文档库 最新最全的文档下载
当前位置:文档库 › 串联型晶体管稳压电源

串联型晶体管稳压电源

串联型晶体管稳压电源
串联型晶体管稳压电源

串联型晶体管稳压电源

一、实验目的

1、研究单相桥式整流、电容滤波电路的特性。

2、掌握串联型晶体管稳压电源主要技术指标的测试方法。

二、实验原理

电子设备一般都需要直流电源供电。这些直流电除了少数直接利用干电池和直流发电机外,大多数是采用把交流电(市电)转变为直流电的直流稳压电源。

图6-1直流稳压电源框图

直流稳压电源由电源变压器、整流、滤波和稳压电路四部分组成,其原理框图如图6-1所示。电网供给的交流电压u

1

(220V,50Hz)经电源变压器降压后,得

到符合电路需要的交流电压u

2

,然后由整流电路变换成方向不变、大小随时间变

化的脉动电压u

3

,再用滤波器滤去其交流分量,就可得到比较平直的直流电压

u

I

。但这样的直流输出电压,还会随交流电网电压的波动或负载的变动而变化。在对直流供电要求较高的场合,还需要使用稳压电路,以保证输出直流电压更加稳定。

图6-2是由分立元件组成的串联型稳压电源的电路图。其整流部分为单相桥式整流、电容滤波电路。稳压部分为串联型稳压电路,它由调整元件(晶体管

T 1);比较放大器T

2

、R

7

;取样电路R

1

、R

2

、R

W

,基准电压D

W

、R

3

和过流保护电路

T 3管及电阻R

4

、R

5

、R

6

等组成。整个稳压电路是一个具有电压串联负反馈的闭环

系统,其稳压过程为:当电网电压波动或负载变动引起输出直流电压发生变化时,

取样电路取出输出电压的一部分送入比较放大器,并与基准电压进行比较,产生的误差信号经T 2放大后送至调整管T 1的基极,使调整管改变其管压降,以补偿输出电压的变化,从而达到稳定输出电压的目的。

图6-2串联型稳压电源实验电路

由于在稳压电路中,调整管与负载串联,因此流过它的电流与负载电流一样大。当输出电流过大或发生短路时,调整管会因电流过大或电压过高而损坏,所以需要对调整管加以保护。在图6-2电路中,晶体管T 3、R 4、R 5、R 6组成减流型保护电路。此电路设计在I 0P =1.2I 0时开始起保护作用,此时输出电流减小,输出电压降低。故障排除后电路应能自动恢复正常工作。在调试时,若保护提前作用,应减少R 6值;若保护作用迟后,则应增大R 6之值。

稳压电源的主要性能指标:

1、输出电压U 0和输出电压调节范围

()22

22

1BE Z w o U U R R R R R U +''+++=

调节R W 可以改变输出电压U 0。 2、最大负载电流I 0m 3、输出电阻R 0

输出电阻R

0定义为:当输入电压U

I

(指稳压电路输入电压)保持不变,由于

负载变化而引起的输出电压变化量与输出电流变化量之比,即

4、稳压系数S(电压调整率)

稳压系数定义为:当负载保持不变,输出电压相对变化量与输入电压相对变化量之比,即

由于工程上常把电网电压波动±10%做为极限条件,因此也有将此时输出电

压的相对变化△U

0/U

做为衡量指标,称为电压调整率。

5、纹波电压

输出纹波电压是指在额定负载条件下,输出电压中所含交流分量的有效值(或峰值)。

三、实验设备与器件

1、可调工频电源

2、双踪示波器

3、交流毫伏表

4、直流电压表

5、直流毫安表

6、滑线变阻器200Ω/1A

7、晶体三极管3DG6×2(9011×2),3DG12×1(9013×1)

晶体二极管IN4007×4稳压管IN4735×1

电阻器、电容器若干

四、实验内容

1、整流滤波电路测试

按图6-3连接实验电路。取可调工频电源电压为16V,作为整流电路输入电压u

2

图6-3整流滤波电路

1)取R

L =240Ω,不加滤波电容,测量直流输出电压U

L

及纹波电压L,并用

示波器观察u

2和u

L

波形,记入表6-1。

2)取R

L

=240Ω,C=470μf,重复内容1)的要求,记入表6-1。

3)取R

L

=120Ω,C=470μf,重复内容1)的要求,记入表6-1。

表6-1 U

2

=16V

电路形式U

L (V)

L

(V)u L波形

R

L

=240Ω

R

L

=240

Ω

C=47Oμf

R

L

=120

Ω

C=470μf

注意

①每次改接电路时,必须切断工频电源。

②在观察输出电压u

L

波形的过程中,“Y轴灵敏度”旋钮位置调好以后,不要再变动,否则将无法比较各波形的脉动情况。

2、串联型稳压电源性能测试

切断工频电源,在图6-3基础上按图6-2连接实验电路。

1) 初测

稳压器输出端负载开路,断开保护电路,接通16V工频电源,测量整流电

路输入电压U

2,滤波电路输出电压U

I

(稳压器输入电压)及输出电压U

。调节电

位器R

W ,观察U

的大小和变化情况,如果U

能跟随R

W

线性变化,这说明稳压电

路各反馈环路工作基本正常。否则,说明稳压电路有故障,因为稳压器是一个深负反馈的闭环系统,只要环路中任一个环节出现故障(某管截止或饱和),稳压

器就会失去自动调节作用。此时可分别检查基准电压U

Z ,输入电压U

I

,输出电压

U 0,以及比较放大器和调整管各电极的电位(主要是U

BE

和U

CE

),分析它们的工作

状态是否都处在线性区,从而找出不能正常工作的原因。排除故障以后就可以进行下一步测试。

2) 测量输出电压可调范围

接入负载R L (滑线变阻器),并调节R L ,使输出电流I 0≈100mA。再调节电位器R W , 测量输出电压可调范围U 0min ~U 0max 。且使R W 动点在中间位置附近时U 0=12V 。若不满足要求,可适当调整R 1、R 2之值。 3) 测量各级静态工作点

调节输出电压U 0=12V ,输出电流I 0=100mA , 测量各级静态工作点,记入表6-2。

表6-2 U 2=16V U 0=12V I 0=100mA

T 1 T 2 T 3 U B (V ) U C (V ) U E (V )

4) 测量稳压系数S

取I 0=100mA ,按表6-3改变整流电路输入电压U 2(模拟电网电压波动),分别测出相应的稳压器输入电压U I 及输出直流电压U 0,记入表6-3。 5) 测量输出电阻R 0

取U 2=16V ,改变滑线变阻器位置,使I 0为空载、50mA 和100mA ,测量相应的U 0值,记入表6-4。

表6-3 I 0=100mA 表6-4 U 2=16V

测 试 值 计算值 I 0(mA ) U 0(V )

R 0(Ω) 空载

R 012= R 023=

50

12

100

测 试 值

计算值 U 2(V ) U I (V ) U O (V ) S 14

S 12=

S 23=

16

12

18

6) 测量输出纹波电压

取U 2=16V ,U 0=12V ,I 0=100mA ,测量输出纹波电压U 0,记录之。

7) 调整过流保护电路

a. 断开工频电源,接上保护回路,再接通工频电源,调节R W 及R L 使U 0=12V ,I 0=100mA ,此时保护电路应不起作用。测出T 3管各极电位值。

b. 逐渐减小R L ,使I 0增加到120mA ,观察U 0是否下降,并测出保护起作用时T 3管各极的电位值。若保护作用过早或迟后,可改变R 6之值进行调整。

c. 用导线瞬时短接一下输出端,测量U 0值,然后去掉导线,检查电路是否能自动恢复正常工作。 五、实验总结

1、 对表6-1 所测结果进行全面分析,总结桥式整流、 电容滤波电路的特点。

2、 根据表6-3和表6-4所测数据,计算稳压电路的稳压系数S 和输出电阻R 0,并进行分析。

3、 分析讨论实验中出现的故障及其排除方法

串联型三极管稳压电路。

用三极管V代替图8.2中的限流电阻R,就得到图8.3所示的串联型三极管稳压电路。 在基极电路中,VDZ与R组成参数稳压器。 图8.3 串联型三极管稳压电路 2. 工作原理 〔实验〕: ①按图8.3连接电路,检查无误后,接通电路。 ②保持输入电压Ui不变,改变RL,观察U0。 ③保持负载RL不变,改变UL,观察U0。 结论:输出电压U0基本保持不变。 该电路稳压过程如下: (1)当输入电压不变,而负载电压变化时,其稳压过程如下: (2)当负载不变,输入电压U增加时,其稳压过程如下: (3)当UI增加时,输出电压U0有升高趋势,由于三极管T基极电位被稳压管DZ固定,故U0的增加将使三极管发射结上正向偏置电压降低,基极电流减小,从而使三极管的集射极间的电阻增大,UCE增加,于是,抵消了U0的增加,使U0基本保持不变.

上述电路虽然对输出电压具有稳压作用,但此电路控制灵敏度不高,稳压性能不理想。 8.3.2 带有放大环节的串联型稳压电路 1.电路组成 在图8.3电路加放大环节.如图8.4所示。可使输出电压更加稳定。 图8.4带放大电路的串联型稳压电路 取样电路:由R1、RP、R2组成,当输出电压变大时,取样电阻将其变化量的一部分送到比较放大管的基极,基极电压能反映出电压的变化,称为取样电压;取样电压不宜太大,也不宜太小,若太大,控制的 灵敏度下降;若太小,带负载能力减弱。 基准电路:由RZ、VDZ组成,给V2发射极提供一个基准电压,RZ为限流电阻,保证VDZ有一个合 适的工作电流。 比较放大管V2:R4既是V2的集电极负载电阻,又是V1的基极偏置电阻,比较放大管的作用是将输出电压的变化量,先放大,然后加到调整管的基极,控制调整管工作,提高控制的灵敏度和输出电压的稳定 性。 调整管V1:它与负载串联,故称此电路为串联型稳压电路,调整管V1受比较放大管控制,集射极间相 当于一个可变电阻,用来抵消输出电压的波动。 2.工作原理 (1)当负载RL不变,输入电压UI减小时,输出电压U0有下降趋势,通过取样电阻的分压使比较放大管的基极电位UB2下降,而比较放大管的发射极电压不变(UE2=UZ),因此UBE2也下降,于是比较放大管导通能力减弱,UC2升高,调整管导通能力增强,调整管V1集射之间的电阻RCE1减小,管压降UCE1下降,使输出电压U0上升,保证了U0基本不变。其过程表示如下: (2)当输入电压不变,负载增大时,引起输出电压有增长趋势,则电路将产生下列调整过程: 当负载RL减小时,稳压过程相反。

串联型直流稳压电源

1串联型直流稳压电源 为克服稳压管稳压电路输出电流较小,输出电压不可调的缺点,引入串联型稳压电路。串联型稳压电路以稳压管稳压电路为基础,利用由晶体管电流放大作用增大负载电流,并在电路中引入深度电压负反馈,使输出电压稳定,通过改变网络参数使输出电压可调。直流稳压电源主要由四部分组成:变压部分、整流部分、滤波部分、稳压部分。除变压器部分外,其它部分都有多种形式。其中串联反馈型直流稳压电源是比较典型的一种。 1.1整体电路框图 串联型直流稳压电源的整体电路框架图如图1.1所示。 1.2 2 相差较大,因而需要通过电源变压器降压。变压器的副边电压通过整流电路从交流电压转换为直流电压。为了减小电压的脉动,需要通过低通滤波电路滤波,使输出电压平滑。再经过稳压电路使输出的直流电压基本不受电网电压波动和负载电阻变化的影响,从而获得很高的稳定性 整体电路原理图 2.1 基准点压电路、采样电路和比较放大电路等四个部分。此外,为使电路安全工作,还在电路中加保护电路,所以串联想稳压电路的方框图如图 在U2的正半周内,二极管D1、D4导通,D2、D3截止;U2的负半周内,D2、D3导通,D1、D4截止。正负半周内部都有电流流过的负载电阻R L,且方向是一致的。电路的输出波形如图2.4所示。 在桥式整流电路中,每个二极管都只在半个周期内导电,所以流过每个二极管的平均电流等于

输出电流的平均值的一半,即I f=I o1/22(U2是变压副边电压有效值) [1]。

2.4滤波电路 整流电路的输出电压虽然是单一方向的,但含较大的交流成分,不能适应多数电子设备的需要。因此,整流后还需要滤波电路将脉动的直流电压变为平滑的直流电压。 滤波电路分为:电容滤波电路和电感滤波电路。本设计采用电容滤波电路。 2.4.1电容滤波的原理 电容滤波电路利用电容的充电放电作用,使输出电压平滑。其电路如图2.5所示。 2.54直流稳压电源电路图 直流稳压电源电路如图2.9所示。 2.6.3 差分比例运算电路 电路中有两个输入,且参数对称,如图2.12所示,则:

串联型稳压电路的工作原理

. 9.5.1 串联型稳压电路的工作原理 一、基本调整管电路 如下图(a)所示为稳压管稳压电路,负载电流最大变化范围等于稳压管的最大稳定电流和最小稳定电流之差,即(I-I)。ZZM扩大负载电流的最简单方法是:利用晶体管的电流放大作用,将稳压管稳定电路的输出电流放大后,再作为负载电流。电路采用射极输出形式,因而引入了电压负反馈,可以稳定输出电压,如图(b)所示,常见画法如图(c)所示。 其工作原理如下: 调整管:晶体管的调节作用使U稳定,晶体管称为调整管。O要使调整管起到调整作用,必须使它工作在放大状态。 串联稳压电源:由于调整管与负载相串联,故称这类电路为串联型稳压电源。 线性稳压电源:由于调整管工作在线性区,故称这类电路为线性稳压

电源。 二、具有放大环节的串联稳压电路★电路构成 基本调整管稳压电路的输出电压不可调,且输出电压因U的变BE化而变,稳定性较差。为了使输出电压可调,加深电压负反馈,可在基本调整管稳压电路的基础上引入放大环节。 电路如图所示,由调整管、基准电压电路、取样电路和比较放大电路组成。 . . ★稳压原理 当电网电压波动(或负载电阻的变化)使输出电压U上升时,O取样电压U增大,由于稳压管的电压U不变,运放的输入电压 ZN U(=U-U=U-U)增大,使A的输出减小(即调整管的基极电位降ZNPNPN 低),而使调整管T的c-e压降低增大,从而调节输出电压U(=U-U) ceOI减小。使输出电压得到稳定。 可见,电路是靠引入深度电压负反馈来稳定输出电压。

★输出电压的可调范围 当电位器R的滑动端在最上端时,输出电压最小为2 当电位器R的滑动端在最下端时,输出电压最大为2 若R=R=R=300Ω,U=6V,则输出电压9V≤U≤18V。O213Z★调整管的选择 在串联型稳压电路中,调整管是核心元件,它的安全工作是电路正常工作的保证。调整管一般为大功率管,因而选用原则与功率放大电路中的功放管相同,主要考虑其极限参数I、U 和P。CMCMBRCEO)(◆I 的选取CM调整管中流过的最大集电极电流为 I=I+I R1CmaxLmax其中I为负载电流最大额定值,I为取样、比较放大和基准R1Lmax环节所消耗的电流,通常R上的电流可忽略,所以1I?I LmaxCM ◆击穿电压的选取 . . 当电网电压波动±10%时,稳压电路输入电压U到最大值U,ImaxI同时输出电压又最低时,调整管承受的管压降最大,所以要求调整管击穿电压为 U?U-U OminImax BRCEO )(◆功率P的选取CM调整管可能承受的最大集电极功耗为 P=U I=(U-U)I Cmax CmaxOminCmaxImax CEmax U是考虑到电网电压波动±10%时,稳压电路输入电

串联型稳压电源的安装与调试

任务二、串联型稳压电源的装配与调试 任务描述: 随着人们生活水平的日益提高,通信技术不断的发展,同学们天天使用手机,手机的充电器就是一个稳压电源。在我们电子生产实习中,经常需要用到稳压电源,为后一级电路提供稳定的直流电压,图2-2-1 为串联型稳压电源的原理图。 图2-2-1 串联型稳压电源原理图 活动1 识读电路元件,实施元件检测 技能目标 1、能够识读和检测常用电子元器件 2、能够识读和检测稳压二极管 3、能够用MF-47型万用表检测各元器件 知识储备 一、稳压二极管 (一)简介 稳压二极管,英文名称Zener diode,又叫齐纳二极管。利用pn结反向击穿状态,其电流可在很大范围内变化而电压基本不变的现象,制成的起稳压作用的二极管。此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很小的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用。稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更高的稳定电压。其图形符号和封装形式如图2-2-2。

图2-2-2 稳压二极管的图形符号及其封装形式(二)原理 稳压二极管的伏安特性曲线的正向特性和普通二极管差不多如图2-2-3,反向特性是在反向电压低于反向击穿电压时,反向电阻很大,反向漏电流极小。但是,当反向电压临近反向电压的临界值时,反向电流骤然增大,称为击穿,在这一临界击穿点上,反向电阻骤然降至很小值。尽管电流在很大的范围内变化,而二极管两端的电压却基本上稳定在击穿电压附近,从而实现了二极管的稳压功能。 图2-2-3 稳压二极管特性曲线 (三)主要参数 1、Uz—稳定电压 指稳压管通过额定电流时两端产生的稳定电压值。该值随工作电流和温度的不同而略有改变。由于制造工艺的差别,同一型号稳压管的稳压值也不完全一致。例如,2CW51型稳压管的Vzmin为3.0V, Vzmax则为3.6V。 2、Iz—额定电流 指稳压管产生稳定电压时通过该管的电流值。低于此值时,稳压管虽并非不能稳压,但稳压效果会变差;高于此值时,只要不超过额定功率损耗,也是允许的,而且稳压性能会好一些,但要多消耗电能。 3、Rz—动态电阻 指稳压管两端电压变化与电流变化的比值。该比值随工作电流的不同而改变,一般是工作电流愈大,动态电阻则愈小。例如,2CW7C稳压管的工作电流为

晶体管串联型稳压电源

串联型稳压电源 1、直流稳压电源框图 直流稳压电源由电源变压器、整流、滤波和稳压电路四部分组成,其原理框图如图所示。电网供给的交流电压u (220V,50Hz) 经电源变压器降压后,得 1 ,然后由整流电路变换成方向不变、大小随时间变到符合电路需要的交流电压u 2 化的脉动电压u ,再用滤波器滤去其交流分量,就可得到比较平直的直流电压 3 。但这样的直流输出电压,还会随交流电网电压的波动或负载的变动而变化。u I 在对直流供电要求较高的场合,还需要使用稳压电路,以保证输出直流电压更加稳定。

2、电路工作原理分析: /其整流部分为单相桥式整流、电容滤波电路。 /分析各个元器件的作用:独立查资料完成。另用纸记载。 /稳压部分为串联型稳压电路,它由调整元件(晶体管T1);比较放大器T2、R7;取样电路R1、R2、RW,基准电压DW、R3和过流保护电路T3管及电阻R4、R5、R6等组成。 /整个稳压电路是一个具有电压串联负反馈的闭环系统,其稳压过程为:当电网电压波动或负载变动引起输出直流电压发生变化时,取样电路取出输出电压的一部分送入比较放大器,并与基准电压进行比较,产生的误差信号经T2放大后送至调整管T1的基极,使调整管改变其管压降,以补偿输出电压的变化,从而达到稳定输出电压的目的。 /由于在稳压电路中,调整管与负载串联,因此流过它的电流与负载电流一样大。当输出电流过大或发生短路时,调整管会因电流过大或电压过高而损坏,所以需要对调整管加以保护。在电路中,晶体管T3、R4、R5、R6组成减流型保护电路。当此电路在开始起保护作用时,输出电流减小,输出电压降低。故障排除后电路应能自动恢复正常工作。在调试时,若保护提前作用,应减少R6值;若保护作用迟后,则应增大R6之值。 3、串联型稳压电源性能测试 1) 初测

串联型稳压电源设计

串联型直流稳压电源 要求:设计并制作用晶体管和集成运算放大器组成的串联型直流稳压电源。 指标:1、输出电压6V、9V两档,同时具备正负极性输出; 2、输出电流:额定电流为150mA,最大电流为500mA; 3、在最大输出电流的时候纹波电压峰值▲V op-p≤5mv; 一.原理电路和设计程序 小功率稳压电源由电源变压器、整流电路、滤波电路和稳压电路四个部分组成,如图所示。220V的交流电经变压器后变成电压值比较小的交流,再经桥式整流电路和滤波电路形成直流,稳压部分采用串联型稳压电路。下图为其基本框架 1.方案比较确定 方案一:用晶体管和集成运放组成的基本串联型直流稳压电源 方案二:用晶体管和集成运放组成的具有保护环节的串联型直流稳压电路

上面两种方案中,方案一较简单,但功能较少,没有保护电路和比较放大电路,因而不够实用,故抛弃方案一。从简单、合理、可靠、经济而且便于购买 的前提出发,选择方案二位最终的设计方案。 2.变压电路 (1)电源变压器T 的作用是将电网220V 的交流电压变换成整流滤波电路所需要的交流电压Ui 。变压器副边与原边的功率比为P2/ P1=η,式中η是变压 器的效率。变压器副边电压有效值决定于后面电路的需要。根据经验,稳压电 路的输出电压一般选取U i =(2~3)Uo 。所以选择15V10W 的变压器。 3.整流和滤波电路 整流电路在工作时,电路中的四只二极管都是作为开关运用,根据整流滤波电路工作原理图可知: 当正半周时,二极管D1、D2导通(D5、D4截止),在负载电阻上得到正弦波的正半周; 当负半周时,二极管D5、D4导通(D1、D2截止),在负载电阻上得到正弦波的负半周 滤波电路一般由电容组成,其作用是把脉动直流电压u 3中的大部分纹波加 以滤除,以得到较平滑的直流电压U I 。U I 与交流电压u 2的有效值U 2的关系为: 2)2.1~1.1(U U I = 在整流电路中,每只二极管所承受的最大反向电压为: 22U U RM = 流过每只二极管的平均电流为: R U I I R D 245.02== 4.稳压电路 交流电压经过整流、滤波后虽然变为交流分量较小的直流电压,但是当电网电压波动或负载变化时,其平均值也随机变化。稳压电路的功能是使输出直流电压基本不受电网的电压波动和负载电阻变化的影响,从而获得更高的稳定性。 由于成本、元件和仿真的条件限制,稳压电路只采取一个具有放大环节的基本串联型稳压电路和一个保护电路 由于简易串联稳压电源输出电压受稳压管稳压值得限制无法调节,造成电路

串联稳压电路的分析

简易串联稳压电源1、原理分析图4-1-1是简易串联稳压电源,T1是调整管,D1是基准电压源,R1是限流电阻,R2是负载。由于T1基极电压被D1固定在UD1,T1发射结电压(UT1)BE在T1正常工作时基本是一个固定值(一般硅管为0.7V,锗管为0.3V),所以输出电压UO=UD1-(UT1)BE。当输出电压远大于T1发射结电压时,可以忽略(UT1)BE,则UO≈UD1。 下面我们分析一下建议串联稳压电源的稳压工作原理:假设由于某种原因引起输出电压UO降低,即T1的发射极电压(UT1)E降低,由于UD1保持不变,从而造成T1发射结电压(UT1)BE上升,引起T1基极电流(IT1)B上升,从而造成T1发射极电流(IT1)E被放大β倍上升,由晶体管的负载特性可知,这时T1导通更加充分管压降(UT1)CE将迅速减小,输入电压UI更多的加到负载上,UO得到快速回升。这个调整过程可以使用下面的变化关系图表示:UO↓→(UT1)E↓→UD1恒定→(UT1)BE↑→(IT1)B↑→(IT1)E↑→(UT1)CE↓→UO↑当输出电压上升时,整个分析过程与上面过程的变化相反,这里我们就不再重复,只是简单的用下面的变化关系图表示:UO↑→(UT1)E↑→UD1恒定→(UT1)BE↓→(IT1)B↓→(IT1)E↓→(UT1)CE↑→UO↓这里我们只分析了输出电压UO降低的稳压工作原理,其实输入电压UI降低等其他情况下的稳压工作原理都与此类似,最终都是反应在输出电压UO降低上,因此工作原理大致相同。从电路的工作原理可以看出,稳压的关键有两点:一是稳压管D1的稳压值UD1 要保持稳定;二是调整管T1要工作在放大区且工作特性要好。其实还可以用反馈的原理来说明简易串联稳压电源的工作原理。由于电路是一个射极输出器,属于电压串联负反馈电路,电路的输出电压为UO=(UT1)E≈(UT1)B,由于(UT1)B保持稳定,所以输出电压UO也保持稳定。简易串联稳压电源由于使用固定的基准电压源D1,所以当需要改变输出电压时只有更换稳压管D1,这样调整输出电压非常不方便。另外由于直接通过输出电压UO的变化来调节T1的管压降(UT1)CE,这样控制作用较小,稳压效果还不够理想。因此这种稳压电源仅仅适合一些比较简单的应用场合。 2、电路实例图4-1-1是简易串联稳压电源的一个实际应用电路,这个电路用在无锡市无线电五厂生产的“咏梅”牌771型8管台式收音机上。其中T8、DZ、R18构成简易稳压电路,B6、D4~D7、C21组成整流滤波电路。由于T8发射结有0.7V压降,为保证输出电压达到6V,应选用稳压值为 6.7V左右的稳压管。

串联型直流稳压电源实验报告

模电课程设计实验报告 学校:XX 专业:XXXX 课题:串联型直流稳压电源 指导老师: XXX 设计学生: XXXXXXX XXX 学号:XXXX XXX XXXX 2011/7/4 惠州学院 HUIZHOU UNIVERSITY

目录 一、课题--------------------------------------------------3 二、课题技术指标--------------------------------------------------3 三、设计要求--------------------------------------------------3 四、元件器件清单--------------------------------------------------3 五、设计方案--------------------------------------------------3 六、直流稳压电源的元器件--------------------------------------------------4 七、设计计算--------------------------------------------------6 八、焊接实图--------------------------------------------------8 九、心得体会--------------------------------------------------9

一、课题:串联型直流稳压电源 二、课题技术指标 1、输出电压:8~15V可调 2、输出电流:I O=1A 3、输入电压:交流220V +/- 10% 4、保护电流:I Om =1.2A 5、稳压系数:S r = 0.05%/V 6、输出电阻:R O < 0.5 Ω 7、交流分量(波纹电压):<10mV 三、设计要求 1、分析电路组成及工作原理; 2、单元电路设计计算; 3、采用分立元件电路; 4、画出完整电路图; 5、调试方法; 6、小结与讨论。 四、元件器件清单 先对输入电压进行降压,然后用单相桥式二极管对其进行整流,整流后利用电容的充放电效应,用电解电容对其进行滤波,将脉动的直流电压变为更加平滑的直流电压,稳压部分的单元电路由稳压管和三极管组成(如图1),以稳压管D1电压作为三极管Q1的基准电压,电路引入电压负反馈,当电网电压波动引起R2两端电压的变化增大(减小)时,晶体管发射极电位将随着升高(降低),而稳压管端的电压基本不变,故基极电位不变,所以由可知将减小(升高)导致基极电流和发射极电流的减小(增大),使得R两端的电压降低(升高),从而达到稳压的效果。负电源部分与正电源相对称,原理一样。 直流稳压电源一般由电源变压器,整流滤波电路及稳压电路组成。变压器吧市电交流电压变所需要的低压交流电。整流器把交流电变为直流电。经滤波后,稳压器再把不稳定的直流电压变为稳定的直流电压输出。本次设计主要采用串联型直流稳压电路,通过220V 、50HZ交流电压经电源变压器降压后,通过桥式整

串联型稳压电路的稳压原理

2015/9/16串联型稳压电路的稳压原理 https://www.wendangku.net/doc/5a16147575.html,/jpk08/mndz/jxsk/zsd07/zsd0710.htm 1/1串联型稳压电路的稳压原理 串联型稳压电路的稳压原理可用图Z0718 所示电路来说明。图中可变电阻R与负 载R L 相串联。若R L不变,当输入电压U i增大(或 减小)时,增大(或减小)R值使输入电压U i 的变 化全部降落在电阻R上,从而保持输出电压U L基本 不变。同理,若U i 不变,当负载电流I L变化时(导 致U L变化),也相应地调整R的值,以保持R上的 压降不变,使输出电压U L也基本不变。 在实际的稳压电路中,则是用晶体三极管来代替可变电阻R,利用负反馈的原理,以输出电压的变化量控制三极管集射极间的电阻值,以维持输出电压的基本不变。 最简单的串联型稳压电路如图Z0719 所示。晶体管T在电路中起电压调整作用,故称调整管,因它与负载R L 是串联联接的,故称串联型稳压电路。图中D Z与R组成硅稳压管稳压电路,给晶体管基极提供一个稳定的电压,叫基准电压U Z 。R又是晶体管的偏流电阻,使晶体管工作于合适的工作状态,由电路可知 U L = U i - U CE U BE = U B - U E = U Z - U L 该电路的稳压原理如下:当输入电压U i 增加或负载电流 I L减小,使输出电压U L 增大时,则三极管的U BE减小,从而使I B、I C都减小,U CE 增加(相当于R CE增大)结果使U L基本不变。这一稳压过程可表示为: U i↑(或I L↓)→U L↑→U BE↓→I B↓→I C↓→U CE↑→U L↓ 同理,当U i减小或I L增大,使U L减小时,通过与上 述相反的调整过程,也可维持U L 基本不变。 从放大电路的角度看,该稳压电路是一射极输出器(R L接于T 的射极),其输出电压U L 是跟随输入电压U B =U Z变化的, 因UB 是一稳定值,故U L 也是稳定的,基本上不受U i 与I L 变 化的影响。 该稳压电路,由于直接用输出电压的微小变化量去控制调整管,其控制作用较小,所以,稳压效果不好。如果在电路中增加一级直流放大电路,把输出电压的微小变化加以放大,再去控制调整管,其稳压性能便可大大提高,这就是带放大环节的串联型稳压电路。

串联型直流稳压电源设计报告

串联型直流稳压电源设计报告 (2009-06-18 14:59:21) 转载 标签: 杂谈 串联型直流稳压电源设计报告 一、计题目 题目:串联型直流稳压电源 二、计任务和要求 要求:设计并制作用晶体管和集成运算放大器组成的串联型直流稳压电源。 指标:1、输出电压6V、9V两档,正负极性输出; 2、输出电流:额定电流为150mA,最大电流为500mA; 3、纹波电压峰值▲Vop-p≤5mv; 三、理电路和程序设计: 1、方案比较 方案一:先对输入电压进行降压,然后用单相桥式二极管对其进行整流,整流后利用电容的充放电效应,用电解电容对其进行滤波,将脉动的直流电压变为更加平滑的直流电压,稳压

部分的单元电路由稳压管和三极管组成(如图1),以稳压管D1电压作为三极管Q1的基准电压,电路引入电压负反馈,当电网电压波动引起R

两端电压的变化增大(减小)时,晶体管发射极电位将随着升高(降低),而稳压管端的2 电压基本不变,故基极电位不变,所以由可知将减小(升高)导致基极电流和发射极电流的 减小(增大),使得R两端的电压降低(升高),从而达到稳压的效果。负电源部分与正 电源相对称,原理一样。 图1 方案一稳压部分电路 方案二:经有中间抽头的变压器输出后,整流部分同方案一一样擦用四个二极管组成的单相 桥式整流电路,整流后的脉动直流接滤波电路,滤波电路由两个电容组成,先用一个较大阻 值的点解电容对其进行低频滤波,再用一个较低阻值的陶瓷电容对其进行高频滤波,从而使 得滤波后的电压更平滑,波动更小。滤波后的电路接接稳压电路,稳压部分的电路如图2 所示,方案二的稳压部分由调整管,比较放大电路,基准电压电路,采样电路组成。当采样 电路的输出端电压升高(降低)时采样电路将这一变化送到A的反相输入端,然后与同相 输入端的电位进行比较放大,运放的输出电压,即调整管的基极电位降低(升高);由于电 路采用射极输出形式,所以输出电压必然降低(升高),从而使输出电压得到稳定。

串联稳压电路工作原理

知识原理要点 直流稳压电源原理框图如图4-1 所示。 四、实验原理 图为串联型直流稳压电源。它除了变压、整流、滤波外,稳压器部分一般有四个环节:调整环节、基准电压、比较放大器和取样电路。当电网电压或负载变动引起输出电压Vo变化时,取样电路将输出电压Vo的一部分馈送回比较放大器与基准电压进行比较,产生的误差电压经放大后去控制调整管的基极电流,自动地改变调整管的集一射极间电压,补偿Vo 的变化,从而维持输出电压基本不变。 当输入电压(VI)改变时,能自动调节(VCE)电压的大小,使输出电压(Vo)保持恒定。例如:VI↑→Vo↑→经取样和放大电路后→IB↓→VCE↑→Vo↓ VI是整流滤波后的电压,T为调整管,A为比较放大电路,VREF为基准电压,它由稳压管Dz与限流电阻R构成。R1与R2组成反馈网络,是用来反映输出电压变化的取样环节。

工作原理图及功能方框图 假设由于某种原因(如电网电压波动或者负载电阻变化等)使输出电压上升,取样电路将这一变化趋势送到比较放大管的基极,与发射极基准电压进行比较,并且将二者的差值进行放大,比较放大管的基电极电位(即调整管的基极电位)降低。由于调整管采用射极输出形式,所以输出电压必然降低,从而保证Uo基本稳定。 稳压电路由于直接用输出电压的微小变化量去控制调整管。其控制作用较小,所以,稳压效果不好。如果在电路中增加一级直流放大电路,把输出电压的微小变化加以放大,再去控制调整管,其稳压性能便可大大提高,这就是带放大环节的串联型稳压电路。 当输入电压Ui增大(或减小)时,串联型稳压电路的稳压原理可用电路来说明。图中可变电阻R与负载RL相串联。若RL不变。增大(或减小)R值使输入电压Ui变化全部降落在电阻R

串联型稳压电源的设计

集成直流稳压电源设计报告 一、计题目 题目:集成直流稳压电源 二、计任务和要求 要求:设计并制作用晶体管和集成运算放大器组成的串联型直流稳压电源。 指标:1、输出电压6V 、9V 两档,正负极性输出; 2、输出电流:额定电流为150mA ,最大电流为500mA ; 3、纹波电压峰值▲Vop-p ≤5mv ; 三、理电路和程序设计: 1、方案比较 方案一:先对输入电压进行降压,然后用单相桥式二极管对其进行整流,整流后利用电容的充放电效应,用电解电容对其进行滤波,将脉动的直流电压变为更加平滑的直流电压,稳压部分的单元电路由稳压管和三极管组成(如图1),以稳压管D1电压作为三极管Q1的基准电压,电路引入电压负反馈,当电网电压波动引起R 2两端电压的变化增大(减小)时,晶体管发射极电位将随着升高(降低),而稳压管端的电压基本不变,故基极电位不变,所以由E B BE U U U -=可知BE U 将减小(升高)导致基极电流和发射极电流的减小(增大),使得R 两端的电压降低(升高),从而达到稳压的效果。负电源部分与正电源相对称,原理一样。

图1 方案一稳压部分电路 方案二:经有中间抽头的变压器输出后,整流部分同方案一一样擦用四个二极管组成的单相桥式整流电路,整流后的脉动直流接滤波电路,滤波电路由两个电容组成,先用一个较大阻值的点解电容对其进行低频滤波,再用一个较低阻值的陶瓷电容对其进行高频滤波,从而使得滤波后的电压更平滑,波动更小。滤波后的电路接接稳压电路,稳压部分的电路如图2所示,方案二的稳压部分由调整管,比较放大电路,基准电压电路,采样电路组成。当采样电路的输出端电压升高(降低)时采样电路将这一变化送到A的反相输入端,然后与同相输入端的电位进行比较放大,运放的输出电压,即调整管的基极电位降低(升高);由于电路采用射极输出形式,所以输出电压必然降低(升高),从而使输出电压得到稳定。 图2 方案二稳压部分单元电路

串联型晶体管稳压电路

串联型晶体管稳压电路 班级:09电控姓名:宋辉学号:31 一、实验目的 1、熟悉Multisim9软件的使用方法。 2、掌握单项桥式整流、电容滤波电路的特性。 3、掌握串联型晶体管稳压电路指标测试方法 二、虚礼实验仪器及器材 双踪示波器、信号发生器、交流毫伏表、数字万用表等仪器、晶体三极管3DG6×2(9011×2)、DG12×1(9013×1)、晶体二极管IN4007×4、稳压管IN4735×1 三、知识原理要点 直流稳压电源原理框图如图4-1 所示。 四、实验原理 图为串联型直流稳压电源。它除了变压、整流、滤波外,稳压器部分一般有四个环节:调整环节、基准电压、比较放大器和取样电路。当电网电压或负载变动引起输出电压V o变化时,取样电路将输出电压Vo的一部分馈送回比较放大器与基准电压进行比较,产生的误差电压经放大后去控制调整管的基极电流,自动地改变调整管的集一射极间电压,补偿V o 的变化,从而维持输出电压基本不变。 五、实验内容与步骤 1.如下所示,输入电路 1、整流滤波电路测试 按图连接实验电路。取可调工频电源电压为16V,作为整流电路输入电压u2。

整流滤波电路 1) 取RL=240Ω,不加滤波电容,测量直流输出电压UL 及纹波电压L,并用示波器观 察u2和uL波形,记入表5-1 。U2=16V 2) 取RL=240Ω,C=470μf ,重复内容1)的要求,记入表5-1。 3) 取RL=120Ω,C=470μf ,重复内容1)的要求,记入表5-1 (V) L 2. 测量输出电压可调范围 更改电路如下所示

接入负载,并调节R6,使输出电流U0=9V。若不满足要求,可适当调整R1、R2之值。 3. 测量各级静态工作点 调节输出电压U0=9V,输出电流I0=100mA ,测量各级静态工作点,记入表5-2。 表5-2 U2=14V U0=9V I0=100mA 4. 测量稳压系数S 取I0=100mA,按表5-3改变整流电路输入电压U2(模拟电网电压波动),分别测出相应的稳压器输入电压UI及输出直流电压U0,记入下表。 六、思考 1、对所测结果进行全面分析,总结桥式整流、电容滤波电路的特点。 2、计算稳压电路的稳压系数S和输出电阻R0,并进行分析。 3、分析讨论实验中出现的故障及其排除方法。

实验四 串联型晶体管稳压电路

实验四 串联型晶体管稳压电路 一、实验目的 1、熟悉Multisim软件的使用方法。 2、掌握单项桥式整流、电容滤波电路的特性。 3、掌握串联型晶体管稳压电路指标测试方法 二、虚拟实验仪器及器材 双踪示波器、信号发生器、交流毫伏表、数字万用表等仪器、晶体三极管 3DG6×2(9011×2)、DG12×1(9013×1)、晶体二极管 IN4007×4、稳压管 IN4735×1 三、知识原理要点 直流稳压电源原理框图如图4-1 所示。 四、实验原理

图为串联型直流稳压电源。它除了变压、整流、滤波外,稳压器部分一般有四个环节:调整环节、基准电压、比较放大器和取样电路。当电网电压或负载变动引起输出电压Vo 变化时,取样电路将输出电压Vo 的一部分馈送回比较放大器与基准电压进行比较,产生的误差电压经放大后去控制调整管的基极电流,自动地改变调整管的集一射极间电压,补偿Vo 的变化,从而维持输出电压基本不变。 五、实验内容与步骤 1、 整流滤波电路测试 按图连接实验电路。取可调工频电源电压为16V~, 作为整流电路输入电压u2。 整流滤波电路 1) 取RL=240Ω ,不加滤波电容,测量直流输出电压UL 及纹波电压 L,并用示波器观察u 2和u L 波形,记入表5-1 。U2=16V~ 2) 取RL=240Ω ,C=470μf ,重复内容1)的要求,记入表4-1。 3) 取RL=120Ω ,C=470μf ,重复内容1)的要求,记入表4-1 电 路 形 式 U L (V) L (V)纹波 u L 波形 U2=16V~ R L =240Ω 12.95V 6.82V~ U2=16V~ R L =240Ω C=47Oμf 20.24V 467mV~ U2=16V~ R L =120Ω C=470μf 19.619842mV~ 2. 测量输出电压可调范围 更改电路如下所示

串联型直流稳压电源

一、设计目的. 二、设计任务和要求. 三、电路原理分析与方案设计 四、电压仿真过程及结果 五、电压调试过程与结果 六、心得体会. 七、参考文献资料. 八、实物图

稳压管稳压电路输出电流较小,输出电压不可调,不能满足很多场合下的应用。串联型稳压电路以稳压管稳压电路为基础,利用晶体管的电流放大作用,增大负载电流;在电路中引用深度电压负反馈使输出电压稳定;并且,通过改变反馈网络参数使输出电压可调。 二、设计任务与要求 要求:设计并制作用晶体管和集成运算放大器组成的串联型直流稳压电源。 指标:1、输出电压6V、9V两档,同时具备正负极性输出; 2、输出电流:额定电流为150mA,最大电流为500mA; 3、在最大输出电流的时候纹波电压峰值▲Vop-p≤5mv; 任务:1、了解带有放大环节串联型稳压电路的电路图; 2、识图放大环节串联型稳压电路的电路图; 3、仿真电路并选取元件; 4、安装调试带有放大环节串联型稳压电路; 5、用仪器表对电路调试和测量相关; 6、撰写设计报告、调试; 三,电路原理分析与方案设计 采用变压器、二极管、集成运放,电阻、稳压管、三极管等元件器件。220V 的交流电经变压器变压后变成电压值较小的交流,再经桥式整流电路和滤波电路形成直流,稳压部分采用串联型稳压电路。比例运算电路的输入电压为稳定电压,且比例系数可调,所以其输出电压也以调节;同时,为了扩大输出大电流,集成运放输出端加晶体管,并保持射极输出形式,就构成了具有放大环节的串联型稳压电路。 1、方案比较 方案一:用晶体管和集成运放组成的基本串联型直流稳压电源

方案二:用晶体管和集成运放组成的具有保护环节的串联型直流稳压电源 方案三:用晶体管和集成运放组成的实用串联型直流稳压电压 可行性分析: 上面三种方案中,方案一最简单,但功能也最少,没有保护电路和比较放大电路,因而不够实用,故抛弃方案一。方案三功能最强大,但是由于实验室条件和经济成本的限制,

串联型晶体管稳压电源

─串联型晶体管稳压电源─ 一、实验目的 1、研究单相桥式整流、电容滤波电路的特性。 2、掌握串联型晶体管稳压电源主要技术指标的测试方法。 二、实验原理 电子设备一般都需要直流电源供电。这些直流电除了少数直接利用干电池和直流发电机外,大多数是采用把交流电(市电)转变为直流电的直流稳压电源。 图18-1 直流稳压电源框图 直流稳压电源由电源变压器、整流、滤波和稳压电路四部分组成,其原理框图如图18-1 所示。电网供给的交流电压u 1 (220V,50Hz) 经电源变压器降压后, 得到符合电路需要的交流电压u 2 ,然后由整流电路变换成方向不变、大小随时间 变化的脉动电压u 3 ,再用滤波器滤去其交流分量,就可得到比较平直的直流电压 u I 。但这样的直流输出电压,还会随交流电网电压的波动或负载的变动而变化。在对直流供电要求较高的场合,还需要使用稳压电路,以保证输出直流电压更加稳定。 图18-2 是由分立元件组成的串联型稳压电源的电路图。其整流部分为单相桥式整流、电容滤波电路。稳压部分为串联型稳压电路,它由调整元件(晶体 管T 1);比较放大器T 2 、R 7 ;取样电路R 1 、R 2 、R W ,基准电压D W 、R 3 和过流保护电 路T 3管及电阻R 4 、R 5 、R 6 等组成。整个稳压电路是一个具有电压串联负反馈的闭 环系统,其稳压过程为:当电网电压波动或负载变动引起输出直流电压发生变化时,取样电路取出输出电压的一部分送入比较放大器,并与基准电压进行比较, 产生的误差信号经T 2放大后送至调整管T 1 的基极,使调整管改变其管压降,以 补偿输出电压的变化,从而达到稳定输出电压的目的。

典型的串联调整稳压电路的分析

典型的串联调整稳压电路的分析 图8-10所示是典型的串联调整稳压电路。电路中,VT1是调整管,它构成电压调整电路;VD1是稳压二极管,MAX3815CCM+TD它构成基准电压电路;VT2是比较放大管,它构成电压比较放大器电路;RP1和R3、R4构成取样电路。 1.直流电路分析 从整流和滤波电路输出的直流电压+V加到调整管VT1集电极,同时经电阻Rl加到VT1基极和VT2集电极。 VT1发射极输出的直流电压通过R2加到VD1上,使VD1处于导通状态,R2是稳压二极管VD1的限流保护电阻。 R3、RP1、R4构成分压电路,RP1动片输出电压为VT2基极提供正向偏置电压的同时,稳压电路直流输出电压“的大小波动变化量也通过R3、RP1、R4取样电路,由RP1动片加到VT2基极。 2.稳压原理分析 由上述电路分析可知,当稳压电路直流输出电压增大时,通过电路的一系列调整,使稳压电路的直流输出电压Uo下降,达到稳定直流输出电压的目的。 同理,由于某种因素使稳压电路的直流输出电压醮下降时,VT2基极电压下降,VT2集电 极电压在升高,VT1基极电压升高,使VT1发射极电压降升高,使稳压电路的直流输出电压瓯 升高,从而达到稳定输出电压Uo的目的。 3.直流榆出电压调整电路分析 串联调整稳压电路输出的直流工作电压Uo的大小是可以进行连续微调的,即可以在一定范围内对直流输出电压的大小进行调整。 关于串联调整稳压电路直流输出电压调整电路的工作原理主要说明如下。

电路中,电容Cl、C2和C3是滤波电容,其中电容C2与调整管VT1构成了电子滤波器电路。4.电路分析小结 关于串联调整稳压电路分析小结如下。

串联型晶体管稳压电路

电子技能拓展与创新(二) ——晶体管稳压电路班级:200906221 学号:28 姓名:邢博 院系:机械电子系 时间:2011年3月至2011年5月 北京经济管理职业学院

目录 一、实验目的、材料、电路原理 (2) 二、电路仿真 (3) 三、知识原理要点 (4) 四、实验原理 (5) 五、注意事项与误差分析 (6) 六、总结 (7) 八、成品 (8)

晶体管稳压电路 班级:200906221 姓名:邢博学号:28 一、实验目的 1、熟悉Multisim9软件的使用方法。 2、掌握电子元器件好坏测验。 3、掌握串联型晶体管稳压电路指标测试方法 4、排除焊接及测试中出现的故障。 二、虚礼实验仪器及器材 双踪示波器、信号发生器、交流毫伏表、数字万用表等仪器、晶体三极管3DG6×2(9011×2)、DG12×1(9013×1)、晶体二极管IN4007×4、稳压管IN4735×1、电阻×4、电位器×1、灯×1 三、设计步骤 1.电路图设计 (1)确定目标:设计整个系统是由那些模块组成,各个模块之间的信号传输,并画出电路图。

整流滤波电路测试

(2)系统分析:根据系统功能,选择各模块所用电路形式。(3)参数选择:根据系统指标的要求,确定各模块电路中元件的参数。 (4)总电路图:连接各模块电路。 2.电路安装、调试 (1)为提高学生的动手能力,学生自行设计印刷电路板,并焊接。 (2)在每个模块电路的输入端加一信号,测试输出端信号,以验证每个模块能否达到所规定的指标。 (3)重点测试稳压电路的稳压系数。 (4)将各模块电路连起来,整机调试,并测量该系统的各项指标。 四、知识原理要点 直流稳压电源原理框图如图所示。 五、实验原理

串联型直流稳压电源设计

电子技术课程设计 电气与电子工程系电气工程及其自动化专业 题目:串联型直流稳压电源 学生姓名:班号:学号: 指导教师; 时间:年月日~ 年月日

指导教师评语: 1 成绩:

2 串联型直流稳压电源设计报告 一、设计题目 题目:串联型直流稳压电源 二、设计任务:设计并制作用晶体管、集成运算放大器电阻、电阻器、电 容组成的串联型直流稳压电源。 指标:1、输入电压: 2、输出电压:3- 6V 、6-9V 、9-12V 三档直流电压; 3、输出电流:最大电流为1A ; 4、保护电路:过流保护、短路保护。 三、理电路和程序设计: 一 电路原理方框图: 二原理说明: (1) 单相桥式整流电路可以将单相交流电变换为直流电; (2) 整流后的电压脉动较大,需要滤波后变为交流分量较小的直 流电压用来供电; (3) 滤波后的输出电压容易随电网电压和负载的变化波动不利于 设备的稳定运行; (4) 将输出电压经过稳压电路后输出电压不会随电网和负载的变 化而变化从而提高设备的稳定性和可靠性,保障设备的正常

3 使用; (5) 关于输出电压在不同档位之间的变换,可以将稳压电源的电 压设置为标准电压再对其进行变换,电压在档位间的调节可以通过调节电位器来进行调节,从而实现对输出电压的调节。 四:方案选择 一:变压、滤波电路 方案一和方案二的变压电路和滤波电路相同,二者的差别主要体现在稳压电路部分。 图1 变压和滤波电路 二:稳压电路 方案一:此方案以稳压管D1的电压作为三极管Q1的基准电压,电 路引入电压负反馈,当电网电压波动引起R 2两端电压的变化增大(减小)时,晶体管发射极电位将随着升高(降低),而稳压管端的电压基本不变,故基极电位不变,所以由E B BE U U U -=可 知BE U 将减小(升高)导致基极电流和发射极电流的减小(增大),使得R 两端的电压降低(升高),从而达到稳压的效果。负电源部分与正电源相对称,原理一样。

串联型直流稳压电源设计

串联型直流稳压电源设计

串联型直流稳压电源设计报告 一、设计任务与要求 要求:设计并制作用晶体管和集成运算放大器组成的串联型直流稳压电源。 指标:1、输出电压6V、9V两档,同时具备正负极性输出; 2、输出电流:额定电流为150mA,最大电流为500mA; 3、在最大输出电流的时候纹波电压峰值▲Vop-p≤5mv; 任务:1、了解带有的组成和工作原理: 2、识别的电路图: 3、仿真电路并选取元器件: 4、安装调试带有放大环节串联型稳压电路: 5、用仪器仪表对电路调试和测量相关参数: 6、撰写设计报告、调试。 二、电路原理分析与方案设计 采用变压器、二极管、集成运放、电阻、稳压管、三极管等元器件。220V 的交流电经变压器变压后变成电压值较小的电流,再经桥式整流电路和滤波电路形成直流稳压部分采用串联型稳压电路。比例运算电路的输入电压为稳定电压,且比例系数可调,所以输出电压也可以调节:同时,为了扩大输出电流,集成运放输出端加晶体管,并保持射级输出形式就构成了具有放大环节的串联型稳压电路。 1、方案比较 方案一: 先对输入电压进行降压,然后用单相桥式二极管对其进行整流,整流后利用电容的充放电效应,用电解电容对其进行滤波,将脉动的直流电压变为更加平滑的直流电压,稳压部分的单元电路由稳压管和三极管组成(如图1),以稳压管D1电压作为三极管Q1的基准电压,电路引入电压负反馈,当电网电压波动引起R 两端电压的变化增大(减小)时,晶体管发射极电位将随着升高(降2

低),而稳压管端的电压基本不变,故基极电位不变,所以由E B BE U U U -=可知BE U 将减小(升高)导致基极电流和发射极电流的减小(增大),使得R 两端的电压降低(升高),从而达到稳压的效果。负电源部分与正电源相对称,原理一样。 图1 方案一稳压部分电路 方案二: 经有中间抽头的变压器输出后,整流部分同方案一一样擦用四个二极管组成的单相桥式整流电路,整流后的脉动直流接滤波电路,滤波电路由两个电容组成,先用一个较大阻值的点解电容对其进行低频滤波,再用一个较低阻值的陶瓷电容对其进行高频滤波,从而使得滤波后的电压更平滑,波动更小。滤波后的电路接接稳压电路,稳压部分的电路如图2所示,方案二的稳压部分由调整管,比较放大电路,基准电压电路,采样电路组成。当采样电路的输出端电压升高(降低)时采样电路将这一变化送到A 的反相输入端,然后与同相输入端的电位进行比较放大,运放的输出电压,即调整管的基极电位降低(升高);由于电路采用射极输出形式,所以输出电压必然降低(升高),从而使输出电压得到稳定。

相关文档
相关文档 最新文档