文档库 最新最全的文档下载
当前位置:文档库 › 化工原理

化工原理

化工原理
化工原理

3.已知甲地区的平均大气压力为85.3 kPa ,乙地区的平均大气压力为101.33 kPa ,在甲地区的某真空设备上装有一个真空表,其读数为20 kPa 。若改在乙地区操作,真空表的读数为多少才能维持该设备的的绝对压力与甲地区操作时相同? 解:(1)设备内绝对压力

绝压=大气压-真空度= ()

kPa 3.65Pa 1020103.8533=?-? (2)真空表读数

真空度=大气压-绝压=()

kPa 03.36Pa 103.651033.10133=?-?

4.某储油罐中盛有密度为960 kg/m 3的重油(如附图所示),油面最高时离罐底9.5 m ,油面上方与大气相通。在罐侧壁的下部有一直径为760 mm 的孔,其中心距罐底1000 mm ,孔盖用14 mm 的钢制螺钉紧固。若螺钉材料的工作压力为39.5×106 Pa ,问至少需要几个螺钉(大气压力为101.3×103 Pa )?

解:由流体静力学方程,距罐底1000 mm 处的流体压力为

[]

(绝压)Pa 10813.1Pa )0.15.9(81.9960103.10133?=-??+?=+=gh p p ρ 作用在孔盖上的总力为

N 10627.3N 76.04

π103.10110813.1)(4233a ?????-==)-=(A p p F

每个螺钉所受力为

N 10093.6N 014.04

π

105.39321?=÷??=F

因此()(个)

695.5N 10093.610627.3341≈=??==F F n

8. 密度为1800 kg/m 3的某液体经一内径为60 mm 的管道输送到某处,若其平均流速为0.8 m/s ,求该液体的体积流量(m 3/h )、质量流量(kg/s )和质量通量[kg/(m 2·s)]。

解: h m 14.8s m 360006.04

14

.38.04π3322h =???===d u uA V

s kg 26.2kg 100006.04

14

.38.04π22s =???===ρρd u

uA w ()()s m kg 800s m kg 10008.022?=??==ρu G

9.在实验室中,用内径为1.5 cm 的玻璃管路输送20 ℃的70%醋酸。已知质量流量为10 kg/min 。试分别用用SI 和厘米克秒单位计算该流动的雷诺数,并指出流动型态。 解:(1)用SI 单位计算

查附录70%醋酸在20 ℃时,s Pa 1050.2m kg 106933??==-μρ,

0.015m

cm 5.1==d ()s m 882.0s m 1069015.04π60102b =???=u

()5657105.21069882.0015.03b =???==

ρ

du Re 故为湍流。

(2)用物理单位计算

()s cm g 025.0cm g 10693?==μρ, cm 5.1=d ,s m c 2.88b ==u 5657025.0069.12.885.1b =??==

μ

ρ

du Re

10.有一装满水的储槽,直径1.2 m ,高3 m 。现由槽底部的小孔向外排水。小孔的直径为4 cm ,测得水流过小孔的平均流速u 0与槽内水面高度z 的关系为:

zg u 262.00=

试求算(1)放出1 m 3水所需的时间(设水的密度为1000 kg/m 3);(2)又若槽中装满煤油,其它条件不变,放出1m 3煤油所需时间有何变化(设煤油密度为800 kg/m 3)? 解:放出1m 3水后液面高度降至z 1,则

()m 115.2m 8846.032.1785.01

201=-=?-=z z

由质量守恒,得

21d 0d M w w θ-+=,01=w (无水补充)

20000.62w u A A A ρρ==(为小孔截面积)

AZ M ρ= (A 为储槽截面积) 故有 0262.00=+θρρd dz A gz A

θd A

A gz

dz 0

62

.02-= 上式积分得 ))((

262.02

2

112100

z z A A g -=

θ ()m i n 1.2s 4.126

s 115.2304.0181.9262.02

1212

==-??

? ???= 14.本题附图所示的贮槽内径D =2 m ,槽底与内径d 0为32 mm 的钢管相连,槽内

无液体补充,其初始液面高度h 1为2 m (以管子中心线为基准)。液体在管内流动时的全部能量损失可按∑h f =20 u 2计算,式中的u 为液体在管内的平均流速(m/s )。试求当槽内液面下降1 m 时所需的时间。 解:由质量衡算方程,得

12d d M W W θ=+ (1)

2120b π04

W W d u ρ==, (2)

2d πd d 4d M h D ρθθ= (3)

将式(2),(3)代入式(1)得

220b πd 044d h d u D πρρθ

+=

即 2b 0d ()0d D h u d θ

+= (4)

在贮槽液面与管出口截面之间列机械能衡算方程

22

b1b21212f 22u u p p gz gz h ρρ

++=+++∑

即 2222b b f b b 2020.522

u u gh h u u =+∑=+= 或写成 2b 20.59.81

h u =

b u = (5) 式(4)与式(5)联立,得

22d ()00.032d h θ=

即 θd h

h =-d 5645

i.c. θ=0,h =h 1=2 m ;θ=θ,h =1m 积分得 [] 1.3h

s 4676s 212564521==-?-=θ 18.某液体以一定的质量流量在水平直圆管内作湍流流动。若管长及液体物性不变,

将管径减至原来的1/2,问因流动阻力而产生的能量损失为原来的多少倍? 解:流体在水平光滑直圆管中作湍流流动时 f p ?=f h ρ∑ 或

f h ∑=f p ?/ρ=λ

2

b 2

u L d

ρ

∑∑f1

f2h

h =(

2

b1

b22112))()(u u d d λλ 式中 2

1d d =2 ,b2b1u u =(21d d

)2 =4

因此

∑∑f1

f2h

h =221

(

)(2)(4)λλ=3212λλ

又由于 25

.0Re

316.0=λ

12λλ=(25021.)Re Re =(0.251b12b2

)d u d u =(2×25041

.)=(0.5)0.25=0.841 故

∑∑f1

f2h

h =32×0.84=26.9

19.用泵将2×104 kg/h 的溶液自反应器送至高位槽(见本题附图)。反应器液面上方保持25.9×103 Pa 的真空度,高位槽液面上方为大气压。管道为φ76 mm ×4 mm 的钢管,总长为35 m ,管线上有两个全开的闸阀、一个孔板流量计(局部阻力系数为4)、五个标准弯头。反应器内液面与管路出口的距离为17 m 。若泵的效率为0.7,求泵的轴功率。(已知溶液的密度为1073 kg/m 3,黏度为6.3?10-4

Pa ?s 。管壁绝对粗糙度可取为0.3 mm 。) 解:在反应器液面1-1,

与管路出口内侧截面2-2,

列机械能衡算方程,以截面1-1,

为基准水平面,得

22

b1b2121e 2f 22u u p p gz W gz h ρρ+++=+++∑ (1)

式中 z 1=0,z 2=17 m ,u b1≈0 s m 43.1m 1073

068.0785.036001024

2

4

2b2=????==

ρ

π

d w

u p 1=-25.9×103 Pa (表),p 2=0 (表) 将以上数据代入式(1),并整理得

2

b221e 21f ()2u p p W g z z h ρ

-=-+++∑

=9.81×17+24312.+1073

109.253

?+

f

h

∑=192.0+

f

h

其中

f

h

∑=(λ+

e

L L d

+∑+∑ζ)2

b22

u

=Re b du ρμ

=3

0.068 1.4310730.6310-???=1.656×105

0044.0=d e

根据Re 与e /d 值,查得λ=0.03,并由教材可查得各管件、阀门的当量长度分别为

习题19附图

闸阀(全开): 0.43×2 m =0.86 m

标准弯头: 2.2×5 m =11 m

故 f h ∑=(0.03×350.86110.068+++0.5+4)kg J 243.12=25.74J/kg 于是 ()kg J 217.7kg J 74.250.192e =+=W 泵的轴功率为

s N =e W η/w =W 7

.036001027.2174

???=1.73kW

第二章 流体输送机械

1.用离心油泵将甲地油罐的油品送到乙地油罐。管路情况如本题附图所示。启动泵之前A 、C 两压力表的读数相等。启动离心泵并将出口阀调至某开度时,输油量为39 m 3/h ,此时泵的压头为38 m 。已知输油管内径为100 mm ,摩擦系数为0.02;油品密度为810 kg/m 3。试求(1)管路特性方程;(2)输油管线的总长度(包括所有局部阻力当量长度)。

解:(1)管路特性方程

甲、乙两地油罐液面分别取作1-1’与2-2’截面,以水平管轴线为基准面,在两截面之间列柏努利方程,得到

2e e H K Bq =+ 由于启动离心泵之前p A =p C ,于是

g

p Z K ρ?+

?==0

则 2

e e H Bq =

又 e 38H H ==m

])39/(38[2=B h 2/m 5=2.5×10–

2 h 2/m 5

则 22

e e 2.510H q -=?(q e 的单位为m 3/h )

习题1 附图

(2)输油管线总长度

2e 2l l u H d g

λ

+= 39π0.0136004

u ??????=? ? ???

??????m/s=1.38 m/s 于是 e 22

229.810.138

0.02 1.38

gdH l l u λ???+=

=?m=1960 m 2.用离心泵(转速为2900 r/min )进行性能参数测定实验。在某流量下泵入口真空表和出口压力表的读数分别为60 kPa 和220 kPa ,两测压口之间垂直距离为0.5 m ,泵的轴功率为6.7 kW 。泵吸入管和排出管内径均为80 mm ,吸入管中流动阻力可表达为2f,0113.0h u -=∑(u 1为吸入管内水的流速,m/s )。离心泵的安装高度为2.5 m ,实验是在20 ℃,98.1 kPa 的条件下进行。试计算泵的流量、压头和效率。

解:(1)泵的流量

由水池液面和泵入口真空表所在截面之间列柏努利方程式(池中水面为基准面),得到

∑-+++=10,2

11

12

0f h u p gZ ρ

将有关数据代入上式并整理,得

48.3581.95.21000

10605.332

1=?-?=u

184.31=u m/s

则 2π

(0.08 3.1843600)4

q =???m 3/h=57.61 m 3/h

(2) 泵的扬程

29.04m m 5.081.9100010)22060(3021=??

?

???+??+=++=h H H H

(3) 泵的效率

s 29.0457.6110009.81100%100036001000 6.7

Hq g P ρη???==???=68%

在指定转速下,泵的性能参数为:q =57.61 m 3/h H =29.04 m P =6.7 kW η=68% 3.对于习题2的实验装置,若分别改变如下参数,试求新操作条件下泵的流量、压头和轴功率(假如泵的效率保持不变)。

(1)改送密度为1220 kg/m 3的果汁(其他性质与水相近); (2)泵的转速降至2610 r/min 。

解:由习题2求得:q =57.61 m 3/h H =29.04 m P =6.7 kW (1)改送果汁

改送果汁后,q ,H 不变,P 随ρ加大而增加,即

1220 6.7 1.22kW=8.174kW 1000P P ??'==? ???

(2) 降低泵的转速

根据比例定律,降低转速后有关参数为

h

m 85.51h m 2900261061.573

3=??? ???='q

m

52.23m 2900261004.292

=???

???='H 4.884kW kW 290026107.63

=??

?

???=''P

4.用离心泵(转速为2900 r/min )将20 ℃的清水以60 m 3/h 的流量送至敞口容器。此流量下吸入管路的压头损失和动压头分别为2.4 m 和0.61 m 。规定泵入口的真空度不能大于64 kPa 。泵的必需气蚀余量为3.5 m 。试求(1)泵的安装高度(当地大气压为100 kPa );(2)若改送55 ℃的清水,泵的安装高度是否合适。

解:(1) 泵的安装高度

在水池液面和泵入口截面之间列柏努利方程式(水池液面为基准面),得

2

a 11g f,01()2p p u H H g g

ρ--=++ 即 3

g 64100.61 2.410009.81

H ?=++?

51.3=g H m

(2)输送55 ℃清水的允许安装高度

55 ℃清水的密度为985.7 kg/m 3,饱和蒸汽压为15.733 kPa

则 a v

g f,01()p p H NPSH H g ρ--'=--=??

??

??-+-??-4.2)5.05.3(81.97.98510)733.15100(3m=2.31m 原安装高度(3.51 m )需下降1.5 m 才能不发生气蚀现象。

5.对于习题4的输送任务,若选用3B57型水泵,其操作条件下(55 ℃清水)的允许吸上真空度为5.3 m ,试确定离心泵的安装高度。

解:为确保泵的安全运行,应以55 ℃热水为基准确定安装高度。

()m 29.24.261.03.521f,02

1S g =--=--=-H g

u H H

泵的安装高度为2.0 m 。

8.用离心泵将水库中的清水送至灌溉渠,两液面维持恒差8.8 m ,管内流动在阻力平方区,管路特性方程为

52

e e

8.8 5.210H q =+? (q e 的单位为m 3/s )

单台泵的特性方程为

25102.428q H ?-= (q 的单位为m 3

/s )

试求泵的流量、压头和有效功率。

解:联立管路和泵的特性方程便可求泵的工作点对应的q 、H ,进而计算P e 。

管路特性方程 52

e e 8.8 5.210H q =+?

泵的特性方程 25102.428q H ?-= 联立两方程,得到 q =4.52×10

–3

m 3/s H =19.42 m

则 3e s 19.42 4.521010009.81P Hq g ρ-==????W=861 W

9.对于习题8的管路系统,若用两台规格相同的离心泵(单台泵的特性方程与习题8相同)组合操作,试求可能的最大输水量。

解:本题旨在比较离心泵的并联和串联的效果。 (1)两台泵的并联

2525)2

(102.428102.58.8q

q ?-=?+

解得: q =5.54×10

–3

m 3/s=19.95 m 3/h

(2) 两台泵的串联

)102.428(2102.58.82525q q ?-?=?+

解得: q =5.89×10

–3

m 3/s=21.2 m 3/h

在本题条件下,两台泵串联可获得较大的输水量21.2 m 3/h 。

10.采用一台三效单动往复泵,将敞口贮槽中密度为1200 kg/m 3的粘稠液体送至表压为1.62×103 kPa 的高位槽中,两容器中液面维持恒差8 m ,管路系统总压头损失为4 m 。已知泵的活塞直径为70 mm ,冲程为225 mm ,往复次数为200 min -1,泵的容积效率和总效率分别为0.96和0.91。试求泵的流量、压头和轴功率。

解:(1)往复泵的实际流量

2v r π330.960.070.2252004

q ASn η==?????m 3/min=0.499 m 3

/min

(2)泵的扬程

6

e 1.6210(84)12009.81

H H ?==++?m=149.6 m

(3)泵的轴功率

s 149.60.4991200

102601020.91

Hq P ρη??=

=

??kW=16.08 kW 三

1.颗粒在流体中做自由沉降,试计算(1)密度为2 650 kg/m 3,直径为0.04 mm 的球

形石英颗粒在20 ℃空气中自由沉降,沉降速度是多少?(2)密度为2 650 kg/m 3,球形度

6.0=φ的非球形颗粒在20 ℃清水中的沉降速度为0.1 m/ s ,颗粒的等体积当量直径是多

少?(3)密度为7 900 kg/m 3,直径为6.35 mm 的钢球在密度为1 600 kg/m 3的液体中沉降150 mm 所需的时间为7.32 s ,液体的黏度是多少?

解:(1)假设为滞流沉降,则:

2

s t

()18d u ρρμ

-=

查附录20 ℃空气31.205kg/m ρ=,s Pa 1081.15??=-μ,所以,

()()()s m 1276.0m 1081.11881.9205.126501004.0185

2

3s 2t =???-??=-=--μρρg d u

核算流型:

3

t 5

1.2050.12760.04100.3411.8110

du Re ρμ--???===

(2)采用摩擦数群法

()()s 123

t 5

23

434 1.8110

2650 1.2059.81431.9

3 1.2050.1g Re u μρρξρ---=

??-?=

=??

依6.0=φ,9.431Re

1

=-ξ,查出:t e

t 0.3u d Re ρμ

=

=,所以: 5

5e 0.3 1.8110 4.50610m 45μm 1.2050.1

d --??==?=?

(3)假设为滞流沉降,得:

2

s t

()18d g u ρρμ-=

其中 s m 02049.0s m 32.15.0t ===θh u 将已知数据代入上式得:

()s Pa 757.6s Pa 02049

.01881

.91600790000635.02?=???-=μ

核算流型

t 0.006350.020491600

0.0308116.757

du Re ρμ??===<

2.用降尘室除去气体中的固体杂质,降尘室长5 m ,宽5 m ,高4.2 m ,固体杂质为球形颗粒,密度为3000 kg/m 3。气体的处理量为3000(标准)m 3/h 。试求理论上能完全除去的最小颗粒直径。

(1)若操作在20 ℃下进行,操作条件下的气体密度为1.06 kg/m 3,黏度为1.8×10-5 Pa?s 。 (2)若操作在420 ℃下进行,操作条件下的气体密度为0.5 kg/m 3,黏度为3.3×10-5 Pa?s 。

解:(1)在降尘室内能够完全沉降下来的最小颗粒的沉降速度为:

s m 03577.0s m 5

5360027320

2733000s v,t =??+?

==bl q u 设沉降在斯托克斯区,则:

2t ()0.0357718s d g u ρρμ

-==

51.98510m 19.85μm d -=

?=

核算流型:

5t t 5

1.985100.03577 1.06

0.041811.810

du Re ρ

μ--???===

(2)计算过程与(1)相同。完全能够沉降下来的最小颗粒的沉降速度为:

m 0846.0s m 5

53600273420

2733000s v,t =??+?

==bl q u 设沉降在斯托克斯区,则:

54.13210m 41.32μm d -=

=?=

核算流型:

5t t 5

4.132100.08460.5

0.052913.310

du Re ρ

μ--???===

3.对2题中的降尘室与含尘气体,在427 ℃下操作,若需除去的最小颗粒粒径为10 μm ,试确定降尘室内隔板的间距及层数。

解:取隔板间距为h ,令

t

L h u u =

则 t L

h u u

=

(1) m 1017.0s m 2

.45273

42727336003000s v,=?+?==bH q u

10 μm 尘粒的沉降速度

()()()m 10954.4m 10

31.31881

.95.0300010101835

2

6s 2t ---?=???-??=-=μρρg d u 由(1)式计算h

∴ 0.244m m 10954.41017.05

3=??=

-h 层数2.17244.02

.4===h H n 取18层

0.233m m 18

2.418===H h 核算颗粒沉降雷诺数:

644

t t 5

1010 4.954100.5e 7.51013.310

du R ρ

μ----????===?

e 52250.233

(

)0.10170.5

5.23368621003.310

bh u d u b h Re ρρμμ-????+====

1.用平板法测定固体的导热系数,在平板一侧用电热器加热,另一侧用冷却器冷却,同时

在板两侧用热电偶测量其表面温度,若所测固体的表面积为0.02 m 2,厚度为0.02 m ,实验测得电流表读数为0.5 A ,伏特表读数为100 V ,两侧表面温度分别为200 ℃和50 ℃,试求该材料的导热系数。

解:传热达稳态后电热器的加热速率应与固体的散热(导热)速率相等,即

L

t

t S Q 21-=λ

式中 W 50W 1005.0=?==IV Q

m 02.0C 50C 200m 02.0212=?=?==L t t S ,,, 将上述数据代入,可得

()()

()()C m W 333.0C m W 5020002.002

.05021??=??-??=-=

t t S QL λ

2.某平壁燃烧炉由一层400 mm 厚的耐火砖和一层200 mm 厚的绝缘砖砌成,操作稳定后,测得炉的内表面温度为1500 ℃,外表面温度为100 ℃,试求导热的热通量及两砖间的界面温度。设两砖接触良好,已知耐火砖的导热系数为10.80.0006t λ=+,绝缘砖的导热系数为20.30.0003t λ=+,W /(m C)??。两式中的t 可分别取为各层材料的平均温度。 解:此为两层平壁的热传导问题,稳态导热时,通过各层平壁截面的传热速率相等,即 Q Q Q ==21 (5-32) 或 2

32212

11b t t S b t t S

Q -=-=λλ (5-32a )

式中 115000.80.00060.80.0006 1.250.00032

t t t λ+=+=+?=+

21000.30.00030.30.00030.3150.000152t t t λ+=+=+?=+

代入λ1、λ2得

2.0100)00015.0315.0(4.01500)000

3.025.1(-+=-+t t t t

解之得

C 9772?==t t

())()C m W 543.1C m W 9770003.025.10003.025.11??=???+=+=t λ

则 ()

221

11

m W 2017m W 4

.0977

1500543.1=-?

=-=b t t S Q λ

11.某生产过程中需用冷却水将油从105 ℃冷却至70 ℃。已知油的流量为6 000 kg/h ,水的初温为22 ℃,流量为2 000 kg/h 。现有一传热面积为10 m 2的套管式换热器,问在下列两种流动型式下,换热器能否满足要求: (1) 两流体呈逆流流动; (2) 两流体呈并流流动。

设换热器的总传热系数在两种情况下相同,为300 W/(m 2·℃);油的平均比热容为1.9 kJ/(kg·℃),水的平均比热容为4.17 kJ/(kg·℃)。热损失可忽略。 解:本题采用NTU -ε法计算 (1)逆流时 C W 7.3166C W 109.23600

6000

3h h =???=p c W C W 7.2316C W 1017.43600

2000

3c c ?=??=p c W min R max 2316.7

0.7323166.7

C C C =

== min min 30010

() 1.2952316.7

KS NTU C ?=

== 查图得

0.622ε=

min 11()Q C T t ε=-

()W 10196.1W 221057.2316622.05?=-??=

C 70C 2.67C 7.316610196.11055h h 12?

?

????-=-=p c W Q T T 能满足要求 (2)并流时 R 0.732C = min () 1.295NTU =

查图得 0.526ε=

()W 10011.1W 221057.2316526.05?=-??=Q

C 70C 1.73C 7.316610011.110552?

?

????-=T 不能满足要求 12.在一单程管壳式换热器中,管外热水被管内冷水所冷却。已知换热器的传热面积为5 m 2,总传热系数为1 400 W/(m 2·℃);热水的初温为100 ℃,流量为5 000 kg/h ;冷水的初温为20 ℃,流量为10 000 kg/h 。试计算热水和冷水的出口温度及传热量。设水的平均比热容为4.18 kJ/(kg·℃),热损失可忽略不计。 解: C W 5806C W 1018.43600

5000

3h h ?=???=p c W C W 11611C W 1018.43600

10000

3c c ?=??=p c W 5.011611

6

.5805max min R ===

C C C min min 14005

() 1.215805.6

KA NTU C ?=== 查图得

0.575

ε= 传热量 m i n 1

1

()Q C T t ε=- ()W 1067.2W 201006.5805575.05?=-??= 122111000.57510020

T T T T t ε--=

==-- 解出 254T =℃ 212R 1220

0.510054

t t t C T T --=

==-- 解出 243t =℃

13.水以1.5 m/s 的流速在长为3 m 、直径为mm 5.2mm 25?φ的管内由20 ℃加热至40 ℃,试求水与管壁之间的对流传热系数。 解:水的定性温度为 C 30C 2

40

202b2b1f ?=?+=+=

t t t 由附录六查得30°C 时水的物性为 ρ=995.7 kg/m 3,μ=80.07×10-5

Pa·s ,λ=0.6176W /(m C)??,Pr =5.42

则 4

i b 5

0.02 1.5995.7e 3.731080.0710

d u R ρ

μ

-??=

=

=??(湍流) i 3150600.02L d ==>

Re 、Pr 及

i

d L

值均在式5-59a 的应用范围内,故可采用式5-76a 近似计算α。

水被加热,取n =0.4,于是得

()()()

C m W 6345C m W 42.51073.302

.06176.0023.0Pr Re 023.0224.08

.044.08.0i ??=??????==d λα

16.常压空气在装有圆缺形挡板的列管换热器壳程流过。已知管子尺寸为38mm 3φ?mm ,正方形排列,中心距为51 mm ,挡板距离为1.45 m ,换热器外壳内径为8.2 m ,空气流量

为43410m /h ?,平均温度为140 ℃,试求空气的对流传热系数。

解:由附录五查得140?C 时空气的物性为

ρ=0.854 kg/m 3,C p =1013 J/(kg·℃),μ=2.37×10-5

Pa·s ,λ=0.0349W /(m C)??,

Pr =0.694

采用凯恩(Kern )法,即

0.5513w 0.36e r Nu R P ?= (5-63) 或 0.55130.14

e e w

0.36

()r ()d u P d ρλμαμμ= (5-63a )

传热当量直径e d '可根据管子排列情况进行计算。 管子为正方形排列,则 22o e o

4()

4πt d d d π

-

=

式中 t —相邻两管的中心距,m ; D o —管外径,m 。 代入t 和d o 得

m 049.0m 038

.0π038.04π0.0514π4π422o 2o 2e =??

?? ???-=??? ??-=d d t d 式5-63及式5-63a 中的流速u 可根据流体流过管间最大截面积A 计算,即

o

(1)d A zD t

=-

式中 z —两挡板间的距离,m ; D —换热器的外壳内径,m 。 代入z 、D 、t 和d o 得

2

2o m 03.1m 051.0038.018.245.11=??? ??-??=??? ?

?-=t d zD A

s m 74.10s m 03

.136001044

=??==A V u

上述式中的w ?对气体可取为1.0。

0.55130.14

e e w

0.36

()Pr ()d u d ρλμαμμ= ()()C m W 8.50C m W 684.01037.2854.074.10049.0049.00349.036.0223155

.05??=????

?

?

???????=-

21.在一套管换热器中,用冷却水将4 500 kg/h 的苯由80 ℃冷却至35 ℃,;冷却水在

5.2mm 25?φmm 的内管中流动,其进、出口温度分别为17 ℃和47 ℃。已知水和苯的对流传热系数分别为850 W/(m 2·℃)和1 700 W/(m 2·℃),试求所需的管长和冷却水的消耗量。 解:苯的定性温度

C 5.57C 2

35

80221m1?=?+=+=

t t t 57.5C ?时苯的定压热容为1.824 kJ/(kg·

℃) 水的定性温度

C 27C 2

3717221m2?=?+='+'=t t t

27C ?时水的定压热容为4.176 kJ/(kg·

℃) 冷却水的消耗量

h h 12c c 21()()p p Q W C T T W C t t =-=-

()()

()()

h kg 2948h kg 1747176.43580824.1450012c 21h h c =-?-??=

--=

t t c T T c W W p p 管长

()21h h m T T c W t KS Q p -=?=

()()C m W 7.485C m W 850

2025

170011

1

122i

i o o

??=???+

=

+

=

ααd d K

()()C 75.24C 17

354780ln 17354780m ?=?-----=

?t

()()223m

21h h m 535.8m 75

.247.4853600358010824.14500=??-???=?-=

t K T T c W S p

化工原理公式和重点概念

《化工原理》重要公式 第一章 流体流动 牛顿粘性定律 dy du μτ= 静力学方程 g z p g z p 2211 +=+ρ ρ 机械能守恒式 f e h u g z p h u g z p +++=+++2222222111 ρρ 动量守恒 )(12X X m X u u q F -=∑ 雷诺数 μμρ dG du ==Re 阻力损失 22 u d l h f λ= ????d q d u h V f ∞∞ 层流 Re 64=λ 或 2 32d ul h f ρμ= 局部阻力 2 2 u h f ζ= 当量直径 ∏ =A d e 4 孔板流量计 ρP ?=20 0A C q V , g R i )(ρρ-=?P 第二章 流体输送机械 管路特性 242)(8V e q g d d l z g p H πζλ ρ+∑+?+?= 泵的有效功率 e V e H gq P ρ= 泵效率 a e P P =η

最大允许安装高度 100][-∑--=f V g H g p g p H ρρ]5.0)[(+-r NPSH 风机全压换算 ρ ρ''T T p p = 第四章 流体通过颗粒层的流动 物料衡算: 三个去向: 滤液V ,滤饼中固体) (饼ε-1V ,滤饼中液体ε饼V 过滤速率基本方程 )(22 e V V KA d dV +=τ , 其中 φμ 012r K S -?=P 恒速过滤 τ22 2 KA VV V e =+ 恒压过滤 τ222KA VV V e =+ 生产能力 τ ∑=V Q 回转真空过滤 e e q q n K q -+=2? 板框压滤机洗涤时间(0=e q ,0=S ) τμμτV V W W W W 8P P ??= 第五章 颗粒的沉降和流态化 斯托克斯沉降公式 μρρ18)(2 g d u p p t -=, 2R e

化工原理 传热综合实验报告 数据处理

化工原理 传热综合实验报告 数据处理 七、实验数据处理 1.蒸汽冷凝与冷空气之间总传热系数K 的测定,并比较冷空气以不同流速u 流过圆形直管时,总传热系数K 的变化。 实验时蒸汽压力:0.04MPa (表压力),查表得蒸汽温度T=109.4℃。实验装置所用紫铜管的规格162mm mm φ?、 1.2l m =,求得紫铜管的外表面积 200.010.060318576281.o S d l m m m ππ=??=??=。 根据2 4s s V V u A d π= =、0.012d m =,得到流速u ,见下表2: 表2 流速数据 取冷空气进、出口温度的算术平均值作为冷空气的平均温度,查得冷空气在不同温度下的比热容p c 、黏度μ、热传导系数λ、密度ρ,如下表3所示: 表3 查得的数据 t 进/℃ t 出/℃ t 平均/℃ ()p c J kg ????? ℃ Pa s μ? ()W m λ?????℃ ()3 kg m ρ-? 22.1 77.3 49.7 1005 0.0000196 0.0283 1.093 24.3 80.9 52.6 1005 0.0000197 0.02851 1.0831 26.3 82.7 54.5 1005 0.0000198 0.02865 1.0765 27.8 83 55.4 1005 0.0000198 0.02872 1.0765 29.9 83.6 56.75 1005 0.0000199 0.02879 1.0699 31.8 83.7 57.75 1005 0.00002 0.02886 1.0666 33.7 83.8 58.75 1005 0.0000200 0.02893 1.0633 35.6 84 59.8 1005 0.0000201 0.029 1.06 根据公式()()=V s p s p Q m c t t c t t ρ=--出进出进、 ()()ln m T t T t t T t T t ---?=--进出进出 , 求出Q 序号 ()31s V m h -? ()1u m s -? 1 2.5 6.140237107 2 5 12.28047421 3 7.5 18.42071132 4 10 24.56094843 5 12.5 30.70118553 6 15 36.84142264 7 17.5 42.98165975 8 20 49.12189685

(完整版)化工原理概念汇总

化工原理知识 绪论 1、单元操作:(Unit Operations): 用来为化学反应过程创造适宜的条件或将反应物分离制成纯净品,在化工生产中共有的过程称为单元操作(12)。 单元操作特点: ①所有的单元操作都是物理性操作,不改变化学性质。②单元操作是化工生产过程中共有的操作。③单元操作作用于不同的化工过程时,基本原理相同,所用设备也是通用的。单元操作理论基础:(11、12) 质量守恒定律:输入=输出+积存 能量守恒定律:对于稳定的过,程输入=输出 动量守恒定律:动量的输入=动量的输出+动量的积存 2、研究方法: 实验研究方法(经验法):用量纲分析和相似论为指导,依靠实验来确定过程变量之间的关系,通常用无量纲数群(或称准数)构成的关系来表达。 数学模型法(半经验半理论方法):通过分析,在抓住过程本质的前提下,对过程做出合理的简化,得出能基本反映过程机理的物理模型。(04) 3、因次分析法与数学模型法的区别:(08B) 数学模型法(半经验半理论)因次论指导下的实验研究法 实验:寻找函数形式,决定参数

第二章:流体输送机械 一、概念题 1、离心泵的压头(或扬程): 离心泵的压头(或扬程):泵向单位重量的液体提供的机械能。以H 表示,单位为m 。 2、离心泵的理论压头: 理论压头:离心泵的叶轮叶片无限多,液体完全沿着叶片弯曲的表面流动而无任何其他的流动,液体为粘性等于零的理想流体,泵在这种理想状态下产生的压头称为理论压头。 实际压头:离心泵的实际压头与理论压头有较大的差异,原因在于流体在通过泵的过程中存在着压头损失,它主要包括:1)叶片间的环流,2)流体的阻力损失,3)冲击损失。 3、气缚现象及其防止: 气缚现象:离心泵开动时如果泵壳内和吸入管内没有充满液体,它便没有抽吸液体的能力,这是因为气体的密度比液体的密度小的多,随叶轮旋转产生的离心力不足以造成吸上液体所需要的真空度。像这种泵壳内因为存在气体而导致吸不上液的现象称为气缚。 防止:在吸入管底部装上止逆阀,使启动前泵内充满液体。 4、轴功率、有效功率、效率 有效功率:排送到管道的液体从叶轮获得的功率,用Ne 表示。 效率: 轴功率:电机输入离心泵的功率,用N 表示,单位为J/S,W 或kW 。 二、简述题 1、离心泵的工作点的确定及流量调节 工作点:管路特性曲线与离心泵的特性曲线的交点,就是将液体送过管路所需的压头与泵对液体所提供的压头正好相对等时的流量,该交点称为泵在管路上的工作点。 流量调节: 1)改变出口阀开度——改变管路特性曲线; 2)改变泵的转速——改变泵的特性曲线。 2、离心泵的工作原理、过程: 开泵前,先在泵内灌满要输送的液体。 开泵后,泵轴带动叶轮一起高速旋转产生离心力。液体在此作用下,从叶轮中心被抛向 g QH N e ρ=η/e N N =η ρ/g QH N =

化工原理重要概念和公式

《化工原理》重要概念 第一章流体流动 质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。 连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。 拉格朗日法选定一个流体质点 , 对其跟踪观察,描述其运动参数 ( 如位移、速度等 ) 与时间的关系。 欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。 轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。 系统与控制体系统是采用拉格朗日法考察流体的。控制体是采用欧拉法考察流体的。 理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。 粘性的物理本质分子间的引力和分子的热运动。通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。 总势能流体的压强能与位能之和。 可压缩流体与不可压缩流体的区别流体的密度是否与压强有关。有关的称为可压缩流体,无关的称为不可压缩流体。 伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变。 平均流速流体的平均流速是以体积流量相同为原则的。 动能校正因子实际动能之平均值与平均速度之动能的比值。 均匀分布同一横截面上流体速度相同。 均匀流段各流线都是平行的直线并与截面垂直 , 在定态流动条件下该截面上的流体没有加速度 , 故沿该截面势能分布应服从静力学原理。

层流与湍流的本质区别是否存在流体速度 u 、压强 p 的脉动性,即是否存在流体质点的脉动性。 第二章流体输送机械 管路特性方程管路对能量的需求,管路所需压头随流量的增加而增加。 输送机械的压头或扬程流体输送机械向单位重量流体所提供的能量 (J/N) 。 离心泵主要构件叶轮和蜗壳。 离心泵理论压头的影响因素离心泵的压头与流量,转速,叶片形状及直径大小有关。 叶片后弯原因使泵的效率高。 气缚现象因泵内流体密度小而产生的压差小,无法吸上液体的现象。 离心泵特性曲线离心泵的特性曲线指 H e~ q V ,η~ q V , P a~ q V 。 离心泵工作点管路特性方程和泵的特性方程的交点。 离心泵的调节手段调节出口阀,改变泵的转速。 汽蚀现象液体在泵的最低压强处 ( 叶轮入口 ) 汽化形成气泡,又在叶轮中因压强升高而溃灭,造成液体对泵设备的冲击,引起振动和侵蚀的现象。 必需汽蚀余量 (NPSH)r 泵入口处液体具有的动能和压强能之和必须超过饱和蒸汽压强能多少 离心泵的选型 ( 类型、型号 ) ①根据泵的工作条件,确定泵的类型;②根据管路所需的流量、压头,确定泵的型号。 正位移特性流量由泵决定,与管路特性无关。 往复泵的调节手段旁路阀、改变泵的转速、冲程。 离心泵与往复泵的比较 ( 流量、压头 ) 前者流量均匀,随管路特性而变,后者流量不均匀,不随管路特性而变。前者不易达到高压头,后者可达高压头。前者流量调节用泵出口阀,无自吸作用,启动时关出口阀;后者流量调节用旁路阀,有自吸作用,启动时开足管路阀门。 通风机的全压、动风压通风机给每立方米气体加入的能量为全压 (Pa=J/m 3 ) ,其中动能部分为动风压。

化工原理第10章

第10章习题解答 1 在操作条件下,以纯净的氯苯为萃取剂,在单级接触萃取器中,萃取含丙酮的水溶液。丙酮-水-氯苯三元混合液的平衡数据见本题附表。试求: ⑴在直角三角形坐标系下,绘制此三元体系的相图,其中应包括溶解度曲线、联接线和辅助曲线; ⑵若近似地将前五组数据中B与S视为不互溶,试在X-Y直角坐标图上标绘分配曲线; ⑶若丙酮水溶液质量比分数为0.4,并且m B/m S=2.0,在X-Y直角坐标图上求丙酮在萃余相中的浓度; ⑷求当水层中丙酮浓度为45%(质量%,下同)时,水与氯苯的组成以及与该水层成平衡时的氯苯层的组成; ⑸由0.12kg氯苯和0.08kg水所构成的混合液中,尚需加入多少kg丙酮即可成为三元均相混合液; ⑹预处理含丙酮35%的原料液800kg,并要求达到萃取平衡时,萃取相中丙酮浓度为30%,试确定萃取剂(氯苯)的用量; ⑺求条件⑹下的萃取相和萃余相的量,并计算萃余相中丙酮的组成; ⑻若将条件⑹时的萃取相中的溶剂全部回收,求可得萃取液的量及组成。 解:⑴依平衡数据绘出溶解度曲线如附图1-1所示,图中各点代号与数据的对应关系注于附表1-1中。联结互成平衡的两液层组成点得E1R1、E2R2、E2R2……等平衡联结线。 由E1、E2、E3……各点作平行于AB边的直线,再由R1、R2、R3……各点作平行于AS边的

直线,两组线分别相交于点G、H、I、J、K,连接P、G、H、I、J、K即得辅助曲线。 ⑵将前五组数据转换为质量比浓度,其结果列于附表1-2中,并在X-Y直角坐标图上标绘分配曲线,如图1-2。 附表1-2 ⑶由X F=0.4,在图1-2上,自点X F作斜率为-m B/m S=-2.0的直线与分配曲线相交于点T,点T的横坐标即为丙酮在萃余相中的浓度X R=0.25。 图1-1 图1-2 ⑷水层中各组分的浓度 由所绘制的溶解度曲线如图1-3,在AB边上确定组分A的浓度为45%的点F,由点F绘直线FW平行于三角形底边BS,则FW线上各点表示A的组成均为45%。FW与溶解度曲线左侧的交点R,即代表水层中含A为45%的组成点,由图可读得点R组成为(质量%): x A=45%x B=52.8%x S=2.2%

化工原理答案必下

第一章流体流动 1.某设备上真空表的读数为×103 Pa,试计算设备内的绝对压强与表压强。已知该地区大气压强为×103 Pa。 解:由绝对压强 = 大气压强–真空度得到: 设备内的绝对压强P绝= ×103 Pa ×103 Pa =×103 Pa 设备内的表压强 P表 = -真空度 = - ×103 Pa 2.在本题附图所示的储油罐中盛有密度为 960 ㎏/?的油品,油面高于罐底 6.9 m,油面上方为常压。在罐侧壁的下部有一直径为 760 mm 的圆孔,其中心距罐底 800 mm,孔盖用14mm 的钢制螺钉紧固。若螺钉材料的工作应力取为×106 Pa , 问至少需要几个螺钉 分析:罐底产生的压力不能超过螺钉的工作应力即 P油≤σ螺 解:P螺 = ρgh×A = 960×××× ×103 N σ螺 = ×103×××n P油≤σ螺得 n ≥ 取 n min= 7 至少需要7个螺钉 3.某流化床反应器上装有两个U 型管压差计,如本题附图所示。测得R1= 400 mm , R2 = 50 mm,指示液为水银。为防止水银蒸汽向空气中扩散,于右侧的U 型管与大气连通的玻璃管内灌入一段水,其高度R3 = 50 mm。试求A﹑B两处的表压强。 分析:根据静力学基本原则,对于右边的U管压差计,a–a′为等压面,对于左边的压差计,b–b′为另一等压面,分别列出两个等压面处的静力学基本方程求解。 解:设空气的密度为ρg,其他数据如图所示

a–a′处 P A + ρg gh1 = ρ水gR3 + ρ水银ɡR2 由于空气的密度相对于水和水银来说很小可以忽略不记 即:P A = ×103×× + ×103×× = ×103 Pa b-b′处 P B + ρg gh3 = P A + ρg gh2 + ρ水银gR1 P B = ×103×× + ×103 =×103Pa 4. 本题附图为远距离测量控制装置,用以测定分相槽内煤油和水的两相界面位置。已知两吹气管出口的距离H = 1m,U管压差计的指示液为水银,煤油的密度为820Kg/?。试求当压差计读数R=68mm时,相界面与油层的吹气管出口距离h。 分析:解此题应选取的合适的截面如图所示:忽略空气产生的压强,本题中1-1′和4-4′为等压面,2-2′和3-3′为等压面,且1-1′和2-2′的压强相等。根据静力学基本方程列出一个方程组求解 解:设插入油层气管的管口距油面高Δh 在1-1′与2-2′截面之间 P1 = P2 + ρ水银gR ∵P1 = P4,P2 = P3 且P3 = ρ煤油gΔh , P4 = ρ水g(H-h)+ ρ煤油g(Δh + h) 联立这几个方程得到 ρ水银gR = ρ水g(H-h)+ ρ煤油g(Δh + h)-ρ煤油gΔh 即 ρ水银gR =ρ水gH + ρ煤油gh -ρ水gh 带入数据 3×103×1 - ×103× = h×103×103) h= m 5.用本题附图中串联U管压差计测量蒸汽锅炉水面上方的蒸气压,U管压差计的指示液为水银,两U管间的连接管内充满水。以知水银面与基准面的垂直距离分别为:h1﹦2.3m,h2=1.2m, h3=2.5m,h4=1.4m。锅中水面与基准面之间的垂直距离h5=3m。大气压强pa= ×103pa。 试求锅炉上方水蒸气的压强P。

化工原理课后题答案(部分)

化工原理第二版 第1章蒸馏 1.已知含苯0.5(摩尔分率)的苯-甲苯混合液,若外压为99kPa,试求该溶液的饱和温度。苯和甲苯的饱和蒸汽压数据见例1-1附表。 t(℃) 80.1 85 90 95 100 105 x 0.962 0.748 0.552 0.386 0.236 0.11 解:利用拉乌尔定律计算气液平衡数据 查例1-1附表可的得到不同温度下纯组分苯和甲苯的饱和蒸汽压P B *,P A *,由 于总压 P = 99kPa,则由x = (P-P B *)/(P A *-P B *)可得出液相组成,这样就可以得到一 组绘平衡t-x图数据。 以t = 80.1℃为例 x =(99-40)/(101.33-40)= 0.962 同理得到其他温度下液相组成如下表 根据表中数据绘出饱和液体线即泡点线 由图可得出当x = 0.5时,相应的温度为92℃ 2.正戊烷(C 5H 12 )和正己烷(C 6 H 14 )的饱和蒸汽压数据列于本题附表,试求P = 13.3kPa下该溶液的平衡数据。 温度C 5H 12 223.1 233.0 244.0 251.0 260.6 275.1 291.7 309.3 K C 6H 14 248.2 259.1 276.9 279.0 289.0 304.8 322.8 341.9 饱和蒸汽压(kPa) 1.3 2.6 5.3 8.0 13.3 26.6 53.2 101.3 解:根据附表数据得出相同温度下C 5H 12 (A)和C 6 H 14 (B)的饱和蒸汽压

以t = 248.2℃时为例,当t = 248.2℃时 P B * = 1.3kPa 查得P A *= 6.843kPa 得到其他温度下A?B的饱和蒸汽压如下表 t(℃) 248 251 259.1 260.6 275.1 276.9 279 289 291.7 304.8 309.3 P A *(kPa) 6.843 8.00012.472 13.30026.600 29.484 33.42548.873 53.200 89.000101.300 P B *(kPa) 1.300 1.634 2.600 2.826 5.027 5.300 8.000 13.300 15.694 26.600 33.250 利用拉乌尔定律计算平衡数据 平衡液相组成以260.6℃时为例 当t= 260.6℃时 x = (P-P B *)/(P A *-P B *) =(13.3-2.826)/(13.3-2.826)= 1 平衡气相组成以260.6℃为例 当t= 260.6℃时 y = P A *x/P = 13.3×1/13.3 = 1 同理得出其他温度下平衡气液相组成列表如下 t(℃) 260.6 275.1 276.9 279 289 x 1 0.3835 0.3308 0.0285 0 y 1 0.767 0.733 0.524 0 根据平衡数据绘出t-x-y曲线 3.利用习题2的数据,计算:⑴相对挥发度;⑵在平均相对挥发度下的x-y数据,并与习题2 的结果相比较。 解:①计算平均相对挥发度 理想溶液相对挥发度α= P A */P B *计算出各温度下的相对挥发度: t(℃) 248.0 251.0 259.1 260.6 275.1 276.9 279.0 289.0 291.7

化工原理例题分析

1-6.高位槽内的水面高于地面8m,水从108×4mm的管道中流出,管路出口高于地面2m。在本题特定条件下,水流经系统的能量损失可按Σhf=6.5u2计算,其中u为水在管内的流速,m/s。试计算:(1)A-A’截面处水的流速;(2)水的流量,以m3/h计。 1-7.20℃的水以2.5m/s的流速流经φ的水平管,此管以锥形管与另一53×3mm的水平管相连。如本题附图所示,在锥形管两侧A、B处各插一垂直玻璃管以面察两截面的压强。若水流经A、B两截面间的能量损失为1.5J/kg求两玻璃管的水面差(以mm计),并在本题附图中画出两玻璃管中水面的相对位置。

1-8.用离心泵把20℃的水从贮槽送至水洗塔顶部,槽内水位维持恒定。各部分相对位置如本题附图所示。管路的直径均为 φ76×2.5mm在操作条件下,泵入口处真空表的读数为 24.66×103Pa;水流经吸入管与排出管(不包括喷头)的能量损失可分别按Σhf,1=2u2与Σhf,2=10u2计算,由于管径不变,故式中u为吸入或排出管的流速m/s。排水管与喷头连接处的压强为 98.07×103Pa(表压)。试求泵的有效功率。 1 如图所示,槽内水位维持不变。槽底部与内径为100mm钢管相连,管路上装有一个闸阀,阀前离管路入口端15m处安有一个指示液为汞的U形压差计,测压点与管路出口端之间距离为20m。

(1) 当闸阀关闭时测得R=600mm,h=1500mm;当闸阀部分开启时,测得R=400mm, h=1400mm,管路摩擦系数取0.02,入口处局部阻力系数取0.5,问每小时从管中流出水量为多少m3。 (2)当阀全开时(取闸阀全开Le/d=15,λ=0.018),测压点B处的静压强为若干N/m2(表压)。(13分) 2混合式冷凝器的真空度为78.48kPa,所需冷却水量为5×104 kg/h,冷水进冷凝器的入口比水池的吸水液面高15 m,用φ114×7 mm的管道输水,管长80 m,管路配有2个球形阀和5个90o弯头,已知阀门的阻力系数ζ= 3,90o弯头阻力系数ζ= 1.26,摩擦系数λ= 0.02。现仓库中有四种规格离心泵如下: 编号 1 2 3 4 0.5 1 1 2 流量/ (m3/min) 扬程/ m 10 10 15 15 试问选用哪一号泵,并说明理由。 3由水库将水打入一水池,水池水面比水库水面高50m,两水面上的压力均为常压,要求的流量为90m3/h,输送管内径为156mm,在阀门全开时,管长和各种局部阻力的当量长度的总和为1000m,对所使用的泵在Q=65~135m3/h范围内属于高效区,在高效区中泵的性能曲线可用H=124.5-5.645×104Q2表示,此处H为泵的扬程m,Q为泵的流量m3/s,管子摩擦系数可取为λ=0.025,水的密度ρ=1000kg/m3。求: (1) 管路特性方程

化工原理基本概念

基本定义 理想溶液 ideal solution(s):溶液中的任一组分在全部浓度范围内都符合拉乌尔定律[1]的溶液称为理想溶液。 这是从宏观上对理想溶液的定义。从分子模型上讲,各组分分子的大小及作用力,彼此相似,当一种组分的分子被另一种组分的分子取代时,没有能量的变化或空间结构的变化。换言之,即当各组分混合成溶液时,没有热效应和体积的变化。即这也可以作为理想溶液的定义。除了光学异构体的混合物、同位素化合物的混合物、立体异构体的混合物以及紧邻同系物的混合物等可以(或近似地)算作理想溶液外,一般溶液大都不具有理想溶液的性质。但是因为理想溶液所服从的规律较简单,并且实际上,许多溶液在一定的浓度区间的某些性质常表现得很像理想溶液,所以引入理想溶液的概念,不仅在理论上有价值,而且也有实际意义。以后可以看到,只要对从理想溶液所得到的公式作一些修正,就能用之于实际溶液。 各组成物质在全部浓度范围内都服从拉乌尔定律的溶液。[2]对于理想溶液,拉乌尔定律与亨利定律反映的就是同一客观规律。其微观模型是溶液中各物质分子的大小及各种分子间力(如由A、B二物质组成的溶液,即为A-A、B-B及A-B 间的作用力)的大小与性质相同。由此可推断:几种物质经等温等压混合为理想溶液,将无热效应,且混合前后总体积不变。这一结论也可由热力学推导出来。理想溶液在理论上占有重要位臵,有关它的平衡性质与规律是多组分体系热力学的基础。在实际工作中,对稀溶液可用理想溶液的性质与规律作各种近似计算。 泡点: 液体混合物处于某压力下开始沸腾的温度,称为在这压力下的泡点。 若不特别注明压力的大小,则常常表示在0.101325MPa下的泡点。泡点随液体组成而改变。对于纯化合物,泡点也就是在某压力下的沸点。 一定组成的液体,在恒压下加热的过程中,出现第一个气泡时的温度,也就是一定组成的液体在一定压力下与蒸气达到汽液平衡时的温度。泡点随液相组成和压力而变。当泡点与液相组成的关系中,出现极小值或极大值时,这极值温度相应称为最低恒沸点或最高恒沸点,这时,汽相与液相组成相同,相应的混合物称为恒沸混合物。汽液平衡时,液相的泡点即为汽相的露点。

化工原理实验数据处理关于

离心泵特性曲线原始数据 序号 水流量Q/m3/h 水温°C 出口压力/m 入口压力 /m 电机功率 /KW 1 0.00 27.70 21.50 0.00 0.49 2 1040.00 27.70 20.40 0.00 0.53 3 2170.00 27.70 19.20 0.00 0.58 4 3110.00 27.60 18.10 -0.30 0.64 5 3890.00 27.60 17.10 -0.40 0.69 6 4960.00 27.50 15.20 -0.70 0.75 7 5670.00 27.50 14.30 -1.00 0.80 8 6620.00 27.30 13.10 -1.20 0.85 9 7380.00 27.40 11.50 -1.50 0.88 10 8120.00 27.00 8.90 -1.70 0.90 11 8950.00 26.60 5.80 -2.10 0.93 已知 ΔZ=0.2m η电=0.9 η转=1.0 此温度下水的密度约为ρ=997.45kg/m3 以第 组数据为例计算 根据扬程Z g p g p H ?+-= ρρ12e 转电电轴ηη??=N N 102Q e e ρ??= H N 轴 N N e =η He= N 轴= e N = η=

离心泵特性曲线 序号 水流量 Q/m3/s He/m N 轴/KW Ne/KW η 1 0.00 21.70 0.44 0.00 0.00 2 0.29 20.60 0.48 0.06 0.12 3 0.60 19.40 0.52 0.11 0.22 4 0.86 18.60 0.58 0.16 0.27 5 1.08 17.70 0.62 0.19 0.30 6 1.38 16.10 0.68 0.22 0.32 7 1.58 15.50 0.72 0.24 0.33 8 1.84 14.50 0.77 0.26 0.34 9 2.05 13.20 0.79 0.26 0.33 10 2.26 10.80 0.81 0.24 0.29 11 2.49 8.10 0.84 0.20 0.24 2 0.00 0.050.100.150.200.250.300.350.400.450.500.550.600.650.700.750.800.85Q (m3/s ) 离心泵 特 性曲线 η N E (K W ) 8 1012141618 2022 He-Q η-Q N 轴-Q He (m )

化工原理概念分析题问答流体流动

第1章 流体流动 1.在工程上,为什么将流体定义为由质点所组成的 答:工程上仅关注流体分子微观运动所产生的宏观结果。流体质点是由大量分子所组成的 微团,质点的运动状态反映并代表着流体的运动状态。 2.流体的连续性假定有何意义 答:假定组成流体的质点之间无间隙,则流体在连续运动过程中无间断,从而可以应用连 续的数学函数描述流体的连续运动过程。 3. 4.5.6.7.答:烟囱拔烟效果好是指(Pout-Pin) 差值大。烟囱出口的水平面上压强相等。当烟囱内的高 温气体温度一定(即密度一定),烟囱外大气温度一定(即密度一定)时, ()out in air fluegas air fluegas P P H g H g H g ρρρρ-=-=-,故烟囱愈高,其拔烟效果愈好。 8.柏努利方程式的应用条件有哪些 答:(1)粘度等于零的理想流体;(2)稳定流动;(3)无机械能的加入或引出;(4)不可 压缩的流体。

9.层流与湍流的本质区别是什么 答:流体层流时,其每一个质点均仅在主流方向上有速度。流体湍流时,其质点除了在主 流方向上有速度以外,同时在其他方向上存在着随即的脉动速度,即流体湍流时,其质点 之间发生相互摩擦与碰撞的概率很大。 10.雷诺数的物理意义是什么 Re 惯性力答:粘性力du u u G u u u d d ρ ρμμμ??====,可见Re 反映流体流动过程中的惯性力与粘性力的相 11.12.13.14.在满流的条件下,水在垂直直管中往下流动,对同一瞬时沿管长不同位置的速度而言, 是否会因重力加速度而使下部的速度大于上部的速度 答:不会。因为,若出现下部的速度大于上部的速度,说明出现了不稳定流动,供给的流 量减小了,或不是满流的条件了。若始终是稳定流动且满流的条件,根据流体流动的连续 性方程,流动过程中,对于不可压缩的水来说。体积流量不变,流速不变。 15.如图所示管路,A 阀、B 阀均处于半开状态。现在分别改变下列条件,试问:(1)将A 阀逐渐关小,h1、h2、(h1-h2)分别如何变化(2)将B 阀逐渐关小,h1、h2、(h1-h2)分别如

化工原理基本概念和原理

化工原理基本概念和原理 蒸馏––––基本概念和基本原理 利用各组分挥发度不同将液体混合物部分汽化而使混合物得到分离的单元操作称为蒸馏。这种分离操作是通过液相和气相之间的质量传递过程来实现的。 对于均相物系,必须造成一个两相物系才能将均相混合物分离。蒸馏操作采用改变状态参数的办法(如加热和冷却)使混合物系内部产生出第二个物相(气相);吸收操作中则采用从外界引入另一相物质(吸收剂)的办法形成两相系统。 一、两组分溶液的气液平衡 1.拉乌尔定律 理想溶液的气液平衡关系遵循拉乌尔定律: p A =p A 0x A p B =p B 0x B =p B 0(1—x A ) 根据道尔顿分压定律:p A =Py A 而P=p A +p B 则两组分理想物系的气液相平衡关系: x A =(P—p B 0)/(p A 0—p B 0)———泡点方程 y A =p A 0x A /P———露点方程 对于任一理想溶液,利用一定温度下纯组分饱和蒸汽压数据可求得平衡的气液相组成;反之,已知一相组成,可求得与之平衡的另一相组成和温度(试差法)。

2.用相对挥发度表示气液平衡关系 溶液中各组分的挥发度v可用它在蒸汽中的分压和与之平衡的液相中的摩尔分率来表示,即v A=p A/x A v B=p B/x B 溶液中易挥发组分的挥发度对难挥发组分的挥发度之比为相对挥发度。其表达式有: α=v A/v B=(p A/x A)/(p B/x B)=y A x B/y B x A 对于理想溶液:α=p A0/p B0 气液平衡方程:y=αx/[1+(α—1)x] Α值的大小可用来判断蒸馏分离的难易程度。α愈大,挥发度差异愈大,分离愈易;α=1时不能用普通精馏方法分离。 3.气液平衡相图 (1)温度—组成(t-x-y)图 该图由饱和蒸汽线(露点线)、饱和液体线(泡点线)组成,饱和液体线以下区域为液相区,饱和蒸汽线上方区域为过热蒸汽区,两曲线之间区域为气液共存区。 气液两相呈平衡状态时,气液两相温度相同,但气相组成大于液相组成;若气液两相组成相同,则气相露点温度大于液相泡点温度。 (2)x-y图

化工原理全解析

第一章流体流动练习题 一、填空题 1、根据Re的大小可将流体的流动所处的区域分为区、区和 区 2、由实验确定直管λ与Re的关系。层流区λ与管壁无关,λ与Re的关系为。湍流区,λ与及都有关,而完全湍流区,λ与无关,仅与有关。 3、测定流量用的流量计有、、。 5、某设备真空度为200mmHg,其绝压 13、在静止的同一种连续流体的内部,各截面上__________与__________之和为常数。 14、法定单位制中粘度的单位为__________。 15、牛顿粘性定律表达式为_______,它适用于_________流体呈__________流动

时。 16、开口U管压差计是基于__________原理的测压装置,它可以测量管流中___________上的___________或__________。 17、流体在圆形直管内作滞流流动时的速度分布是_____________形曲线,中心最大速度为平均速度的________倍。摩擦系数与_____________无关,只随_____________加大而_____________。 18、流体在圆形直管内作湍流流动时,摩擦系数λ是_____________函数,若流动在阻力平方区,则摩擦系数是_____________函数,与_____________无关。 19、流体在管内作湍流流动时,在管壁处速度为_____________。邻近管壁处存在_____________层,Re值越大,则该层厚度越_____________ 20、实际流体在直管内流过时,各截面上的总机械能_____________守恒,因实际流体流动时有_____________。 21.测速管测得的是管道中_____________速度,孔板流量计测得的是_____________速度。可从_____________上直接读出被测流体的体积流量。22.测速管和孔板流量计均属于_____________型流量计,是用_____________来反映流量的。转子流量计属于_____________流量计,是通过_____________来反映流量的。 23.不可压缩流体在由两种不同直径组装成的管路中流过时,流速与直径的关系为_____________。 24.局部阻力的计算方法有_____________。 25.理想流体在管道中流过时各截面上_____________相等,它们是_____________之和,每一种能量_____________等,但可以_____________。26.柏努利方程式是以1kg不可压缩流体为基准推导出的,用于可压缩流体时的条件为_____________。 二、选择题 1、化工原理中的流体质点是指() A、与分子自由程相当尺寸的流体分子 B、比分子自由程尺寸小的流体分子 C、与设备尺寸相当的流体粒子 D、尺寸远小于设备尺寸,但比分子自由程大得多的含大量分子的微团 2、某水泵进口管处真空表计数为650mmHg,出口管处压力表计数为2.5atm,则

化工原理学习归纳

一 1、掌握蒸馏的特点、分类及原理(在双组分溶液的气液相平衡图上进行分析) 。 蒸馏概念:是 利用液体混合物中各组分挥发性的差异,以热能为媒介使其部分气化,从而在气相富集轻组分,液相 富集重组分,使液体混合物得以分离的单元操作。 分离特点(1)蒸馏处理的对象为液体混合物, 分离流程简单,可以直接获得所需要的组分.(2)应用广泛、历史悠久; 不仅可以分离液体混合物,且可加压分离气体混合物及减压分离固体混合物 ?( 3)以热能为推动力,热能消耗大。 蒸馏分类:(1)按蒸馏方式分简单蒸馏或平衡蒸馏: 混合物各组分挥发性相差大,对组分分离程度要求不高。 精馏: 在混合物组分分离纯度要求很高时采用。 特殊精馏:混合物中各组分挥发性相差很小,或形成恒沸液( azeotrope ), 不能用普通精馏,借助某些特殊手段进行精馏。 (2) 按操作流程分:间歇精馏:多用于小批量生产或某些有特殊 要求的场合。连续精馏:多用于大批量工业生产中。 (3) 按操作压力分 常压蒸馏:蒸馏在常压下进行。 减压蒸馏:常压下物系沸点较高热或具热敏性, 高温加热介质 不经济。减压可降低操作温度。 加压蒸馏:对常压沸点很低的物系, 蒸气相的冷凝不能采用常温水和空气等廉价冷却剂,或对常温常压下为气体的物 系(如空气)进 行精馏分离,可采用加压以提高混合物的沸点。 (4) 按混合物组分:多组分精馏:例如原油。双组分精馏:例如乙纯-水体系。 双组分溶液 的气液相平衡图上进行分析: 将组成为Xf 、温度低于泡点的混合液 加热到泡点以上,其部分汽化,将气、液相分开,得组成为 Y1的气相,X1的 液相,继续将 Y1汽相部分冷凝,得 Y2的气相,X2的液相,将Y2气相沿箭头 方向冷凝,得浓 度更高的气相。相反将 X1的液相部分汽化,则得 X2 /和组成 为Y2 /的气相,依图中泡点线方向,则会得到浓度更高的液相。最终达到气、 液两相的纯化分 离。 一 3、掌握恒沸点,恒沸混合液,相平衡常数、挥发度,相对挥发度的概念。 恒沸点:t — x — y 图上液相线与汽相线在某点重合 ,两相组成相等,常压下该点的组成为恒沸组成 ?相应的温度即为恒沸 点?有最低恒沸点和最高恒沸点两种 ? 恒沸液:t — x —y 图上液相线与汽相线在某点重合 ,两相组成相等,常压下该点的组成为恒沸组成 ,该点溶液称为恒沸 液,恒沸组成随压强而变,理论可改变压强来分离,但实际不可行? 相平衡常数K:表示气液平衡时气相组成与液相组成之间的关系与平衡温度之间的关系的常数 p 一定时,Ki 随温度而变化。Ki 值越大,组分在气、液两相中的摩尔分数相差越大,分离也越容易。对于易挥发 组分,Ki >1,即 yi > xi 。 yi 和xi 分别表示i 组分在互为平衡的气、液两相中的摩尔分数。 挥发度VA :组分在气相中的平衡蒸气压(分压)与在液相中的摩尔分数的比值。溶液中各组分的挥发性由挥发度 来量衡?对纯组分液体,其挥发度就等于该温度下液体的饱和蒸气压。 相对挥发度::溶液中两组分挥发度之比称为相对挥发度 ? 是相平衡时两个组分在气相中的摩尔分数比与液相 中摩尔分数比的比值,由其大小可以判断该混合液能否用蒸馏方法加以分离以及分离的难易程度。 >1,表示组分A 较B 易挥发; 值越大,两个组分在两相中相对含量的差别越大,越容易用蒸馏方法将两组分分离;若 =1,此 时不能用普通蒸馏方法分离该混合物。 一 5、掌握精馏操作流程、精馏段,提馏段的概念及作用。 原料液预热器加热到指定温度后 ,送入精馏塔的进料板,在进料板上与自塔上部下降的回流液体汇合 ,逐板溢流,最 后流入塔底再沸器中?在每层板上,回流液体与上升蒸气互相接触,进行热和质的传递过程?操作时连续地从再沸器取出 部分液体作为塔底(釜残液),部分液体汽化,产生上升蒸气,依次通过各层塔板?塔顶蒸气进入冷凝器中被全部冷凝 ,并将 部分冷凝液用泵送回塔顶作为回流液体 ,其余部分经冷却器后被送出作为塔顶产品 (馏出液)? 精馏段一加料板以上的塔段:气相中的重组分向液相(回流液)传递,而液相中的轻组分向气相传递,从而完 成上升蒸气的精制。 提馏段一加料板以下的塔段:下降液体(包括回流液和料液中的液体部分)中的轻组分向气相(回流)传递, 而气相中的重组分向液相传递,从而完成下降液体重组分的提浓。 一 7、掌握回流比的概念、对精馏塔理论板数的影响及适宜回流比的选择方法。 回流比R :精馏段中下降液体的摩尔流量 L 与塔顶产品(馏出液)流量的比值 R 。塔所需的理论板数,塔顶冷凝 o K i / K i R p P A A P B B X i X A X B K ,Ki 并非常数,当 S —w

《化工原理》基本概念、主要公式

《化工原理》基本概念、主要公式 第一章 基本概念: 连续性假定质点拉格朗日法欧拉法定态流动轨线与流线系统与 控制体粘性的物理本质 质量守恒方程静力学方程总势能理想流体与实际流体的区别可压 缩流体与不可压缩流体的区别 牛顿流体与非牛顿流体的区别伯努利方程的物理意义动量守恒方程 平均流速动能校正因子 均匀分布均匀流段层流与湍流的本质区别稳定性与定态性边界层 边界层分离现象因次 雷诺数的物理意义泊谡叶方程因次分析实验研究方法的主要步骤摩 擦系数完全湍流粗糙管 局部阻力当量长度毕托管驻点压强孔板流量计转子流量计的特点 非牛顿流体的特性(塑性、假塑性与涨塑性、触变性与震凝性、粘弹性) 重要公式: 牛顿粘性定律dyduμτ= 静力学方程gzpgzp2211+=+ρρ 机械能守恒式fehugzphugzp+++=+++2222222111ρρ 动量守恒)(12XXmXuuqF?=Σ 雷诺数μμρdGdu==Re 阻力损失22udlfλ=h ????dqduhVf∞∞ 层流Re64=λ或232dulhfρμ= 局部阻力22ufζ=h 当量直径Π=Ae4d 孔板流量计ρPΔ=200ACqV ,gRi)(ρρ?=ΔP 第二章 基本概念: 管路特性方程输送机械的压头或扬程离心泵主要构件离心泵理论压 头的影响因素叶片后弯原因 气缚现象离心泵特性曲线离心泵工作点离心泵的调节手段汽蚀现 象必需汽蚀余量(NPSH)r 离心泵的选型(类型、型号) 正位移特性往复泵的调节手段离心泵与 往复泵的比较(流量、压头) 通风机的全压、动风压真空泵的主要性能参数

重要公式: 管路特性242)(8VeqgddlzgpHπζλρ+Σ+Δ+Δ= 泵的有效功率eVeHgqPρ=

化工原理学习方法

《化工原理》学习方法 化工原理是在研究化学工业共性的基础上发展起来的。本课程属于技术基础课程,主要研究化工生产中的物理加工过程,按其操作原理的共性归纳成若干个“单元操作”,研究对象由过程和设备两部分组成,通过学习本课程不仅使同学们掌握如流体输送、液体搅拌、过滤、沉降、传热、蒸发、精馏、吸收、干燥等典型化工单元操作的知识,而且让同学们掌握一般工程处理方法,如因次分析法、数学模型法、过程分解法、极限处理法等等。同时本课程的学习有承上启下的作用。一方面需要应用已经掌握的微积分、常微分方程、数值计算方法等高等数学知识以及普通物理和物理化学知识,另一方面为后继专业课程,如分离工程,化工设计等课程的学习打下坚实的基础。 由于本门课程属于工程科学,与原来所学的高等数学、普通物理等自然科学课程有着较大的差别。这些自然科学课程通常采用严谨的、逻辑推理的思维方法来进行问题分析的,而所分析的问题也大多处于理想条件下的非实际问题;而作为工程科学,化工原理所面临的是大量的工程实际问题;只有在错综复杂的各个影响因素中,抓住主要影响因素,进行合理简化,才能找到解决实际问题的正确途径,如果不注意这种思维方法上的转变,不恰当地照搬严谨的、逻辑推理的方法来全面分析复杂的工程实际问题,很可能会在现实中一筹莫展。 在本课程的学习中,希望同学们能够注意弄清基本概念,掌握分析化工问题的常用方法和手段、分析过程中所采取的主要步骤,得出的重要结论,以及这些结论在过程设计和操作调节中所体现出来的内

在含义。对于基本的、重要的公式,应当达到熟练掌握和应用的程度。在学习过程中,难免有不少东西需要记忆,记忆有机械记忆,联想记忆,理解记忆等方法,我们注重理解记忆,因为真正理解的东西,记住的不仅仅是其形式,而且是其深刻的内涵。 上册第一章流体流动 1. 本章学习的目的 通过本章学习,掌握流体流动过程的基本原理、管内流动的规律,并运用这些原理和规律去分析和计算流体流动过程的有关问题,诸如: (1)流体输送:流速的选择,管径的计算,输送机械选型。 (2)流动参数的测量:压强(压力)、流速(流量)等。 (3)不互溶液体(非均相物系)的分离和分散(混合)。 (4)选择适宜的流体流动参数,以适应传热、传质和化学反应的最佳条件。 2. 本章重点掌握的内容 (1)静力学基本方程的应用

相关文档