文档库 最新最全的文档下载
当前位置:文档库 › 《经济学百年(尔雅)》在线作业答案(随机1)

《经济学百年(尔雅)》在线作业答案(随机1)

《经济学百年(尔雅)》在线作业答案(随机1)

16秋学期《经济学百年(尔雅)》在线作业

一、单选题(共 35 道试题,共 70 分。)

1. 李斯特的方法论特别重视?

A. 政治

B. 科学

C. 历史

D. 社会

正确答案:C

2. “128模式”是那个国家的?

A. 英国

B. 美国

C. 法国

D. 德国

正确答案:B

3. 落后国家的政府也很容易是不英明的,这是因为?

A. 发展趋势落后

B. 国民观念落后

C. 制度设计落后

D. 政府选择的更迭

正确答案:D

4. 弗里德曼在哪一年获得诺贝尔经济学奖。

A. 1987年

B. 1938年

C. 1954年

D. 1976年

正确答案:D

5. 马歇尔认为企业家是?

A. 管理者

B. 劳动者

C. 监督者

D. 企业家

正确答案:A

6. 现实中的社会主义是谁的贡献?

A. 马克思

B. 威廉·佩蒂

C. 恩格斯

D. 列宁

正确答案:D

7. 《以自由看待发展》是谁的专著?

正态分布随机数生成算法

概率论与数理统计课程设计 题目:正态分布随机数生成算法 要编程得到服从均匀分布的伪随机数是容易的。C语言、Java语言等都提供了相应的函

数。但是要想生成服从正态分布的随机数就没那么容易了。 得到服从正态分布的随机数的基本思想是先得到服从均匀分布的随机数,再将服从均匀分布的随机数转变为服从正态分布。接下来就先分析三个从均匀分布到正态分布转变的方法。然后编程实现其中的两个方法并对程序实现运作的效果进行统计分析。 1、 方法分析 (1) 利用分布函数的反函数 若要得到分布函数为F(x)的随机变量Y 。 可令1()Y F u -=, 其中u 是服从均匀分布的随机变量,有 1 ()(())() P Y y P U F y F y -≤=≤= 因而,对于任意的分布函数,只要求出它的反函数,就可以由服从均匀分布的随机变量实例来生成服从该分布函数的随机变量实例。 现在来看正态分布的分布函数,对于2 ~(,)X N μσ,其分布函数为: 2 2()21 ()t x F x e μσ ---∞ = ? 显然,要想求其反函数是相当困难的,同时要想编程实现也很复杂。可见,用此种方法来生成服从正态分布的随机变量实例并不可取。 (2) 利用中心极限定理 第二种方法利用林德伯格—莱维(Lindeberg —Levi)中心极限定理:如果随机变量序列 12,,,,n X X X 独立同分布,并且具有有限的数学期望和方差 ()()2 ,0(1,2,),i i E X D X i μσ ==>= 则对一切x R ∈有 2 2 1lim t n x i n i P X n x dt μ- -∞ →∞ =? ?? -≤= ????? ∑? 因此,对于服从均匀分布的随机变量i X ,只要n 充分大, 11 n i i X n μ=? -? ?∑就服从()0,1N 。我们将实现这一方法。 (3) 使用Box Muller 方法 先证明2 2 2x e dx π-∞-∞ =? : 令2 2 x I e dx -∞-∞ = ? ,则

随机数生成器

随机数生成器 一、随机数 1.1随机数的概念 数学上是这样定义随机数的:在连续型随机变量的分布中,最简单而且最基本的分布是单位均匀分布。由该分布抽取的简单子样称为随机数序列,其中每一个体称为随机数。单位均匀分布即[0,1]上的均匀分布。由随机数序列的定义可知,ξ1,ξ2,…是相互独立且具有相同单位均匀分布的随机数序列。也就是说,独立性、均匀性是随机数必备的两个特点。 1.2随机数的分类 随机数一般分为伪随机数和真随机数。利用数学算法产生的随机数属于伪随机数。利用物理方法选取自然随机性产生的随机数可以看作真随机数。实用中是使用随机数所组成的序列,根据所产生的方式,随机数序列再可以分为两类: 1.伪随机数序列 伪随机数序列由数学公式计算所产生。实质上,伪随机数并不随机,序列本身也必然会重复,但由于它可以通过不同的设计产生满足不同要求的序列且可以复现(相同的种子数将产生相同的序列),因而得到广泛的应用。由伪随机数发生器所产生的伪随机数序列,只要它的周期足够长并能通过一系列检验,就可以在一定的范围内将它当作真随机数序列来使用。 2.真随机数序列 真随机数序列是不可预计的,因而也不可能出现周期性重复的真正的随机数序列。它只能由随机的物理过程所产生,如电路的热噪声、宇宙噪声、放射性衰变等。 按照不同的分类标准,随机数还可分为均匀随机数和非均匀随机数,例如正态随机数。 1.3随机数的衡量标准 在实际模拟过程中,我们一般只需要产生区间[0,1]上的均匀分布随机数,因为其他分布的随机数都是由均匀分布的随机数转化来的。 实用中的均匀随机数主要通过以下三个方面来衡量其随机性能的高低。 1.周期性 伪随机数序列是由具有周期性的数学公式计算产生,其本身也必然会表现出周期性,即序列中的一段子序列与另一段子序列相同。它的周期必须足够长,才能为应用提供足够多的可用数据。只有真随机数序列才能提供真正的、永不重复的随机数序列。 2.相关性 随机数发生器所产生的一个随机数序列中的各个随机数应该不相关,所产生的各个随机数序列中的随机数也应该不相关。真随机数序列自然地满足这种不相关性。对于伪随机数发生器,应该仔细地设计所用的数学公式,以尽量满足不相关的要求。 3.分布均匀性 包括蒙特卡洛计算在内的大多数应用都要求所采用的随机数序列服从均匀分布,即同一范围内的任一个数出现的概率相同。从均匀分布的随机数序列也很容易导出其它类型分布的

随机过程习题答案A

随机过程习题解答(一) 第一讲作业: 1、设随机向量的两个分量相互独立,且均服从标准正态分布。 (a)分别写出随机变量和的分布密度 (b)试问:与是否独立?说明理由。 解:(a) (b)由于: 因此是服从正态分布的二维随机向量,其协方差矩阵为: 因此与独立。 2、设和为独立的随机变量,期望和方差分别为和。 (a)试求和的相关系数; (b)与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。 解:(a)利用的独立性,由计算有: (b)当的时候,和线性相关,即 3、设是一个实的均值为零,二阶矩存在的随机过程,其相关函数为 ,且是一个周期为T的函数,即,试求方差 函数。 解:由定义,有: 4、考察两个谐波随机信号和,其中:

式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。 (a)求的均值、方差和相关函数; (b)若与独立,求与Y的互相关函数。 解:(a) (b) 第二讲作业: P33/2.解: 其中为整数,为脉宽 从而有一维分布密度: P33/3.解:由周期性及三角关系,有: 反函数,因此有一维分布: P35/4. 解:(1) 其中 由题意可知,的联合概率密度为:

利用变换:,及雅克比行列式: 我们有的联合分布密度为: 因此有: 且V和相互独立独立。 (2)典型样本函数是一条正弦曲线。 (3)给定一时刻,由于独立、服从正态分布,因此也服从正态分布,且 所以。 (4)由于: 所以因此 当时, 当时, 由(1)中的结论,有: P36/7.证明: (1) (2) 由协方差函数的定义,有:

P37/10. 解:(1) 当i =j 时;否则 令 ,则有 第三讲作业: P111/7.解: (1)是齐次马氏链。经过次交换后,甲袋中白球数仅仅与次交换后的状态有关,和之前的状态和交换次数无关。 (2)由题意,我们有一步转移矩阵: P111/8.解:(1)由马氏链的马氏性,我们有: (2)由齐次马氏链的性质,有: (2)

各种分布的随机数生成算法

各型分布随机数的产生算法 随机序列主要用概率密度函数(PDF〃Probability Density Function)来描述。 一、均匀分布U(a,b) ?1x∈[a,b]? PDF为f(x)=?b?a?0〃其他? 生成算法:x=a+(b?a)u〃式中u为[0,1]区间均匀分布的随机数(下同)。 二、指数分布e(β) x?1?exp(?x∈[0,∞)βPDF为f(x)=?β ?0〃其他? 生成算法:x=?βln(1?u)或x=?βln(u)。由于(1?u)与u同为[0,1]均匀分布〃所以可用u 替换(1?u)。下面凡涉及到(1?u)的地方均可用u替换。 三、瑞利分布R(μ) ?xx2 exp[?x≥0?回波振幅的PDF为f(x)=?μ2 2μ2 ?0〃其他? 生成算法:x=?2μ2ln(1?u)。 四、韦布尔分布Weibull(α,β) xα??αα?1?αβxexp[?(]x∈(0,∞)βPDF为f(x)=? ?0〃其他? 生成算法:x=β[?ln(1?u)]1/α 五、高斯(正态)分布N(μ,σ2) ?1(x?μ)2 exp[?]x∈?2PDF为f(x)=?2πσ 2σ ?0〃其他? 生成算法: 1?y=?2lnu1sin(2πu2)生成标准正态分布N(0,1)〃式中u1和u2是相互独立的[0,1]区间

均匀分布的随机序列。 2?x=μ+σy产生N(μ,σ2)分布随机序列。 六、对数正态分布Ln(μ,σ2) ?1(lnx?μ)2 exp[?x>0PDF为f(x)=?2πσx 2σ2 ?0〃其他? 生成算法: 1?产生高斯随机序列y=N(μ,σ2)。 2?由于y=g(x)=lnx〃所以x=g?1(y)=exp(y)。 七、斯威林(Swerling)分布 7.1 SwerlingⅠ、Ⅱ型 7.1.1 截面积起伏 σ?1?exp[σ≥0?σ0截面积的PDF为f(σ)=?σ0〃【指数分布e(σ0)】 ?0〃其他? 生成算法:σ=?σ0ln(1?u)。 7.1.2 回波振幅起伏 ?AA2 ?exp[?2]A≥0〃式中A2=σ〃2A02=σ0。回波振幅的PDF为f(A)=?A02【瑞利分布R(A0)】2A0?0〃其他? 生成算法:A=?2A02ln(1?u)=σ0ln(1?u)。也可由A2=σ得A==?0ln(1?u) 7.2 SwerlingⅢ、Ⅳ型 7.2.1 截面积起伏 2σ?4σ]σ≥0?2exp[?σσ截面积的PDF为f(σ)=?0〃 0?0〃其他? 生成算法:σ=?式中u1和u2是相互独立的[0,1]区间均匀分布随机序列。 [ln(1?u1)+ln(1?u2)]〃2

MATLAB随机数生成

2009年03月20日星期五 03:25 P.M. rand(n):生成0到1之间的n阶随机数方阵 rand(m,n):生成0到1之间的m×n 的随机数矩阵 (现成的函数) 另外: Matlab随机数生成函数 betarnd 贝塔分布的随机数生成器 binornd 二项分布的随机数生成器 chi2rnd 卡方分布的随机数生成器 exprnd 指数分布的随机数生成器 frnd f分布的随机数生成器 gamrnd 伽玛分布的随机数生成器 geornd 几何分布的随机数生成器 hygernd 超几何分布的随机数生成器 lognrnd 对数正态分布的随机数生成器 nbinrnd 负二项分布的随机数生成器 ncfrnd 非中心f分布的随机数生成器 nctrnd 非中心t分布的随机数生成器 ncx2rnd 非中心卡方分布的随机数生成器 normrnd 正态(高斯)分布的随机数生成器 poissrnd 泊松分布的随机数生成器 raylrnd 瑞利分布的随机数生成器 trnd 学生氏t分布的随机数生成器 unidrnd 离散均匀分布的随机数生成器 unifrnd 连续均匀分布的随机数生成器 weibrnd 威布尔分布的随机数生成器 (From:https://www.wendangku.net/doc/5a16371164.html,/question/30033707.html) matlab生成随机数据 matlab本身提供很多的函数来生成各种各样的随机数据: normrnd 可以生成一定均值和标准差的正态分布 gamrnd 可以生成gamma分布的伪随机数矩阵 chi2rnd 可以生成卡方分布的伪随机数矩阵 trnd 可以生成t分布的伪随机数矩阵 frnd 可以生成f分布的伪随机数矩阵 raylrnd 可以生成rayleigh分布的伪随机数矩阵

第十二章 平稳随机过程

第十二章 平稳随机过程 §1 基本概念 定义1:已给s.p t X t X {=,}T t ∈,若1≥?n ,即T 中任意的,,,21n t t t Λ与 h t h t h t n +++,,,21Λ,n 维r.v ),,(21n t t t X X X Λ与),,(21h t h t h t n X X X +++Λ有相同 的n 维d.f 。即 ) ,,,;,,(),,() ,,(),,,;,,,(2121212121212121n n n h t h t h t n t t t n n x x x h t h t h t F x X x X x X P x X x X x X P x x x t t t F n n ΛΛΛΛΛΛ+++=≤≤≤=≤≤≤=+++ 则称s.p t X 是一个严(强,狭义)平稳过程。 当t X ?n 维d.l 时,则有 ),,;,,,(),,;,,,(21212121n n n n x x x h t h t h t f x x x t t t f ΛΛΛΛ+++= 若取n =1,则有),(),(1111x h t f x t f +=,特别,当T ∈0,可取,1t h -=则有),0(),(111x f x t f =。此时平稳过程t X 的一维d.l 与1t (时间)无关。于是 X X m dx x xf t X E μ=== ?+∞ ∞ -),0()(1 即t X 的均值是一个与时间无关的常数。 其方差 ?∞ ∞ -=-=-=.),0()(][2 22 X X X t t dx x f m x m X E X D σ也与时间t 无关的 常数。 而且T X 的二维d.l 也只依赖于.21t t -=τ即当2t h -=时,有 ).,;(),;0,(),;,(2121212121x x f x x t t f x x t t f τ∧ =-= 所以t X 与τ+t X 之间自相关为 ??∞∞-∞ ∞ -+== =+).(),;(),(21212 1ττττX t t X R dx dx x x f x x X X E t t R 它只依赖于.τ类似地τ+t t X X ,之间协方差为

随机数生成方法

University of Sydney School of Information Technologies Generating Random Variables Pseudo-Random Numbers Definition : A sequence of pseudo-random numbers ()i U is a deterministic sequence of numbers in []1,0 having the same relevant statistical properties as a sequence of random numbers. The most widely used method of generating pseudo-random numbers are the congruential generators: ()M X U M c aX X i i i i =+=?mod 1 for a multiplier a , shift c , and modulus M , all integers. The sequence is clearly periodic, with maximum period M . The values of a and c must be carefully chosen to maximise the period of the generator, and to ensure that the generator has good statistical properties. Some examples: M a c 259 1313 0 232 69069 1 231-1 630360016 0 232 2147001325 715136305 Reference: Ripley, Stochastic Simulation , Chapter 2

随机过程作业题及参考答案(第一章)

! 第一章 随机过程基本概念 P39 1. 设随机过程()0cos X t X t ω=,t -∞<<+∞,其中0ω是正常数,而X 是标准正态变量。试求()X t 的一维概率分布。 解: 1 当0cos 0t ω=,02 t k π ωπ=+ ,即0112t k πω??= + ??? (k z ∈)时, ()0X t ≡,则(){}01P X t ==. 2 当0cos 0t ω≠,02 t k π ωπ≠+ ,即0112t k πω?? ≠ + ??? (k z ∈)时, ()~01X N ,,()0E X ∴=,()1D X =. ¥ ()[]()00cos cos 0E X t E X t E X t ωω===????. ()[]()22 000cos cos cos D X t D X t D X t t ωωω===????. ()()20~0cos X t N t ω∴,. 则( )2202cos x t f x t ω- = ;. 2. 利用投掷一枚硬币的试验,定义随机过程为 ()cos 2t X t t π?=??,出现正面,出现反面 假定“出现正面”和“出现反面”的概率各为 12。试确定()X t 的一维分布函数12F x ?? ???;和()1F x ;,以及二维分布函数12112 F x x ? ? ?? ? ,;, 。

】 解: 00 11101222 11

正态分布随机数的产生

四院四队 正态分布随机数的产生 实验报告 2014年5月26日

正态分布随机数的产生 一、 实验简述 通过matlab 实现正态分布N(0,1)随机数的产生。 二、 历史背景 正态分布是最重要的一种概率分布。正态分布概念是由德国的数学家和天文学家Moivre 于1733年首次提出的,但由于德国数学家Gauss 率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。高斯是一个伟大的数学家,重要的贡献不胜枚举。但现今德国10马克的印有高斯头像的钞票,其上还印有正态分布的密度曲线。这传达了一种想法:在高斯的一切科学贡献中,其对人类文明影响最大者,就是这一项。在高斯刚作出这个发现之初,也许人们还只能从其理论的简化上来评价其优越性,其全部影响还不能充分看出来。这要到20世纪正态小样本理论充分发展起来以后。拉普拉斯很快得知高斯的工作,并马上将其与他发现的中心极限定理联系起来,为此,他在即将发表的一篇文章(发表于1810年)上加上了一点补充,指出如若误差可看成许多量的叠加,根据他的中心极限定理,误差理应有高斯分布。这是历史上第一次提到所谓“元误差学说”——误差是由大量的、由种种原因产生的元误差叠加而成。后来到1837年,海根(G.Hagen )在一篇论文中正式提出了这个学说。 其实,他提出的形式有相当大的局限性:海根把误差设想成个数很多的、独立同分布的“元误差” 之和,每只取两值,其概率都是1/2,由此出发,按狄莫佛的中心极限定理,立即就得出误差(近似地)服从正态分布。拉普拉斯所指出的这一点有重大的意义,在于他给误差的正态理论一个更自然合理、更令人信服的解释。因为,高斯的说法有一点循环论证的气味:由于算术平均是优良的,推出误差必须服从正态分布;反过来,由后一结论又推出算术平均及最小二乘估计的优良性,故必须认定这二者之一(算术平均的优良性,误差的正态性) 为出发点。但算术平均到底并没有自行成立的理由,以它作为理论中一个预设的出发点,终觉有其不足之处。拉普拉斯的理论把这断裂的一环连接起来,使之成为一个和谐的整体,实有着极重大的意义。 三、 实验步骤 设U 1,U 2相互独立同服从U(0,1),令 1 2 112(2lnU )cos(2U )X π=-

随 机 数 生 成 器

使用python实现伪随机数生成器 在前两天学习了使用python实现伪随机数的方法,今天是时候来做一个总结了。 首先要说明的是什么是随机数,真正的随机数是使用物理现象产生的:比如掷钱币、骰子、转轮、使用电子元件的噪音、核裂变等等。产生这些随机数的方法有很多种,而这些产生随机数的方法就称为随机数生成器。像前面说的由物理现象所产生的随机数发生器叫做物理性随机数发生器,它们的缺点是技术要求比较高。 但是在我们的实际生活中广泛应用的是伪随机数生成器,所谓的“伪”就是假的的意思,也就是说并不是真正的随机数。那么这些随机数是怎么实现的呢?这些数字是由固定的算法实现的,是有规律可循的,并不能实现真正的“随机”,但是它们具有类似于随机数的统计特征。这样的发生器叫做伪随机数发生器。 实现伪随机数的方法有很多种,如:平方取中法,线性同余法等方法。 下面主要介绍的是线性同余法,如C的rand函数和JAVA的java.util.Random类就是使用该方法实现的,其公式为:rNew = (a*rOld + b) % (end-start) 其中, a称为乘数,b称为增量,(end-start)称为模数,它们均为常数。 然后设置rOld = rNew,一般要求用户指定种子数rOld(也称为

seed),当然也可以自由选择a和b,但是两个数如果选择不好,可能会影响数字的随机性,所以一般令: a=32310901 这样使得生成的随机数最均匀。下面我是用的将种子自定义设为999999999。代码如下: def myrandint( start,end,seed=999999999 ): a=32310901 #产生出的随机数最均匀 rOld=seed m=end-start while True: #每调用一次这个myrandint函数,才生成一次随机数所以要惰性求值 rNew = (a*rOld+b)%m yield rNew rOld=rNew #模拟使用20个不同的种子来生成随机数 for i in range(20): r = myrandint(1,10000, i) #每个种子生成10个随机数 print('种子',i,'生成随机数') for j in range(10): print( next(r),end=',' ) 运行结果是使用20个不同的种子生成的随机数。

随机过程试题及答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。 2.设随机过程X(t)=Acos( t+),-t t 则 {(5)6|(3)4}______P X X === 9.更新方程()()()()0t K t H t K t s dF s =+-?解的一般形式为 。 10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。 二、证明题(本大题共4道小题,每题8分,共32分) P(BC A)=P(B A)P(C AB)。 2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

一维正态分布随机数序列的产生方法

一维正态分布随机数序列的产生方法 一、文献综述 1.随机数的定义及产生方法 1).随机数的定义及性质 在连续型随机变量的分布中,最简单而且最基本的分布是单位均匀分布。由该分布抽取的简单子样称,随机数序列,其中每一个体称为随机数。 单位均匀分布也称为[0,1]上的均匀分布。 由于随机数在蒙特卡罗方法中占有极其重要的位置,我们用专门的符号ξ表示。由随机数序列的定义可知,ξ1,ξ2,…是相互独立且具有相同单位均匀分布的随机数序列。也就是说,独立性、均匀性是随机数必备的两个特点。 随机数具有非常重要的性质:对于任意自然数s,由s个随机数组成的 s维空间上的点(ξn+1,ξn+2,…ξn+s)在s维空间的单位立方体Gs上 均匀分布,即对任意的ai,如下等式成立: 其中P(·)表示事件·发生的概率。反之,如果随机变量序列ξ1, ξ2…对于任意自然数s,由s个元素所组成的s维空间上的点(ξn+1,…ξn+s)在Gs上均匀分布,则它们是随机数序列。 由于随机数在蒙特卡罗方法中所处的特殊地位,它们虽然也属于由具有已知分布的总体中产生简单子样的问题,但就产生方法而言,却有着本质上的差别。 2).随机数表 为了产生随机数,可以使用随机数表。随机数表是由0,1,…,9十个数字组成,每个数字以0.1的等概率出现,数字之间相互独立。这些数字序列叫作随机数字序列。如果要得到n位有效数字的随机数,只需将表中每n 个相邻的随机数字合并在一起,且在最高位的前边加上小数点即可。例如,某随机数表的第一行数字为7634258910…,要想得到三位有效数字的随机数依次为0.763,0.425,0.891。因为随机数表需在计算机中占有很大内存, 而且也难以满足蒙特卡罗方法对随机数需要量非常大的要求,因此,该方法不适于在计算机上使用。 3).物理方法

随机过程复习题(含答案)

随机过程复习题 一、填空题: 1.对于随机变量序列}{n X 和常数a ,若对于任意0>ε,有 ______}|{|lim =<-∞ >-εa X P n n ,则称}{n X 依概率收敛于a 。 2.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t , ,则 15 92}6)5(,4)3(,2)1({-??= ===e X X X P , 618}4)3(|6)5({-===e X X P 15 32 62 32 92! 23!2)23(!23}2)3()5({}2)1()3({}2)0()1({} 2)3()5(,2)1()3(,2)0()1({} 6)5(,4)3(,2)1({----??=???==-=-=-==-=-=-====e e e e X X P X X P X X P X X X X X X P X X X P 66 218! 26}2)3()5({}4)3(|6)5({--===-===e e X X P X X P 3.已知马尔可夫链的状态空间为},,{321=I ,初始分布为),,(4 1 2141, ?????? ?? ????????? ?=434 103 13131043 411)(P ,则167)2(12=P ,161}2,2,1{210====X X X P

???????? ?????? ????=48 31481348 436133616367 164167165)1()2(2P P 16 7 )2(12=P 16 1 314341}2|2{}1|2{}1{}2,1|2{}1|2{}1{} 2,2,1{12010102010210=??=================X X P X X P X P X X X P X X P X P X X X P 4.强度λ的泊松过程的协方差函数),min(),(t s t s C λ= 5.已知平稳过程)(t X 的自相关函数为πττcos )(=X R , )]()([)(π?δπ?δπω-++=X S 6. 对于平稳过程)(t X ,若)()()(ττX R t X t X >=+<,以概率1成立,则称)(t X 的自相关函数具有各态历经性。 7.已知平稳过程)(t X 的谱密度为2 3)(2 42 ++=ωωωωS ,则)(t X 的均方值= 2 121- 222 2221 1221)2(22211122)(+??-+??=+-+= ωωωωωS ττ τ-- -=e e R X 2 12 1)(2

编写一个产生符合高斯分布的随机数函数

编写一个产生符合高斯分布的随机数函数信号检测与估计课程作业作业要求 1、利用计算机内部函数产生高斯分布的随机数,分别画出500,10000,100000点的波形,并进行统计分析(分别画出概率密度曲线,计算均值与方差) 2、利用计算机自己编写一个产生符合高斯分布的随机数函数,画出100000点的波形,并进行统计分析(同一) 提示:这一问分两步做,第一步先产生一个均匀分布的随机数序列(乘同余法、混合同余法等,可以用自己的方法),第二步通过适当变换得到符合高斯分布概率模型的随机数列 3、对随机数产生函数和高斯分布进行性能分析,并写出自己对于此次作业和上课的学习体会 一、利用内部函数产生高斯分布 首先利用matlab自带的内部函数randn()就可以方便的生成所需要的高斯分布随机数,然后画出概率密度曲线并计算出均值与方差即可。程序代码如下: A=randn(500,1); B=randn(10000,1);

C=randn(100000,1); subplot(2,3,1); bar(A); subplot(2,3,2); bar(B); subplot(2,3,3); bar(C); [f1,x1]=ksdensity(A); subplot(2,3,4); plot(x1,f1); title('500点高斯分布概率密度函数'); [f2,x2]=ksdensity(B); subplot(2,3,5); plot(x2,f2); title('10000点高斯分布概率密度函数'); [f3,x3]=ksdensity(C); subplot(2,3,6); plot(x3,f3); title('100000点高斯分布概率密度函数'); JZ500=mean(A) JZ1000=mean(B) JZ100000=mean(C) FC500=var(A) FC10000=var(B)

随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为: 试求:在时,求。 解: 当时,= = 1.2 设离散型随机变量X服从几何分布: 试求的特征函数,并以此求其期望与方差。解:

所以: 2.1 袋中红球,每隔单位时间从袋中有一个白球,两个 任取一球后放回,对每 对应随机变量一个确定的t ?????=时取得白球如果对时取得红球 如果对t e t t t X t 3)( .维分布函数族试求这个随机过程的一 2.2 设随机过程 ,其中 是常数,与是 相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概 率密度为 试证明为宽平稳过程。 解:(1) 与无关

(2) , 所以 (3) 只与时间间隔有关,所以 为宽平稳过程。 2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E .321)方差函数)协方差函数;()均值函数;(( 2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且 数。试求它们的互协方差函 2.5, 试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立 为多少?

3.1一队学生顺次等候体检。设每人体检所需的时间服从均值为2分 钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲) 解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的 poisson 过程。以小时为单位。 则((1))30E N =。 40 300 (30)((1)40)!k k P N e k -=≤=∑。 3.2在某公共汽车起点站有两路公共汽车。乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当1N =2N ,1λ=2λ时,计算上述概率。 解: 法一:(1)乘坐1、2路汽车所到来的人数分别为参数为1λ、2λ的poisson 过程,令它们为1()N t 、2()N t 。1 N T 表示1()N t =1N 的发生时 刻,2 N T 表示2()N t =2N 的发生时刻。 1 11 1111111()exp()(1)! N N N T f t t t N λλ-= -- 2 22 1222222()exp()(1)! N N N T f t t t N λλ-= -- 1 2 121 2 1 2 2 1 112,12|1221 1122212(,)(|)()exp() exp() (1)! (1)! N N N N N N N N N T T T T T f t t f t t f t t t t t N N λλλλ--== ----

随机数生成器功能:1,产生一个随机概率,.doc

随机数生成器功能:1,产生一个随机概率, 2产生一个a到b之间的随机整数 3,产生一个指定长度的随机数组,里面存放随机的布尔值,表示染色体 package edu.zsu.zouang.util;//java.util中的Random使用指定的伪随机原随即更改指定列表的序列 import java.util.Random;//import导入,导入random类,用于产生伪随机数流 public class Randomizer { private int lower; private int upper; private static Random random = new Random();//生成random实例 public Randomizer(int lower, int upper){ if(upper <= lower){ throw new IllegalStateException("Upper is smaller than lower!"); } this.lower = lower; this.upper = upper; } public Double nextDouble(){//返回概率 return Double. (upper - lower) * random.nextDouble()); }//Random中double nextDouble()返回下一个伪随机数,它是从伪随机数生成器的序列中取出的在0.0到1.0之间的double值 //double.valueof(str)说明把str转化成double类型的对象,相当于强制转换 public Integer nextInteger(){//返回整数lower到upper之间 return Integer.valueOf(lower +random.nextInt(upper - lower)); }//Random(int)返回0到int之间的整数随机值 public char[] nextBitArray(int length){//生成指定长度的字符数组,存放基因系列 if(length <= 0){ throw new IllegalStateException("Length is less than ZERO!"); } char[] temp = new char[length]; for(int i = 0; i < length ; i++){ temp[i] = random.nextBoolean() ? '1' : '0'; }//Random.nextBoolean()返回随机的bool值

随机过程习题答案

随机过程习题解答(一)第一讲作业: 1、设随机向量的两个分量相互独立,且均服从标准正态分布。 (a )分别写出随机变量和的分布密度 (b )试问:与是否独立?说明理由。 解:(a) (b)由于: 因此是服从正态分布的二维随机向量,其协方差矩阵为: 因此与独立。 2、设和为独立的随机变量,期望和方差分别为和。 (a )试求和的相关系数; (b )与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。解:(a )利用的独立性,由计算有: (b )当的时候,和线性相关,即 3、 设是一个实的均值为零,二阶矩存在的随机过程,其相关函数 为 ,且是一个周期为T 的函数,即, 试求方差函数 。 解:由定义,有: 4、考察两个谐波随机信号和,其中: 式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。 (a )求的均值、方差和相关函数; (b )若与独立,求与Y的互相关函数。 解:(a ) (b ) 第二讲作业: P33/2.解:

其中为整数, 为脉宽 从而有一维分布密度: P33/3.解:由周期性及三角关系,有: 反函数 ,因此有一维分布: P35/4. 解: (1) 其中 由题意可知, 的联合概率密度为: 利用变换: ,及雅克比行列式: 我们有 的联合分布密度为: 因此有: 且 V 和 相互独立独立。 (2)典型样本函数是一条正弦曲线。 (3)给定一时刻,由于 独立、服从正态分布,因此 也服从正态分布,且 所以 。 (4) 由于: 所以 因此 当时, 当 时, 由(1)中的结论,有: P36/7.证明: (1) (2) 由协方差函数的定义,有: P37/10. 解:(1) 当i =j 时 ;否则 令 ,则有 (2)

平稳随机过程及其数字特征

平稳随机过程及其数字特征

平稳随机过程 粗略的说——随机过程的统计特征不随时间的推移而变化。一.严平稳随机过程 1. 定义设有随机过程{ X(t) , t ∈T},若对于任意n 和任意t1

因此:严平稳过程的二维数字特征仅是(时间差τ)的函数 综上所述:要按上述严平稳过程的定义来判断一个过程是否平稳?是很困难的。 a):一般在实用中,只要产生随机过程的主要物理条件,在时间 进程中不变化。则此过程就可以认为是平稳的。 例如:在电子管中由器件的颗粒效应引起的“散弹噪声”,由于产生此噪声的主要物理条件与时间无关,所以此噪声可以认为是平稳过程。 12121212 12 1 21212 2 2 2 (,)(,;)() (,)()()(,;)()()(0)(0)[()] X X X X X X X X X X X X X X R t t x x f x x dx dx R C t t x m x m f x x dx dx C R m C R m D X t τττττσ=?==??==?=?==∫∫∫∫

∞<)]([2 t X E b):另一方面,对有些非平稳过程,可以根据需要,如果它在所观测的时间段内是平稳的,就可以视作这一时间段上的平稳过程来处理。即在观测的有限时间段内,认为是平稳过程。 因此,工程中平稳过程的定义如下: 二、宽平稳过程1、定义 若二阶矩过程( )X(t) 满足: E[X(t)]=m x ←常数 R x (t 1,t 2)=R x (τ) ←只与时间间隔(τ=t 2-t 1)有关 则称过程X(t)为“宽平稳随机过程”(广义平稳过程)。 可见:一个均方值有限的严平稳过程,一定是宽平稳过程。反之:一个宽平稳过程,则不一定是严平稳过程。 c):一般在工程中,通常只在相关理论的范围内讨论过程的平稳问题。即:讨论与过程的一、二阶矩有关的问题。

生成高斯分布的matlab程序

clear all; close all; clc; randn('seed',0); %%一维高斯函数 mu=0; sigma=1; x=-6:0.1:6; y=normpdf(x,mu,sigma); plot(x,y); figure; %%二维或多维高斯函数 mu=[00]; sigma=[0.30;00.35]; [x y]=meshgrid(linspace(-8,8,80)',linspace(-8,8,80)'); X=[x(:) y(:)]; z=mvnpdf(X,mu,sigma); surf(x,y,reshape(z,80,80)); hold on; %再生成一个 mu=[40]; sigma=[1.20;0 1.85]; [x y]=meshgrid(linspace(-8,8,80)',linspace(-8,8,80)'); X=[x(:) y(:)]; z=mvnpdf(X,mu,sigma); surf(x,y,reshape(z,80,80)); Matlab 的随机函数(高斯分布均匀分布其它分布) Matlab中随机数生成器主要有: betarnd 贝塔分布的随机数生成器 binornd 二项分布的随机数生成器 chi2rnd 卡方分布的随机数生成器 exprnd 指数分布的随机数生成器 frnd f分布的随机数生成器 gamrnd 伽玛分布的随机数生成器 geornd 几何分布的随机数生成器 hygernd 超几何分布的随机数生成器 lognrnd 对数正态分布的随机数生成器 nbinrnd 负二项分布的随机数生成器 ncfrnd 非中心f分布的随机数生成器

相关文档