文档库 最新最全的文档下载
当前位置:文档库 › 二维投影变换模型的单应矩阵表示

二维投影变换模型的单应矩阵表示

二维投影变换模型的单应矩阵表示
二维投影变换模型的单应矩阵表示

投影定义与坐标转换

GIS/RS在地理学中的应用 一、作业题目:基础03 坐标定义与投影变换 时间:2018 年9 月20 日 一、作业内容及要求概述 基础03 坐标定义与投影变换 1.数据文件 ① idll.shp,(Idaho 州的轮廓图) ② stationsll.shp,(Idaho 州的滑雪道) ③ snow.txt,(Idaho 州 40 个滑雪场的经纬度值) 2.GIS操作 ①按要求更改文件投影的 ②给文件定义投影 ③用经纬度信息文本生成指定投影地点分布图 3. 作业报告总结以下内容 ①将 idll.shp 的投影变换为Idaho 州横轴麦卡托坐标系( Idaho Transverse Mercator, IDTM)IDTM参数设置如下: Projection Transverse Mercator Datum NAD83 Units meters Parameters scale factor: 0.9996 central meridian: -114.0 reference latitude: 42.0

false easting: 2,500,000 false northing: 1,200,000 ②将IDTM坐标系统应用到stationsll.shp 上 用snow.txt 生成一个UTM投影(Nad 1983UTM Zone11N)的滑雪场分布图 二、工作方法及技术流程 (思路、方法、主要操作步骤、技术流程等) ①将 idll.shp 的投影变换为Idaho 州横轴麦卡托坐标系 1:右键单击属性,查看idll属性其坐标系统信息。元数据页中坐标系统已经为GCS_North_American_1927 2:接下来将idll.shp投影到IDTM坐标系统。在ArcToolbox中Data Manager Tools =>Projections and Transformations=>Features=>Project

3.2矢量坐标变换原理和变换矩阵

3.2矢量坐标变换原理和变换矩阵 矢量控制系统的坐标变换包括精致坐标系间的变换、旋转与静止坐标系间的变换以及指直角坐标系与极坐标系间的变换。其中三相静止坐标系和两相静止坐标系间的变换,简称3s/2s 变换(也称Clarke 变换)、两相静止坐标系和两相旋转坐标系间的变换,简称2s/2r 变换(也称Park 变换)。 坐标变换和矩阵变换的原理放在交流电机里头介绍比较容易理解,所以下面介绍的坐标变换和变换矩阵都以交流电机模型来说明。 3.2.1坐标变换的基本思路 不同电动机模型彼此等效的原则是:在不同坐标下所产生的磁动势完全一致。 众所周知,在交流电动机三相对称的静止绕组A 、B 、C 中,通以三相平衡的正 弦电流a i ,b i ,c i 时,所产生的合成磁动势F ,它在空间呈正弦分布,以同步转速1ω(即 电流角频率)顺着A-B-C 的相序旋转。这样的物理模型绘于图3.3中的定子部分。 图3.3 二极直流电动机的物理模型 F-励磁绕组 A-电枢绕组 C-补偿绕组

图3.4 等效的交流电动机绕组和直流电动机绕组物理模型 (a )三相交流绕组 (b )两相交流绕组 (c )旋转的直流绕组 然而,旋转磁动势并不一定非要三相不可,除单相以外,二相、三相、四相……等任意对称的多相绕组,通入平衡的多相电流,都能产生旋转磁动势,当然以两相最为简单。图3.4中绘出了两相静止绕组α和β,它们在空间互差900,通入时间上互差900的两相平衡交流电流,也能产生旋转磁动势F 。当图3.4a 和b 的两个旋转磁动势大小和转速都相等时,即认为图3.4b 的两相绕组与图3.4a 的三相绕组等效。 再看图3.4c 中的两个匝数相等且互相垂直的绕组d 和q ,其中分别通过以直流电流d i 和q i ,产生合成磁动势F ,其位置相对于绕组来说是固定的。如果认为地让包含两个绕组在内的整个铁芯以同步转速旋转,则磁动势F 自然也随之旋转起来,成为旋转磁动势。把这个旋转磁动势的大小和转速也控制呈与图3.4a 和图3.4b 中的旋转磁动势一样,那么这套旋转的直流绕组也就和前面两套固定的交流绕组都等效了。当观察着也站到铁芯上和绕组一起旋转时,在他看来,d 和q 是两个通入直流而相互垂直的静止绕组。如果控制磁通Φ的位置在d 轴上,就和图3.3的直流电机物理模型没有本质上区别了。这时,绕组d 相当于励磁绕组,q 相当于伪静止的电枢绕组。 由此可见,以产生同样的旋转磁动势为准则,图3.4a 的三相交流绕组、图3.4b 的两相交流绕组和图3.4c 中整体旋转彼此等效。或者说,在三相坐标系下的a i ,b i ,c i 和在两相坐标系下的i α、i β以及在旋转两相坐标系下的直流d i 、q i 都是等效的,它们能产生相同的旋转磁动势。有意思的是,就图3.4c 中的d 、q 两个绕组而言,当

solidworks二维转三维

二维转三维 传统的机械绘图,是想象出零部件的立体形状,然后对立体模型从各个方向上投影,生成各投影面上的二维视图,加以标注尺寸等注释,生成基本的二维的图纸。如下图。 二维的图纸 但是二维图纸的缺点也是明显的,就是略复杂点的就显得不直观,需要人为的正确想象。如果有三维的数模展现,并且能旋转、缩放,就更加直观易懂了。 现在有了三维CAD软件SolidWorks的辅助,实现2D—3D转换,生成一般的三维数模是比较简单的事。对于从AutoCAD到三维软件过渡的设计者来说,SolidWorks的这个功能容易上手,可以帮助你轻松完成从AutoCAD到三维CAD软件的跨越。 从2D-3D的跨越可谓是传统机械绘图的逆向过程(类似图1,但是由投影视图生成立体模型)。输入的2D草图可以是AutoCAD的DWG格式图纸,也可是SolidWorks工程图,或者是SolidWorks的草图。 本文讨论如何从AutoCAD的图纸输入到SolidWorks中实现2D—3D的转换。 原理:很多三维CAD/CAM软件的立体模型的建立,是直接或间接的以草绘(或者称草图)为基础的,这点尤以PRO/E为甚。而三维软件的草绘(草图),与AutoCAD等的二维绘图大同小异(不过不同的就是前者有了参数化的技术)。 在SolidWorks中,就是将AutoCAD的图纸输入,转化为SolidWorks的草图,从而建立三维数模。 基本转换流程: 1.在SolidWorks中,打开AutoCAD格式的文件准备输入。 2.将*DWG,DXF文件输入成SolidWorks的草图。 3.将草图中的各个视图转为前视、上视等。草图会折叠到合适的视角。 4.对齐草图。 5.拉伸基体特征。 6.切除或拉伸其它特征。 在这个转换过程中,主要用2D到3D工具栏,便于将2D图转换到3D 数模。

矩阵投影与最小二乘方法

题目:《神奇的矩阵——矩阵投影与最小二乘方法》 学校:哈尔滨工程大学 姓名:黎文科 联系方式: QQ群:53937814 联系方式: 190356321@https://www.wendangku.net/doc/5215963334.html,

矩阵投影与最小二乘方法 最小二乘法(Least Squares Method,简记为LSE)是一个比较古老的方法,源于天文学和测地学上的应用需要。在早期数理统计方法的发展中,这两门科学起了很大的作用。丹麦统计学家霍尔把它们称为“数理统计学的母亲”。此后近三百年来,它广泛应用于科学实验与工程技术中。美国统计史学家斯蒂格勒( S. M. Stigler)指出, 最小二乘方法是19世纪数理统计学的压倒一切的主题。1815年时,这方法已成为法国、意大利和普鲁士在天文和测地学中的标准工具,到1825年时已在英国普遍使用。 追溯到1801年,意大利天文学家朱赛普·皮亚齐发现了第一颗小行星谷神星。经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。时年24岁的高斯也计算了谷神星的轨道。奥地利天文学家海因里希·奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。高斯于其1809年的著作《关于绕日行星运动的理论》中。在此书中声称他自1799年以来就使用最小二乘方法,由此爆发了一场与勒让德的优先权之争。 近代学者经过对原始文献的研究,认为两人可能是独立发明了这个方法,但首先见于书面形式的,以勒让德为早。然而,现今教科书和著作中,多把这个发明权归功于高斯。其原因,除了高斯有更大的名气外,主要可能是因为其正态误差理论对这个方法的重要意义。勒让德在其著作中,对最小二乘方法的优点有所阐述。然而,缺少误差分析。我们不知道,使用这个方法引起的误差如何,就需建立一种误差分析理论。高斯于1823年在误差e 1 ,… , e n 独立同分布的假定下,证明了最小二乘方法的一个最优性质: 在所有无偏的线性估计类中,最小二乘方法是其中方差最小的!在德国10马克的钞票上有高斯像,并配了一条正态曲线。在高斯众多伟大的数学成就中挑选了这一条,亦可见这一成就对世界文明的影响。 现行的最小二乘法是勒让德( A. M. Legendre)于1805年在其著作《计算慧星轨道的新方法》中提出的。它的主要思想就是选择未知参数,使得理论值与观测值之差的平方和达到最小: 2 211 ()()m m i i i H y y ===-=-∑∑理论值观测值

微分几何第二章 矩阵和坐标变换

二、矩阵和坐标变换 2.1 矩阵及矩阵的运算 由m n ?个数排列形成的一个矩形数阵,称为m 行n 列矩阵。 如1111 n m m n a a A a a ?? ? = ? ??? ,其中ij a 称为矩阵元素。若两个矩阵A 、B 的行数和列数都相同,并且对应元素相等,则两个矩阵相等,记为A B = 。 矩阵的加(减)法 两个矩阵A 、B ,它们的行数和列数分别相等,把它们的对应元素相加减,得到一个 新矩阵C ,则称为A 与B 之和(差),记为C A B =± 。 矩阵加法适合交换律:A B B A +=+ 矩阵加法适合结合律:()()A B C A B C ++=++ 数乘矩阵 用数λ和矩阵A 相乘,则将A 中的每一个元素都乘以λ,称为λ与A 之积,记为A λ 或A λ 。 数乘矩阵适合结合律:()()A A λμλμ= 数乘矩阵适合分配率:()A B A B λλλ+=+ 矩阵乘法 两个矩阵A 、B ,它们相乘得到一个新矩阵C ,记为C AB = 。 矩阵A 和B 的乘积C 的第i 行和第j 列的元素等于第一个矩阵A 的第i 行与第二个矩阵B 的 第j 列的对应元素乘积之和。即 11221 n ij i j i j in nj ik kj k c a b a b a b a b ==+++= ∑ 注意:只有第一个矩阵的列数和第二个矩阵的行数相等时,才能相乘。 矩阵乘法适合结合律:()()A B C A B C = 矩阵乘法适合分配率:()A B C AC BC +=+ 矩阵乘法不适合交换律:AB BA ≠

2.2坐标变换 空间中不同坐标系下,同一点有不同的坐标,同一矢量有不同的分量。由于运算时要在同一坐标系下进行,为此,要考察两个坐标系之间的相互关系,就要用坐标变换的方式。 2.2.1底失的变换 给出两个直角坐标系[]123;,,O e e e σ= ,123;,,O e e e σ??'''''=? ? ,其中σ称为旧坐标系, σ'称为新坐标系。下面研究σ和σ'两个坐标系之间的关系。 首先把新坐标系σ'的底失123,,e e e ''' 看成在旧坐标系σ里的一个径失。则新坐标系σ'的底失123,,e e e ''' 在旧坐标系σ里的表达式可写成: 111112213322112222333 311322333e a e a e a e e a e a e a e e a e a e a e ?'=++??'=++??'=++?? 这就是σ变换到σ'的底失变换公式。 反之,又可推导出由新坐标系σ'到旧坐标系σ的底失变换公式。 111121231332121222323131232333e a e a e a e e a e a e a e e a e a e a e ? '''=++? ?'''=++??'''=++? ? 由上面两式不难看出,将九个系数按其原来位置排列成方阵: 11121321 222331 32 33a a a A a a a a a a ?? ?= ? ??? A 表示了底失变换关系,称为由σσ'→的底失系数变换矩阵。用矩阵乘法的形式表示为: 1 111112132212223223132 33333e e e a a a e a a a e A e a a a e e e ??' ???? ???? ??? ????'== ??????? ??????'??????? ?? 2.2.2矢量的坐标变换 设一矢量r 在坐标系σ和σ'里的分量依次是(),,x y z 和(),,x y z ''',则: 123r xe ye ze =++ 又 123 r x e y e z e ''''''=++

射影几何学

在射影几何学中,把无穷远点看作是“理想点”。通常的直线再加上一个无穷点就是无穷远直线,如果一个平面内两条直线平行,那么这两条直线就交于这两条直线共有的无穷远点。通过同一无穷远点的所有直线平行。 德国数学家克莱因(图)在爱尔朗根大学提出著名的《爱尔朗根计 划书》中提出用变换群对几何学进行分类 在引入无穷远点和无穷远直线后,原来普通点和普通直线的结合关系依然成立,而过去只有两条直线不平行的时候才能求交点的限制就消失了。 由于经过同一个无穷远点的直线都平行,因此中心射影和平行射影两者就可以统一了。平行射影可以看作是经过无穷远点的中心投影了。这样凡是利用中心投影或者平行投影把一个图形映成另一个图形的映射,就都可以叫做射影变换了。 射影变换有两个重要的性质:首先,射影变换使点列变点列,直线变直线,线束变线束,点和直线的结合性是射影变换的不变性;其次,射影变换下,交比不变。交比是射影几何中重要的概念,用它可以说明两个平面点之间的射影对应。 在射影几何里,把点和直线叫做对偶元素,把“过一点作一直线”和“在一直线上取一点”叫做对偶运算。在两个图形中,它们如果都是由点和直线组成,把其中一图形里的各元素改为它的对偶元素,各运算改为它的对偶运算,结果就得到另一个图形。这两个图形叫做对偶图形。在一个命题中叙述的内容只是关于点、直线和平面的位置,可把各元素改为它的对偶元素,各运算改为它的对偶运算的时候,结果就得到另一个命题。这两个命题叫做对偶命题。这就是射影几何学所特有的对偶原则。在射影平面上,如果一个命题成立,那么它的对偶命题也成立,这叫做平面对偶原则。同样,在射影空间里,如果一个命题成立,那么它的对偶命题也成立,叫做空间对偶原则。研究在射影变换下二次曲线的不变性质,也是射影几何学的一项重要内容。如果就几何学内容的多少来说,射影几何学;仿射几何学;欧氏几何学,这就是说欧氏几何学的内容最丰富,而射影几何学的内容最贫乏。比如在欧氏几何学里可以讨论仿射几何学的对象(如简比、平行性等)和射影几何学的对象(如四点的交比等),反过来,在射影几何学里不能讨论图形的仿射性质,而在仿射几何学里也不能讨论图形的度量性质。

全息投影定义、原理及分类介绍

全息投影定义、原理及分类介绍 在科技快速发展的今天,人们对视觉要求越来越高,由此能实现裸眼立体3D 显示的全息投影技术的应用也是越来越多,在给人们带来新鲜有趣的视觉体验的同时,也为众多商家提供新的宣传营销方式,打开市场新大门。 全息投影技术在展览展示方式,采用全息投影技术的全息成像柜可以使立体影像不借助任何屏幕或介质而直接悬浮在设备外的自由空间,任意角度看都是三维影像展现。产品种类多样分有全息展示柜、180度全息展示柜、270度全息展示柜、360度全息展示柜、全息金字塔、大中小型全息金字塔定制、全息投影设备、3D投影成像设备、全息玻璃柜等,可根据用户使用需求使用场地进行定制。未来全息投影技术市场发展潜力将是无可估量的。 一、什么是全息投影全息投影技术是近些年来流行的一种高科技技术,它是采用一种国外进口的全息膜配合投影再加以影像内容来展示产品的一种推广手段。它提供了神奇的全息影像,可以在玻璃上或亚克力材料上成像。这种全新的互动展示技术将装饰性和实用性融为一体,在没有图像时完全透明,给使用者以全新的互动感受,成为当今一种最时尚的产品展示和市场推广手段。全息投影设备包括:全息投影仪,全息投影幕,全息投影膜,全息投影内容制作等。航天科工数字展示事业部提供3D全息投影成像系统项目策划、3D全息投影成像展示内容制作、 二、全息技术的原理全息投影技术是利用干涉和衍射原理记录并再现物体真实的三维图像的记录和再现的技术。 其第一步是利用干涉原理记录物体光波信息,此即拍摄过程:被摄物体在激光辐照下形成漫射式的物光束;另一部分激光作为参考光束射到全息底片上,和物光束叠加产生干涉,把物体光波上各点的位相和振幅转换成在空间上变化的强度,从而利用干涉条纹间的反差和间隔将物体光波的全部信息记录下来。记录着干涉条纹的底片经过显影、定影等处理程序后,便成为一张全息图,或称全息照片;其第二步是利用衍射原理再现物体光波信息,这是成象过程:全息图犹如一个复杂的光栅,在相干激光照射下,一张线性记录的正弦型全息图的衍射光波一般可给出两个象,即原始象(又称初始象)和共轭象。再现的图像立

openGL投影矩阵原理及数学推导

openGL投影矩阵 概述 显示器是2d的。3d场景需要转换为2d图像才能显示在屏幕上。投影矩阵(GL_PROJECTION)用于完成这个工作。投影矩阵将观察坐标(eye coordinates)转换成裁剪坐标(clip coordinates)。然后,裁剪坐标被除以w,转换为规范化的设备坐标(NDC)。 需要记住的一点是,裁剪操作和规范化都由投影矩阵(GL_PROJECTION)完成。下面介绍如何用6个参数(left,right,bottom,top,near,far)构建投影矩阵。 裁剪(clipping)操作是在裁剪坐标上进行的,安排在透视除法执行之前。裁剪坐标xc,yc,zc同wc比较,若每个分量都落在(-wc,wc)外,那么此坐标将被裁剪掉。 在透视投影中,3d场景中的点(观察坐标)从平截头体中映射到正方体(NDC)中;x坐标从[l,r]映射到[-1,1],y坐标从[b,t]映射到[-1,1],z坐标从[n,f]映射到[-1,1]。 注意到,观察坐标系是右手系,规范设备坐标系是左手系。这就有,在观察坐标系中,摄像机朝向沿着-z,而在NDC中,方向沿着z。由于glFrustum()只接受正参数,所以构造投影矩阵的时候要变号。 openGL中,3d场景中,观察坐标系下的点被投影到近投影面。下图展示了观察坐标系点(xe,ye,ze)投影到近投影面上的点(xp,yp,zp)。 从Top View of Projection看,xe投影到xp,根据等比性质:

从Side View of Projection看,yp计算类似: 注意到,xp和yp依赖于-ze,这一点要引起重视。在观察坐标被投影矩阵转换为裁剪坐标后,裁剪坐标仍然是同质坐标。在规范化阶段执行透视除法变为规范设备坐标(NDC)。 因此,可以将wc的值定为-ze。投影矩阵最后一行为(0,0,-1,0) 下一步,将xp,yp映射到xn,yn,此为线性映射[l,r]=>[-1,1],[b,t]=>[-1,1]:

向量的数量积——数量积的投影定义(含数量积综合练习题)

向量的数量积——数量积的投影定义 一、基础知识 1、向量的投影: (1)有向线段的值:设有一轴l ,AB 是轴上的有向线段,如果实数λ满足AB λ=,且当AB 与轴同向时,0λ>,当AB 与轴反向时,0λ<,则称λ为轴l 上有向线段 AB 的值。 (2)点在直线上的投影:若点A 在直线l 外,则过A 作'AA l ⊥于'A ,则称'A 为A 在直线l 上的投影;若点A 在直线l 上,则A 在A 在直线l 上的投影'A 与A 重合。所以说,投影往往伴随着垂直。 (3)向量的投影:已知向量,a b ,若a 的起点,A B 在b 所在轴l (与b 同向)上的投影分别为'',A B ,则向量''A B 在轴l 上的值称为a 在b 上的投影,向量''A B 称为a 在 b 上的投影向量。 2、向量的投影与向量夹角的关系:通过作图可以观察到,向量的夹角将决定投影的符号,记θ为向量,a b 的夹角 (1)θ为锐角:则投影(无论是a 在b 上的投影还是b 在a 上的投影)均为正 (2)θ为直角:则投影为零 (3)θ为钝角:则投影为负 3、投影的计算公式:以a 在b 上的投影λ为例,通过构造直角三角形可以发现 (1)当θ为锐角时,cos b λθ=,因为0λ>,所以cos b λθ=

(2)当θ为锐角时,()cos cos b b λπθθ=-=-,因为0λ<,所以cos b λθ-=-即cos b λθ= (3)当θ为直角时,0λ=,而cos 0θ=,所以也符合cos b λθ= 综上可得:a 在b 上的投影cos b λθ=,即被投影向量的模乘以两向量的夹角 4、数量积与投影的关系(数量积的几何定义): 向量,a b 数量积公式为cos a b a b θ?=,可变形为() cos a b a b θ?=?或 () cos a b b a θ?=?,进而与向量投影找到联系 (1)数量积的投影定义:向量,a b 的数量积等于其中一个向量的模长乘以另一个向量在该向量上的投影,即a b a b b λ→?=?(记a b λ→为a 在b 上的投影) (2)投影的计算公式:由数量积的投影定义出发可知投影也可利用数量积和模长进行求解: a b a b b λ→?= 即数量积除以被投影向量的模长 5、数量积投影定义的适用范围:作为数量积的几何定义,通常适用于处理几何图形中的向量问题 (1)图形中出现与所求数量积相关的垂直条件,尤其是垂足确定的情况下(此时便于确定投影),例如:直角三角形,菱形对角线,三角形的外心(外心到三边投影为三边中点) (2)从模长角度出发,在求数量积的范围中,如果所求数量积中的向量中有一个模长是定值,则可以考虑利用投影,从而将问题转化为寻找投影最大最小的问题 二、典型例题:

投影矩阵的定义

视锥就是场景中的一个三维空间,它的位置由视口的摄像机来决定。这个空间的形状决定了摄像机空间中的模型将被如何投影到屏幕上。透视投影是最常用的一种投影类型,使用这种投影,会使近处的对象看起来比远处的大一些。对于透视投影,视锥可以被初始化成金字塔形,将摄像机放在顶端。这个金字塔再经过前、后两个剪切面的分割,位于这两个面之间的部分就是视锥。只有位于视锥内的对象才可见。 视锥由凹视野( 在上图中,变量 投影矩阵是一个典型的缩放和透视矩阵。投影变换将视锥变换成一个直平行六面体的形状。因为视锥的近处比远处小,这样就会对靠近摄像机的对象起到放大的作用,也就将透视应用到了场景当中。 在视锥中,摄像机与空间原点间的距离被定义为变量 视矩阵将摄像机放置在场景的原点。又因为投影矩阵需要将摄像机放在 将两个矩阵相乘,得到下面的矩阵: 下图显示了透视变换如何将一个视锥变换成一个新的坐标空间。注意:锥形体变成了直平行六面体,原点从场景的右上角移到了中心。 在透视变换中,

这个矩阵基于一定的距离(这个距离是从摄像机到邻近的剪切面)对对象进行平移和旋转,但是它没有考虑到视野( 在这个矩阵中, 在程序中,使用视野角度来定义x和y缩放系数比使用视口的水平和垂直尺寸(在摄像机空间中)并不方便多少。下面两式使用了视口的尺寸,并且与上面的公式相等: 在这些公式中,Zn表示邻近的剪切面的位置,变量Vw和Vh表示视口的高和宽。这两个参数与 D3DVIEWPORT2结构中的dwWidth和dwHeight成员相关。 不管你使用那个公式,将同世界和视变换一样,可以调用下面的 D3DMATRIX ProjectionMatrix(const float near_plane,// distance to near clipping plane const float far_plane,// distance to far clipping plane const float fov_horiz,// horizontal field of view angle, in radians const float fov_vert)// vertical field of view angle, in radians { float h, w, Q; w = (float)cot(fov_horiz*0.5); h = (float)cot(fov_vert*0.5); Q = far_plane/(far_plane - near_plane); D3DMATRIX ret = ZeroMatrix(); ret(0, 0) = w; ret(1, 1) = h; ret(2, 2) = Q; ret(3, 2) = -Q*near_plane; ret(2, 3) = 1; return ret; } // end of ProjectionMatrix()

三相坐标系和二相坐标系转换

交流电动机矢量控制变压变频调速系统(三)第三讲坐标 变换的原理和实现方法 收藏此信息打印该信息添加:李华德来源:未知 由第二讲的内容可知,在三相静止坐标系中,异步电动机数学模型是一个多输入、多输出、非线性、强耦合的控制对象,为了实现转矩和磁链之间的解耦控制,以提高调速系统的动静态性能,必须对异步电动机的数学模型进行坐标变换。 3.1 变换矩阵的确定原则 坐标变换的数学表达式可以用矩阵方程表示为 y=ax (3-1) 式(3-1)表示利用矩阵a将一组变量x变换为另一组变量y,其中系数矩阵a称为变换矩阵,例如,设x是交流电机三相轴系上的电流,经过矩阵a的变换得到y,可以认为y是另一轴系上的电流。这时,a称为电流变换矩阵,类似的还有电压变换矩阵、阻抗变换矩阵等,进行坐标变换的原则如下: (1)确定电流变换矩时,应遵守变换前后所产生的旋转磁场等效的原则; (2)为了矩阵运算的简单、方便,要求电流变换矩阵应为正交矩阵; (3)确定电压变换矩阵和阻抗变换矩阵时,应遵守变换前后电机功率不变的原则,即变换前后功率不变。 假设电流坐标变换方程为: i=ci′ (3-2) 式中,i′为新变量,i称为原变量,c为电流变换矩阵。 电压坐标变换方程为: u′=bu (3-3) 式中,u′为新变量,u为原变量,b为电压变换矩阵。 根据功率不变原则,可以证明: b=ct (3-4)

式中,ct为矩阵c的转置矩阵。 以上表明,当按照功率不变约束条件进行变换时,若已知电流变换矩阵就可以确定电压变换矩阵。 3.2 定子绕组轴系的变换(a-b-c<=>α-β) 所谓相变换就是三相轴系到二相轴系或二相轴系到三相轴系的变换,简称3/2变换或2/3变换。 三相轴系和二相轴系之间的关系如图3-1所示,为了方便起见,令三相的a轴与两相的α轴重合。假设磁势波形是按正弦分布,或只计其基波分量,当二者的旋转磁场完全等效时,合成磁势沿相同轴向的分量必定相等,即三相绕组和二相组绕的瞬时磁势沿α、β轴的投影应该相等,即: (3-5) 式中,n3、n2分别为三相电机和两相电机每相定子绕组的有效匝数。 经计算并整理之后可得: (3-6) (3-7) 图3-1 三相定子绕组和二相定子绕组中磁势的空间矢量位置关系

投影矩阵的计算过程

投影矩阵的计算过程3d模型经过世界坐标变换、相机坐标变换后,下一步需要投影变换。投影变换的目的就是要把相机空间转换到标准视图空间,在这个空间的坐标都是正规化的,也就是坐标范围都在[-1,1]之间,之所以转换到这个空间是为了后续操作更方便。下面的讨论都是以列向量来表示,这样在变换操作时,采用的是矩阵左乘法,如果采用的是行向量的话,那就相反,矩阵右乘法即是向量在左边乘以变换矩阵。采用哪种表示并不影响结果,只需要把该种表示下得出的变换矩阵转置一下,就是采用另外一种表示模式需要的结果。常见的投影有两种,正交投影和透视投影,正交投影相对来说更简单,所以先来看看正交投影。最简单的正交变换矩阵 1 0 0 0 0 1 0 0 0 0 0 1 这个正交变换是不可逆变换,变换后x和y保留,z变成了0,在实际应用中,更常见的情况是限定x、y、z在一定的范围内的进行投影变换,比如x[l,r],y[b,t],z[n,f]。那么要把这段空间中的点变换到-1和1之间,只要完成两个变换,首先把坐标轴移到中心,然后进行缩放就可以了。采用列向量的话,那就是缩放矩阵乘以平移矩阵。2/(r-l) 0 0 0 1 0 0 -(r+l)/2 2/(r-l) 0 0 -(r+l)/(r-l) 0 2/(t-b) 0 0 x 0 1 0 -(b+t)/2 = 0 2/(t-b) 0 -(t+b)/(t-b) 0 0 2/(f-n) 0 0 0 1 -(n+f)/2 0 0 2/(f-n) -(f+n)/(f-n) 0 0 0 1 0 0 0 1 0 0 0 1 透视投影类比于我们人眼系统,看一个物体,会有远小近大的效果。在转换到相机空间后,相机是这个空间的原点,和正交投影体是一个长方体或者立方体不同,透视投影体是一个锥体被近平面截取掉头部剩下的空间。假定仍然采用上面的坐标表示。在透视投影下,空间上面的任何一点P投影到近平面上某点q,通过三角几何学我们可以得到qx=px*n/pz ,y点同理。假定直接投影到近平面,则该矩阵很简单,用Ma表示下面的矩阵1 0 0 0 0 1 0 0 0 0 1 0 0 0 1/n 0 则齐次空间某点(x,y,z ,1)被该矩阵转换后变成了(x ,y z, z/n) ,除以z/n,则变成了(nx/z,ny/z,n ,1) 正好吻合上面的公式。 undefined 但是我们知道投影变换需要把坐标变换到-1和1之间,假定先不考虑z轴的变换,在x轴和y轴上面经过上述变换后,已经投影在近平面了,假设近平面xy在[l,r] 和[b,t]之间了,因此只需要和上面的正交投影一样,进行平移和缩放操作就可以了,平移矩阵Mb为 1 0 0 -(l+r)/2 0 1 0 -(t+p)/2 0 0 1 -(f+n)/2 0 0 0 1 以及缩放矩阵Mc 2/(r-l) 0 0 0 0 2/(t-b) 0 0 0 0 2/(f-n) 0 0 0 0 1 McXMbXMa 得到的矩阵为2/(r-l) 0 -(r+l)/(n*(r-l))0 0 2/(t-b) -(t+b)/(n*(t-b)) 0 0 0 j k 0 0 1/n 0 j k 为未知数,这个矩阵也可以同时乘以n,则变为2n/(r-l) 0 -(r+l)/(r-l) 0 0 2n/(t-b) -(t+b)/(t-b) 0 0 0 j k 0 0 1 0 为了求解J k,我们需要把z变换到-1 和1 因此当z=n时为-1,z=f时为1 (j*n+k)/n= j+k/n=-1; 同理j+k/f=1; 得到k=2f*n/(n-f) j=-(n+f)/(n-f) 代入上面的矩阵,就得出通用的正交变换矩阵。而且在一般情况下r=-l ,b=-t 因此上述矩阵可以简化为n/r 0 0 0 0 n/t 0 0 0 0 -(n+f)/(n-f) 2f*n/(n-f) 0 0 1 0 n/r 和n/t可以进一步简化成水平半视角和垂直半视角的三角函数来表示,而水平视角和垂直视角和透视窗口的宽高比有是成正比的,最终上面两行可以用宽高

AutoCAD中三维实体转换为二维投影图的方法

AutoCAD中三维实体转换为二维投影图的方法 唐月撵 辽宁工程技术大学机械工程学院辽宁阜新(123000) E-mail:tangyuenian2008@https://www.wendangku.net/doc/5215963334.html, 摘要:进行三维造型设计、用二维平面投影图来表达空间三维实体形状是工程图学课程的任务。介绍了在AutoCAD软件中进行三维实体造型的过程,在布局空间进行视口设置,利用建立的三维实体模型生成二维投影,在模型空间中进行图形编辑处理,得到二维平面投影图或剖视图的方法。 关键词:工程图学;AutoCAD;三维实体;二维投影图;块 1. 引言 2004年5月年教育部工程图学教学指导委员会推出了最新版的《普通高等院校工程图学课程教学基本要求》,新《教学基本要求》的突出变化是进一步加强对学生计算机绘图能力的培养,首次把三维图形设计能力的培养作为课程任务突显出来。现代工程设计既需要二维图示,也需要三维图示,应用计算机软件可以将两种图样有机地结合起来,进而提高形体的图示表达能力[1]。 随着现代计算机技术和计算机绘图技术的发展,大型三维绘图软件(如UG、 Pro/ENGINEER、AutoCAD等)的出现,三维设计完全成为可能。AutoCAD是应用最广泛的软件之一[2]。本文介绍了在 AutoCAD中绘制与处理三维实体模型,利用建立的三维实体模型转换为二维投影图的方法。 2. 在AutoCAD中绘制三维实体图 图1 形体的三维剖视图 如图1:从该形体的三维剖视图可以看出,此形体左右对称,前后不对称,由底板、肋板、圆柱筒等组成。在AutoCAD软件中绘制该形体的三维实体图主要步骤简要如下:(1)在AutoCAD软件中,调入需要使用的如“绘图”、“修改”、“实体”等工具条。视图选 择俯视图,绘制底板水平投影的外框,定义为面域,通过拉升命令(单击图标)拉升成为柱体,通过拉升命令创建U型槽柱体,选择左视图,创建左右对称两长方体,其长度超 过底板的长度,通过布尔差集运算(图标为)形成底板。 (2)视图选择俯视图投影方向(图标为),在命令行输入cylinder命令或单击图

坐标变换总结Clark变换和Park变换

一个坐标系的坐标变换为另一种坐标系的坐标的法则。 由于交流异步电动机的电压、电流、磁通和电磁转矩各物理量之间是相互关联的强耦合,并且其转矩正比与主磁通与电流,而这两个物理量是随时间变化的函数,在异步电机数学模型中将出现两个变量的乘积项,因此,又为多变量,非线性系统(关键是有一个复杂的电感矩阵),这使得建立异步电动机的准确数学模型相当困难。为了简化电机的数学模型,需从简化磁链入手。 解决的思路与基本分析: 1.已知,三相( ABC )异步电动机的定子三相绕组空间上互差120度,且通以时间上互差120 ω的旋转磁场。 度的三相正弦交流电时,在空间上会建立一个角速度为 1 又知,取空间上互相垂直的(α,β)两相绕组,且在绕组中通以互差90度的两相平衡交流电流时,也能建立与三相绕组等效的旋转磁场。此时的电机数学模型有所简化。 2. 还知, 直流电机的磁链关系为: F---励磁绕组 轴线---主磁通的方向,即轴线在d轴上,称为直轴(Direct axis)。 A---电枢绕组 轴线---由于电枢绕组是旋转的,通过电刷馈入的直流电产生电枢磁动势,其轴线始终被限定在q轴,即与d轴成90度,称为交轴(Quadrature axis)。 由于q轴磁动势与d轴主磁通成正交,因此电枢磁通对主磁通影响甚微。换言之,主磁通唯一地由励磁电流决定,由此建立的直流电机的数学模型十分简化。 如果能够将三项交流电机的物理模型等效的变换成类似的模型,分析和控制就变得大大简单了。 电机模型彼此等效的原则:不同坐标系下产生的磁动势(大小、旋转)完全一致。 关于旋转磁动势的认识: 1) 产生旋转磁动势并不一定非要三相绕组不可。结论是:

投影法概念.点的投影

点、直线和平面>> 点>> 点在两投影面体系中的投影 1 点 1.1 点在两投影面体系中的投影 1.1.1 两投影面体系的建立 两投影面体系由互相垂直相交的两个投影面组成,如图1所示,其中一个为水平投影面(简称水平面),以H表示,另一个为正立投影面(简称正面),以V表示。两投影面的交线称为投影轴,以OX表示。 水平投影面H与正立投影面V将空间分为四个部分,称为四个分角,即第一分角、第二分角、第三分角、第四分角。 (1) 投影如图2所示,空间点A处于第一分角,按正投影法将点A向正面和水平面投射,即由点A向正面作垂线,得垂足a′,则a′称为空间点A的正面投影;由点A向水平面作垂线,得垂足a ,则a称为空间点A的水平投影。画出点A的正面投射线Aa′和水平投射线Aa所确定的平面Aaa′与V、H面的交线a′a x和aa x 。 图2 点在两投影面体系中的投影 (2) 注写规定空间点用大写字母表示,如A、B、C…;点的水平投影用相应的小写字母表示,如a、b、c…;点的正面投影用相应的小写字母加一撇表示,如a′、b′、c′…。 (3) 投影面展开为了把空间点A的两个投影表示在一个平面上,保持V面不动,将H 面的前半部分绕OX轴向下旋转90°、后半部分绕OX轴向上旋转90°与V面重合。则得到点A的两面投影图。 (4) 擦去边界,得到点的两面投影图投影面可以看作是没有边界的平面,故符号V、H及投影面的边界线都不需画出。 1.1.3 点在两投影面体系中的投影规律

(a) (b) 图3 点在两投影面体系中的投影规律 (1) 一点的水平投影和正面投影的连线垂直于OX轴。 在图3(a)中,点A的正面投射线Aa′和水平投射线Aa所确定的平面Aaa′垂直于V 和H平面。根据初等几何知识,若三个平面互相垂直,其交线必互相垂直,所以有aa x⊥a′a x、aa x⊥OX和a′a x⊥OX。当a随H面旋转重合于V面时,aa x⊥OX的关系不变。因此,在投影图上,aa′⊥OX。 (2) 一点的水平投影到OX轴的距离等于该点到V面的距离;其正面投影到OX轴的距离等于该点到H面的距离,即aa x=Aa′;a′a x=Aa。 在图3(a)中,因为Aaa x a′是矩形,所以aa x=Aa′; a′a x=Aa。 图4 分角内点的投影

矢量控制坐标变换

(4)、转矩方程按照机电能量转换原理,可求出电磁转矩Te的表达式如式(2-17)所示。此式证明从略。 =……..(2-17) 这里需要说明的是,式(2-17)是在磁路为线性、磁动势在空间按正弦分布的假定条件下得出的,但对定、转子电流的波形未作任何假定,式中的i都是瞬时值。因此,这个电磁转矩公式同样适用于由典雅型变频器供电的三相异步电机调速系统。 (5)、三相异步电动机的数学模型 将前述式(2-14)、式(2-16)归纳起来,便构成在恒转矩负载下三相异步电动机的多变量非线性数学模型如下: ………………………………………………….(2-18) 上式中可按式(2-17)展开。

2.3. 坐标变换和变换矩阵 虽然,在上节中已经推导出异步电动机的动态数学模型,但是,要分析和求解这组非线性方程是十分困难的,即使要画出很清晰的结构图也非易事。通常须采用坐标变换的方法。使变换后的数学模型变得简单一些。 2.3.1 坐标变换的原则和基本思路 从上节分析异步电动机数学模型的过程中可以看出,这个数学模型之所以复杂,关键是因为有一个复杂的电感矩阵,以及三相异步电机电磁关系的强耦合和非线性,故要简化数学模型,一是从简化磁链的关系着手;二是设法使三相异步电动机复杂的电磁关系解耦。怎么做?比较容易想到的方法就是前面所讲到过的设法为异步电动机创造类似于直流电动机所具有的三个条件,即将交流电机的物理模型(见图2-3)等效地变换成类似直流电机的模式(见下页图1-2),如能这样,三相异步电动机的分析和控制问题就可以大为化简,并且,完全可以沿用直流电机调速系统的控制思路对三相异步电动机进行控制,进而得到与支流调速系统相媲美的调速性能。坐标变换正是为了这个目的而提出的一种方法。 在这里,不同电机模型在变换前后彼此等效的原则是,在不同坐标中它们所产生的磁动势完全一致。

射影变换

射影变换 4.1 点列和线束 点列和线束定义. 两个矢量),,(321a a a 和),,(321b b b 表示不同的点当且仅当这两个矢量线性无关. 在两点A ),,(321a a a 与B ),,(321b b b 的连线上任意一点),,(321x x x X 满足 03 2132 13 21=b b b a a a x x x 即,三点A ),,(321a a a ,B ),,(321b b b 与),,(321x x x X 共线的充分必要条件是 03 2132 13 21=b b b a a a x x x 以B A ,为基点的点列中,任何一点X 都可以表示为B A X μλ+=,用齐次坐标可以表示为B A B A X λλ μ '+=+ =;以m l ,为基线的线束中,任何一直线p 都可以表示为m l p μλ+=,用齐次坐标可以表示为m l m l p λλ μ '+=+=. 练习4-1 1.已知A 和B 的齐次坐标分别为)1,1,5(和)1,0,1(-,求直线AB 上一点C ,使 1)(-=ABC ,若B A C λ+=,求出λ. 解利用非齐次坐标),(y x 与齐次坐标),,(321x x x 之间的关系31x x x = ,3 2x x y =.这时,)1,5(),(=y x A ,)0,1(),(-=y x B ,再利用BC AC ABC = )(. 11 5 -=+-x x ,解得2=x ,

101-=--y y ,解得21=y .即)21,2(=C ,C 点的齐次坐标为)1,2 1 ,2(. 因为B A C 2 1 21+= ,所以 1=λ. 注意:以B A ,为基点的点列中,任何一点X 都可以表示为B A X μλ+=,用齐次坐标可以表示为B A B A X λλ μ '+=+ =. 2.试证明:三点),,(321x x x ,),,(321y y y ,),,(321z z z 共线的充分必要条件为 03 2 1 3213 21=z z z y y y x x x 证明三点),,(321x x x ,),,(321y y y ,),,(321z z z 共线的充分必要条件为 λ=--=--=--3 333222 21111y z x z y z x z y z x z 所以 03 32 21 132133221 13 2 1 321321=-------=y z y z y z y y y x z x z x z z z z y y y x x x 4.已知直线0143=++y x 与02=+y x ,求过两直线的交点与点)0,1,2(的直线方程. 解两直线0143=++y x 与02=+y x 的交点为 )5,1,3(1 1 2 1433 21--=x x x 于是点)5,1,3(--与点)0,1,2(的直线方程为 051050 1 2 513321321=+-=--x x x x x x 即05105321=+-x x x .

利用矩阵进行坐标转换

利用矩阵进行坐标转换 之前做拓扑图,本来打算整一套坐标系统在里面的,后来因为时间原因暂时用了最原始的方法实现。现在稍稍得闲,重新开始思考这个问题。不过在搜索的时候,意外发现.Net Framework类库中自带的有实现坐标系转换功能的类。Reflector了一把,发现代码看不懂了——都是利用矩阵操作的。矩阵这玩意儿,几年没用早忘完了。于是认真学习了一把,顺便把如何用矩阵进行坐标转换的过程记录和注解一下。文中部分内容摘取自MSDN,搜索“变换的矩阵表示形式” 即可找到。 首先review一下矩阵的基础知识: m×n 矩阵是排列在m 行和n 列中的一系列数。下图显示几个 矩阵。 可以通过将单个元素相加来加合两个尺寸相同的矩阵。下图显示 了两个矩阵相加的示例。

m×n 矩阵可与一个n×p 矩阵相乘,结果为一个m×p 矩阵。第一个矩阵的列数必须与第二个矩阵的行数相同。例如,一个4×2 矩阵与一个2×3 矩阵相乘,产生一个4×3 矩阵。 矩阵的行列的平面点可视为矢量。例如,(2, 5) 是具有两个组件的矢量,(3, 7, 1) 是具有三个组件的矢量。两个矢量的点积定义如下: (a, b) ? (c, d) = ac + bd (a, b, c) ? (d, e, f) = ad + be + cf 例如,(2, 3) 和(5, 4) 的点积是(2)(5) + (3)(4) = 22。(2, 5, 1) 和(4, 3, 1) 的点积是(2)(4) + (5)(3) + (1)(1) = 24。请注意,两个矢量的点积是数字,而不是另一个矢量。另外请注意,只有当两个矢量的 组件数相同时,才能计算点积。 将A(i, j) 作为矩阵 A 中第i 行、第j 列的项。例如,A(3, 2)是矩阵 A 中第 3 行、第 2 列的项。假定A、B 和 C 是矩阵,且 AB = C,则C 的项计算如下: C(i, j) =(A 的第i 行)?(B 的第j 列)

相关文档
相关文档 最新文档