文档库 最新最全的文档下载
当前位置:文档库 › 生物信息学 答案

生物信息学 答案

生物信息学 答案
生物信息学 答案

(一)、名词解释

ACeDB:是线虫基因组数据库,基于面向对象的程序设计技术,既是一个数据库,又是一个灵活和通用的数据库管理系统,可用于包括从细菌、真菌、寄生虫、植物、昆虫、动物到人类的基因组数据库的数据分析。Sanger中心已将其用于线虫和人类基因组数据库的浏览和检索,库内资源包括限制性图谱、基因结构信息、质粒图谱、序列数据、参考文献等内容。

Alignment:序列比对(alignment):为确定两个或多个序列之间的相似性以至于同源性,而将它们按照一定的规律排列。将两个或多个序列排列在一起,标明其相似之处。序列中可以插入间隔(通常用短横线“-”表示)。对应的相同或相似的符号(在核酸中是A, T(或U), C, G,在蛋白质中是氨基酸残基的单字母表示)排列在同一列上。这一方法常用于研究由共同祖先进化而来的序列,特别是如蛋白质序列或DNA 序列等生物序列。在比对中,错配与突变相应,而空位与插入或缺失对应。序列比对还可用于语言进化或文本间相似性之类的研究。术语“序列比对”也指构建上述比对或在潜在的不相关序列的数据库中寻找significant alignments。

BLAST:BLAST (Basic Local Alignment Search Tool)是一套在蛋白质数据库或DNA数据库中进行相似性比较的分析工具。BLAST程序能迅速与公开数据库进行相似性序列比较。BLAST结果中的得分是对一种对相似性的统计说明,BLAST 采用一种局部的算法获得两个序列中具有相似性的序列。

ClustalW:是一种渐进的多序列比对方法,先将多个序列两两比对构建距离矩阵,反应序列之间两两关系;然后根据距离矩阵计算产生系统进化指导树,对关系密切的序列进行加权;然后从最紧密的两条序列开始,逐步引入临近的序列并不断重新构建比对,直到所有序列都被加入为止。

dbEST:dbSTS,序列标记位点(Sequence Tagged Sites)数据库。是一个NCBI资源数据包含序列短序列或基因组序列地标标示网站数据库提供了一个路线的dbSTS要求提交STS序列与基因资讯资料库)。它是专门为提交大批STS而产生的

DSSP:DSSP[1]是用于对蛋白质结构中的氨基酸残基进行二级结构构像分类的标准化算法,由Wolfgang Kabsch和Chris Sander设计。DSSP数据库是由此算法生成的一个存放蛋白质二级结构分类数据的数据库,其中包括了PDB数据库(Protein Data Bank)中的所有条目。算法名称Define Secondary Structure of Proteins

由作者在其原始论文中,作为实现该算法的Pascal语言程序名称所提及。DSSP数据库英文全称则为Definition of Secondary Structure of Proteins。

EBI:全称是European Bioinformatics Institut,(欧洲生物信息学中心)。是一个非盈利性的学术机构,是欧洲分子生物学实验室(EMBL,全称是European Molecular Biology Laboratory)的一部分。它的主要任务是建立、维护和提供生物学数据库以及信息学服务,从而支持生物学数据的存放和进一步挖掘。EMBL全称是欧洲分子生物学实验室,位于德国海德尔堡,是世界上著名的生命科学研究机构。

EMBL:(The European Molecular Biology Laboratory)欧洲分子生物学实验室,于1974年由欧洲14个国家加上亚洲的以色列共同发起建立,包括一个位于德国Heidelberg的核心实验室,及三个位于德国Hamburg,

法国Grenoble及英国Hinxton的研究分部。由于具有开放和创新的良好学术氛围,EMBL已发展成欧洲最重要和最核心的分子生物学基础研究和教育培训机构。

EMBOSS:是"The European Molecular Biology Open Software Suite"的缩写,是一个开放源代码的序列分析软件包,它是一组为分子生物学家所设计的公开且免费软件。该软件能够自动识别处理以不同格式存储的数据,甚至可以通过互联网提取数据,此外同软件包一同提供的还包括大量的程序库,软件包整合了100多个的序列分析程序,可以满足一般实验室的各种各样的序列分析要求。并且,因为该软件包同时提供了一个扩展库,它也是允许其他科学家依据自由软件精神编制、发布软件的一个平台。EMBOSS 同时将现在可以得到的一系列序列分析工具整合成一个无缝的整体。使用者可以通过三种不同的方式使用EMBOSS 软件:第一种是通过命令行的方式;第二种是通过X-Windows 的方式使用EMBOSS 软件的图形界面;第三种是内联网的方式。使用者可以免费获得以及这些软件以及相关界面程序

EMBnet:欧洲分子生物学网。建立于1988年,作为一个国际组织,它在荷兰注册。从1996年开始,EMBnet 把成员国范围扩大到欧洲以外,中国在同年加入。EMBnet的中国节点设在北京大学生物信息中心PKUCBI 目前,EMBnet有29个成员国(每国一个节点)和10个特别节点。

ENSEMBL:Ensembl 是一项生物信息学研究计划,旨在开发一种能够对真核生物基因组进行自动诠释(automatic annotation)并加以维护的软件。该计划由英国Sanger研究所Wellcome基金会及欧洲分子生物学实验室所属分部欧洲生物信息学研究所共同协作运营。

ENSEMBL:Ensembl 是一项生物信息学研究计划,旨在开发一种能够对真核生物基因组进行自动诠释(automatic annotation)并加以维护的软件。该计划由英国Sanger研究所Wellcome基金会及欧洲分子生物学实验室所属分部欧洲生物信息学研究所共同协作运营。该计划开放所有源信息,所有由该计划所产生的数据及软件都可以免费及自由地从网络上获取并使用。该计划所开发并使用的大部分软件是用Perl语言编写的,并基于BiopPerl的基础框架。其他基因组计划亦可轻易使用Perl语言的应用程序接口(Application programming interface,API)。

Entrez:美国国家生物技术信息中心所提供的在线资源检索器。该资源将GenBank序列与其原始文献出处链接在一起。Entrez 是由NCBI主持的一个数据库检索系统,它包括核酸,蛋白以及Medline文摘数据库,在这三个数据库中建立了非常完善的联系。因此,可以从一个DNA序列查询到蛋白产物以及相关文献,而且,每个条目均有一个类邻(neighboring)信息,给出与查询条目接近的信息。

ExPASy:是Expert Protein Analysis System的缩写,ExPASy由瑞士生物信息学研究所维护(Swiss Institute of Bioinformatics ),提供从序列(Swiss-Prot)到结构(Swiss-Model),以及2-D Page等蛋白质操作相关的全套服务。我们强烈的推荐ExPASy作为您分析序列的第一站。

FastA:FASTA程序是第一个广泛使用的数据库相似性搜索程序。程序引用取代矩阵实行局部比对以获得最佳搜索。但众所周知,使用这种策略会非常耗费工作时,为了提高速度,在实施耗时的最佳搜索之前,程序使用已知的字串检索出可能的匹配。在速度和敏感度之间权衡选择依赖于ktup参数。它决定了字串的大小。增大ktup参数就会减少字串命中的数目,也就会减少所需要的最佳搜索的数目和搜索的速度。

GCG:GCG软件是一套蛋白质、核酸序列分析软件。它提供了约130个程序。范围涉及:序列motif、关键词、同源性数据库搜索,序列比较,进化分析,序列两级结构分析,限制性酶切图谱,引物设计,序列模式识别,翻译,片段拼接等。

GDB:基因组数据库(GDB)为人类基因组计划(HGP)保存和处理基因组图谱数据。GDB的目标是构建关于人类基因组的百科全书,除了构建基因组图谱之外,还开发了描述序列水平的基因组内容的方法,包括序列变异和其它对功能和表型的描述。目前GDB中有:人类基因组区域(包括基因、克隆、amplimers PCR 标记、断点breakpoints、细胞遗传标记cytogenetic markers、易碎位点fragile sites、EST序列、综合区域syndromic regions、contigs和重复序列);人类基因组图谱(包括细胞遗传图谱、连接图谱、放射性杂交图谱、content contig 图谱和综合图谱等);人类基因组内的变异(包括突变和多态性,加上等位基因频率数据)。GDB数据库以对象模型来保存数据,提供基于Web的数据对象检索服务,用户可以搜索各种类型的对象,并以图形方式观看基因组图谱。

GenBank:GenBank是美国国家生物技术信息中心(National Center for Biotechnology Information ,NCBI)建立的DNA序列数据库,从公共资源中获取序列数据,主要是科研人员直接提供或来源于大规模基因组测序计划( Benson等, 1998)。为保证数据尽可能的完全,GenBank与EMBL、DDBJ建立了相互交换数据的合作关系。

GSDB:GSDB是基因组序列数据库(Genome Sequence Data Base),由美国新墨西哥州Santa Fe的国家基因组资源中心创建。GSDB收集、管理并且发布完整的DNA序列及其相关信息,以满足基因组测序中心需要。该数据库采用服务器-客户机关系数据库模式,大规模测序机构可以通过计算机网络向服务器提交数据,并在发送之前对数据进行检查,以确保数据的质量。GSDB数据库中条目的格式与GenBank中的基本一致,主要区别是GSDB数据库中增加了GSDBID识别符。GSDB数据库可以通过万维网查询,也可以使用服务器-客户机关系数据库方式查询。无论用哪种方法,熟悉数据库结构化查询语言SQL,对更好地使用GSDB 数据库会有所帮助。

InterPro:InterPro包含关于蛋白质家族、域和作用位点的整合的数据资源,它最初是作为一种对PROSITE、PRINTS、Pfam和ProDom数据库工程的一种补充手段而建立的。InterPro已经成为Oracle中的一个相关数据库,用户可以直接利用JA VA服务器进入数据库。InterPro数据库利用XML形式文件分发的。InterPro数据库提供了一个位于常用的署名数据库之上的整合层,能提供友好的人机界面和基于文本的搜索和序列扫描。Interpro包含很多混合了来自不同数据库的诊断签名的人工助理文件,形成了对一个给定的蛋白质家族、域和功能位点的独一无二的描述。

Motif:它是指蛋白质分子中的一些二级结构单元,往往有规则地聚集在一起形成全由α-螺旋、全由β-片层或α-螺旋与β-片层混合、均有的超二级结构基本形式,具体说,形成相对稳定的αα、βββ、βαβ、β2α和αTα等超二级结构,又称模体(motif)或模序。

NCBI:(美国国立生物技术信息中心)理解自然无声但精妙的关于生命细胞的语言是现代分子生物学的要求。通过只有四个字母来代表DNA化学亚基的字母表,出现了生命过程的语法,其最复杂形式就是人类。阐明和使用这些字母来组成新的“单词和短语”是分子生物学领域的中心焦点。数目巨大的分子数据和这些数据的隐秘而精细的模式使得计算机化的数据库和分析方法成为绝对的必须。挑战在于发现新的手段去处理这些数据的容量和复杂性,并且为研究人员提供更好的便利来获得分析和计算的工具,以便推动对我们遗传之物和其在健康和疾病中角色的理解。

Phylip:PHYLIP是一个包含了大约30个程序的软件包,这些程序基本上囊括了系统发育的所有方面。

ProDom:蛋白质结构域数据库。ProDom是建立在SWISS-PROT数据库基础上的蛋白质结构域数据库(protein domain database ,ProDom)。经过DOMAINER 运算和自动编辑,由SWISS-PROT蛋白质序列库中探查到的同源结构域组成。

Prosite:PROSITE数据库收集了生物学有显著意义的蛋白质位点和序列模式,并能根据这些位点和模式快速和可靠地鉴别一个未知功能的蛋白质序列应该属于哪一个蛋白质家族。有的情况下,某个蛋白质与已知功能蛋白质的整体序列相似性很低,但由于功能的需要保留了与功能密切相关的序列模式,这样就可能通过PROSITE的搜索找到隐含的功能motif,因此是序列分析的有效工具。PROSITE中涉及的序列模式包括酶的催化位点、配体结合位点、与金属离子结合的残基、二硫键的半胱氨酸、与小分子或其它蛋白质结合的区域等;除了序列模式之外,PROSITE还包括由多序列比对构建的profile,能更敏感地发现序列与profile的相似性。PROSITE的主页上提供各种相关检索服务。

PRINTS:这是一个蛋白质家族的指纹和模体数据库,是基于蛋白质指纹技术的数据库。蛋白质序列指纹图谱基于多序列比对的结果,它由比对结果得到一系列相当保守的序列模体构建而成,用来表示蛋白质家族特征。多序列比对结果经常会给出保守的特征序列片段。这些特征序列片段对维持蛋白质的结构和功能是相当重要的。

Smith-Waterman:在寻找序列最优相似比较的算法中有两种算法使用最为广泛:Blast算法和Smith Waterman算法,Blast算法的运行速度要比Smith Waterman算法快,但是Smith Waterman算法要比BLAST 算法更为精确。Smith Waterman算法先用迭代方法计算出两个序列的所有可能相似性比较的分值,然后通过动态规划的方法回溯寻找最优相似性比较。

SRS:SRS(Sequence Retrieval System,)是EMBL研制的一个基于WEB的查询系统,也是目前国际上最有影响的生物分子数据库查询系统之一。SRS采用全菜单驱动方式,用户可以同SRS 迅速地访问生物分子数据库和文献数据库,包括EMBL、EMBL_NEW、SWISS-PROT、PIR等一级数据库,还包括许多二级数据库,如蛋白质家族和结构域数据库PROSITE、限制酶数据库ReBase、PDB序列子集数据库NRL_3D、真核基因启动子数据库EPD、E.coli 数据库ECD、酶名称和反应数据库ENZYME、生物计算文献数据库SEQANALREF等,还有与功能、疾病相关的数据库,总共有80个数据库。SRS在欧洲、亚洲、太平洋地区、南美洲等地方都有镜像站点,在中国的镜像站点建立在北京大学生物信息中心。除了查询和获取数据功能之外,SRS还带有许多嵌入式工具,如分子疏水性显示、相似序列搜索、多重序列比对等工具。

Staden:Staden软件包是UNIX系统下的非常有名的综合序列装配、编辑、分析软件包

SwissPort:SwissProt数据库中的所有序列条目都经过有经验的分子生物学家和蛋白质化学家通过计算机工具并查阅有关文献资料仔细核实。SIB和EBI共有70多人的研究队伍,专门从事蛋白质序列数据的搜集、整理、分析、注释、发布,力图提供高质量的蛋白质序列和注释信息。SwissProt数据库的每个条目都有详细的注释,包括结构域、功能位点、跨膜区域、二硫键位置、翻译后修饰、突变体等。该数据库中还包括了与核酸序列数据库EMBL/GenBank/DDBJ、蛋白质结构数据库PDB以及Prosite、PRINTTS等十多个二次数据库的交叉引用代码。

UniGene :人类基因组计划的首要任务是对人类基因组进行全序列测定,整个基因组估计有30亿个碱基对,其中大约3%可以编码蛋白质,其余部分的生物学功能还不清楚。转录图谱可以把基因组中能够编码蛋白质的部分集中起来,因此是一种重要的数据资源。UniGene试图通过计算机程序对GeneBank中的序列

数据进行适当处理,剔除冗余部分,将同一基因的序列,包括EST序列片段搜集到一起,以便研究基因的转录图谱。UniGene除了包括人的基因外,也包括小鼠、大鼠等其它模式生物的基因,而HGI数据库只包括人的基因。该数据库的标题行(TITLE)给出基因的名称和简单说明,表达部位行(EXPRESS)指出该基因在什么组织中表达以及在基因图谱中的位置等。此外,列出该基因在核酸序列数据库GenBank或EMBL 和蛋白质序列数据库SWISS-PROT中的编号的超文本链接。UniGene中部分条目包括已知基因序列,而有些条目则仅有新测得的EST序列片段。这就意味着,这些EST序列所对应的基因尚未搞清,可以用来发现新基因。在描绘基因图谱及大规模基因表达分析等研究中,UniGene也可以帮助实验设计者选择试剂。UniGene可以通过NCBI或SRS系统访问。

1.生物信息学的主要研究开发内容

基因组包含了构成和维持一个生活有机体所必备的基本信息,由细胞内进行的多种分子生物学反应将这些信息转化为真正的生命现象。基因组的一部分编码蛋白质和RNA,其它部分调控这些大分子的表达。表达的蛋白质及RNA折叠成高度专一的三维结构,在体内的特定位置上实现其功能。这些过程的大量细节都是在分子生物学研究的实验室里揭示出来的,所形成的大量数据,存储于数据库中。生物信息学试图从这些数据中提取新的生物学信息和知识,是一门深深植根于全面深入的实验事实和数据的理论生物学。从目前生物信息学的研究情况来看,国际上公认的生物信息学的研究内容,大致包括以下几个方面:生物信息的收集、存储、管理与提供。包括建立国际基本生物信息库和生物信息传输的国际联网系统;建立生物信息数据质量的评估与检测系统;生物信息的在线服务;生物信息可视化和专家系统。

基因组序列信息的提取和分析。包括基因的发现与鉴定,如利用国际EST 数据库(dbEST) 和各自实验室测定的相应数据,经过大规模并行计算发现新基因和新SNPs以及各种功能位点;基因组中非编码区的信息结构分析,提出理论模型,阐明该区域的重要生物学功能;进行模式生物完整基因组的信息结构分析和比较研究;利用生物信息研究遗传密码起源、基因组结构的演化、基因组空间结构与DNA折叠的关系以及基因组信息与生物进化关系等生物学的重大问题。

功能基因组相关信息分析。包括与大规模基因表达谱分析相关的算法、软件研究,基因表达调控网络的研究;与基因组信息相关的核酸、蛋白质空间结构的预测和模拟,以及蛋白质功能预测的研究。

生物大分子结构模拟和药物设计。包括RNA(核糖核酸)的结构模拟和反义RNA的分子设计;蛋白质空间结构模拟和分子设计;具有不同功能域的复合蛋白质以及连接肽的设计;生物活性分子的电子结构计算和设计;纳米生物材料的模拟与设计;基于酶和功能蛋白质结构、细胞表面受体结构的药物设计;基于DNA 结构的药物设计等。

生物信息分析的技术与方法研究。包括发展有效的能支持大尺度作图与测序需要的软件、数据库以及若干数据库工具,诸如电子网络等远程通讯工具;改进现有的理论分析方法,如统计方法、模式识别方法、隐马尔科夫过程方法、分维方法、神经网络方法、复杂性分析方法、密码学方法、多序列比较方法等;创建一切适用于基因组信息分析的新方法、新技术。包括引入复杂系统分析技术、信息系统分析技术等;建立严格的多序列比较方法;发展与应用密码学方法以及其他算法和分析技术,用于解释基因组的信息,探索DNA序列及其空间结构信息的新表征;发展研究基因组完整信息结构和信息网络的研究方法等;发展生物大分子空间结构模拟、电子结构模拟和药物设计的新方法与新技术。

应用与发展研究。汇集与疾病相关的人类基因信息,发展患者样品序列信息检测技术和基于序列信息选择表达载体、引物的技术,建立与动植物良种繁育相关的数据库以及与大分子设计和药物设计相关的数据库。

总的来说近期生物信息学将在以下几方面迅速发展:大规模基因组测序中的信息分析;新基因和新SNPs (单核苷酸多态性)的发现与鉴定;完整的比较基因组研究;大规模基因功能表达谱的分析;生物大分子的结构模拟与药物设计。而其长远任务是非编码区信息结构分析和遗传密码起源与生物进化的研究。读懂人类基因组,发现人类遗传语言的根本规律,从而阐明若干生物学中的重大自然哲学问题,像生命的起源与进化等。

2. 人类基因组计划的主要任务

1990年,美国国会批准美国的“人类基因组计划”在10月1日正式启动。其总体规划是准备在15年内至少投入30亿美元,进行对人类的基因组分析。1993年,美国对这一计划做了修订,主要内容包括:人类基因组的基因图的构建与序列分析;人类基因的鉴定;基因组研究技术的建立;人类基因组研究的模式生物;信息系统的建立。这其中的最重要的任务就是人类基因组的基因图构建与序列分析。最重要的是这样几张图:遗传图、物理图、序列图,最优先考虑、必须保质保量完成的是DNA序列图。根据我国的实际情况,中国的人类基因组计划初期目标主要是充分利用我国丰富的遗传资源,进行基因多样性和疾病基因识别的研究。

完成四张图:物理图、转录图、遗传图、序列图

人类基因组计划”是解读人的基因组上的所有基因,共分析24个染色体DNA分子中的四种碱基对。30亿个碱基对是一个很长的序列,为了更好地搞清这个长序列,需要有其他辅助工作配合。在“人类基因组计划”中,分为两个阶段:DNA序列图以前的计划和DNA序列图计划。序列图以前的计划包括物理图、转录图、遗传图。

3系统树的构建主要有三种方法:

距离矩阵法(distancematrixmethod)是根据每对物种之间的距离,其计算一般很直接,所生成的树的质量取决于距离尺度的质量。距离通常取决于遗传模型。; T. x* e, k0 g$ ~

最大简约(maximumparsimony)法较少涉及遗传假设,它通过寻求物种间最小的变更数来完成的。2 j: j* c% f% K5 a3 m6 w

对于模型的巨大依赖性是最大似然(maximumlikelihood)法的特征,该方法在计算上繁杂,但为统计推断提供了基础。 ]5 L1 T/ I! F7 `

5 {* T- O4 g. a

距离矩阵法

首先通过各个物种之间的比较,根据一定的假设(进化距离模型)推导得出分类群之间的进化距离,构建一个进化距离矩阵。进化树的构建则是基于这个矩阵中的进化距离关系。这里的遗传距离为所有成对实用分类单位(operational taxonomic units,OTU)之间的距离。用这些距离对OUT进行表型意义的分类可借助于聚类分析(clustering),聚类过程可以看作是鉴别具有相近OUT类群的过程。

由进化距离构建进化树的方法很多,常用有如下几种:) V( q7 y% t' W% B

平均连接聚类法(UPGMA法):聚类的方法很多,包括序贯法(sequential)、聚合法(agglomerative)、分层法(hierarchical)和非重叠法(nonoverlapping)等。应用最广泛的是平均连接聚类法(average linkage clustering)或称为UPGMA法(应用算术平均数的非加权成组配对法,unweighted pair-group method using anarithmetic average)。该法将类间距离定义为两个类的成员所有成对距离的平均值,广泛用于距离矩阵。Nei等模拟了构建树的不同方法,发现当沿树上所有分枝的突变率相同时,UPGMA法一般能够得到较好的结果。但必须强调有关突变率相等(或几乎相等)的假设对于UPGMA的应用是重要的。另一些模型研究(如Kim和Burgman)已证实当各分枝的突变率不相等时,这一方法的结果不尽人意。当各分枝突变率相等时,认为分子钟(molecularclock)在起作用。

Fitch-Margoliash Method(FM法):UPGMA法包含这样的假定:沿着树的所有分枝突变率为常数。Fitch 和Margoliash(1967)所发展的方法去除了这一假定。该法的应用过程包括插入“丧失的”OUT作为后面OUT 的共同祖先,并每次使分枝长度拟合于3个OTU组。

Margoliash担心他们的法则所得到的拓扑结构可能是不完全正确的,并建议考查其它的拓扑结构。可以采用Fitch和Margoliash(1967)称之为“百分标准差”的一种拟合优度来比较不同的系统树,最佳系统树应具有最小的百分标准差。根据百分标准差选择系统树,其最佳系统树可能与由Fitch-Margoliash法则所得的不相同。当存在分子钟时,可以预期这一标准差的应用将给出类似于UPGMA方法的结果。如果不存在分子钟,因而在不同的世系(分枝)中的变更率是不同的,则Fitch-Margoliash标准就会比UPGMA好得多。通

过选择不同的OUT作为初始配对单位,就可以选择其它的系统树进行考查。具有最低百分标准差的系统树即被认为是最佳的,并且这个标准是建立在应用Fitch- Margoliash算法的基础上的。

FM算法的基本步骤:

1、找出关系最近的序列对,如A和B$ n" r& i& [ |' `9 n7 w& I

2、将剩余的序列作为一个简单复合序列,分别计算A、B到所有其他序列的距离的平均值,用这些值来计算A和B间的距离

3、将A、B作为一个单一的复合序列AB,计算与每一个其他序列的距离,生成新的距离矩阵

4、确定下一对关系最近的序列,重复前面的步聚计算枝长

5、从每个序列对开始,重复整个过程

6、对每个树计算每对序列间的预测距离,发现与原始数据最符合的树

Neighbor-JoiningMethod(NJ法/邻接法):邻接法(Neighbor-joiningMethod)由Saitou和Nei(1987)提出。该方法通过确定距离最近(或相邻)的成对分类单位来使系统树的总距离达到最小。相邻是指两个分类单位在某一无根分叉树中仅通过一个节点(node)相连。通过循序地将相邻点合并成新的点,就可以建立一个相应的拓扑树。

最大简约法

最大简约法(maximum parsimony,MP)最早源于形态性状研究,现在已经推广到分子序列的进化分析中。最大简约法的理论基础是奥卡姆(Ockham)哲学原则,这个原则认为:解释一个过程的最好理论是所需假设数目最少的那一个。对所有可能的拓扑结构进行计算,并计算出所需替代数最小的那个拓扑结构,作为最优树。

Felsenstein指出,在试图使进化事件的次数最小时,简约法隐含地假定这类事件是不可能的。如果在进化时间范围内碱基变更的量较小,则简约法是很合理的,但对于存在大量变更的情形,随着所用资料的增加,简约法可能给出实际上更为错误的系统树。

最大简约法的优点:最大简约法不需要在处理核苷酸或者氨基酸替代的时候引入假设(替代模型)。此外,最大简约法对于分析某些特殊的分子数据如插入、缺失等序列有用。) q5 c1 v. @' P! V. |4 N% n

缺点:在分析的序列位点上没有回复突变或平行突变,且被检验的序列位点数很大的时候,最大简约法能够推导获得一个很好的进化树。然而在分析序列上存在较多的回复突变或平行突变,而被检验的序列位点数又比较少的时候,最大简约法可能会给出一个不合理的或者错误的进化树推导结果。

最大似然法(ML)

最大似然法(maximum likelihood,ML)最早应用于系统发育分析是在对基因频率数据的分析上,后来基于分子序列的分析中也已经引入了最大似然法的分析方法。" C) D; L7 J2 o( t( l

最大似然法分析中,选取一个特定的替代模型来分析给定的一组序列数据,使得获得的每一个拓扑结构的似然率都为最大值,然后再挑出其中似然率最大的拓扑结构作为最优树。在最大似然法的分析中,所考虑的参数并不是拓扑结构而是每个拓扑结构的枝长,并对似然率球最大值来估计枝长。最大似然法的建树过程是个很费时的过程,因为在分析过程中有很大的计算量,每个步骤都要考虑内部节点的所有可能性。

最大似然法也是一个比较成熟的参数估计的统计学方法,具有很好的统计学理论基础,在当样本量很大的时候,似然法可以获得参数统计的最小方差。只要使用了一个合理的、正确的替代模型,最大似然法可以推导出一个很好的进化树结果。

构建方法的选择

一般情况,若有合适模型,ML的效果较好;近缘序列,一般使用MP(基于的假设少);远缘序列,一般使用NJ或ML。

对相似度很低的序列,NJ往往出现Long-branch attraction(LBA,长枝吸引现象),有时会严重干扰进化树的构建;贝叶斯的方法则太慢。各种方法构建的系统进化树,(Hall BG. Mol Biol Evol 2005, 22(3):792-802)认为贝叶斯方法的准确性最高,其次是ML,然后再是MP。其实若序列有较高的相似性,各种方法都会得到不错的结果,模型间的差别也不大。

对于NJ和ML两种方法,需要选择构建模型。对于核酸及蛋白质序列,两者模型的选择是不同的。蛋白质的序列,一般选择Poisson Correction(泊松修正)这一模型;而对于核酸序列,一般选择Kimura 2-parameter(Kimura-2参数)模型。

Bootstrap选项一般都要选择,当Bootstrap的值>70,一般都认为构建的进化树较为可靠。如果Bootstrap 的值太低,则有可能进化树的拓扑结构有错误,进化树是不可靠的。' l5 u/ K2 h: Q# d+ x/ B9 N

对于进化树的构建,如果对理论的了解并不深入,则推荐使用缺省的参数,并启用Bootstrap检验。一般情况下,使用两种不同的方法构建进化树,如果得到的进化树基本一致,结果较为可靠.

4国际上权威的核酸序列数据库和所属机构。

常用核酸序列数据库-常用核酸序列数据库

EMBL、GenBank和DDBJ是国际上三大主要核酸序列数据库。

EMBL是由欧洲分子生物学实验室(European Molecular Biology Laboratory)于1982年创建的,其名称也由此而来,目前由欧洲生物信息学研究所负责管理【Baker, 2000】。美国国家健康研究院(National Institurte of Health,简称NIH) 也于80年代初委托洛斯阿拉莫斯(Los Alamos)国家实验室建立GenBank,后移交给国家生物技术信息中心NCBI,隶属于NIH下设的国家医学图书馆(National Liabraty of Medicine,简称NLM)。DDBJ是DNA Data Base of Japan的简称,创建于1986年,由日本国家遗传学研究所负责管理。1988年,EMBL、GenBank 与DDBJ共同成立了国际核酸序列联合数据库中心,建立了合作关系。根据协议,这三个数据中心各自搜集世界各国有关实验室和测序机构所发布的序列数据,并通过计算机网络每天都将新发现或更新过的数据进行交换,以保证这三个数据库序列信息的完整性。

5.国际上权威的有关蛋白质的三个数据库。

蛋白质数据库

1. PIR和PSDPIR国际蛋白质序列数据库(PSD)是由蛋白质信息资源(PIR)、慕尼黑蛋白质序列信息中心(MIPS)和日本国际蛋白质序列数据库(JIPID)共同维护的国际上最大的公共蛋白质序列数据库。这是一个全面的、经过注释的、非冗余的蛋白质序列数据库,包含超过142,000条蛋白质序列(至99年9月),其中包括来自几十个完整基因组的蛋白质序列。所有序列数据都经过整理,超过99%的序列已按蛋白质家族分类,一半以上还按蛋白质超家族进行了分类。PSD的注释中还包括对许多序列、结构、基因组和文献数据库的交叉索引,以及数据库内部条目之间的索引,这些内部索引帮助用户在包括复合物、酶-底物相互作用、活化和调控级联和具有共同特征的条目之间方便的检索。每季度都发行一次完整的数据库,每周可以得到更新部分。

PSD数据库有几个辅助数据库,如基于超家族的非冗余库等。PIR提供三类序列搜索服务:基于文本的交互式检索;标准的序列相似性搜索,包括BLAST、FASTA等;结合序列相似性、注释信息和蛋白质家族信息的高级搜索,包括按注释分类的相似性搜索、结构域搜索GeneFIND等。

PIR和PSD的网址是:https://www.wendangku.net/doc/5216332686.html,/。

数据库下载地址是:ftp://https://www.wendangku.net/doc/5216332686.html,/pir/。

2. SWISS-PROT

SWISS-PROT是经过注释的蛋白质序列数据库,由欧洲生物信息学研究所(EBI)维护。数据库由蛋白质序列条目构成,每个条目包含蛋白质序列、引用文献信息、分类学信息、注释等,注释中包括蛋白质的功能、

转录后修饰、特殊位点和区域、二级结构、四级结构、与其它序列的相似性、序列残缺与疾病的关系、序列变异体和冲突等信息。SWISS-PROT中尽可能减少了冗余序列,并与其它30多个数据建立了交叉引用,其中包括核酸序列库、蛋白质序列库和蛋白质结构库等。

利用序列提取系统(SRS)可以方便地检索SWISS-PROT和其它EBI的数据库。

SWISS-PROT只接受直接测序获得的蛋白质序列,序列提交可以在其Web页面上完成。

SWISS-PROT的网址是:https://www.wendangku.net/doc/5216332686.html,/swissprot/。

3. PROSITE

PROSITE数据库收集了生物学有显著意义的蛋白质位点和序列模式,并能根据这些位点和模式快速和可靠地鉴别一个未知功能的蛋白质序列应该属于哪一个蛋白质家族。有的情况下,某个蛋白质与已知功能蛋白质的整体序列相似性很低,但由于功能的需要保留了与功能密切相关的序列模式,这样就可能通过PROSITE的搜索找到隐含的功能motif,因此是序列分析的有效工具。PROSITE中涉及的序列模式包括酶的催化位点、配体结合位点、与金属离子结合的残基、二硫键的半胱氨酸、与小分子或其它蛋白质结合的区域等;除了序列模式之外,PROSITE还包括由多序列比对构建的profile,能更敏感地发现序列与profile 的相似性。PROSITE的主页上提供各种相关检索服务。

PROSITE的网址是:http://www.expasy.ch/prosite/。

4. PDB

蛋白质数据仓库(PDB)是国际上唯一的生物大分子结构数据档案库,由美国Brookhaven国家实验室建立。PDB收集的数据来源于X光晶体衍射和核磁共振(NMR)的数据,经过整理和确认后存档而成。目前PDB 数据库的维护由结构生物信息学研究合作组织(RCSB)负责。RCSB的主服务器和世界各地的镜像服务器提供数据库的检索和下载服务,以及关于PDB数据文件格式和其它文档的说明,PDB数据还可以从发行的光盘获得。使用Rasmol等软件可以在计算机上按PDB文件显示生物大分子的三维结构。

RCSB的PDB数据库网址是:https://www.wendangku.net/doc/5216332686.html,/pdb/。

5. SCOP

蛋白质结构分类(SCOP)数据库详细描述了已知的蛋白质结构之间的关系。分类基于若干层次:家族,描述相近的进化关系;超家族,描述远源的进化关系;折叠子(fold),描述空间几何结构的关系;折叠类,所有折叠子被归于全α、全β、α/β、α+β和多结构域等几个大类。SCOP还提供一个非冗余的ASTRAIL 序列库,这个库通常被用来评估各种序列比对算法。此外,SCOP还提供一个PDB-ISL中介序列库,通过与这个库中序列的两两比对,可以找到与未知结构序列远缘的已知结构序列。

SCOP的网址是:https://www.wendangku.net/doc/5216332686.html,/scop/。

6. COG

蛋白质直系同源簇(COGs)数据库是对细菌、藻类和真核生物的21个完整基因组的编码蛋白,根据系统进化关系分类构建而成。COG库对于预测单个蛋白质的功能和整个新基因组中蛋白质的功能都很有用。利

用COGNITOR程序,可以把某个蛋白质与所有COGs中的蛋白质进行比对,并把它归入适当的COG簇。COG 库提供了对COG分类数据的检索和查询,基于Web的COGNITOR服务,系统进化模式的查询服务等。

COG库的网址是:https://www.wendangku.net/doc/5216332686.html,/COG。

下载COG库和COGNITOR程序在:ftp://https://www.wendangku.net/doc/5216332686.html,/pub/COG。

6.基因微阵列(Microarray)检测基因表达谱实验的步骤。

微阵列芯片(Microarray)以高密度阵列为特征。其基础研究始于20世纪80年代末,本质上是一种生物技术,主要是在生物遗传学领域发展起来的。

微阵列分为cDNA微阵列和寡聚核苷酸微阵列.微阵列上"印"有大量已知部分序列的DNA探针,微阵列技术就是利用分子杂交原理,使同时被比较的标本(用同位素或荧光素标记)与微阵列杂交,通过检测杂交信号强度及数据处理,把他们转化成不同标本中特异基因的丰度,从而全面比较不同标本的基因表达水平的差异.微阵列技术是一种探索基因组功能的有力手段.

7.PAM和BLOSUM记分矩阵的英文全称,并比较这两种记分矩阵

对于蛋白质序列,计分矩阵主要用于记录在做序列比对时两个相对应的残基的相似度,一旦这个矩阵定义好了以后,比对程式就可以利用这个矩阵,尽量将相似的残基排在一起,以达到最好的比对。得分矩阵主要有两种,第一种就是PAM(Point Accepted Multation),另一种就是BLOSUM。

1、PAM矩阵(Point Accepted Mutation)

基于进化的点突变模型,如果两种氨基酸替换频繁,说明自然界接受这种替换,那么这对氨基酸替换得分就高。一个PAM就是一个进化的变异单位, 即1%的氨基酸改变,但这并不意味100次PAM后,每个氨基酸都发生变化,因为其中一些位置可能会经过多次突变,甚至可能会变回到原来的氨基酸。

PAM矩阵的制作步骤:

构建序列相似(大于85%)的比对

计算氨基酸j 的相对突变率mj(j被其它氨基酸替换的次数)

针对每个氨基酸对i 和j , 计算j 被i 替换次数

替换次数除以相对突变率(mj)

利用每个氨基酸出现的频度对j 进行标准化

取常用对数,得到PAM-1(i, j)

将PAM-1自乘N次,可以得到PAM-N。

这种矩阵的缺点是一旦PAM1的矩阵有效地误差,那么自乘250后得到的PAM250矩阵的误差就会变得很大。如,PAM120矩阵用于比较相距120个PAM单位的序列。

一个PAM-N矩阵元素(i,j)的值:

反应两个相距N个PAM单位的序列中第i种氨基酸替换第j种氨基酸的频率。

针对不同的进化距离采用PAM 矩阵

序列相似度 = 40% 50% 60%

| | |

打分矩阵 = PAM120 PAM80 PAM60

PAM250 → 14% – 27%

2、BLOSUM 矩阵(blocks substitution matrix)

此矩阵与PAM矩阵的不同之处在于:

(1)用于产生矩阵的蛋白质家族及多肽链数目,BLOSUM比PAM大约多20倍。

(2)PAM:家族内成员相比,然后把所有家族中对某种氨基酸的比较结果加和在一起,产生“取代”数据(PAM-1 );PAM-1自乘n次,得PAM-n。

BLOSUM:首先寻找氨基酸模式,即有意义的一段氨基酸片断(如一个结构域及其相邻的两小段氨基酸序列),分别比较相同的氨基酸模式之间氨基酸的保守性(某种氨基酸对另一种氨基酸的取代数据),然后,以所有 60%保守性的氨基酸模式之间的比较数据为根据,产生BLOSUM60;以所有80%保守性的氨基酸模式之间的比较数据为根据,产生BLOSUM80。

(3)PAM-n中,n 越小,表示氨基酸变异的可能性越小;相似的序列之间比较应该选用n值小的矩阵,不太相似的序列之间比较应该选用n值大的矩阵。PAM-250用于约 20%相同序列之间的比较。BLOSUM-n中,n越小,表示氨基酸相似的可能性越小;相似的序列之间比较应该选用 n 值大的矩阵,不太相似的序列之间比较应该选用n值小的矩阵。BLOSUM-62用来比较62%相似度的序列,BLOSUM-80用来比较80%左右的序列。

8.系统发生分析的四个步骤。

系统分析方法的具体步骤包括:限定问题、确定目标、调查研究收集数据、提出备选方案和评价标准、备选方案评估和提出最可行方案。

1、限定问题

所谓问题,是现实情况与计划目标或理想状态之间的差距。系统分析的核心内容有两个:其一是进行“诊断”,即找出问题是及其原因;其二是“开处方”,即提出解决问题的最可行方案。所谓限定问题,就是要明确问题的本质或特性、问题存在范围和影响程度、问题产生的时间和环境、问题的症状和原因等。限定问题是系统分析中关键的一步,因为如果“诊断”出错,以后开的“处方”就不可能对症下药。在限定问题时,要注意区别症状和问题,探讨问题原因不能先入为主,同时要判别哪些是局部问题,哪些是整体问题,问题的最后确定应该在调查研究之后。

2、确定目标

系统分析目标应该根据客户的要求和对需要解决问题的理解加以确定,如有可能应尽量通过指标表示,以便进行定量分析。对不能定量描述的目标也应该尽量用文字说明清楚,以便进行定性分析和评价系统分析的成效。

3、调查研究,收集数据

调查研究和收集数据应该围绕问题起因进行,一方面要验证有限定问题阶段形成的假设,另一方面要探讨产生问题的根本原因,为下一步提出解决问题的备选方案做准备。

调查研究常用的有四种方式,即阅读文件资料、访谈、观察和调查。

收集的数据和信息包括事实(facts)、见解(opinions)和态度(attitudes)。要对数据和信息去伪存真,交叉核实,保证真实性和准确性。

4、提出备选方案和评价标准

通过深入调查研究,使真正有待解决的问题得以最终确定,使产生问题的主要原因得到明确,在此基础上就可以有针对性地提出解决问题的备选方案。备选方案是解决问题和达到咨询目标可供选择的建议或设计,应提出两种以上的备选方案,以便提供进一步评估和筛选。为了对备选方案进行评估,要根据问题的性质和客户具备的条件。提出约束条件或评价标准,供下一步应用。

5、备选方案评估

根据上述约束条件或评价标准,对解决问题备选方案进行评估,评估应该是综合性的,不仅要考虑技术因素,也要考虑社会经济等因素,评估小姐应该有一定代表性,除咨询项目组成员外,也要吸收客户组织的代表参加。根据评估结果确定最可行方案。

6、提交最可行方案

最可行方案并不一定是最佳方案,它是在约束条件之内,根据评价标准筛选出的最现实可行的方案。如果客户满意,则系统分析达到目标。如果客户不满意,则要与客户协商调整约束条件或评价标准,甚至重新限定的问题,开始新一轮系统分析,直到客户满意为止。

9 BLAST的应用范围

BLAST 在生物上的含义:BLAST (Basic Local Alignment Search Tool)是一套在蛋白质数据库或DNA数据库中进行相似性比较的分析工具。BLAST程序能迅速与公开数据库进行相似性序列比较。BLAST结果中的得分是对一种对相似性的统计说明。

BLAST 采用一种局部的算法获得两个序列中具有相似性的序列。如果您想进一步了解BLAST算法,您可以参考NCBI的BLAST Course ,该页有BLAST算法的介绍。

BLAST的功能

BLAST对一条或多条序列(可以是任何形式的序列)在一个或多个核酸或蛋白序列库中进行比对。BLAST还能发现具有缺口的能比对上的序列。

BLAST是基于Altschul等人在J.Mol.Biol上发表的方法(J.Mol.Biol.215:403-410(1990)),在序列数据库中对查询序列进行同源性比对工作。从最初的BLAST发展到现在NCBI提供的BLAST2.0,已将有缺的比对序列也考虑在内了。BLAST可处理任何数量的序列,包括蛋白序列和核算序列;也可选择多个数据库但数据库必须是同一类型的,即要么都是蛋白数据库要么都是核酸数据库。所查询的序列和调用的数据库则可以是任何形式的组合,既可以是核酸序列到蛋白库中作查询,也可

以是蛋白序列到蛋白库中作查询,反之亦然。

GCG及EMBOSS等软件包中包含有五种BLAST:

1、BLASTP是蛋白序列到蛋白库中的一种查询。库中存在的每条已知序列将逐一地同每条所查序列作一对一的序列比对。

2、BLASTX是核酸序列到蛋白库中的一种查询。先将核酸序列翻译成蛋白序列(一条核酸序列会被翻译成可能的六条蛋白),再对每一条作一对一的蛋白序列比对。

3、BLASTN是核酸序列到核酸库中的一种查询。库中存在的每条已知序列都将同所查序列作一对一地核酸序列比对。

4、TBLASTN是蛋白序列到核酸库中的一种查询。与BLASTX相反,它是将库中的核酸序列翻译成蛋白序列,再同所查序列作蛋白与蛋白的比对。

5、TBLASTX是核酸序列到核酸库中的一种查询。此种查询将库中的核酸序列和所查的核酸序列都翻译成蛋白(每条核酸序列会产生6条可能的蛋白序列),这样每次比对会产生36种比对阵列。由于这种比对? 母丛有裕?虼薚BLASTX在比对中对缺口不予以考虑。

通常根据查询序列的类型(蛋白或核酸)来决定选用何种BLAST。假如是作核酸-核酸查询,有两种BLAST供选择,通常默认为BLASTN。如要用TBLASTX也可,但记住此时不考虑缺口。

BLAST适用于本地查询。可以下载公共数据库,对于该数据库的更新和维护是必不可少的。如果要直接到网上查询也可以(即NetBlast),但记住如果你认为自己的序列很有价值的话,还是谨慎为宜。

10.多重序列比对应用的范围。

在生物信息学中, 序列是最基本的数学模型, 它可以用来描述核酸分子和蛋白质分子的一级结构。对序列的操作有助于对生物大分子的研究, 尤其是对序列进行比对( alignment)。多序列比对问题是计算分子生物学中最基本的问题之一。通过多序列比对, 研究者可以挖掘出更多的保守区间与结构信息。因此它是许多问题的基础, 比如片断组装、基因发现、构建进化树、PCR 引物设计、多态位点( SNP)的寻找、预测同源序列的二级结构、蛋白质相互作用预测等。

由于人工比对的复杂性和生物序列中的功能不确定性, 无法用生物意义统一地衡量比对的效果。因此人们主观地根据比对后各个序列之间差异的大小来衡量。用来计算差异性的数学模型(目标函数)主要有三种: 比对和函数( sum - of- pairs functions)、一致性函数( consensus functions)和树函数( tree functions) , 其中使用最普遍的是比对和函数, 其分值一般简称为SP值。目前的多序列比对算法都旨在寻找具有最优SP值的比对,

应用的范围:(没找到)

11.序列比对的动态规划算法的具体步骤

设计一个标准的动态规划算法,通常可按以下几个步骤进行:

1.划分阶段:按照问题的时间或空间特征,把问题分为若干个阶段。注意这若干个阶段一定要是有序的或者是可排序的(即无后向性),否则问题就无法用动态规划求解。

2.选择状态:将问题发展到各个阶段时所处于的各种客观情况用不同的状态表示出来。当然,状态的选择要满足无后效性。

3.确定决策并写出状态转移方程:之所以把这两步放在一起,是因为决策和状态转移有着天然的联系,状态转移就是根据上一阶段的状态和决策来导出本阶段的状态。所以,如果我们确定了决策,状态转移方程也就写出来了。但事实上,我们常常是反过来做,根据相邻两段的各状态之间的关系来确定决策。

4.写出规划方程(包括边界条件):动态规划的基本方程是规划方程的通用形式化表达式。一般说来,只要阶段、状态、决策和状态转移确定了,这一步还是比较简单的。

12.BLAST是什么程序及利用其进行搜索的步骤。

BLAST是由美国国立生物技术信息中心开发的一个基于数据相似性的数据库搜索程序,它是局部相似性查询工具,它包含了很多独立的程序,这些程序根据查询对象和数据库的不同来对应,比如查询的序列若为核酸,则查询的数据库则为核酸数序列据库,则选用BLASTN。

利用BLAST搜索的步骤如下:(以蛋白质为例说明)

1.登录NCBI的BLAST主页。

2.根据数据类型,选择合适的程序。

如:若查询的数据是蛋白质序列则可以选择blastp;

若查询的数据是核酸序列,则可以用blastn.。

3.填写表单信息(以蛋白质为例)

a.序列信息部分(序列范围默认为全部)

b.填入查询的序列,可以选用Fasta格式或者纯序列。

c.选择搜索的区域,此处选择整个序列。

d.选择搜索数据库,这里选择nr(非冗余的蛋白质序列)。是否搜索保守区域数据库cdd,这个选项只有蛋白质数据库中才有。

e.限制条件

f.其它选项保持默认值。

g.输出格式选项保持默认值。

4.提交搜索任务,即点击开始搜索。

5.查看和分析结果

结果包含两部分,图形结果和匹配数据列表,点击2匹配数据列表进行具体匹配。

13 蛋白质组学研究的目的和任务

蛋白质组学的研究是一项系统性的多方位的科学探索。其研究内容包括:蛋白质结构、蛋白质分布、蛋白质功能、蛋白质的丰度变化、蛋白质修饰、蛋白质与蛋白质的相互作用、蛋白质与疾病的关联性。

目前科学家常用的蛋白质组学的研究手段有质谱分析技术(Mass Spectromotry,MS)和蛋白质芯片技术(Protein Microarray)。

质谱分析技术是发展蛋白质组学的一项重要技术。它是一个由离子源、高通量分析仪和检测仪组成的体系,目前市场常用的质谱分析技术有以下四种:离子阱质谱(Iron trap)、飞行时间质谱(Time-of-flight)、

四级柱质谱(Quadrupole)和傅立叶变换离子回旋共振质谱(Fourier transform ion cyclotron)。它能从复杂的样本中定性、定量分析蛋白质。该技术相对经济实惠,操作简单方便,灵敏度高。但是,其精确度和分辨率有待进一步提高。为质谱分析技术准备样本的方法以二维凝胶电泳(Two-Dimentional Gel Electrophoresis)为主

蛋白质组学研究的另一重要技术是蛋白质芯片技术。基于功能的不同,它分为分析芯片(Analytical Microarray)和功能性蛋白芯片( Functional Protein Microarray)。前者是把一系列顺序排列的蛋白质特异性配体,主要是抗体,点样到特殊性材料表面,监测蛋白质的差异表达、进行蛋白质的表达谱分析或者应用于临床诊断、预后判断等等。后者是把蛋白质或蛋白质结构域点样到特殊性材料表面,着重于解读复杂的细胞调控过程,比如:细胞凋亡、生长因子信号、细胞间的信息交流等等。高特异性、高亲和性抗体的开发,齐全的、高纯度蛋白质的表达以及新型特殊性材料表面的研究是目前大量开展蛋白质芯片技术有待解决的问题。

破解蛋白质组学的秘密是一项庞大的工程,就象人类完成基因组测序计划,它更需要全球性合作、多行业参与、多技术支持,最终实现基因结构、基因表达、基因功能、蛋白质结构、蛋白质调控和基因治疗的完美统一。

早期蛋白质组学的研究范围主要是指蛋白质的表达模式(Expression profile),随着学科的发展,蛋白质组学的研究范围也在不断完善和扩充。蛋白质翻译后修饰研究已成为蛋白质组研究中的重要部分和巨大挑战。蛋白质-蛋白质相互作用的研究也已被纳入蛋白质组学的研究范畴。而蛋白质高级结构的解析即传统的结构生物学,虽也有人试图将其纳入蛋白质组学研究范围,但目前仍独树一帜。

1.蛋白质鉴定:可以利用一维电泳和二维电泳并结合Western等技术,利用蛋白质芯片和抗体芯片及免疫共沉淀等技术对蛋白质进行鉴定研究。

2.翻译后修饰:很多mRNA表达产生的蛋白质要经历翻译后修饰如磷酸化,糖基化,酶原激活等。翻译后修饰是蛋白质调节功能的重要方式,因此对蛋白质翻译后修饰的研究对阐明蛋白质的功能具有重要作用。

3.蛋白质功能确定:如分析酶活性和确定酶底物,细胞因子的生物分析/配基-受体结合分析。可以利用基因敲除和反义技术分析基因表达产物-蛋白质的功能。另外对蛋白质表达出来后在细胞内的定位研究也在一定程度上有助于蛋白质功能的了解。Clontech的荧光蛋白表达系统就是研究蛋白质在细胞内定位的一个很好的工具。

4.对人类而言,蛋白质组学的研究最终要服务于人类的健康,主要指促进分子医学的发展。如寻找药物的靶分子。很多药物本身就是蛋白质,而很多药物的靶分子也是蛋白质。药物也可以干预蛋白质-蛋白质相互

作用。

蛋白质组学(proteome)一词,源于蛋白质(protein)与基因组(genome)两个词的杂合,意指“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。蛋白质组本质上指的是在大规模水平上研究蛋白质的特征,包括蛋白质的表达水平,翻译后的修饰,蛋白与蛋白相互作用等,由此获得蛋白质水平上的关于疾病发生,细胞代谢等过程的整体而全面的认识,这个概念最早是在1995年提出的。蛋白质组的研究不仅能为生命活动规律提供物质基础,也能为众多种疾病机理的阐明及攻克提供理论根据和解决途径。

生物信息学复习题及答案

生物信息学复习题 名词解释 1. Homology (同源):来源于共同祖先的序列相似的序列及同源序列。序列相似序列并不一定是同源序列。 (直系同源):指由于物种形成的特殊事件来自一个共同祖先的不同物种中的同源序列,它们具有相似的功能。 (旁系(并系)同源):指同一个物种中具有共同祖先,通过基因复制产生的一组基因,这些基因在功能上的可能发生了改变。基因复制事件是促进新基因进化的重要推动力。 (异同源):通过横向转移,来源于共生或病毒侵染而产生的相似的序列,为异同源。 Score:The sum of the number of identical matches and conservative (high scoring) substitutions in a sequence alignment divided by the total number of aligned sequence characters. Gap总是不计入总数中。 6.点矩阵(dot matrix):构建一个二维矩阵,其X轴是一条序列,Y轴是另一个序列,然后在2个序列相同碱基的对应位置(x,y)加点,如果两条序列完全相同则会形成一条主对角线,如果两条序列相似则会出现一条或者几条直线;如果完全没有相似性则不能连成直线。 7. E值:得分大于等于某个分值S的不同的比对的数目在随机的数据库搜索中发生的可能性。衡量序列之间相似性是否显著的期望值。E值大小说明了可以找到与查询序列(query)相匹配的随机或无关序列的概率,E值越小意味着序列的相似性偶然发生的机会越小,也即相似性越能反映真实的生物学意义,E值越接近零,越不可能找到其他匹配序列。 值:得分为所要求的分值比对或更好的比对随机发生的概率。它是将观测得到的比对得分S,与同样长度和组成的随机序列作为查询序列进行数据库搜索进行比较得到的HSP(高分片段对)得分的期望分布联系起来计算的。通常使用低于来定义统计的显著性。P=1-e-E 9.打分矩阵(scoring matrix):在相似性检索中对序列两两比对的质量评估方法。包括基于理论(如考虑核酸和氨基酸之间的类似性)和实际进化距离(如PAM)两类方法,是序列相似性分析的基础,其不同的选择将会出现不同的分析结果。 10.空位(gap):在序列比对时,由于序列长度不同,需要插入一个或几个位点以取得最佳比对结果,这样在其中一序列上产生中断现象,这些中断的位点称为空位。 :美国国家生物技术信息学中心,属于美国国立医学图书馆的一部分,具有BLAST, Entrez ,GenBank等工具,还具有PubMed文献数据库。另外还具有Genome, dbEST, dbGSS , dbSTS, MMDB, OMIM, UniGene, Taxonomy, RefSeq, etc. 序列格式:是将DNA或者蛋白质序列表示为一个带有大于号(>)开始的核苷酸或者氨基酸序列的新文件,其中大于号后可以跟上序列的相关信息,其他无特殊要求。 13genbank序列格式:是GenBank 数据库的基本信息单位,是最为广泛的生物信息学序列格式之一。该文件格式按域划分为4个部分:第一部分包含整个记录的信息(描述符);第二部分包含注释,主要包含生物功能或数据库信息;第三部分是feature,对序列的注释;第四部分是序列本身,以“统发生树(Phylogenetic tree )是研究生物进化和系统发育过程中的一种用树状分支图来概括各种生物之间亲缘关系,是一种亲缘分支分类方法。在树中,每个节点代表其各分支的最近共同祖先,而节点间的线段长度对应演化距离(如估计的演化时间)。是用来研究物种进化与多样性的基础,是相近物种相关生物学数据的来源。17.基因树与物种树:物种树反映一组物种进化历程的系统树,其中每一个内部节点就代表一个物种形成的过程,而基因树则是代表来源于不同物种的单个同源基因的差异构建的系统树,而其内部的一个节点则代表一个祖先基因分化为两个新的独特的基因序列的事件。基因

生物信息学期末考试重点

第一讲 生物信息学(Bioinformatics)是20世纪80年代末随着人类基因组计划的启动而兴起的一门新型交叉学科,它体现了生物学、计算机科学、数学、物理学等学科间的渗透与融合。 生物信息学通过对生物学实验数据的获取、加工、存储、检索与分析,达到揭示数据所蕴含的生物学意义从而解读生命活动规律的目的。 生物信息学不仅是一门学科,更是一种重要的研究开发平台与工具,是今后进行几乎所有生命科学研究的推手。 生物技术与生物信息学的区别及联系 生物信息学的发展历史 ?人类基因组计划(HGP) ?人类基因组计划由美国科学家于1985年提出,1990年启动。根据该计划,在2015年要把人体约4万个基因的密码全部揭开,同时绘制出人类基因的谱图,也就是说,要揭开组成人体4万个基因的30亿个碱基对的秘密。HGP与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划,被誉为生命科学的登月计划。(百度百科) 随着基因组计划的不断发展,海量的生物学数据必须通过生物信息学的手段进行收集、分析和整理后,才能成为有用的信息和知识。换句话说,人类基因组计划为生物信息学提供了兴盛的契机。上文所说的基因、碱基对、遗传密码子等术语都是生物信息学需要着重研究的地方。 :

】 第二讲回顾细胞结构 细胞是所有生命形式结构和功能的基本单位 细胞组成 细胞膜主要由脂类和蛋白质组成的环绕在细胞表面的双层膜结构 细胞质细胞膜与细胞核之间的区域:包含液体流质,夹杂物存储的营养、分泌物、天然色素和细胞器 细胞器细胞内完成特定功能的结构:线粒体、核糖体、高尔基体、溶酶体等 细胞核最大的细胞器 DNA的结构 碱基(腺嘌呤A、鸟嘌呤G、胞嘧啶C、胸腺嘧啶G) 。 核苷酸 核苷酸是构成DNA分子的重要模块。每个核苷酸分子由一分子称作脱氧核糖的戊 糖(五碳糖)、一分子磷酸和一分子碱基构成。每种核苷酸都有一个碱基对,也就 是A、T、C、G 基因是什么 基因是遗传物质的基本单位 基因就是核苷酸序列。 大部分的基因大约是1000-4000个核苷酸那么长。 基因通过控制蛋白质的合成,从微观和宏观上影响细胞、组织和器官的产生。 基因在染色体上。

生物信息学题库说课材料

生物信息学题库

■一、选择题: 1.以下哪一个是mRNA条目序列号: A. J01536■. NM_15392 C. NP_52280 D. AAB134506 2.确定某个基因在哪些组织中表达的最直接获取相关信息方式是:■. Unigene B. Entrez C. LocusLink D. PCR 3.一个基因可能对应两个Unigene簇吗?■可能 B. 不可能 4.下面哪种数据库源于mRNA信息:■ dbEST B. PDB C. OMIM D. HTGS 5.下面哪个数据库面向人类疾病构建: A. EST B. PDB ■. OMIM D. HTGS 6.Refseq和GenBank有什么区别: A. Refseq包括了全世界各个实验室和测序项目提交的DNA序列B. GenBank提供的是非冗余序列 ■. Refseq源于GenBank,提供非冗余序列信息D. GenBank源于Refseq 7.如果你需要查询文献信息,下列哪个数据库是你最佳选择: A. OMIM B. Entrez ■ PubMed D. PROSITE 8.比较从Entrez和ExPASy中提取有关蛋白质序列信息的方法,下列哪种说法正确:A. 因为GenBank的数据比EMBL更多,Entrez给出的搜索结果将更多B. 搜索结果很可 能一样,因为GenBank和EMBL的序列数据实际一样■搜索结果应该相当,但是ExPASy中的SwissProt记录的输出格式不同 9.天冬酰胺、色氨酸和酪氨酸的单字母代码分别对应于:■ N/W/Y B. Q/W/Y C. F/W/Y D. Q/N/W 10.直系同源定义为:■不同物种中具有共同祖先的同源序列B. 具有较小的氨基酸一致性但是有较大的结构相似性的同源序列 C. 同一物种中由基因复制产生的同源序列 D. 同一物种中具有相似的并且通常是冗余的功能的同源序列 11.下列那个氨基酸最不容易突变: A. 丙氨酸 B. 谷氨酰胺 C. 甲硫氨酸■半胱氨酸 12.PAM250矩阵定义的进化距离为两同源序列在给定的时间有多少百分比的氨基酸发生改变: A. 1% B. 20%■. 80% D. 250% 13.下列哪个句子最好的描述了两个序列全局比对和局部比对的不同:A. 全局比对通常用于比对DNA序列,而局部比对通常用于比对蛋白质序列B. 全局比对允许间隙,而 局部比对不允许C. 全局比对寻找全局最大化,而局部比对寻找局部最大化■全局比对比对整体序列,而局部比对寻找最佳匹配子序列 14.假设你有两条远源相关蛋白质序列。为了比较它们,最好使用下列哪个BLOSUM和PAM矩阵:■ BLOSUM45和PAM250 B. BLOSUM45和PAM 1 C. BLOSUM80和PAM250 D. BLOSUM10和PAM1 15.与PAM打分矩阵比较,BLOSUM打分矩阵的最大区别是:A. 最好用于比对相关性高的蛋白B. 它是基于近相关蛋白的全局多序列比对 ■它是基于远相关蛋白的局部多序列比对D. 它结合了全局比对和局部比对 16.如果有一段DNA序列,它可能编码多少种蛋白质序列: A. 1 B. 2 C. 3 ■. 6 17.要在数据库查询一段与某DNA序列编码蛋白质最相似的序列,应选择: A. blastn B. blastp C. tblastn D. tblastp■ blastx 18.为什么ClustalW(一个采用了Feng-Doolittle渐进比对算法的程序)不报告E值:A. ClustalW报告E值■使用了全局比对 C. 使用 了局部比对 D. 因为是多序列比对 19.Feng-Doolittle方法提出“一旦是空隙,永远是空隙”规则的依据是:A. 保证空隙不会引物序列加入而填充B. 假定进化早期分歧的序列有较高优先级别■假定最近序列空 隙应该保留 D. 假定最远序列空隙应该保留 20.根据分子钟假说: A. 所有蛋白质都保持一个相同的恒定进化速率 B. 所有蛋白质的进化速率都与化石记录相符合C. 对于每一个给定的蛋白质,分子进化的速率是逐渐 减慢的,就如同不准时的钟■对于每一个给定的蛋白质,其分子进化的速率在所有的进化分支上大致是恒定 21.系统发生树的两个特征是: A. 进化分支和进化节点■树的拓扑结构和分支长度C. 进化分支和树根D. 序列比对和引导检测方法 22.下列哪一个是基于字母特征的系统发生分析的算法: A. 邻位连接法(NJ法)B. Kimura算法■最大似然法(ML)D. 非加权平均法(UPGMA) 23.基于字母特征和基于距离的系统发生分析的算法的基本差异是:■基于字母特征的算法没有定义分支序列的中间数据矩阵 B. 基于字母特征的算法可应用于DNA或者蛋白质序列,而基于距离仅能用于DNA C. 基于字母特征的算法无法运用简约算法 D. 基于字母特征的算法的进化分支与进化时间无关 24.一个操作分类单元(OTU)可指:A. 多序列比对■蛋白质序列C. 进化分支D. 进化节点 25.构建进化树最直接的错误来源是:■多序列比对错误B. 采样的算法差异C. 假设进化分支是单一起源D. 尝试推测基因的进化关系 26.第一个被完整测定的基因组序列是: A. 啤酒酵母的3号染色体B. 流感病毒■ФX174 D. 人类基因组 27.普通的真核生物线粒体基因组编码大约多少个蛋白质:■ 10 B. 100 C. 1000 D. 10000 28.根据基因组序列预测蛋白质编码基因的算法的最大问题是: A. 软件太难使用■. 假阳性率太高,许多不是外显子的序列部分被错误指定C. 假阳性 率太高,许多不是外显子功能未知 D. 假阴性率太高,丢失太多外显子位点 29.HIV病毒亚型的系统演化研究可以: A. 证实HIV病毒是由牛病毒演化而来■. 用于指导开发针对保守蛋白的疫苗C. 证实哪些人类组织最容易遭受病毒侵染 30.一个典型的细菌基因组大小约为多少bp: A. 20000■. 200000 C. 2000000 D. 20000000

生物信息学考试试卷修订稿

生物信息学考试试卷 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

一、名词解释(每小题4分,共20分) 1、生物信息学 广义:生命科学中的信息科学。生物体系和过程中信息的存贮、传递和表达;细胞、组织、器官的生理、病理、药理过程的中各种生物信息。 狭义:生物分子信息的获取、存贮、分析和利用。 2、人类基因组计划 人类基因组计划准备用15年时间,投入30亿美元,完成人类全部24条染色体的3×109脱氧核苷酸对(bp)的序列测定,主要任务包括作图(遗传图谱、物理图谱的建立及转录图谱的绘制)、测序和基因识别。其中还包括模式生物(如大肠杆菌、酵母、线虫、小鼠等)基因组的作图和测序,以及信息系统的建立。作图和测序是基本的任务,在此基础上解读和破译生物体生老病死以及和疾病相关的遗传信息。 3、蛋白质的一级结构 蛋白质的一级结构是指多肽链中氨基酸的序列 4、基因 基因--有遗传效应的DNA片断,是控制生物性状的基本遗传单位。 5、中心法则 是指遗传信息从传递给,再从RNA传递给,即完成遗传信息的转录和翻译的过程。也可以从DNA传递给DNA,即完成DNA的复制过程。这是所有有细胞结构的生物所遵循的法则。 6 、DNA序列比较 序列比较的根本任务是:(1)发现序列之间的相似性;(2)辨别序列之间的差异 目的: 相似序列相似的结构,相似的功能 判别序列之间的同源性 推测序列之间的进化关系 7、一级数据库 数据库中的数据直接来源于实验获得的原始数据,只经过简单的归类整理和注释 8、基因识别 基因识别,是生物信息学的一个重要分支,使用生物学实验或计算机等手段识别DNA序列上的具有生物学特征的片段。基因识别的对象主要是蛋白质编码基因,也包括其他具有一定生物学功能的因子,如RNA基因和调控因子。 9、系统发生学 系统发生学(phylogenetics)——研究物种之间的进化关系。 10、基因芯片 基因芯片(gene chip),又称DNA微阵列(microarray),是由大量cDNA或寡核苷酸探针密集排列所形成的探针阵列,其工作的基本原理是通过杂交检测信息。

最新生物信息学考试复习

——古A.名词解释 1. 生物信息学:广义是指从事对基因组研究相关的生物信息的获取,加工,储存,分配,分析和解释。狭义是指综合应用信息科学,数学理论,方法和技术,管理、分析和利用生物分子数据的科学。 2. 基因芯片:将大量已知或未知序列的DNA片段点在固相载体上,通过物理吸附达到固定化(cDNA芯片),也可以在固相表面直接化学合成,得到寡聚核苷酸芯片。再将待研究的样品与芯片杂交,经过计算机扫描和数据处理,进行定性定量的分析。可以反映大量基因在不同组织或同一组织不同发育时期或不同生理条件下的表达调控情况。 3. NCBI:National Center for Biotechnology Information.是隶属于美国国立医学图书馆(NLM)的综合性数据库,提供生物信息学方面的研究和服务。 4. EMBL:European Molecular Biology Laboratory.EBI为其一部分,是综合性数据库,提供生物信息学方面的研究和服务。 5. 简并引物:PCR引物的某一碱基位置有多种可能的多种引物的混合体。 6. 序列比对:为确定两个或多个序列之间的相似性以至于同源性,而将它们按照一定的规律排列。

7. BLAST:Basic Local Alignment Search Tool.是通过比对(alignment)在数据库中寻找和查询序列(query)相似度很高的序列的工具。 8. ORF:Open Reading Frame.由起始密码子开始,到终止密码子结束可以翻译成蛋白质的核酸序列,一个未知的基因,理论上具有6个ORF。 9. 启动子:是RNA聚合酶识别、结合并开始转录所必须的一段DNA序列。原核生物启动子由上游调控元件和核心启动子组成,核心启动子包括-35区(Sextama box)TTGACA,-10区(Pribnow Box)TATAAT,以及+1区。真核生物启动子包括远上游序列和启动子基本元件构成,启动子基本元件包括启动子上游元件(GC岛,CAAT盒),核心启动子(TATA Box,+1区帽子位点)组成。 10. motif:模体,基序,是序列中局部的保守区域,或者是一组序列中共有的一小段序列模式。 11. 分子进化树:通过比较生物大分子序列的差异的数值重建的进化树。 12. 相似性:序列比对过程中用来描述检测序列和目标序列之间相似DNA碱基或氨基酸残基序列所占的比例。 13. 同源性:两个基因或蛋白质序列具有共同祖先的结论。

生物信息学题库

■一、选择题: 1.以下哪一个是mRNA条目序列号: A. J01536■. NM_15392 C. NP_52280 D. AAB134506 2.确定某个基因在哪些组织中表达的最直接获取相关信息方式是:■. Unigene B. Entrez C. LocusLink D. PCR 3.一个基因可能对应两个Unigene簇吗?■可能 B. 不可能 4.下面哪种数据库源于mRNA信息:■dbEST B. PDB C. OMIM D. HTGS 5.下面哪个数据库面向人类疾病构建: A. EST B. PDB ■. OMIM D. HTGS 6.Refseq和GenBank有什么区别: A. Refseq包括了全世界各个实验室和测序项目提交的DNA序列B. GenBank提供的是非冗余序列 ■. Refseq源于GenBank,提供非冗余序列信息D. GenBank源于Refseq 7.如果你需要查询文献信息,下列哪个数据库是你最佳选择: A. OMIM B. Entrez ■PubMed D. PROSITE 8.比较从Entrez和ExPASy中提取有关蛋白质序列信息的方法,下列哪种说法正确:A. 因为GenBank的数据比EMBL更多,Entrez给出的搜索结果将更多B. 搜索结果很可能 一样,因为GenBank和EMBL的序列数据实际一样■搜索结果应该相当,但是ExPASy中的SwissProt记录的输出格式不同 9.天冬酰胺、色氨酸和酪氨酸的单字母代码分别对应于:■N/W/Y B. Q/W/Y C. F/W/Y D. Q/N/W 10.直系同源定义为:■不同物种中具有共同祖先的同源序列B. 具有较小的氨基酸一致性但是有较大的结构相似性的同源序列 C. 同一物种中由基因复制产生的同源序列 D. 同一物种中具有相似的并且通常是冗余的功能的同源序列 11.下列那个氨基酸最不容易突变: A. 丙氨酸B. 谷氨酰胺 C. 甲硫氨酸■半胱氨酸 12.PAM250矩阵定义的进化距离为两同源序列在给定的时间有多少百分比的氨基酸发生改变: A. 1% B. 20%■. 80% D. 250% 13.下列哪个句子最好的描述了两个序列全局比对和局部比对的不同:A. 全局比对通常用于比对DNA序列,而局部比对通常用于比对蛋白质序列B. 全局比对允许间隙,而局 部比对不允许C. 全局比对寻找全局最大化,而局部比对寻找局部最大化■全局比对比对整体序列,而局部比对寻找最佳匹配子序列 14.假设你有两条远源相关蛋白质序列。为了比较它们,最好使用下列哪个BLOSUM和PAM矩阵:■BLOSUM45和PAM250 B. BLOSUM45和PAM 1 C. BLOSUM80和PAM250 D. BLOSUM10和PAM1 15.与PAM打分矩阵比较,BLOSUM打分矩阵的最大区别是:A. 最好用于比对相关性高的蛋白B. 它是基于近相关蛋白的全局多序列比对 ■它是基于远相关蛋白的局部多序列比对D. 它结合了全局比对和局部比对 16.如果有一段DNA序列,它可能编码多少种蛋白质序列: A. 1 B. 2 C. 3 ■. 6 17.要在数据库查询一段与某DNA序列编码蛋白质最相似的序列,应选择: A. blastn B. blastp C. tblastn D. tblastp■blastx 18.为什么ClustalW(一个采用了Feng-Doolittle渐进比对算法的程序)不报告E值:A. ClustalW报告E值■使用了全局比对 C. 使用了局部比对 D. 因为是多序列比对 19.Feng-Doolittle方法提出“一旦是空隙,永远是空隙”规则的依据是:A. 保证空隙不会引物序列加入而填充B. 假定进化早期分歧的序列有较高优先级别■假定最近序列空隙应 该保留 D. 假定最远序列空隙应该保留 20.根据分子钟假说:A. 所有蛋白质都保持一个相同的恒定进化速率 B. 所有蛋白质的进化速率都与化石记录相符合C. 对于每一个给定的蛋白质,分子进化的速率是逐 渐减慢的,就如同不准时的钟■对于每一个给定的蛋白质,其分子进化的速率在所有的进化分支上大致是恒定 21.系统发生树的两个特征是: A. 进化分支和进化节点■树的拓扑结构和分支长度C. 进化分支和树根D. 序列比对和引导检测方法 22.下列哪一个是基于字母特征的系统发生分析的算法:A. 邻位连接法(NJ法)B. Kimura算法■最大似然法(ML)D. 非加权平均法(UPGMA) 23.基于字母特征和基于距离的系统发生分析的算法的基本差异是:■基于字母特征的算法没有定义分支序列的中间数据矩阵 B. 基于字母特征的算法可应用于DNA或者蛋白质序列,而基于距离仅能用于DNA C. 基于字母特征的算法无法运用简约算法 D. 基于字母特征的算法的进化分支与进化时间无关 24.一个操作分类单元(OTU)可指:A. 多序列比对■蛋白质序列C. 进化分支D. 进化节点 25.构建进化树最直接的错误来源是:■多序列比对错误B. 采样的算法差异C. 假设进化分支是单一起源D. 尝试推测基因的进化关系 26.第一个被完整测定的基因组序列是:A. 啤酒酵母的3号染色体B. 流感病毒■ФX174 D. 人类基因组 27.普通的真核生物线粒体基因组编码大约多少个蛋白质:■10 B. 100 C. 1000 D. 10000 28.根据基因组序列预测蛋白质编码基因的算法的最大问题是:A. 软件太难使用■. 假阳性率太高,许多不是外显子的序列部分被错误指定C. 假阳性率太高,许 多不是外显子功能未知 D. 假阴性率太高,丢失太多外显子位点 29.HIV病毒亚型的系统演化研究可以:A. 证实HIV病毒是由牛病毒演化而来■. 用于指导开发针对保守蛋白的疫苗C. 证实哪些人类组织最容易遭受病毒侵染 30.一个典型的细菌基因组大小约为多少bp:A. 20000■. 200000 C. 2000000 D. 20000000

生物信息学试题整理

UTR的含义是(B ) A.编码区 B. 非编码区 C. motif的含义是(D )。 A.基序 B. 跨叠克隆群 C. algorithm 的含义是(B )。 A.登录号 B. 算法 C. RGR^ (D )。 A.在线人类孟德尔遗传数据 D.水稻基因组计划 下列Fasta格式正确的是(B) 低复杂度区域 D. 幵放阅读框 碱基对 D. 结构域 比对 D. 类推 B. 国家核酸数据库 C. 人类基因组计划 A. seql: agcggatccagacgctgcgtttgctggctttgatgaaaactctaactaaacactccctta B. >seq1 agcggatccagacgctgcgtttgctggctttgatgaaaactctaactaaacactccctta C. seq1:agcggatccagacgctgcgtttgctggctttgatgaaaactctaactaaacactccctta D. >seq1agcggatccagacgctgcgtttgctggctttgatgaaaactctaactaaacactccctta 如果我们试图做蛋白质亚细胞定位分析,应使用(D) A. NDB 数据库 B. PDB 数据库 C. GenBank 数据库 D. SWISS-PROT 数

据库 Bioinformatics 的含义是(A )。 A. 生物信息学 B. 基因组学 C. 蛋白质组学 D. 表观遗传学 Gen Bank中分类码PLN表示是(D )。 A.哺乳类序列 B. 细菌序列 C.噬菌体序列 D. 植物、真菌和藻类序列 ortholog 的含义是(A)0 A.直系同源 B.旁系同源 C.直接进化 D.间接进化 从cDNA文库中获得的短序列是(D )o A. STS B. UTR C. CDS D. EST con tig的含义是(B )o A.基序 B. 跨叠克隆群 C. 碱基对 D. 结构域 TAIR (AtDB)数据库是(C)o A.线虫基因组 B. 果蝇基因组 C. 拟南芥数据库 D. 大肠杆菌基因组ORF的含义是(D )o A.调控区 B. 非编码区 C.低复杂度区域 D. 幵放阅读框

生物信息学复习资料全

一、名词解释(31个) 1.生物信息学:广义:应用信息科学的方法和技术,研究生物体系和生物过程 息的存贮、信息的涵和信息的传递,研究和分析生物体细胞、组织、器官的生理、病理、药理过程中的各种生物信息,或者也可以说成是生命科学中的信息科学。狭义:应用信息科学的理论、方法和技术,管理、分析和利用生物分子数据。 2.二级数据库:对原始生物分子数据进行整理、分类的结果,是在一级数据库、 实验数据和理论分析的基础上针对特定的应用目标而建立的。 3.多序列比对:研究的是多个序列的共性。序列的多重比对可用来搜索基因组 序列的功能区域,也可用于研究一组蛋白质之间的进化关系。 4.系统发育分析:是研究物种进化和系统分类的一种方法,其常用一种类似树 状分支的图形来概括各种(类)生物之间的亲缘关系,这种树状分支的图形称为系统发育树。 5.直系同源:如果由于进化压力来维持特定模体的话,模体中的组成蛋白应该 是进化保守的并且在其他物种中具有直系同源性。 指的是不同物种之间的同源性,例如蛋白质的同源性,DNA序列的同源性。(来自百度) 6.旁系(并系)同源:是那些在一定物种中的来源于基因复制的蛋白,可能会 进化出新的与原来有关的功能。用来描述在同一物种由于基因复制而分离的同源基因。(来自百度) 7.FASTA序列格式:将一个DNA或者蛋白质序列表示为一个带有一些标记的 核苷酸或氨基酸字符串。 8.开放阅读框(ORF):是结构基因的正常核苷酸序列,从起始密码子到终止 密码子的阅读框可编码完整的多肽链,其间不存在使翻译中断的终止密码子。(来自百度) 9.结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区 域,折叠得较为紧密,各行其功能,称为结构域。 10.空位罚分:序列比对分析时为了反映核酸或氨基酸的插入或缺失等而插入空 位并进行罚分,以控制空位插入的合理性。(来自百度) 11.表达序列标签:通过从cDNA文库中随机挑选的克隆进行测序所获得的部分 cDNA的3’或5’端序列。(来自文献) 12.Gene Ontology 协会: 13.HMM 隐马尔可夫模型:将核苷酸序列看成一个随机序列,DNA序列的编 码部分与非编码部分在核苷酸的选用频率上对应着不同的Markov模型。14.一级数据库:数据库中的数据直接来源于实验获得的原始数据,只经过简单 的归类整理和注释 15.序列一致性:指同源DNA顺序的同一碱基位置的相同的碱基成员, 或者蛋 白质的同一氨基酸位置的相同的氨基酸成员, 可用百分比表示。 16.序列相似性:指同源蛋白质的氨基酸序列中一致性氨基酸和可取代氨基酸所 占的比例。 17.Blastn:是核酸序列到核酸库中的一种查询。库中存在的每条已知序列都将 同所查序列作一对一地核酸序列比对。(来自百度) 18.Blastp:是蛋白序列到蛋白库中的一种查询。库中存在的每条已知序列将逐 一地同每条所查序列作一对一的序列比对。(来自百度)

生物信息学课后题及答案-推荐下载

生物信息学课后习题及答案 (由10级生技一、二班课代表整理) 一、绪论 1.你认为,什么是生物信息学? 采用信息科学技术,借助数学、生物学的理论、方法,对各种生物信息(包括核酸、蛋 白质等)的收集、加工、储存、分析、解释的一门学科。2.你认为生物信息学有什么用?对你的生活、研究有影响吗?(1)主要用于: 在基因组分析方面:生物序列相似性比较及其数据库搜索、基因预测、基因组进化和分 子进化、蛋白质结构预测等 在医药方面:新药物设计、基因芯片疾病快速诊断、流行病学研究:SARS 、人类基因组计划、基因组计划:基因芯片。 (2)指导研究和实验方案,减少操作性实验的量;验证实验结果;为实验结果提供更多的支持数据等材料。 3.人类基因组计划与生物信息学有什么关系? 人类基因组计划的实施,促进了测序技术的迅猛发展,从而使实验数据和可利用信息急剧增加,信息的管理和分析成为基因组计划的一项重要的工作 。而这些数据信息的管理、分析、解释和使用促使了生物信息学的产生和迅速发展。 4简述人类基因组研究计划的历程。 通过国际合作,用15年时间(1990-2005)至少投入30亿美元,构建详细的人类基因组遗传图和物理图,确定人类DNA 的全部核苷酸序列,定位约10万基因,并对其他生物进行类似研究。 1990,人类基因组计划正式启动。 1996,完成人类基因组计划的遗传作图,启动模式生物基因组计划。 1998完成人类基因组计划的物理作图,开始人类基因组的大规模测序。Celera 公司加入,与公共领域竞争启动水稻基因组计划。 1999,第五届国际公共领域人类基因组测序会议,加快测序速度。 2000,Celera 公司宣布完成果蝇基因组测序,国际公共领域宣布完成第一个植物基因组——拟南芥全基因组的测序工作。 2001,人类基因组“中国卷”的绘制工作宣告完成。 2003,中、美、日、德、法、英等6国科学家宣布人类基因组序列图绘制成功,人类基因组计划的.目标全部实现。2004,人类基因组完成图公布。 2.我国自主知识产权的主要基因组测序计划有哪些?水稻(2002),家鸡(2004),家蚕(2007),家猪(2012),大熊猫(2010) 2.第一章 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

生物信息学期末考试重点

1、生物信息学(Bioinformatics)是研究生物信息的采集、处理、存储、传播,分析和解 释等各方面的学科,也是随着生命科学和计算机科学的迅猛发展,生命科学和计 算机科学相结合形成的一门新学科。它通过综合利用生物学,计算机科学和信息技 术而揭示大量而复杂的生物数据所赋有的生物学奥秘。 2、数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它产生于 距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后, 数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方 式。数据库有很多种类型,从最简单的存储有各种数据的表格到能够进行海量数 据存储的大型数据库系统都在各个方面得到了广泛的应用。 3、表达序列标签从一个随机选择的cDNA 克隆进行5’端和3’端单一次测序获得的短 的cDNA 部分序列,代表一个完整基因的一小部分,在数据库中其长度一般从20 到7000bp 不等,平均长度为360 ±120bp。EST 来源于一定环境下一个组织总 mRNA 所构建的cDNA 文库,因此EST也能说明该组织中各基因的表达水平。 4、开放阅读框是基因序列中的一段无终止序列打断的碱基序列,可编码相应的蛋白。 ORF识别包括检测六个阅读框架并决定哪一个包含以启动子和终止子为界限的 DNA序列而其内部不包含启动子或终止子,符合这些条件的序列有可能对应一个 真正的单一的基因产物。ORF的识别是证明一个新的DNA序列为特定的蛋白质编 码基因的部分或全部的先决条件。 5、蛋白质的一级结构在每种蛋白质中氨基酸按照一定的数目和组成进行排列,并进 一步折叠成特定的空间结构前者我们称为蛋白质的一级结构,也叫初级结构或基 本结构。蛋白质一级结构是理解蛋白质结构、作用机制以及与其同源蛋白质生理 功能的必要基础。 6、基因识别是生物信息学的一个重要分支,使用生物学实验或计算机等手段识别 DNA序列上的具有生物学特征的片段。基因识别的对象主要是蛋白质编码基因, 也包括其他具有一定生物学功能的因子,如RNA基因和调控因子。基因识别是基 因组研究的基础。

生物信息学中的机器学习方法

生物信息学中的机器学习方法 摘要:生物信息学是一门交叉学科,包含了生物信息的获取、管理、分析、解释和应用等方面,兴起于人类基因组计划。随着人类基因组计划的完成与深入,生物信息的研究工作由原来的计算生物学时代进入后基因组时代,后基因组时代中一个最重要的分支就是系统生物学。本文从信息科学的视角出发,详细论述了机器学习方法在计算生物学和系统生物学中的若干应用。 关键词:生物信息学;机器学习;序列比对;人类基因组;生物芯片 1.相关知识 1.1 生物信息学 生物信息学时生物学与计算机科学以及应用数学等学科相互交叉而形成的一门新兴学科。它综合运用生物学、计算机科学和数学等多方面知识与方法,来阐明和理解大量生物数据所包含的生物学意义,并应用于解决生命科学研究和生物技术相关产业中的各种问题。 生物信息学主要有三个组成部分:建立可以存放和管理大量生物信息学数据的数据库;研究开发可用于有效分析与挖掘生物学数据的方法、算法和软件工具;使用这些工具去分析和解释不同类型的生物学数据,包括DNA、RNA和蛋白质序列、蛋白质结构、基因表达以及生化途径等。 生物信息学这个术语从20世纪90年代开始使用,最初主要指的是DNA、RNA及蛋白质序列的数据管理和分析。自从20世纪60年代就有了序列分析的计算机工具,但是那时并未引起人们很大的关注,直到测序技术的发展使GenBank之类的数据库中存放的序列数量出现了迅猛的增长。现在该术语已扩展到几乎覆盖各种类型的生物学数据,如蛋白质结构、基因表达和蛋白质互作等。 目前的生物信息学研究,已从早期以数据库的建立和DNA序列分析为主的阶段,转移到后基因组学时代以比较基因组学(comparative genomics)、功能基因组学(functional genomics)和整合基因组学(integrative genomics)为中心的新阶段。生物信息学的研究领域也迅速扩大。生物信息学涉及生物学、计算机学、数学、统计学等多门学科,从事生物信息学研究的工作者或生物信息学家可以来自以上任何一个领域而侧重于生物信息学的不同方面。事实上,我们今天正需要具备各种背景知识、才能和研究思路的研究人员,集思广益

2019版国科大生物信息学期末考试复习题

中科院生物信息学期末考试复习题 陈润生老师部分: 1.什么是生物信息学,如何理解其含义?为什么在大规模测序研究中,生物信息学至关重要? 答:生物信息学有三个方面的含义: 1)生物信息学是一个学科领域,包含着基因组信息的获取、处理、存储、分配、分析和 解释的所有方面,是基因组研究不可分割的部分。 2)生物信息学是把基因组DNA序列信息分析作为源头,破译隐藏在DNA序列中的遗传语 言,特别是非编码区的实质;同时在发现了新基因信息之后进行蛋白质空间结构模拟和预测;其本质是识别基因信号。 3)生物信息学的研究目标是揭示“基因组信息结构的复杂性及遗传语言的根本规律”。它 是当今自然科学和技术科学领域中“基因组、“信息结构”和“复杂性”这三个重大科学问题的有机结合。 2.如何利用数据库信息发现新基因,其算法本质是什么? 答:利用数据库资源发现新基因,根据数据源不同,可分2种不同的查找方式: 1)从大规模基因组测序得到的数据出发,经过基因识别发现新基因: (利用统计,神经网络,分维,复杂度,密码学,HMM,多序列比对等方法识别特殊序列,预测新ORF。但因为基因组中编码区少,所以关键是“数据识别”问题。)利用大规模拼接好的基因组,使用不同数据方法,进行标识查找,并将找到的可能的新基因同数据库中已有的基因对比,从而确定是否为新基因。可分为:①基于信号,如剪切位点、序列中的启动子与终止子等。②基于组分,即基因家族、特殊序列间比较,Complexity analysis,Neural Network 2)利用EST数据库发现新基因和新SNPs: (归属于同一基因的EST片断一定有overlapping,通过alignment可组装成一完整的基因,但EST片断太小,不存在数据来源,主要是拼接问题) 数据来源于大量的序列小片段,EST较短,故关键在正确拼接。方法有基因组序列比对、拼接、组装法等。经常采用SiClone策略。其主要步骤有:构建数据库;将序列纯化格式标准化;从种子库中取序列和大库序列比对;延长种子序列,至不能再延长;放入contig库①构建若干数据库:总的纯化的EST数据库,种子数据库,载体数据库,杂质、引物数据库,蛋白数据库,cDNA数据库; ②用所用种子数据库和杂质、引物数据库及载体数据库比对,去除杂质; ③用种子和纯化的EST数据库比对 ④用经过一次比对得到的长的片段和蛋白数据库、cDNA数据库比较,判断是否为已有序列,再利用该大片段与纯化的EST数据库比对,重复以上步骤,直到序列不能再延伸; ⑤判断是否为全长cDNA序列。 (利用EST数据库:原理:当测序获得一条EST序列时,它来自哪一个基因的哪个区域是未知的(随机的),所以属于同一个基因的不同EST序列之间常有交叠的区域。根据这种“交叠”现象,就能找出属于同一个基因的所有EST序列,进而将它们拼接成和完整基因相对应的全长cDNA序列。而到目前为止,公共EST数据库(dbEST)中已经收集到约800万条的人的EST序列。估计这些序列已覆盖了人类全部基因的95%以上,平均起来每个基因有10倍以上的覆盖率。)

生物信息学试题复习参考(张弓)

2014-2015学年生物信息学期末考试题 写在前面:这是我考试时候写的答案的大致内容,具体文字我已经不记得了,给大家一个参考,希望对大家复习有帮助。因为我也是扣了很多分,所以答案也有很多错的,大家不要尽信。祝大家考试顺利。 一、实验设计和基础分析 以下qPT-PCR实验方案有哪些错误?请标出错误,并说明原因和写出正确方案。 目的:比较肺癌细胞迁移前后的X基因转录水平表达量 方法:(1)用Trizol法提取细胞总RNA,并用跑胶、OD260/280等方法确认无降解。 (2)用poly-dT引物进行反转录 (3)设计基因特异性PCR引物,用qPCR仪测定X基因和GAPDH基因的Ct值。GAPDH作为内参。 (4)以2^-ΔΔCt方法计算X基因相对于GAPDH的相对含量 (5)比较迁移前后的相对表达量,做三个重复,用t-test进行统计检验,P<0.05为差异显著 1.错误:不能用GAPDH基因作为定量标准;原因:癌症迁移前后GAPDH基因的表达量已经改变了,做定量标准不准确;方案:采用外参(如:其他物种的基因) 2.错误:不能用t-test进行统计检验;原因:t-test进行统计检验的前提是数据呈正态分布,基因表达量不一定呈正太分布;方案:将数据取log10,对数化。 上述两个是我考试时候写的答案,后来经提醒:还发现了一个错误:不能用poly-dT引物进行反转录;原因:。。。。。。;方案:用Oligodt进行逆转录。 二、双序列比对的生物学意义解释 两种细菌的同源蛋白质endonuclease III,长度都为200氨基酸左右,其功能相同,蛋白质序列使用BLAST 可以比对上,同源性高达57%,但其编码DNA序列用BLAST却无法比对上,为了尽可能提高亲缘关系较远的序列的比对效率,比对已经使用BLAST网站上Somewhat similar sequence选项,默认参数(见下图):

生物信息学试题

华中农业大学研究生课程考试试卷(B) 考试科目名称:生物信息学考试时间:2011年6月15日备注:所有答案均要写在答题纸上,否则,一律无效。 提示:(1)2小时答题时间;(2)课堂开卷,独立完成;(3)答题简明扼要 1.请查询序列AK101913(GenBank注册号)的相关信息并回答下列问题:(1)若用限制性内切酶PstΙ消化这条序列,可以得到几个片段?(4分) (2)该序列编码的蛋白质有多少个氨基酸?哪种氨基酸所占比例最高?等电点是多少?是否糖蛋白质?如果是糖蛋白,请给出具体类型及糖基化位点。(10分)(3)请分析该序列编码蛋白的保守结构域,根据你的分析,该蛋白可能具有什么样的生物学功能?(6分) 2.任选一种基因结构分析工具,预测序列J04982(GenBank注册号)的基因结构及其编码产物的理化性质。请注明分析工具的名称,以及是否采用某一物种的数据作为参照。 (1)根据你所选用的分析方法,这条序列编码多少个基因?分别包含有多少个exon?预测基因(如有多个基因请注明是第几个基因)是否有转录起点和PolyA加尾信号? 分析结果是否与GenBank提供的注释信息相符合?(10分) (2)预测的第一个基因编码的蛋白质是否包含有信号肽(注明切割位点)和跨膜区域(注明跨膜区)?预测该蛋白的亚细胞定位。(10分) 注:3a、3b任选一题 3a.RZ220是水稻分子标记遗传连锁图上的一个分子标记,请回答下列有关问题:(1)这个分子标记/位点被定位于水稻的第几号染色体?在你检索的网站(请注明网址)多少水稻的遗传连锁图使用了该分子标记?请列出分子标记遗传连锁图的名称及 其类型(Map Type)(10分) (2)RZ220属于什么类型的分子标记?指出一个与该标记连锁或附近的QTL(注明其编号),并说明该QTL控制什么性状,列出定位该QTL的研究的相关文献。(10分) 3b.BM6506是羊分子标记遗传连锁图上的一个分子标记或位点,请回答下列有关问题:(请注明分析方法名称) (1)这个分子标记/位点被定位于羊的第几号染色体?(4分) (2)在SM1分子标记遗传连锁图上与这个分子标记/位点紧密连锁(两侧)的分子标记/位点的名称是什么?这个分子标记/位点在SM1分子标记遗传连锁图上的遗传位置 是多少?(8分) (3)列出一篇与该标记相关的文献及其在PubMed中的PMID号。(8分) 4.分析六条蛋白质序列(BAF63641、ABO31104、ACO11338、ABH07379、AAF65254、AAB38498)的同源性并回答下列问题(请注明分析方法名称): (1)哪两条序列的进化关系最近,一致性(Identity)是多少?相似度(Similarity/Positive)是多少?(10分)

相关文档