文档库 最新最全的文档下载
当前位置:文档库 › 气相色谱不确定度

气相色谱不确定度

气相色谱不确定度
气相色谱不确定度

气相色谱法测定水中有机氯的不确定度评估

1测定方法简述:

1.1 方法依据:GB/T7492—87

1.2 仪器条件和型号:HP5890Ⅱ型,柱子类型:1.5%OV —17+2%QF —1,柱温:

200℃ 气化室:230℃ ECD :280℃ 载气:2N :30mL/min 1.3 标准溶液:取0.1mg/mL ,1.00mL 稀释到100mL 。吸取1mL 定容到10mL 后再吸取2mL 定容到10mL ,此时应用液浓度为20ng/mL 。 1.4 分析步骤:

吸取样品2mL ,用重蒸石油醚(30-60)℃定容到10.00mL ,进样1μL ,采用单点校正法计算浓度,绝对保留时间定性,峰高定量。 2. 确定测定过程中测量不确定度的来源: 2.1 标准溶液引入的不确定度;

2.2 样品溶液稀释过程中容量器引入的不确定度; 2.3 测定样品过程中容量器引入的不确定度; 2.4 样品重复性测定引入的不确定度; 2.5 测定中仪器示值误差引入的不确定度

3. 建立数学模型 1223

m h v k

C h v v ???=

?? [1]

C — 试样中农药浓度 μg/L m — 标准农药 μg 1h — 样品的峰高 mm 1v — 样品定容体积;mL k — 稀释因子

2v — 样品进样体积 μL 3v — 取样量 mL 2h — 标准农药的峰高 mm

由于各含量相互独立,由式[1]得出测定结果合成相对标准不确定度的计算公

式:

12

22

2

2

(1)(2)(3)(4)(5)c r e l r e l

r e l

r e l

r e l r e l

u u

u

u

u

u ??=++++??

r e l u —分析过程中总的引入的相对不确定度

(1)rel u —标准溶液浓度引入的相对标准不确定度;

(2)rel u —标准液稀释过程中容量器引入的相对标准不确定;

(3)rel u —测定样品过程中引入的相对标准不确定度; (4)rel u —样品重复测定引入的相对标准不确定度; (5)rel u —测定时仪器引入的相对标准不确定度; 4. 各相对标准不确定度分量的计算:

4.1 (1)rel u :r —666标准溶液100μg/mL ,从国家标准物质中心购买,标物证书

提供相对不确定度为1% 按均匀分布相对标准不确定度为 3

(1)15.810r e l u -=

=? 4.2 (2)rel u :标液稀释时引入3个不确定度

吸取100μg/mL r —666 1.00mL ,定容到100mL 浓度为1000ng/mL 。再吸取1.00mL

定容到10mL ,浓度为100ng/mL ,再吸取200mL ,稀释到10.00mL ,浓度为20ng/mL

(1)量器的相对不确定度:

a. 1mL 移液管:1mL ±0.007mL

按三角分布计算

2mL 移液管:2mL ±0.000mL

1mL 移液管标准不确定度 3

1 2.910u -=

=?

换算为相对标准不确定度:33(1)

2.910 2.9101

rel u --?==?

稀释过程为2个1mL 移液管,故合并2个移液管相对标准不确定度为:

31 4.110rel u -===?

2mL 移液管标准不确定度3

2 4.110()u ml -=

=?

换算为相对不确定度为:3

32

4.110 2.1102

rel u --?==?

(2)容器引入的相对不确定度:

100mL 容量瓶:100mL ±0.10

按三角分布计算标准不确定度为:

10mL 容量瓶: 10mL ±0.020

100mL 容量瓶:2

1 4.110u -=

=?

换算为相对标准不确定度:243 4.110 4.110100

rel u --?==?

10mL 容量瓶:3

28.210u -=

=?

换算为相对不确定度为:

348.2108.21010

rel

u --?==?

稀释过程中使用了2个10mL 容量瓶,因此合并2个相对不确定度为:

2

410

)

r e l e u ==

(3)温度对容量器的影响,假设温度变动3℃,按95%置信概率计算,体

积的变化区间为: 1mL 移液管:431 2.110/mL mL -????-4℃℃=6.310 2mL 移液管:432 2.110/mL mL -????-3℃℃=1.310 100mL 容量瓶:43100 2.110/mL mL -????-2℃℃=6.310 10mL 容量瓶:4310 2.110/mL mL -????-3℃℃=6.310 标准不确定度为:

4

4

56.3103.2101.96

u m L --?==?

3

46 1.310 6.6101.96u mL --?==?

2

27 6.310 3.2101.96u mL --?==?

3

35 6.310 3.2101.96

u mL --?==?

换算为相对不确定度:

443.210 3.2101

rel

u --?==?

446.610 3.3102rel

u --?==?

243.210 3.210100rel

u --?==?

343.210 3.21010

rel

u --?==?

合并上述相对不确定度:

2

(2)8

()

r e l l r e l

u =

=

42

42

42

(3.210)

(3.210)(3.

210)---

?+?+?

=32.410-?

4.3 (3)rel u 样品测定时容量器引入的正确定度。

(1)吸取2ml 样品用石油醚定容到10.00ml 进1ul 样品测定。

2ml 移液管的误差±0.020ml 由鉴定证书提出,按三角分布计算标准不

确定度为3

1 4.110u ml -=

=?

换算为相对不确定度得

3

3

14.1102.1102

r e l u --?=

=? (2)10ml 容量瓶检定证书提供误差为0.020,按三角分布计算标准不确定度为

3

208.210u m l -=

=? 换算为相对不确定度得 3

42

8.2108.21010

rel u --?==?

(3)1ul 样品采用10ul 的进样器,允差100.5ul ul ±,安三角分布计算标

准不确定度为

30.2u u l =

=

换算为相对不确定度得

30.2

0.0210rel ul u ul

=

= (4)假设温度变化为30c ?,按95%量取概率时体积变化区间分别为:

43434732 2.110/ 1.310()

310 2.110/ 6.310()

30.001 2.110/ 6.310()

c c ml c c ml c c ml ------?????=??????=??????=?

标准确定度为:

3

4

43

3

57

761.3106.610()

26.3103.210()

1.96

6.310 3.210()

1.96

u ml u ml u ml ------?==??==??==? 换算为相对不确定度得:

4

34

3

45

34

6

6.6103.310

23.2103.210103.210 3.2100.001

rel rel rel u u u ------?==??==??==?

合并以上(1)—(4)

2

(3)

6)r e l r e l

u =

42

42(3.210)

(3.21

0)--?+? =0.02

4.4 (4):rel u 样品重复测定引入的相对不确定度

γ——666测定结果表

u

1 2 3 4 5 x sx ug/L 74.9

76.9

76.1

74.3

75.4

75.5

1.01

按A 类不确定度计算:n=5

1

0.45

u sx

====

换算为相对不确定度为

3

(4)

0.45

6.010

75.5

r e l

u-

==?

4.5

(5)

:

rel

u测量仪器引入的不确定度检定证书提供相对偏差为3.27% k=2

相对标准不确定度为

2

(5)

0.0327

1.610

2

r e l

u-

==?

5:合成4.1----4.5相对标准不确定度

(1)(5)

()

rel rel

u u

2

(5)

)

c

r e l r e l u

u

x

=

=0.02

样品测得666

γ-的含量75.5/,

x ug l

=合成标准不确定度为:

75.50.02 1.51

c

u u g l

=?=

6

由表2看出,以上相对不确定度的分量中贡献最大的是仪器引入的相对

不确定度,其次是重复性测定。

7:扩展不确定度计算:

取包含因子k=2,则2 1.513c u ku ==?= 8:报告结果: 1.51c u =, 取包含因子k=2 则:(75.53)/;s m ug l =± 2k =

气相色谱仪操作规程

GC9560气相色谱仪操作规程 一、仪器的操作 1.开机:打开氮气总阀门,调节减压器至0.4Mpa。打开氮气-空气发生 器的电源,流量显示为0.4Mpa(指向数字4)。 2.打开电脑和色谱工作站,让色谱工作站处于采样状态。 3.检查气相色谱仪上气压表:在气相色谱仪开机前检查气压表显示。 4.打开气相色谱仪的电源。 5.检查气相色谱仪程序(TVOC)的条件。 /min,温度升至250℃,保持2min。 6.按“起始”键,此时工作状态灯亮起,这时所有加热器的温度由初始设置温度上升至设定温度。 7.当检测器的温度上升至大于150℃时,点击“输入键”开始点火。没有一次性点火成功,请间隔再次点火(点火前,工作站处于采样状态,点火后,电压数应为0至5000UV左右。否则用FIDI机械粗调)。 8.点火成功后,检查TENAX管是否安装好和六通阀是否在取样状态。 9.在准备灯的状态下,将加热炉拉近同时计时60s将六通阀拔到分析状态并按“起始键”程序开温开始,工作站开始分析。热解析3min后推出炉子,把六通

阀拔回取样状态。在检测苯时,不需要进行程序升温。 二、标准曲线的制作(TVOC):液体外标法 1. 定标采样:将管子连接在定标装置上,用微量进样器取标样,取0.05μ g、0.1μg、0.5μg、1.0μg 、2.0μg标准溶液分别注入Tenax-TA吸附管,5min 后取下并封存,以完成标准系列制备。(注意:从低浓度到高浓度:每次做之前要将Tenax-TA管吹干净;检查六通阀是否在取样状态)。 2.样品分析: (1)定标完毕后将管柱装好,在准备灯的状态下,将加热炉拉近同时计时60S将六通阀拔到分析状态并按“起始键”程序升温开始,工作站开始分析。热解析3min后推出炉子,把六通阀拔回取样状态。出图完毕炉温,结束分析。 (2)分析结束后,新建文件夹命名为**标线文件夹,点击“键红点”命名保存,保存在上面的标线文件夹里。载入TVOC标准曲线,进行“重分析”,假如保留时间不匹配,把表拖到左下角,分别改动标准曲线表的保留时间,再“重分析”。 3.建立ID表标准线:首先,打开0.05浓度的图谱,清空ID表(点击“清空”和“清空列表”);再点击“加入标准曲线”,再打开0.1浓度的谱图,点击标准曲线表,拉到左下角对时间(乙苯,对接二甲苯,苯乙烯,邻二甲苯),假如ID表中TVOC的保留时间不匹配的话,更改ID表的保留时间(范围±0.15),点击确认,再加载,以此类推,要输入8个含量(浓度),再检查ID表中的定量方法为“面积法”,“双对数”打钩,选择在甲苯项中“参与峰”。再点击ID表中的计算,计算完毕点击导出、命名,最后点击确定保存在标线文件夹中。 4.分析结束后,点击“键红点”命名保存,例tvoc-1。 5.检查ID表,是否是TVOC标准曲线。若不是,则打开ID表,再点击“载入”则找到一个标准曲线的文件名,打开,再确定。 6.打开分析好的样品谱图,输入采样体积,温度,气压,再点击“重分析”。若有不能识别的物质,则点击ID表对照更改时间在重分析得出计算结果。 三、关机 1.先关闭氢空一体机的电源。 2.结束程序升温,再点击“降温”待柱炉温度小于50℃后才能关机。 3.最后关闭氮气总阀,关闭电源。

合成标准不确定度的计算修订稿

合成标准不确定度的计 算 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

第七讲合成标准不确定度的计算 减小字体增大字体作者:李慎安?来源:发布时间:2007-05-08 10:19:04 计量培训:测量不确定度表述讲座 国家质量技术监督局 李慎安 合成标准不确定u c的定义如何理解? 合成标准不确定度无例外地用标准偏差给出,其符号u以小写正体c作为下角标;如给出的为相对标准不确定度,则应另加正体小写下角标rel,成为u crel。按《JJF1001》定义为:当测量结果是由若干个其他量的值求得时,按其他各量的方差和协方差算得的标准不确定度。如各量彼此独立,则协方差为零;如不为零(相关情况下),则必须加进去。 上述定义可以理解为:当测量结果的标准不确定度由若干标准不确定度分量构成时,按方和根(必要时加协方差)得到的标准不确定度。有时它可以指某一台测量仪器,也可以指一套测量系统或测量设备所复现的量值。在某个量的不确定度只以一个分量为主,其他分量可忽略不计的情况下,显然就无所谓合成标准不确定度了。 什么是输入量、输出量 在间接测量中,被测量Y不能直接测量,而是通过若干个别的可以直接测量的量或是可以通过资料查出其值的量,按一定的函数关系得出: Y=f(X1,X2,…,X n) 其中X i为输入量,而把Y称之为输出量。 例如:被测量为一个立方体的体积V,通过其长l、宽b和高h三个量的测量结果,按函数关系 V=l·b·h计算,则l,b,h为输入量,V为输出量。 什么叫作线性合成 例如在测量误差的合成计算中,其各个误差分量,不论是随机误差分量还是系统误差分量,当合成为测量误差时,所有这些分量按代数和相加。这种合成的方法称为线性合成。 不确定度的各个分量如彼此独立,则恒用方和根的方式合成。但如果其中某两个分量彼此强相关,且相关系数r=+1,则合成时是代数相加,即线性合成而非方和根合成。 什么叫灵敏系数 当输出量Y的估计值y与输入量X i的估计值x1,x2,…x n之间有

气相色谱仪原理(图文详解)

气相色谱仪原理(图文详解) 什么是气相色谱 本章介绍气相色谱的功能和用途,以及色谱仪的基本结构。 气相色谱(GC)是一种把混合物分离成单个组分的实验技术。它被用来对样品组分进行鉴定和定量测定: 基子时间的差别进行分离 和物理分离(比如蒸馏和类似的技术)不同,气相色谱(GC)是基于时间差别的分离技术。 将气化的混合物或气体通过含有某种物质的管,基于管中物质对不同化合物的保留性能不同而得到分离。这样,就是基于时间的差别对化合物进行分离。样品经过检测器以后,被记录的就是色谱图(图1),每一个峰代表最初混合样品中不同的组分。 峰出现的时间称为保留时间,可以用来对每个组分进行定性,而峰的大小(峰高或峰面积)则是组分含量大小的度量。 图1典型色谱图

系统 一个气相色谱系统包括 可控而纯净的载气源.它能将样品带入GC系统进样口,它同时还作为液体样品的气化室色谱柱,实现随时间的分离 检测器,当组分通过时,检测器电信号的输出值改变,从而对组分做出响应 某种数据处理装置图2是对此作出的一个总结。 样品 载气源一^ 进样口一^ 色谱柱一^ 检测器一_ 数据处理」 图2色谱系统 气源 载气必须是纯净的。污染物可能与样品或色谱柱反应,产生假峰进入检测器使基线噪音增大等。推荐使用配备有水分、烃类化合物和氧气捕集阱的高纯载气。见图

钢瓶阀 若使用气体发生器而不是气体钢瓶时,应对每一台GC都装配净化器,并且使气源尽可能靠近仪器的背面。 进样口 进样口就是将挥发后的样品引入载气流。最常用的进样装置是注射进样口和进样阀。注射进样口 用于气体和液体样品进样。常用来加热使液体样品蒸发。用气体或液体注射器穿透隔垫将样品注入载气流。其原理(非实际设计尺寸)如图4所示。

不确定度的计算

测量误差与不确定度评定 测量误差 1、测量误差和相对误差 (1)、测量误差 测量结果减去被测量的真值所得的差,称为测量误差,简称误差。 这个定义从20世纪70年代以来没有发生过变化,以公式可表示为:测量误差=测量结果-真值。测量结果是由测量所得到的赋予被测量的值,是客观存在的量的实验表现,仅是对测量所得被测量之值的近似或估计,显然它是人们认识的结果,不仅与量的本身有关,而且与测量程序、测量仪器、测量环境以及测量人员等有关。真值是量的定义的完整体现,是与给定的特定量的定义完全一致的值,它是通过完善的或完美无缺的测量,才能获得的值。所以,真值反映了人们力求接近的理想目标或客观真理,本质上是不能确定的,量子效应排除了唯一真值的存在,实际上用的是约定真值,须以测量不确定度来表征其所处的范围。因而,作为测量结果与真值之差的测量误差,也是无法准确得到或确切获知的。 过去人们有时会误用误差一词,即通过误差分析给出的往往是被测量值不能确定的范围,而不是真正的误差值。误差与测量结果有关,即不同的测量结果有不同的误差,合理赋予的被测量之值各有其误差并不存在一个共同的误差。一个测量结果的误差,若不是正值(正误差)就是负值(负误差),它取决于这个结果是大于还是小于真值。实际上,误差可表示为: 误差=测量结果-真值=(测量结果-总体均值)+(总体均值-真值)=随机误差+系统误差

(2)、相对误差 测量误差除以被测量的真值所得的商,称为相对误差。 2、随机误差和系统误差 (1)、随机误差 测量结果与重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差,称为随机误差。 随机误差=测量结果-多次测量的算术平均值(总体均值) 重复性条件是指在尽量相同的条件下,包括测量程序、人员、仪器、环境等,以及尽量短的时间间隔内完成重复测量任务。 此前,随机误差曾被定义为:在同一量的多次测量过程中,以不可预知方式变化的测量误差的分量。 随机误差的统计规律性: ○1对称性:绝对值相等而符号相反的误差,出现的次数大致相等,也即测得值是以它们的算术平均值为中心而对称分布的。由于所有误差的代数和趋于零,故随机误差又具有低偿性,这个统计特性是最为本质的;换言之,凡具有低偿性的误差,原则上均可按随机误差处理。 ○2有界性:测得值误差的绝对值不会超过一定的界限,也即不会出现绝对值很大的误差。 ○3单峰性:绝对值小的误差比绝对值大的误差数目多,也即测得值是以它们的算术平均值为中心而相对集中地分布的。 (2)、系统误差 在重复性条件下,对同一被测量进行无限多次测量所得结果的平均

气相色谱仪使用方法及实验操作步骤

液相色谱仪、气相色谱仪、原子吸收分光光度计、红外光谱仪、核磁共振、原子发射光谱等分析仪器 气相色谱仪使用方法及实验操作步骤: A、打开氮气、氢气、空气发生器的电源开关(或氮气钢瓶总阀),调整输出压力稳定在0.4Mpa左右(气体发生器一般在出厂时已调整好,不用再调整)。 B、打开色谱仪气体净化器的氮气开关转到“开”的位置。注意观察色谱仪载气B的柱前压上升并稳定大约5分钟后,打开色谱仪的电源开关。 C、设置各工作部温度。TVOC分析的条件设置:(a)柱箱:柱箱初始温度50℃、初始时间10min、升温速率5℃/min、终止温度250℃、终止时间10min; (b)进样器和检测器:都是250℃。脂肪酸分析时的色谱条件:(a)柱箱:柱箱初始温度140℃、初始时间5min、升温速率4℃/min、终止温度240℃、终止时间15min; (b)进样器温度是260℃,检测器温度是280℃。 D、点火:待检测器(按“显示、换档、检测器”可查看检测器温度)温度升到150℃以上后,打开净化器上的氢气、空气开关阀到“开”的位置。观察色谱仪上的氢气和空气压力表分别稳定在0.1Mpa 和0.15Mpa左右。按住点火开关(每次点火时间不能超过6~8秒钟)点火。同时用明亮的金属片靠近检测器出口,当火点着时在金属片上会看到有明显的水汽。如果在6~8秒时间氢气没有被点燃,要松开点火开关,再重新点火。在点火操作的过程中,如果发现检测器出口白色的聚四氟帽中有水凝结,可旋下检测器收集极帽,把水清理掉。在色谱工作站上判断氢火焰是否点燃的方法:观察基线在氢火焰点着后的电压值应高于点火之前。 E、打开电脑及工作站(通道一分析脂肪酸,通道二分析碘),打开一个方法文件:脂肪酸分析方法或碘分析方法。显示屏左下方应有蓝字显示当前的电压值和时间。接着可以转动色谱仪放大器面板上点火按钮上边的“粗调”旋钮,检查信号是否为通路(转动“粗调”旋钮时,基线应随着变化)。待基线稳定后进样品并同时点击“启动”按钮或按一下色谱仪旁边的快捷按钮,进行色谱数据分析。分析结束时,点击“停止”按钮,数据即自动保存。 F、关机程序:首先关闭氢气和空气气源,使氢火焰检测器灭火。在氢火焰熄灭后再将柱箱的初始温度、检测器温度及进样器温度设置为室温(20-30℃),待温度降至设置温度后,关闭色谱仪电源。最后再关闭氮气。 高效液相色谱 我国药典收载高效液相色谱法项目和数量比较表: 鉴于HPLC应用在药品分析中越来越多,因此每一个药品分析人员应该掌握并应用HPLC。 三、色谱法分类 (3) 四、色谱分离原理 (3) II.基本概念和理论 (5) 一、基本概念和术语 (5) 二、塔板理论 (8)

气相色谱仪操作步骤(精)

气相色谱仪操作步骤 1 打开氮气、氢气、空气发生器的电源开关(或氮气钢瓶总阀),调整输出压力稳定在0.4Mpa左右(气体发生器一般在出厂时已调整好,不用再调整)。 2. 打开色谱仪气体净化器的氮气开关转到“开”的位置。注意观察色谱仪载气B的柱前压上升并稳定大约5分钟后,打开色谱仪的电源开关。 3. 设置各工作部温度。TVOC分析的条件设置:(a)柱箱:柱箱初始温度50℃、初始时间10min、升温速率5℃/min、终止温度250℃、终止时间10min; (b)进样器和检测器:都是250℃。苯分析时的色谱条件:(a)柱箱:柱箱初始温度100℃、初始时间0min、升温速率0℃/min、终止温度0℃、终止时间0min; (b)进样器和检测器:都是150℃。 4. 点火:待检测器(按“显示、换档、检测器”可查看检测器温度)温度升到100℃以上后,打开净化器上的氢气、空气开关阀到“开”的位置。观察色谱仪上的氢气和空气压力表分别稳定在0.1Mpa和0.15Mpa左右。按住点火开关(每次点火时间不能超过6~8秒钟)点火。同时用明亮的金属片靠近检测器出口,当火点着时在金属片上会看到有明显的水汽。如果在6~8秒时间内氢气没有被点燃,要松开点火开关,再重新点火。在点火操作的过程中,如果发现检测器出口内白色的聚四氟帽中有水凝结,可旋下检测器收集极帽,把水清理掉。在色谱工作站上判断氢火焰是否点燃的方法:观察基线在氢火焰点着后的电压值应高于点火之前。 5. 打开电脑及工作站A,打开一个方法文件:TVOC分析方法或苯分析方法。显示屏左下方应有蓝字显示当前的电压值和时间。接着可以转动色谱仪放大器面板上点火按钮上边的“粗调”旋钮,检查信号是否为通路(转动“粗调”旋钮时,基线应随着变化)。待基线稳定后进样品并同时点击“启动”按钮或按一下色谱仪旁边的快捷按钮,进行色谱数据分析。分析结束时,点击“停止”按钮,数据即自动保存。 8.关机程序:首先关闭氢气和空气气源,使氢火焰检测器灭火。在氢火焰熄灭后再将柱箱的初始温度、检测器温度及进样器温度设置为室温(20-30℃),待温度降至设置温度

标准不确定度的A类评定

标准不确定度的A类评定 减小字体增大字体作者:李慎安来源:https://www.wendangku.net/doc/5b16412944.html, 发布时间:2007-04-28 08:52:07 计量培训:测量不确定度表述讲座 国家质量技术监督局李慎安 5.1 A类评定的基本方法是什么? 用统计方法(参阅4.1)评定标准不确定度称为不确定度的A类评定,所得出的不确定度称为A类标准不确定度,简称A类不确定度。当它作为一个分量时,无例外地只用标准偏差表征。 标准不确定度A类评定的基本方法是采用贝塞尔公式计算标准差s的方法。 一个被测量Q(既可以是输入量中的一个,也可以是输出量或被测量)在重复性条件下或复现性条件下重复测量了n次,得到n个观测结果q1,q2,…,q n,那么,Q的最佳估计 即是这n个观测值的算术平均值: 由于n只是有限的次数,故又称为样本平均值,它只是无限多次(总体)平均值的一个估计。n越大,这个估计越可靠。 每次的测量结果q i减称为残差v i,v i=(q i-),因此有n个残差。 残差的平方和除以n-1就是实验方差s2(q i),即一次测量结果的实验方差,其正平方根即为实验标准差s(q i),当用它来表述一次测量结果的不确定度u(q i)时,有s(q)=u(q i),或简写成s=u。 请注意,今后不再把s作为A类不确定度的符号,把u作为B类不确定度的符号,而是不分哪一类,标准不确定度均用u表示。 上述的计算程序就是3.1给出的程序。 平均值的标准偏差s()或其标准不确定度u()为: 必须注意上式中的n指所用的次数。在实际工作中,为了得到一个较为可靠的实验标准偏差s(q i),往往作较多次的重复测量(n较大,自由度ν也较大);但在给出被测量Q i测量结果q时,只用了较少的重复观测次数(例如往往只有4次)。那么,4次的平均值的标准偏差就是s(q i)/4=0.5×s(q i) 但是,如果用于评定s(q i)时的n个观测值,直接用于评定s()(n个的平均),则成为下式: 5.2 除基本方法外还有哪些简化的方法?用于何种场合? 在JJF1059中提出了另外的一种简化方法,称之为极差法,极差R定义为一个测量列

试题1 气相色谱仪基本操作及考核标准

试题1 气相色谱仪基本操作 1、任务描述 根据作业指导书的指导,能完成气相色谱仪及其辅助设备的基本操作,能描述气相色谱仪各组分部件及其作用,能解释气相色谱仪的分析流程。要求每个抽查的学生在150分钟的时间内独立完成任务。 2、实施条件 (1)场地:天平室,仪器分析检验室。 (2)仪器、试剂: 仪器:带氢焰离子化检测器的气相色谱仪 (3)考核时量 150分钟 (4)考核标准(见附件)

附件水一质检测验任务单 任务单

附件二作业指导书 气相色谱仪基本操作作业指导书 1.气路的安装与检漏训练 钢瓶与减压阀的连接。 减压阀与气体管道的连接。 气体管道与净化器的连接。 净化器与 型气相色谱仪的连接。 检漏操作:用毛笔将皂液涂于各接头处,看是 否有气泡溢出。若有,则表示漏气;若无, 则表示不漏气。 2.气体的打开与设置训练: 逆时针打开载气(N 2)钢瓶总阀,顺时针调节减压阀“ 形杆”至压力表显示输出压力为0.4MPa 气体出口,按逆时针方向打开净化器开关。 调节载气柱前压。 3.载气的流量测定方法 皂膜流量计测定方法 皂膜流量计 认识皂膜流量计: 用皂膜流量计测量稳流阀不同 圈数下载气的准确流量,并绘 制稳流阀圈数~载气流量曲线。 4.气相色谱仪的基本操作 (本过程教师可采用 现场演示 与 结合的 方式来引导学生操作使用 型气相色 谱仪,同时要求教师在学生完成操 练的过程中 同时简单介绍气相色谱仪各组成部分的作用 ) 气相色谱仪开机、关机 打开或关闭 型气相色谱仪的电源开关与加热开关: 注意:要求必须打开载气并使其通入色谱柱后才能打开仪器电源开关与加热开关,同理, 必须关闭仪器电源开关与加热开关之后才能关载气钢瓶与减压阀。 仪器各温度参数的设置训练 设置柱箱温度90℃; 设置检测器温度 130℃; 设置汽化室温度 150℃。 进样操作训练 进样操作步骤: 用丙酮、乙醇等溶剂清洗微量注射器 15次以上。 用待测溶

气相色谱仪不确定度评定分析-共8页

气相色谱仪检测限检定结果的CMC 评定 概述 气相色谱仪的检定根据JJG700—2019《气相色谱仪》检定规程进行。检测限(包括F1D 、FPD 、NPD 、ECD 检测器)和灵敏度(TCD 检测器)反映了检测器的敏感度,是仪器重要的计量指标。 检定依据:JJG700—2019(气相色谱仪检定规程》。 测量环境条件:温度(5~35)℃ ,相对湿度(20~85)%。 一、火焰离子化检测器( FID)检测线检定结果的不确定度评定 1、检定过程概 1.3 测量标准:正十六烷-异辛烷溶液,1mL /瓶,100ng/ L ,不确定度为 =3%,k=2。 微量进样器,10μL ,相对标准偏差为1%。 1.4 被测对象:气相色谱仪型号:GC7890F ;检测器名称:FID 。色谱工作站:T2019P 。 1.5 测量过程:检定时,选择适宜的色谱条件,待基线稳定后,采集30min 基线,测得噪声值N ;再用微量进样器准确量取1.0 μL 标准溶液,并将其注入气相色谱仪,连续进样6次,记录峰面积A ,按公式计算出检测限。并设定毛细柱分流比为1:10,故实际进样量为0.1uL 。 2 建立数字模型 FID 2NW D =A 式中: D FID ——FID 检测限,g/s ;N ——基线噪声,A ; W ——正十六烷进样量,g ;A ——正十六烷峰面积的平均值,A ·S 。 3 方差与灵敏系数 2222222()()()()()()()u D u A c A u N c N u W c W =++ 为评定方便,采用相对标准不确定度评定,则有: ()1,()1,()1 ()()()()(),(),()222() ()2rel rel rel rel rel c A c N c W u D u N u A u W u N u A u W N A W u D u D D ======== 其中: 4 各分量的相对标准不确定度的分析 4.1 正十六烷峰面积A 的相对标准不确定度评定u rel (A ) 峰面积A 的不确定度主要由人员操作的重复性、进样的重复性、色谱数据处理系统积分面积的重复性等因素引入,可以通过连续测量得到测量列,采用A 类方法进行评定。 选择适当的色谱仪条件,待基线稳定后,采集30min 基线,测得噪声值N ;再用微

气相色谱操作规范流程

安捷伦7890B气相色谱仪-GC-001操作规程 1.仪器分析原理 气相色谱仪是以气体作为流动相(载气),当样品由微量注射器“注射”进入进样器,在衬管中快速挥发后被载气携带进入填充柱或毛细管色谱柱。由于样品中各组份在色谱柱中的流动相(气相)和固定相(液相或固相)间分配或吸附系数的差异,在载气的冲洗下,各组份在两相间作反复多次分配,使各组份在柱中得到分离,然后用接在柱后的检测器根据组份的物理化学特性,将各组份按顺序检测出来。 图1 MDI-100产品异构体色谱图 2.仪器组成及各部件作用 2.1气相色谱仪主要由载气系统、进样系统、分离系统(色谱柱系统)、检测系统、记录系统等五大系统组成。各系统的作用分别为: 载气系统――提供洁净的具有一定流速的载气(流动相)。 进样系统――样品在此气化后进入到色谱柱。 分离系统――分离样品中的各组分。 检测系统――将分离后由色谱柱流出的组分的浓度或质量转变为相应的电信号。 记录系统――将检测到的电信号经处理后记录、并显示。

2.2各部件介绍: 图2 Agilent 7890B GC-001 的前视图 2.2.1进样口 进样口是将样品注射到GC 中的位置。Agilent 7890B GC 最多可以有两个进样口,标为Front Inlet(前进样口)和Back Inlet(后进样口)。GC-001前后进样口为分流/ 不分流进样口 图3 Agilent 7890B GC-001 的前后进样口 2.2.2自动进样器

带有样品盘的Agilent 7683B 自动液体进样器将会自动处理液体样品。Agilent 7890B GC 最多可以有两个自动进样器,标为Front Injector(前进样器)和Back Injector (后进样器)。 2.2.3色谱柱和柱箱 GC 色谱柱位于温度控制柱箱的内部。通常,色谱柱的一端连接进样口,另一端连接检测器。色谱柱因长度、直径和内涂层而异。每个色谱柱被设计为可以处理不同化合物。色谱柱和柱箱的用途是将注入的样品在经过色谱柱时分离成各种化合物。要协助此过程,可以对GC 进行编程,以加速样品流过色谱柱。GC-001前后色谱柱均采用HP-5色谱柱 图4 Agilent 7890B GC-001 柱箱视图 2.2.4检测器 当化合物流出色谱柱时,检测器用于测定其是否存在。当每种化合物进入检测器时,会产生与已检测到的化合物的量成比例的电子信号。此信号通常会被发送到数据分析系统-如EZchrome OpenLab -信号是以色谱图上峰的形式出现在系统中。Agilent 7890B GC-001容纳两个检测器,分别标为Front Det (前检测器)、Back Det (后检测器)。前后检测器均为FID检测器。

6测量不确定度评定方法.doc

测量不确定度的评定方法 1适用范围 本方法适用于对产品或参数进行检测时,所得检测结果的测量不 确定度的评 定与表示。 2编制依据 JJF 1059 —1999测量不确定度评定与表示 3评定步骤 3.1概述:对受检测的产品或参数、检测原理及方法、检测用仪器 设备、检测时的环境条件、本测量不确定度评定报告的使用作一简要的描述; 3.2建立用于评定的数学模型; 3.3根据所建立的数学模型,确定各不确定度分量(即数学模型中 的各输入量)的来源; 3.4分析、计算各输入量的标准不确定度及其自由度; 3.5计算合成不确定度及其有效自由度; 3.6计算扩展不确定度; 3.7给出测量不确定度评定报告。 4评定方法 4.1数学模型的建立 数学模型是指被测量(被检测参数)Y 与各输入量 X i之间的函数

关系,若被测量 Y 的测量结果为 y,输入量的估计值为x i,则数学模型为 y f x1 , x2 ,......, x n。 数学模型中应包括对测量结果及其不确定度由影响的所有输入 量,输入量一般有以下二种: ⑴ 当前直接测定的值。它们的值可得自单一观测、重复观测、 依据经验信息的估计,并包含测量仪器读数修正值,以及对周围温度、大气压、湿度等影响的修正值。 ⑵ 外部来源引入的量。如已校准的测量标准、有证标准物质、 由手册所得的参考数据。 4.2测量不确定度来源的确定 根据数学模型,列出对被测量有明显影响的测量不确定度来源,并要做到不遗漏、不重复。如果所给出的测量结果是经过修正后的结果,注意应考虑由修正值所引入的标准不确定度分量。如果某一标准不确定度分量对合成不确定度的贡献较小,则其分量可以忽略不计。 测量中可能导致不确定度的来源一般有: ⑴被测量的定义不完整; ⑵复现被测量的测量方法不理想; ⑶取样的代表性不够,即被测样本不能代表所定义的被测量; ⑷对测量过程受环境影响的认识不恰如其分或对环境的测量 与控制不完善; ⑸对模拟式仪器的读数存在人为偏移;

不确定度的计算方法(可编辑修改word版)

(U u )2 + (U w )2 u w = = = = 测量结果的正确表达 被测量 X 的测量结果应表达为: X = X ± U (仪仪 ) 表 1 常用函数不确定度合成公式 其中 X 是测量值的平均值,U 是不确定度。 例如: 用最小刻度为 cm 的直尺测量一长度最终结果为:L =(0.750±0.005)cm ; 测量金属丝杨氏模量的最终结果为:E =(1.15±0.07)×1011Pa 。 1. 不确定度的计算方法 2 N = X αY β Z γ U N = N 直接测量不确定度的计算方法 U = 1. 在函数关系是乘除法时,先计算相对不确定度( U N )比较方便.例如表中第二行 N 的公式. 2. 不确定度合成公式可以联合使用. 其中: S = 为标准差; sin θ u 例如: 若 τ ,令u sin θ , w 3φ 则 τ . 3φ w ?仪 是仪器误差,一般按仪器最小分度的一半计算,但是游标卡尺和角游标按最小 分度计算。也可按仪器级别计算或查表。 间接测量不确定度的合成方法 根据表中第二行公式,有: U τ = ; τ 间接测量 N = f (x , y , z ,??仪 的平均值公式为: N = f (x , y , z ,??仪 ; 根据表中第一行公式,有: U w = = 3U φ ; 不确定度合成公式为:U N = 根据表中第三行公式,有: 。 U u = cos θ ?U θ . 也可根据表 1 中的公式计算间接测量的不确定度。 所以, U τ = τ ? = τ S 2 + ? 2 仪 ∑ ( X - X ) 2 i n -1 ( ) ?U + ( ) ?U + ( ) ?U + ? N 2 2 ? N 2 2 ? N 2 2 ?X X ?Y Y ?Z Z α 2 (U X ) 2 + β 2 (U Y ) 2 + γ 2 (U Z ) 2 X Y Z 32U 2 φ

气相色谱仪不确定度

气相色谱法测定水中甲苯的测量不确定度评定作业指导书 本作业指导书是对校准结果测量不确定度进行评定和表示的规范化程序。在实际运用中,应注意人员、标准、环境、方法等引入的标准不确定度分量与本作业指导书所采用的评定条件的区别,并按实际情况和本作业指导书规定的程序进行评定。 1 概述 1.1 测量依据 《水和废水监测分析方法》(第四版)挥发性有机物的测定《吹脱捕集 气相色谱法》 (P&T-GC-FID )(C ) 1.2 测量原理 通过吹脱捕集管用氮气将水中的VOCs 连续吹脱出来,通过气流带入并吸附于捕集阱中,待水样中的VOC 设备全部吹脱出来后,停止对水样的吹脱并迅速加热捕集管,将捕集管中的VOCs 热脱附出来,进入气相色谱仪。气相色谱仪采用在线冷柱头进样,使热脱附的VOCs 冷凝浓缩,然后快速加热进样。 1.3 使用仪器 1.3.1注射器:5mL 气密性注射器 1.3.2微量注射器:10μl 、100μl 1.3.3气相色谱仪:安捷伦6890N 2 数学模型 y=a+bx 式中:y ——峰面积(pA*s ); b ——校准曲线的斜率; x ——水样中甲苯的浓度(mg/L ); a ——校准曲线的截距。 水中甲苯含量C=x=b a -y 被测量C 的合成不确定度u (C )及其方差 u 2(C )=2 2 2 b u b a u a y u y ??? ??????? ????+?????????? ????+?? ?????? ??? ????)()()(C C C 其中u 2(y )=u 2(y 1)+u 2(y 2) 传播系数: b 1y =??C b 1a -=??C () 2b a y b --=??C 式中:u(C):水样中甲苯含量测定的合成不确定度 u(y 1):峰面积y 1的标准不确定度 u(y 2):由标准溶液y 2的标准不确定度引起峰面积不确定度 u (a):截距a 的标准不确定度 u (b):斜率b 的标准不确定度

不确定度计算示例

五、交流标准电流源电流测量不确定度评定 一、概 述 1.1 目 的 评定交流标准电流源测量不确定度。 1.2 依据标准 暂无,参考JJG445-1986《直流标准电压源检定规程》。 1.3 使用的仪器设备 交流数字电压表,仪器校准后1年内,在1.5V ,50Hz 点示值最大允许误差为: 80×10-6 ×(读数) +10×2×10-6 ?(满量程) 6位半显示,经检定合格。 交流电流电压变换器,型号:LYB-02,准确度等级:0.005%。 1.4 测量程序 由被检交流标准电流源输出1A 加到交流电流-电压变换器,调准被检源交流电流为1A ,由交流电流电压变换器将1A ,50Hz 交流电流转换为1.5V ,50Hz 交流电压,读取交流数字电压表值。 1.5 不确定度评定结果的应用 符合上述条件或十分接近上述条件同类测量结果,一般可以参照本例方法评定。 二、数学模型 测量结果直接由交流数字电压表读数给出 I x = C E 0 式中: I x ——被检标准源的输出电流值,A ;

E 0——交流数字电压表的显示值,V (为避免与不确定度符号U 混淆,采用字母E 表示电压); C ——常数,交流电流-电压变换器的变比值,C =1.5V/1A 。 三、不确定度来源 直流标准电压源测量不确定度来源主要包括: (1) 测量重复性的不重复引入的不确定度u A ,采用A 类方法评定; (2) 交流数字电压表准确度引入的不确定度u B1,采用B 类方法评定; (3) 交流数字电压表上级标准传递引入的不确定度u B2,采用B 类方法评定; (4) 交流数字电压表分辨力引入的不确定度u B3,采用B 类方法评定; (5) 交流电流-电压变换器准确度引入的不确定度u B4,采用B 类方法评定。 (6) 交流电流电压变换器上级传递引入的不确定度u B5,采用B 类方法评定。 测量重复性 数字式电压表引入的不确 交流数字电压表上级标准传递引入的不确定度 交流电流-电压变换器引入的不确定度 交流电流电压变换器上级标准传递引入的不确定度 图1 各种不确定度分量关系图

第八讲 扩展不确定度的计算

第八讲扩展不确定度的计算 减小字体增大字体作者:李慎安来源:https://www.wendangku.net/doc/5b16412944.html, 发布时间:2007-05-08 10:33:45 计量培训:测量不确定度表述讲座 国家质量技术监督局李慎安 8.1 什么叫扩展不确定度? 按《JJF1001》扩展不确定度定义为:确定测量结果区间的量,合理赋予被测量之值分布的大部分可望含于此区间。也称展伸不确定度或范围不确定度。符号为大写斜体U,U P。当除以被测量之值后,称为相对扩展不确定度,符号为U rel,U prel。符号中的p为置信概率,一般取95%,99%,这时其符号成为U95,U99,U95rel或U99rel。定义中所指大部分,最常用的是95%和99%。 扩展不确定度过去曾称总不确定度(overall uncertainty),这一名称已为《导则》所禁止使用,因其从含义上易与合成不确定度混淆。 扩展不确定度是比合成标准不确定度大的一个参数,它等于合成标准不确定度乘以包含因子k后的值,对于合成标准不确定度而言,它是成倍地被扩大了的一个值。 8.2 扩展不确定度分成几种? 扩展不确定度根据所乘的包含因子k的不同,分成两大类。当包含因子k之值取2或3时,扩展不确定度U只是合成标准不确定度u C的k倍。在给出U时,必须指明k的取值。实际上,这时的U所包含的信息与u C一样,并未因乘以k后,其信息有所增多。此外,还有一种包含因子k p,它是为了使扩展不确定度所给出的区间内能有概率为p的合理赋予被测量之值含于其中所必须有的因子。所得到的扩展不确定度为U p。一般,只在被测量Y可能值y的分布类型可估计为正态时才给出U P。这时的k p之值,按u c(y)的有效自由度υeff,通过本讲座6.6中的表得出,即t p值,k p=t p(υ)。随υ的增大,k有所降低,随p的增大,k p有所增加。 与上述类似,相对扩展不确定度亦有两种。 8.3 什么情况下使用U,什么情况下使用U p来说明测量结果的不确定度? (1)根据有关测量仪器校准的技术规范。例如,以下技术规范规定取k=3,JJF2002,2003,2004,2018,2019,2025,2026,2030,2032~2041,2045,2446等,不一一例举。而以下技术规范规定取k=2,JJF2049,2050,2072,2089等。也有一些技术规范规定用U95,如JJF2006,2061,等。规定采用U99的如JJF2020,2056,146等。 (2)可以估计被测量Y估计值y之分布接近正态时,可给出U p,否则只能给出U。 8.4 什么情况下可用包含因子k95=2及k99=3? 如果y的分布是比较理想的正态分布,那么,当合成标准不确定度u C(y)的有效自由度充分大时,即可做出这样较简单的处理,例如,在p=95%时,自由度为12,这时,按本讲座6.6,k p=2.18,如取k p=2,其值小了不到十分之一,应该说就无足轻重了。当p=99%时,υeff无穷大的k p=2.58≈2.6,整化为k99=3,已较保守;而当υeff=20时,k99之值为2.85,它比2.6大约大十分之一,因此,这时如不用2.85而用2.6,所得U99也只小十分之一左右,应可忽略。因此,在《JJF1059》中所要求的有效自由度应充分大,拿十分之一作为可忽略的标准,则对于p=95%时,υeff应大于12,对于p=99%,应大于20。 8.5 什么情况下,虽未计算合成标准不确定度u c(y)的有效自由度,取包含因子k=2给出的扩展不确定度U可以估计是置信区间在p=95%的半宽,可否在检定证书中给出其值为U95? 虽未算出υeff,但其值估计不太小,例如,大于12,而且,可以估计Y的估计值的分布接近正态,这时,一般可以认为U=2u c(y)的置信概率p大约为95%。但是不能在证书上给出其值为U95之值。

气相色谱仪的测量结果不确定度评定

气相色谱仪的测量结果不确定度评定 1、 概述 1.1测量依据:JJG700-2016《气相色谱仪检定规程》 1.2测量方法: 按JJJG700-2016 《气相色谱仪检定规程》,气相色谱仪用标准物质检定检测器的灵敏度或检测限。 2、数学模型 2.1气相色谱仪检测器分两类,(一)是浓度型检测器,包括热导检测器(TCD )和电子俘获检测器(ECD ),(二)是质量型检测器,包括火焰离子化检测器(FID )、火焰光度检测器(FPD )和氮磷检测器(NPD )。 2.2浓度度型检测器,其响应值与载气流速有关,灵敏度的计算公式为: W AFc S = (1) 式中: S ----灵敏度,mV ·mL/mg ; A ----标准物质中溶质的峰面积,mV ·s ; Fc ----载气流速,mL/min ; W ----标准物质的进样量,g 。 2.3质量型检测器,其响应值与载气流速无关。通常,检测限以(2)式计算: A NW D 2= (2) 式中: D -----检测限,g/s ; N -----基线躁声,A ; W ----标准物质的进样量,g ; A ----标准物质中溶质的峰面积,A ·s 。 由于FPD 对测定硫的响应机理不同,其响应值与标准物质浓度的平方成正比,则FPD 对测定硫的检测限以(3)式计算: ()2 4/12 )(2W h Wn N D s = ………………………(3) 式中:D -----检测限,g/s ; N -----基线躁声,mm ; h ----标准物质中硫的峰高,mm ; W 1/4---硫色谱峰高1/4处的峰宽,s ; Wn s ----标准物质中硫的进样量,g 。 3、不确定度的分析和评定 3.1根据传递由(1)式得出:222 2?? ? ??+?? ? ??+?? ? ??=?? ? ??W S Fc S A S S S W Fc A S ……………(4) 由 ( 2)式得 出: 2 2 2 2 ? ? ? ??+?? ? ??+??? ??=?? ? ??A S W S N S D S A W N D …………………(5) 由(3) 式得 出: 2 4/14 /122 222222??? ? ??+??? ? ?+??????????? ? ??+??? ??+??? ??=??? ??W S h S n Sn W S N S S S W h s s W N D (6)

7890B气相色谱仪的操作规程

1、目的:建立安捷伦7890B GC气相色谱仪的操作规程,使检验人员能够正确的使用安捷伦7890B GC气相色谱仪。 2、适用范围:气态有机化合物或较易挥发的液体、固体有机化合物样品。 3、责任人:检测员 4、正文: 4.1 操作步骤 4.1.1 操作前准备 4.1.1.1 色谱柱的检查与安装首先打开柱温箱门看是否是所需用的色谱柱,若不是则旋下毛细管柱按进样口和检测器的螺母,卸下毛细管柱。取出所需毛细管柱,放上螺母,并在毛细管柱两端各放一个石墨环,然后将两侧柱端截去1~2mm,进样口一端石墨环和柱末端之间长度为4~6mm,检测器一端将柱插到底,轻轻回拉1mm左右,然后用手将螺母旋紧,不需用板手,新柱老化时,将进样口一端接入进样器接口,另一端放空在柱温箱内,检测器一端封住,新柱在低于最高使用温度20~30℃以下,通过较高流速载气连续老化24小时以上。 4.1.1.2 气体流量的调节 4.1.1.2.1 载气(氮气)开启氮气钢瓶高压阀前,首先检查低压阀的调节杆应处于释 (400-690kPa)放状态,打开高压阀,缓缓旋动低压阀的调节杆,调节至约0.55MPa。 4.1.1.2.2 氢气打开氢气钢瓶,调节输出压至0.41MPa。(400-690kPa) 4.1.1.2.3 空气打开空气钢瓶,调节输出压至0.55MPa。(550-690kPa) 4.1.1.3 检漏用检漏液检查柱及管路是否漏气。 4.1.2 主机操作 4.1.2.1 接通电源,打开电脑,进入windows 主菜单界面。然后开启主机,主机进行自检,自检通过主机屏幕显示power on successul,进入Windows系统后,双击电脑桌面的(Instrument Online)图标,使仪器和工作联接。 4.1.2.2 编辑新方法 4.1.2.2.1 从“Method”菜单中选择“Edit Entire Method”,根据需要钩选项目,“Method Information”(方法信息),“Instrument/Acquisition”(仪器参数/数据采集条件),“Data Analysis”(数据分析条件),“Run Time Checklist”(运行时间顺

气相色谱不确定度

气相色谱法测定水中有机氯的不确定度评估 1测定方法简述: 1.1 方法依据:GB/T7492—87 1.2 仪器条件和型号:HP5890Ⅱ型,柱子类型:1.5%OV —17+2%QF —1,柱温: 200℃ 气化室:230℃ ECD :280℃ 载气:2N :30mL/min 1.3 标准溶液:取0.1mg/mL ,1.00mL 稀释到100mL 。吸取1mL 定容到10mL 后再吸取2mL 定容到10mL ,此时应用液浓度为20ng/mL 。 1.4 分析步骤: 吸取样品2mL ,用重蒸石油醚(30-60)℃定容到10.00mL ,进样1μL ,采用单点校正法计算浓度,绝对保留时间定性,峰高定量。 2. 确定测定过程中测量不确定度的来源: 2.1 标准溶液引入的不确定度; 2.2 样品溶液稀释过程中容量器引入的不确定度; 2.3 测定样品过程中容量器引入的不确定度; 2.4 样品重复性测定引入的不确定度; 2.5 测定中仪器示值误差引入的不确定度 3. 建立数学模型 1223 m h v k C h v v ???= ?? [1] C — 试样中农药浓度 μg/L m — 标准农药 μg 1h — 样品的峰高 mm 1v — 样品定容体积;mL k — 稀释因子 2v — 样品进样体积 μL 3v — 取样量 mL 2h — 标准农药的峰高 mm 由于各含量相互独立,由式[1]得出测定结果合成相对标准不确定度的计算公 式: 12 22 2 2 (1)(2)(3)(4)(5)c r e l r e l r e l r e l r e l r e l u u u u u u ??=++++?? r e l u —分析过程中总的引入的相对不确定度 (1)rel u —标准溶液浓度引入的相对标准不确定度; (2)rel u —标准液稀释过程中容量器引入的相对标准不确定;

最新Agilent7820A气相色谱仪操作规程

1、目的 明确Agilent7820A型气相色谱仪的使用要求、基本操作步骤、维护、保养方法,以便于按照规程进行仪器操作。 2、范围 本规程适用于Agilent7820A型气相色谱仪的使用操作。 3、责任者 分析员执行本规程,QC经理及指定人监督本规程的实施。 4、内容 4.1 开机 4.1.1 依次打开气瓶氮气,空气,氢气。调节氮气与空气的压力值到0.5MPa,氢气的压力固定值为0.2~0.3MPa。 4.1.2 打开计算机。打开7820A GC电源,待自检完成后,双击“Instrument 1 Onlin e”图标,化学工作站自动与7820A GC通讯,进入工作站画面。 4.1.3 从“View”菜单中选择“Method and Run control”画面,点击“View”菜单中的“Instrument Actuals”,“GC Instrument diagram”,使其命令前有“√”标志,点击“Online signals”到“Signal window1”来调用所需的界面。 4.2 数据采集方法编辑 4.2.1 仪器配置:点击“Instrument”选项,选择“Agilent7820A Configuration”,进入一个界面,点击“Configuration”点击“Column”选项,点击第一行,输入毛细管柱的型号,编码,规格和最大耐受温度,点击“OK”。(也可以点击“Imentory”选项在已有柱子中选择)。 4.2.2 开始编辑完整方法:选择“Method”选项,点击“New Method”。 4.2.3 仪器参数设置: 4.2.3.1 进样口参数设定:在弹出的窗口中点选“Split-Splitless Intel”,输入进样口温度“Heater”如:250℃;选择模式;载气节省;输入分流比“Split Ratio”,如:7:1。 4.2.3.2 毛细管柱参数设定:点击柱子标识,检查柱子型号是否与所装柱子一致。选择控制模式:恒流“Flow”或者恒压“Pressure”,并输入数值,如:5ml/min;如需要还可设置流速变化程序以及后运行流速和时间。 4.2.3.3 柱温箱参数设定: 点选柱温标识输入柱温“Value ℃”如:40℃;输入升温速率“ Rate ℃/min”如:3℃/min;输入运行时间“Hold Time min”;如:5min;输入后运行时间“Post Run Time”如:10min;输入后运行温度“Post Run”如:40℃。 4.2.3.4 检测器参数设定:点选检测器图标进入“FID-Front”界面,输入检测器温度“Heater”如:300℃。点击“Resolve”。点击“Method” 选项,选中“Save method as”,为新方法命名,如“test”,点击“Ok”保存。 4.3 运行进样 4.3.1 手动进样 4.3.1.1 调用方法,点击“Method”选项,选择“Load Method”点击需要的方法,

相关文档