. 多体系统仿真模型 (3) 2. 静力学问题 (4) 3. 运动学问题 (4) 4. 动力学问题 (4) II 基本概念和公式 (4) 5. 参照物 (4) 6. 矢量 (5) 6.1 矢量的定义及符号 (5) 6.2 矢量的基本运算 (5) 6.3 单位矢量的定义及符号 (6) 6.4 零矢量的定义及符号 (6) 6.5 平移规则 (6) 7. 坐标系 (7) 8. 矢量在坐标系内的表示 (8) 9. 方向余弦矩阵 (10) 10. 欧拉角 (13) 11. 刚体的位置和姿态坐标 (15) 12. 矢量在某参照物内对时间的导数 (16) 13. 角速度 (17) 14. 简单角速度 (17) 15. 刚体上固定矢量在某参照物内对时间的导数 (18) 16. 矢量在两参照物内对时间导数的关系 (20) 17. 角速度叠加原理 (21) 18. 角加速度 (22) 19. 角速度与欧拉角对时间导数的关系 (23) 20. 动点的速度和加速度 (25) 21. 刚体上两固定点的速度与加速度 (26) 22. 相对刚体运动的点的速度和加速度 (27) 23. 并矢 (28) 24. 刚体惯性力向质心简化的主矢和主矩 (30) 25. 约束 (33) 25.1滑移铰 (34) 25.2 旋转铰 (34) 25.3 圆柱铰 (35) 25.4 球铰 (36) 25.5 平面铰 (36) 25.6 固定铰 (37) 25.7 点在线约束 (37) 25.8 点在面约束 (38) 25.9 姿态约束 (39) 25.10 平行约束 (39) 25.11垂直约束 (40) 25.12 等速万向节 (41) 25.13 虎克铰 (41) 25.14 万向节 (42) 25.15 关联约束 (43) 26. 弹簧力的计算 (45)

柔性多体动力学建模

柔性多体动力学建模、仿真与控制 近二十年来,柔性多体系统多力学(the dynamics of the flexible multibody systems)的研究受到了很大的关注。多体系统正越来越多地用来作为诸如机器人、机构、链系、缆系、空间结构和生物动力学系统等实际系统的模型。huston认为:“多体动力学是目前应用力学方面最活跃的领域之一,如同任何发展中的领域一样,多体动力学正在扩展到许多子领域。最活跃的一些子领域是:模拟、控制方程的表述法、计算机计算方法、图解表示法以及实际应用。这些领域里的每一个都充满着研究机遇。” 多柔体系统动力学近年来快速发展的主要推动力是传统的机械、车辆、军械、机器人、航空以及航天工业现代化和高速化。传统的机械装置通常比较粗重,且*作速度较慢,因此可以视为由刚体组成的系统。而新一代的高速、轻型机械装置,要在负载/自重比很大,*作速度较高的情况下实现准确的定位和运动,这是其部件的变形,特别是变形的动力学效应就不能不加以考虑了。在学术和理论上也很有意义。关于多柔体动力学方面已有不少优秀的综述性文章。 在多体系统动力学系统中,刚体部分:无论是建模、数值计算、模拟前人都已做得相当完善,并已形成了相应的软件。但对柔性多体系统的研究才开始不久,并且柔性体完全不同于刚性体,出现了很多多刚体动力学中不呈遇到的问题,如:复杂多体系统动力学建模方法的研究,复杂多体系统动力学建模程式化与计算效率的研究,大变形及大晃动的复杂多体系统动力学研究,方程求解的stiff数值稳定性的研究,刚柔耦合高度非线性问题的研究,刚-弹-液-控制组合的复杂多体系统的运动稳定性理论研究,变拓扑结构的多体系统动力学与控,复杂多体系统动力学中的离散化与控制中的模态阶段的研究等等。柔性多体动力学而且柔性多体动力学的发展又是与当代计算机和计算技术的蓬勃发展密切相关的,高性能的计算机使复杂多体动力学的仿真成为可能,特别是计算机的功能今后将有更大的发展,柔性多体必须抓住这个机遇,加强多体动力学的算法研究和软件发展,不然就不是现代力学,就不是现代化。 柔性多体系统动力学时多刚体动力学、连续介质力学、结构动力学、计算力学、现代控制理论等构成的一门交叉性、边缘性学科,这门学科之所以能建立和迅速发展是与当代计算机技术的爆炸式发展分不开的。由于近20年来卫星及航天器飞行稳定性、太阳帆板展开、姿态控制、交会对接的需求和失败的教训以及巨型空间站的构建;高速、轻型地面车辆、机器人、精密机床等复杂机械的高性能、高精度的设计要求等,柔性多体系统动力学引起了广泛的兴趣,已成为理论和应用力学的一个极其活跃的领域。

相关文档
相关文档 最新文档