文档库 最新最全的文档下载
当前位置:文档库 › 阵列信号处理中DOA算法分类总结(大全)

阵列信号处理中DOA算法分类总结(大全)

阵列信号处理中DOA算法分类总结(大全)
阵列信号处理中DOA算法分类总结(大全)

数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念。 0.1信号、系统与信号处理 1.信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号 能量信号/功率信号 连续时间信号/离散时间信号/数字信号 按自变量与函数值的取值形式不同分类: 2.系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3.信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2 数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理,而且

也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 (1)前置滤波器 将输入信号x a(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次x a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3 数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4 数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术——DigitalSignalProcessing,另一层是狭义的理解,为数字信号处理器——DigitalSignalProcessor。 0.5 课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessing)。信号对象主要是随机信号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1.按自变量与函数值的取值形式是否连续信号可以分成哪四种类型? 2.相对模拟信号处理,数字信号处理主要有哪些优点? 3.数字信号处理系统的基本组成有哪些?

数字信号处理知识点总结

《数字信号处理》辅导 一、离散时间信号和系统的时域分析 (一) 离散时间信号 (1)基本概念 信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。 连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。 模拟信号:是连续信号的特例。时间和幅度均连续。 离散信号:时间上不连续,幅度连续。常见离散信号——序列。 数字信号:幅度量化,时间和幅度均不连续。 (2)基本序列(课本第7——10页) 1)单位脉冲序列 1,0()0,0n n n δ=?=?≠? 2)单位阶跃序列 1,0 ()0,0n u n n ≥?=?≤? 3)矩形序列 1,01 ()0,0,N n N R n n n N ≤≤-?=?<≥? 4)实指数序列 ()n a u n 5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列 1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。 注意正弦周期序列周期性的判定(课本第10页) 2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓 设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即 ()()i x n x n iL ∞ =-∞ = -∑ 当L N ≥时,()()()N x n x n R n = 当L N <时,()()()N x n x n R n ≠ (4)序列的分解 序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即

常见的信号处理滤波方法

低通滤波:又叫一阶惯性滤波,或一阶低通滤波。是使用软件编程实现普通硬件RC 低通滤波器的功能。 适用范围:单个信号,有高频干扰信号。 一阶低通滤波的算法公式为: Y(n)X(n)(1)Y(n 1)αα=+-- 式中: α是滤波系数;X(n)是本次采样值;Y(n 1)-是上次滤波输出值;Y(n)是本次滤波输出值。 滤波效果1: 红色线是滤波前数据(matlab 中生成的正弦波加高斯白噪声信号) 黄色线是滤波后结果。 滤波效果2:

matlab中函数,相当于一阶滤波,蓝色是原始数据(GPS采集到的x(北)方向数据,单位m),红色是滤波结果。 一阶滤波算法的不足: 一阶滤波无法完美地兼顾灵敏度和平稳度。有时,我们只能寻找一个平衡,在可接受的灵敏度范围内取得尽可能好的平稳度。

互补滤波:适用于两种传感器进行融合的场合。必须是一种传感器高频特性好(动态响应好但有累积误差,比如陀螺仪。),另一传感器低频特性好(动态响应差但是没有累积误差,比如加速度计)。他们在频域上互补,所以进行互补滤波融合可以提高测量精度和系统动态性能。 应用:陀螺仪数据和加速度计数据的融合。 互补滤波的算法公式为: 1122Y(n)X (n)(X (n)Y(n 1))αα+=+-- 式中:1α和2α是滤波系数;1X (n)和2X (n)是本次采样值;Y(n 1)-是上次滤 波输出值;Y(n)是本次滤波输出值。 滤波效果 (测试数据): 蓝色是陀螺仪 信号,红色是加 速度计信号,黄 色是滤波后的 角度。

. 互补滤波实际效果: .

卡尔曼滤波:卡尔曼滤波器是一个“optimal recursive data processing algorithm (最优化自回归数据处理算法)”。对于解决很大部分的问题,它是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测。 首先,用于测量的系统必须是线性的。 (k)(k 1)(k)(k)X AX BU w =-++ (k)(k)(k)Z HX v =+ (k)X 是系统k 时刻的状态,(k)U 是系统k 时刻的控制量。(k)Z 是系统k 时 刻的测量值。A 和B 为系统参数,(k)w 和(k)v 分别表示过程和测量的噪声,H 是测量系统参数。 在进行卡尔曼滤波时: 首先进行先验预测: (k 1|k)(k |k)(k)(k)X AX BU w +=++ 计算先验预测方差: '(k 1|k)(k |k)(k)P AP A Q +=+ 计算增益矩阵: (k 1)(k 1|k)'/((k 1|k)'(k 1))Kg P H HP H R +=++++ 后验估计值: (k 1|k 1)(k 1|k)(k 1)(Z(k 1)(k 1|k))X X Kg HX ++=++++-+ 后验预测方差: (k 1|k 1)(1(k 1))(k 1|k)P Kg H P ++=-++ 其中,(k)Q 是系统过程激励噪声协方差,(k)R 是测量噪声协方差。 举例说明: (下文中加粗的是专有名词,需要理解) 预测小车的位置和速度的例子(博客+自己理解):

数字信号处理总结与-习题(答案

对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散 信号,再进行幅度量化后就是 数字信号。2、若线性时不变系统是有因果性,则该系统的单位取样响应序列h(n)应满足的充分必要条件是 当n<0时,h(n)=0 。3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆 的N 点等间隔采样。4、)()(5241 n R x n R x ==,只有 当循环卷积长度L ≥8 时,二者的循环卷积等于线性卷积。5、已知系统的单位抽样响应为h(n),则系统稳定的充要条件是 ()n h n ∞ =-∞ <∞ ∑ 6、用来计算N =16点DFT ,直接计算需要(N 2 )16*16=256_次复乘法,采用基2FFT 算法, 需要__(N/2 )×log 2N =8×4=32 次复乘法。7、无限长单位冲激响应(IIR )滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,_级联型_和 并联型_四种。8、IIR 系统的系统函数为)(z H ,分别用直接型,级联型,并联型结构实现,其中 并 联型的运算速度最高。9、数字信号处理的三种基本运算是:延时、乘法、加法 10、两个有限长序列 和 长度分别是 和 ,在做线性卷积后结果长度是__N 1+N 2-1_。11、N=2M 点基2FFT ,共有 M 列蝶形, 每列有N/2 个蝶形。12、线性相位FIR 滤波器的零点分布特点是 互为倒数的共轭对 13、数字信号处理的三种基本运算是: 延时、乘法、加法 14、在利用窗函数法设计FIR 滤波器时,窗函数的窗谱性能指标中最重要的是___过渡带宽___与__阻带最小衰减__。16、_脉冲响应不变法_设计IIR 滤波器不会产生畸变。17、用窗口法设计FIR 滤波器时影响滤波器幅频特性质量的主要原因是主瓣使数字滤波器存在过渡带,旁瓣使数字滤波器存在波动,减少阻带衰减。18、单位脉冲响应分别为 和 的两线性系统相串联,其等效系统函数时域及频域表达式分别是h(n)=h 1(n)*h 2(n), =H 1(e j ω )× H 2(e j ω )。19、稳定系统的系统函数H(z)的收敛域包括 单位圆 。20、对于M 点的有限长序列x(n),频域采样不失真的条件是 频域采样点数N 要大于时域采样点数M 。 1、下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( y(n)=x(n 2 ) ) A.窗函数的截取长度增加,则主瓣宽度减小,旁瓣宽度减小 B.窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关 C.为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加 D.窗函数法能用于设计FIR 高通滤波4、因果FIR 滤波器的系统函数H(z)的全部极点都在(z = 0 )处。6、已知某序列z 变换的收敛域为|z|<1,则该序列为(左边序列)。7、序列)1() (---=n u a n x n ,则)(Z X 的收敛域为(a Z <。8、在对连续信号均匀 采样时,要从离散采样值不失真恢复原信号,则采样周期T s 与信号最高截止频率f h 应满足关系(T s <1/(2f h ) ) 9、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 (16=N )。10、线性相位FIR 滤波器有几种类型( 4) 。11、在IIR 数字滤波器的设计中,用哪种方法只适 合于片断常数特性滤波器的设计。(双线性变换法)12、下列对IIR 滤波器特点的论述中错误的是( C )。 A .系统的单位冲激响应h(n)是无限长的B.结构必是递归型的C.肯定是稳定的D.系统函数H(z)在有限z 平面(0<|z|<∞)上有极点 13、有限长序列h(n)(0≤n ≤N-1)关于τ= 2 1 -N 偶对称的条件是(h(n)=h(N-n-1))。14、下列关于窗函数设计法的说法中错误的是( D )。A.窗函数的截取长度增加,则主瓣宽度减小,旁瓣宽度减小 B.窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关 C.为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加 D.窗函数法不能用于设计FIR 高通滤波器 15、对于傅立叶级数而言,其信号的特点是(时域连续非周期,频域连续非周期)。

多通道实时阵列信号处理系统的设计

多通道实时阵列信号处理系统的设计 由judyzhong于星期三, 11/11/2015 - 14:06 发表 作者:杨欣然,吴琼之,范秋香来源:电子科技 摘要:以全数字化信号产生和数字波束形成处理为基础的数字化阵列雷达已成为当代相控阵雷达技术发展的一个重要趋势,本文针对现代数字化阵列雷达对多通道数据采集和实时处理的需求,设计了一种基于FPGA的多通道实时阵列信号处理系统。可完成对20通道的中频数据采集,实时波束合成和数据传输功能,实验结果表明系统工作稳定、性能良好,具有良好的信噪比和通道一致性。 随着数字信号处理技术的不断进步和相应处理能力的不断提高,数字化阵列雷达以其动态范围大、扫描波束多、设计灵活性高的特点,已经逐步取代传统模拟阵列雷达成为高性能阵列雷达的主要研究方向。数字化阵列雷达需要将各个阵列天线接收的信号经过模拟下变频后经过AD采样并在数字域内进行信号处理,其典型的信号处理的方法包括数字波束形成(DBF)技术和波达方向估计(DOA)技术等。对于数字阵列雷达而言,对模拟下变频后的信号完成多

通道数据采集、数据处理和传输是系统的关键部分,对处理系统的同步性能、通道间幅相一致性均提出了很高要求,如进行DBF处理中通道间的不一致性将会影响波束合成后天线的方向图的特性,使增益下降、旁瓣电平升高。同时数字阵列雷达需要对各个通道采集下的数据实时地完成信号处理和数据传输功能,对处理系统的实时处理能力和信号吞吐能力提出了一定挑战。 本文介绍了一种针对DBF处理的多通道阵列信号处理系统的设计方案,以Xilinx的 XC7K325T FPGA为核心,完成了20通道的中频数据采集,并在FPGA内完成数字波束合成功能,可以同时完成8个波束指向的合成,并且将合成后的数据通过RapidIO结果传输至实时处理机进行进一步的处理。 1 系统设计原理和组成 本系统由数据采集模块和波束合成与传输模块两部分组成,系统框图如图1所示。 20路模拟中频输入通过SSMC连接器输入,由5片四通道A/D芯片AD9653采样后,通过LVDS接口串行输出到到FPGA的ISERDES输入模块中完成串并转换,并在FPGA内完

信号处理知识点总结

第一章信号 1.信息是消息的内容,消息是信息的表现形式,信号是信息的载体 2.信号的特性:时间特性,频率特性 3.若信号可以用确定性图形、曲线或数学表达式来准确描述,则该信号为确定性信号 若信号不遵循确定性规律,具有某种不确定性,则该信号为随机信号 4.信号分类:能量信号,一个信号如果能量有限;功率信号,如果一个信号功率是有限的 5.周期信号、阶跃信号、随机信号、直流信号等是功率信号,它们的能量为无限 6.信号的频谱有两类:幅度谱,相位谱 7.信号分析的基本方法:把频率作为信号的自变量,在频域里进行信号的频谱分析 第二章连续信号的频域分析 1.周期信号频谱分析的常用工具:傅里叶三角级数;傅里叶复指数 2.利用傅里叶三角级数可以把周期信号分解成无穷多个正、余弦信号的加权和3频谱反映信号的频率结构,幅频特性表示谐波的幅值,相频特性反映谐波的相位 4.周期信号频谱的特点:离散性,谐波性,收敛性 5.周期信号由无穷多个余弦分量组成 周期信号幅频谱线的大小表示谐波分量的幅值 相频谱线大小表示谐波分量的相位 6.周期信号的功率谱等于幅值谱平方和的一半,功率谱反映周期信号各次谐波的功率分配关系,周期信号在时域的平均功率等于其各次谐波功率之和 7.非周期信号可看成周期趋于无穷大的周期信号 8.周期T0增大对频谱的影响:谱线变密集,谱线的幅度减少 9.非周期信号频谱的特点:非周期信号也可以进行正交变换; 非周期信号完备正交函数集是一个无限密集的连续函数集; 非周期信号的频谱是连续的; 非周期信号可以用其自身的积分表示 10.常见奇异信号:单位冲激信号,单位直流信号,符号函数信号,单位阶跃信号 11.周期信号的傅里叶变换:周期信号:一个周期绝对可积à傅里叶级数à离散谱 非周期信号:无限区间绝对可积à傅里叶变换à连续谱 12.周期信号的傅立叶变换是无穷多个冲激函数的线性组合 脉冲函数的位置:ω=nω0 , n=0,±1,±2, ….. 脉冲函数的强度:傅里叶复指数系数的2π倍 周期信号的傅立叶变换也是离散的; 谱线间隔与傅里叶级数谱线间隔相同 13.信号的持续时间与信号占有频带成反比 14.信号在时域的翻转,对应信号在频域的翻转 15.频域频移,时域只有相移,幅频不变;时域相移,只导致频域频移,相位不变

西工大《阵列信号处理》考点整理

西工大《阵列信号处理》复习考点整理 考试形式: 一、8道问答题,每道题5分; 二、六道大题,包括PPT 上老师给出的那一道。 一 1. 均匀线列阵在波束扫描时,波束图怎么变化? 当波束指向法线方向时,波束图具有最窄的主瓣宽度;随着阵元指向逐渐远离法线方向,主瓣一直指向所调方向并且展宽;除了指向法线方向外,主瓣都关于波束倾角轴不对称;当达到某一临界角时不能形成波束,但是在端射方向又可以形成波束。且在端射方向形成一个较宽的主瓣。 2.DI 是什么? DI 表示指向性指数,其表达式为 D 为方向性,是阵列和孔径的一个常用性能度量。 ???=ππ φθθφθπφθ200 ),(sin 41) ,(P d d P D T T 3. DC 加权的特点 (1)旁瓣级给定时,主瓣宽度最小; (2)主瓣宽度给定时,旁瓣级最低; (3)等旁瓣级。 4. 频域快拍模型是什么,步骤是什么,常用的频域快拍取的时间有什么关系? (1)记住《最优阵列处理技术》245页图 5.1 (2)步骤: ①把总的观测时间T 分为K 个不重叠的时间区域,区域长度为△T ; ②对时域快拍进行FT ; ③对频域向量(频域快拍)进行窄带波束形成; ④对上述频域信号进行IFT 。 (3)△T 的选择准则 ①△T 必须远大于平面波通过阵列的传播时间; ②△T 依赖于输入信号的带宽和信号的时域谱,16≥??T B (B*△T 足够大,选用频域快拍模型)。 5. 什么是均匀阵的瑞利限? 常规波束形成分辨率的极限。表达式为 6. 空间白噪声的阵增益的相关计算。 阵列增益ωA 的定义为阵列的输出SNR 和一个阵元上的输入SNR 的比值。下标“ω”表示空域不相关的噪声输入。表达式如下:

数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念 0.1信号、系统与信号处理 1?信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号能量信号/功率信号 连续时间信号/离散时间信号/数字信号按自变量与函数值的取值形式不同分类: 2?系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3. 信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理, 而且也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 精选

PrF ADC DSP DAC PoF (1)前置滤波器 将输入信号X a(t )中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次X a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术 ----- D igitalSignalProcessing 另一层是狭义的理解,为数字信号处理器----- DigitalSignalProcesso。 0.5课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号 频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessin)信号对象主要是随机信 号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1 ?按自变量与函数值的取值形式是否连续信号可以分成哪四种类型?

数字信号处理学习心得体会

数字信号处理学习心得 体会

数字信号处理学习心得 一、课程认识和内容理解 《数字信号处理》是我们通信工程和电子类专业的一门重要的专业基础课程,主要任务是研究数字信号处理理论的基本概念和基本分析方法,通过建立数学模型和适当的数学分析处理,来展示这些理论和方法的实际应用。 数字信号处理技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。信息科学是研究信息的获取、传输、处理和利用的一门科学,信息要用一定形式的信号来表示,才能被传输、处理、存储、显示和利用,可以说,信号是信息的表现形式。这学期数字信号处理所含有的具体内容如下: 第一单元的课程我们深刻理解到时域离散信号和时域离散系统性质和特点;时域离散信号和时域离散系统时域分析方法;模拟信号的数字处理方法。 第二单元的课程我们理解了时域离散信号(序列)的傅立叶变换,时域离散信号Z变换,时域离散系统的频域分析。 第三单元的课程我们学习了离散傅立叶变换定义和性质,离散傅立叶变换应用——快速卷积,频谱分析。 第四单元的课程我们重点理解基 2 FFT算法——时域抽取法﹑频域抽取法,FFT的编程方法,分裂基FFT算法。 第五单元的课程我们学了网络结构的表示方法——信号流图,无限脉冲响

应基本网络结构,有限脉冲响应基本网络结构,时域离散系统状态变量分析法。 第六单元的课程我们理解数字滤波器的基本概念,模拟滤波器的设计,巴特沃斯滤波器的设计,切比雪夫滤波器的设计,脉冲响应不变法设计无限脉冲响应字数字滤波器,双线性变换法设计无限脉冲响应字数字滤波器,数字高通﹑带通﹑带阻滤波器的设计。 第七单元的课程我们学习了线性相位有限脉冲响应(FIR)数字滤波器,窗函数法设计有限脉冲响应(FIR)数字滤波器,频率采样法设计有限脉冲响应(FIR)数字滤波器 二、专业认识和未来规划 通信工程是一门工程学科,主要是在掌握通信基本理论的基础上,运用各种工程方法对通信中的一些实际问题进行处理。通过该专业的学习,可以掌握电话网、广播电视网、互联网等各种通信系统的原理,研究提高信息传送速度的技术,根据实际需要设计新的通信系统,开发可迅速准确地传送各种信息的通信工具等。 对于我们通信专业,我觉得是个很好的专业,现在这个专业很热门,这个专业以后就业的方向也很多,就业面很广。我们毕业以后工作,可以进入设备制造商、运营商、专有服务提供商以及银行等领域工作。当然,就业形势每年都会变化,所以关键还是要看自己。可以从事硬件方面,比如说PCB,别小看这门技术,平时我们在试验时制作的简单,这一技术难点就在于板的层数越多,要做的越稳定就越难,这可是非常有难度的,如果学好了学精了,也是非常好找工作的。也可以从事软件方面,这实际上要我们具备比较好的模电和数电的

阵列信号处理知识点

信号子空间: 设N 元阵接收p 个信源,则其信号模型为:()()()()1 p i i i i x t s t a N t θ== +∑ 在无噪声条件下,()()()()()12,, ,P x t span a a a θθθ∈ 称()()()()12 ,, ,P span a a a θθθ为信号子空间,是N 维线性空间中的P 维子空间,记为P N S 。P N S 的正交补空间称为噪声子空间,记为N P N N -。 正交投影 设子空间m S R ∈,如果线性变换P 满足, 则称线性变换 P 为正交投影。 导向矢量、阵列流形 设N 元阵接收p 个信源,则其信号模型为:()()()()1 p i i i i x t s t a N t θ== +∑,其中矢量()i i a θ称为 导向矢量,当改变空间角θ,使其在空间扫描,所形成的矩阵称为阵列流形,用符号 A 表示,即 (){|(0,2)}a A θθπ=∈ 波束形成 波束形成(空域滤波)技术与时间滤波相类似,是对采样数据作加权求和,以增强特定方向信号的功率,即 ()()()()H H y t W X t s t W a θ==,通过加权系数W 实现对θ的选择。 最大似然 已知一组服从某概率模型 ()f X θ的样本集12,, ,N X X X ,其中θ为参数集合,使条件概率 ()12,,,N f X X X θ最大的参数θ估计称为最大似然估计。 不同几何形态的阵列的阵列流形矢量计算问题 假设有P 个信源,N 元阵列,则先建立阵列的几何模型求第i 个信源的导向矢量()i i a θ 选择阵元中的一个作为第一阵元,其导向矢量()1 [1]i a θ= 然后根据阵列的几何模型求得其他各阵元与第一阵元之间的波程差 n ?,则确定其导向矢量 ()2j n i a e πλ θ? =

阵列信号处理方面10个经典程序

1.均匀线阵方向图 %8阵元均匀线阵方向图,来波方向为0度 clc; clear all; close all; imag=sqrt(-1); element_num=8;%阵元数为8 d_lamda=1/2;%阵元间距d与波长lamda的关系 theta=linspace(-pi/2,pi/2,200); theta0=0;%来波方向 w=exp(imag*2*pi*d_lamda*sin(theta0)*[0:element_num-1]'); for j=1:length(theta) a=exp(imag*2*pi*d_lamda*sin(theta(j))*[0:element_num-1]'); p(j)=w'*a; end figure; plot(theta,abs(p)),grid on xlabel('theta/radian') ylabel('amplitude') title('8阵元均匀线阵方向图') 当来波方向为45度时,仿真图如下:

8阵元均匀线阵方向图如下,来波方向为0度,20log(dB)

随着阵元数的增加,波束宽度变窄,分辨力提高:仿真图如下:

2.波束宽度与波达方向及阵元数的关系 clc clear all close all ima=sqrt(-1); element_num1=16; %阵元数 element_num2=128; element_num3=1024; lamda=0.03; %波长为0.03米 d=1/2*lamda; %阵元间距与波长的关系 theta=0:0.5:90; for j=1:length(theta); fai(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lamda/(element_num1*d)); psi(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lamda/(element_num2*d)); beta(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lamda/(element_num3*d)); end figure; plot(theta,fai,'r',theta,psi,'b',theta,beta,'g'),grid on xlabel('theta'); ylabel('Width in radians') title('波束宽度与波达方向及阵元数的关系') 仿真图如下:

阵列信号处理

宽带信号中的三种二维平面阵DOA估计

宽带信号中的三种二维平面阵DOA 估计 一. 背景 目前关于阵列窄带信号的高分辨算法已比较成熟,但是随着信号处理技术的发展,信号环境日趋复杂,信号形式多样,信号密度日渐增大,窄带阵列探测系统的确定逐渐显示出来。 由于宽带信号具有目标回波携带的信息量大,有利于目标探测、参量估计和目标特征提取等特点,在有源探测系统中越来越多地得到应用。而在无源探测系统中,利用目标辐射的宽带连续谱进行目标检测是有效发现目标的一种重要手段。 ISM 方法把宽带信号在频域分解为J 个窄带分量,然后在每一个子带上直接进行窄带处理。因为信号为调频信号,所以信号在时域的分段实际上就是频域的分段。将信号分解为窄带信号后,我们就可以利用窄带算法进行处理,最后将各个结果进行加权综合,即可得到最终的结果。 二维DOA 估计是阵列信号处理中的重要内容,通过二维DOA 估计可以得到信号源在平面中的角度信息。一般采用L 型、面阵和平行阵或矢量传感器实现二维参数的估计,多数有效的二维DOA 估计算法是在一维DOA 估计的基础上,直接针对空间二维谱提出的,如二维MUSIC 算法以及二维CAPON 算法等。这两种算法可以产生渐进无偏估计,但要在二维参数空间搜索谱峰,计算量相当大。而采用二维ROOT MUSIC 算法可以减小计算量,但是需要付出精度下降的代价。 本次报告将结合宽带信号和二维DOA 估计算法,进行相关的算法介绍和仿真。 二. 算法介绍 1. 接收信号模型: 图 1 平面阵列示意图 如图1所示,设平面阵元数为M ×N ,信源数为K 。信源的波达方向为11(,),,(,)k k θφθφ , 第i 个阵元与参考阵元之间的波程差为: 2(cos sin sin sin cos )/i i i x y z βπφθφθθλ=++ 设子阵1沿x 轴的方向矩阵为x A ,而子阵2的每个阵元相对于参考阵元的波程差就等于子阵1的阵元的波程差加上2sin sin /d πφθλ,所以接收信号为

数字信号处理学习心得

数字信号处理学习心得 XXX ( XXX学院XXX班) 一、课程认识和内容理解 《数字信号处理》是我们通信工程和电子类专业的一门重要的专业基础课程,主要任务是研究数字信号处理理论的基本概念和基本分析方法,通过建立数学模型和适当的数学分析处理,来展示这些理论和方法的实际应用。 数字信号处理技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。信息科学是研究信息的获取、传输、处理和利用的一门科学,信息要用一定形式的信号来表示,才能被传输、处理、存储、显示和利用,可以说,信号是信息的表现形式。这学期数字信号处理所含有的具体内容如下: 第一单元的课程我们深刻理解到时域离散信号和时域离散系统性质和特点;时域离散信号和时域离散系统时域分析方法;模拟信号的数字处理方法。 第二单元的课程我们理解了时域离散信号(序列)的傅立叶变换,时域离散信号Z变换,时域离散系统的频域分析。 第三单元的课程我们学习了离散傅立叶变换定义和性质,离散傅立叶变换应用——快速卷积,频谱分析。 第四单元的课程我们重点理解基2 FFT算法——时域抽取法﹑频域抽取法,FFT的编程方法,分裂

基FFT算法。 第五单元的课程我们学了网络结构的表示方法——信号流图,无限脉冲响应基本网络结构,有限脉冲响应基本网络结构,时域离散系统状态变量分析法。 第六单元的课程我们理解数字滤波器的基本概念,模拟滤波器的设计,巴特沃斯滤波器的设计,切比雪夫滤波器的设计,脉冲响应不变法设计无限脉冲响应字数字滤波器,双线性变换法设计无限脉冲响应字数字滤波器,数字高通﹑带通﹑带阻滤波器的设计。 第七单元的课程我们学习了线性相位有限脉冲响应(FIR)数字滤波器,窗函数法设计有限脉冲响应(FIR)数字滤波器,频率采样法设计有限脉冲响应(FIR)数字滤波器 二、专业认识和未来规划 通信工程是一门工程学科,主要是在掌握通信基本理论的基础上,运用各种工程方法对通信中的一些实际问题进行处理。通过该专业的学习,可以掌握电话网、广播电视网、互联网等各种通信系统的原理,研究提高信息传送速度的技术,根据实际需要设计新的通信系统,开发可迅速准确地传送各种信息的通信工具等。 对于我们通信专业,我觉得是个很好的专业,现在这个专业很热门,这个专业以后就业的方向也很多,就业面很广。我们毕业以后工作,可以进入设备制造商、运营商、专有服务提供商以及银行等领域工作。当然,就业形势每年都会变化,所以关键还是要看自己。可以从事硬件方面,比如说PCB,别小看这门技术,平时我们在试验时制作的简单,这一技术难点就在于板的层

数字信号处理课程总结(全)

数字信号处理课程总结 以下图为线索连接本门课程的内容: ) (t x a ) (t y a ) (n x 一、 时域分析 1. 信号 ? 信号:模拟信号、离散信号、数字信号(各种信号的表示及关系) ? 序列运算:加、减、乘、除、反褶、卷积 ? 序列的周期性:抓定义 ? 典型序列:)(n δ(可表征任何序列)、)(n u 、)(n R N 、 n a 、jwn e 、)cos(θ+wn ∑∞ -∞ =-= m m n m x n x )()()(δ 特殊序列:)(n h 2. 系统 ? 系统的表示符号)(n h ? 系统的分类:)]([)(n x T n y = 线性:)]([)]([)]()([2121n x bT n x aT n bx n ax T +=+ 移不变:若)]([)(n x T n y =,则)]([)(m n x T m n y -=- 因果:)(n y 与什么时刻的输入有关 稳定:有界输入产生有界输出 ? 常用系统:线性移不变因果稳定系统 ? 判断系统的因果性、稳定性方法 ? 线性移不变系统的表征方法: 线性卷积:)(*)()(n h n x n y = 差分方程: 1 ()()()N M k k k k y n a y n k b x n k === -+ -∑∑

3. 序列信号如何得来? ) (t x a ) (n x 抽样 ? 抽样定理:让)(n x 能代表)(t x a ? 抽样后频谱发生的变化? ? 如何由)(n x 恢复)(t x a ? )(t x a = ∑ ∞ -∞ =--m a mT t T mT t T mT x ) ()] (sin[ ) (π π 二、 复频域分析(Z 变换) 时域分析信号和系统都比较复杂,频域可以将差分方程变换为代数方程而使分析简化。 A . 信号 1.求z 变换 定义:)(n x ?∑∞ -∞ =-= n n z n x z X )()( 收敛域:)(z X 是z 的函数,z 是复变量,有模和幅角。要其解析,则z 不能取让)(z X 无穷大的值,因此z 的取值有限制,它与)(n x 的种类一一对应。 ? )(n x 为有限长序列,则)(z X 是z 的多项式,所以)(z X 在z=0或∞时可 能会有∞,所以z 的取值为:∞<

阵列信号处理对角加载算法matlab程序

%----------对角加载(LSMI 和SMI)方向图----------------------- %总结:这种算法主要给出了一种对角加载值的计算方法,对误差具有一定的稳健性,研究发现 %当数据协方差矩阵中含有信号分量会影响算法的性能。 clearall;clearall;clc; ratio_d_and_w=0.5; N_array=20;%阵列数 N_signal=60;% 样本数 ang1=0*pi/180;%所需信号的方向 SNR=5;%信噪比 ASd=sqrt(10.^(SNR/10)); ang2=40*pi/180;%干扰信号的方向 INR=45;%干噪比 ASi=sqrt(10.^(INR/10)); Sd=ASd*(randn(1,N_signal)+i*randn(1,N_signal));%Sd为所需信号 Si=ASi*(randn(1,N_signal)+i*randn(1,N_signal));%Si为干扰信号 Ni=randn(N_array,N_signal)+i*randn(N_array,N_signal);%Ni内噪声 Desired_Array=zeros(N_array,N_signal); Interferential_Array=zeros(N_array,N_signal); for LL=1:N_signal Interferential_Array(:,LL)=Si(LL)*test(ang2,N_array,ratio_d_and_w).'; Desired_Array(:,LL)=Sd(LL)*test(ang1,N_array,ratio_d_and_w).'; end X=zeros(N_array,N_signal); X= Interferential_Array +Ni; Rx=X*X'/N_signal; mm=std(diag(Rx));%对角加载值的确定下限 %mm=trace(Rx)/N_array;%对角加载值的确定上限 R1=Rx+mm*eye(size(Rx)); R=inv(R1); A_est=test(ang1,N_array,ratio_d_and_w); C= A_est; w_SMI=R*C/(C'*R*C);%对角加载 w_LSMI=inv(Rx)*C/(C'*inv(Rx)*C);%普通的Capon算法

数字信号处理第三章总结

3.4系列的Z 变换与连续信号的拉普拉斯变 换、傅里叶变换的关系 序列的Z 变换与连续信号的拉普拉斯变换、傅里叶变换的关系 拉普拉斯变换 拉普拉斯逆变换 傅里叶变换 傅里叶逆变换 序列x(n)的Z 变换 逆Z 变换 抽样信号的拉普拉斯变换 []?∞ ∞--==dt e t x t x LT s X st a )()()([]? ∞ +∞ --==j j st a dt e t x s X LT t x σσ)()()(1 Ω +=j s σ[]?∞ ∞ -Ω-==Ωdt e t x t x FT j X t j )()()([]?∞ ∞-Ω-Ω Ω=Ω=d e j X j X FT t x t j )()()( 1Ω =j s ()()n n X z x n z ∞ -=-∞ =∑ ,2,1,0,)(21)(1 ±±==?-n dz z z X j n x c n π()()()()()∑∑? ?∑?∞ -∞ =-∞ -∞=∞ ∞ --∞ ∞--∞ -∞=∞∞ --∧ ∧∧ = -=-==??????=n nsT a n st a st n a st a a a e nT x dt e nT t nT x dt e nT t nT x dt e t x t x LT s X δδ)()()(

抽样序列的z 变换为 3.4.1拉氏变换与Z 变换变换的关系就是复变量s 平面到复变量z 平面的映射: 令 s=σ+j Ω, z=re j ω 得到: re j ω =e (σ+j Ω)T =e σT e j ΩT , 因而 r=e σT , ω=ΩT 3.4.2 ω= ΩT Ω=0 、π/T 、3π/T 、 Ω0与ω的对应关系 Ω变化时与ω的对应关系 s 平面到z 平面的映射是多值映射。 (傅里叶变换是拉普拉斯变换在虚轴的特例,即s =j Ω,因而映射 到z 平面上为单位圆,代入 抽样序列的z 变换 sT e z =()[]()∑∞ -∞ =-= =n n z n x n x ZT z X ) (()e ?() (e )(2.89) sT sT a z X z X X s ===

阵列信号处理作业

阵列信号处理课程2011年作业 第1题 假定半波长间隔均匀分布线列阵的阵元数N =16,若入射平面波为62.5Hz 的正弦信号,信号持续时间为0.4s ,系统采样频率为1kHz ,阵列加权方式为均匀加权。分别给出 1. 当平面波信号分别从0,10, 20, 30, 40, 50, 60, 70, 80, 90, 100度方向入射时,指向90度的波束形成器的输出序列。 2. 当平面波信号分别从0:1:180度方向入射时,指向90度的波束形成器的输出序列经过平方求和后的分贝数输出。(把所有181个输出绘制在同一幅图中) 1)仿真图 图一:所求角度入射信号输出序列三维表示 注: 1. θ为信号入射角度,取值从0度到100度,每10°为一个间隔; 2. T 为整个阵元采样时间,对于不同的入射角度,t 的取值范围不同; 3. 输出信号幅度表示所有阵元的求和输出幅度,为有噪声情况。 结论: 0.8 t 输出信号幅度

从图一可以看出:①从90°入射的信号输出序列没有得到衰减,而其它角度入射的都得到了衰减;②从100°入射的信号和从80°入射的信号输出序列关于90°方向是对称的;③整个阵列对噪声有很好的抑制作用。 图二:入射信号0°到50°的输出序列 图三:入射信号60°到100°的输出序列 结论: 从图二和图三可以看出:①图一的所有结论;②90°方向入射信号没 0.10.20.30.40.5 -0.1 -0.0500.05 0.1 t A m p l i t u d e 0。 0.10.20.30.40.5 -0.1 -0.0500.05 0.1 t A m p l i t u d e 10。 0.10.20.30.40.5 -0.2 -0.100.1 0.2 t A m p l i t u d e 20。 0.10.20.30.40.5 -0.1 -0.0500.05 0.1 t A m p l i t u d e 30。 0.10.20.30.40.5 -0.1 -0.0500.05 0.1 t A m p l i t u d e 40。 0.10.20.30.40.5 -0.1 -0.0500.05 0.1 t A m p l i t u d e 50。 0.10.2 0.30.40.5 t A m p l i t u d e 60。 0.1 0.20.30.4 t A m p l i t u d e 70。 0.1 0.20.30.4 t A m p l i t u d e 80。 0.1 0.20.30.4 t A m p l i t u d e 90。 0.1 0.20.30.4 t A m p l i t u d e 100。

相关文档
相关文档 最新文档