文档库 最新最全的文档下载
当前位置:文档库 › HSDL-4230中文资料

HSDL-4230中文资料

4-48

H

High-Performance T-13/4 (5mm)TS AlGaAs Infrared (875nm)Lamp Technical Data

HSDL-4200 Series HSDL-4220 30°HSDL-4230 17°

Features

? Very High Power TS AlGaAs Technology

? 875 nm Wavelength ? T-13/4 Package ? Low Cost

? Very High Intensity:HSDL-4220 - 38 mW/sr HSDL-4230 - 75 mW/sr ? Choice of Viewing Angle:HSDL-4220 - 30°HSDL-4230 - 17°

? Low Forward Voltage for Series Operation

? High Speed: 40 ns Rise Times

? Copper Leadframe for Improved Thermal and Optical Characteristics

Applications

? Compatible with IrDA SIR Standard ? IR Audio

? IR Telephones ? High Speed IR Communications IR LANs IR Modems IR Dongles

? Industrial IR Equipment

? IR Portable Instruments ? Interfaces with Crystal Semiconductor CS8130Infrared Transceiver

Description

The HSDL-4200 series of emitters are the first in a sequence of emitters that are aimed at high power, low forward voltage, and high speed. These emitters utilize the T ransparent S ubstrate, double heterojunction, Al uminum Ga l-lium A r s enide (TS AlGaAs) LED technology. These devices are optimized for speed and efficiency at emission wavelengths of 875nm. This material produces high radiant efficiency over a wide range of currents up to 500 mA peak current. The HSDL-4200series of emitters are available in a choice of viewing angles, the HSDL-4230 at 17° and the HSDL-4220 at 30°. Both lamps are packaged in clear T-13/4(5mm) packages.

NOM.5964-9642E

4-49

The wide angle emitter, HSDL-4220, is compatible with the IrDA SIR standard and can be used with the HSDL-1000 integrated SIR transceiver.

Absolute Maximum Ratings

Parameter

Symbol Min

Max Unit Reference Peak Forward Current

I FPK

500

mA

[2], Fig. 2b Duty Factor = 20%Pulse Width = 100 μs

Average Forward Current I FAVG 100mA [2]DC Forward Current I FDC 100mA [1], Fig. 2a

Power Dissipation

P DISS 260

mW Reverse Voltage (I R = 100 μA)

V R 5V Transient Forward Current (10 μs Pulse)I FTR 1.0A [3]

Operating Temperature T O 070°C Storage Temperature

T S -20

85°C LED Junction Temperature T J

110°C Lead Soldering Temperature 260 for °C

[1.6 mm (0.063 in.) from body]

5 seconds

Notes:

1. Derate linearly as shown in Figure 4.

2. Any pulsed operation cannot exceed the Absolute Max Peak Forward Current as specified in Figure 5.

3. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and the wire bonds.

Electrical Characteristics at 25°C

Parameter Symbol Min Typ Max Unit Condition Reference Forward Voltage

V F

1.30 1.50 1.70 V

I FDC = 50 mA Fig. 2a 1.40

1.67 1.85

I FDC = 100 mA 2.15I FPK = 250 mA Fig. 2b Forward Voltage

?V/?T -2.1mV/°C I FDC = 50 mA Fig. 2c

Temperature Coefficient -2.1I FDC = 100 mA Series Resistance R S 2.8ohms I FDC = 100 mA Diode Capacitance C O 40pF 0 V, 1 MHz Reverse Voltage V R 5

20V I R = 100 μA

Thermal Resistance,R θjp

110

°C/W

Junction to Pin

The package design of these

emitters is optimized for efficient power dissipation. Copper leadframes are used to obtain better thermal performance than the traditional steel leadframes.

Optical Characteristics at 25°C

Parameter Symbol Min Typ Max Unit Condition Reference Radiant Optical Power

HSDL-4220P O19mW I FDC = 50 mA

38I FDC = 100 mA HSDL-4230P O16mW I FDC = 50 mA

32I FDC = 100 mA

Radiant On-Axis Intensity

HSDL-4220I E223860 mW/sr I FDC = 50 mA Fig. 3a

76I FDC = 100 mA

190I FPK = 250 mA Fig. 3b HSDL-4230I E3975131 mW/sr I FDC = 50 mA Fig. 3a

150 I FDC = 100 mA

375I FPK = 250 mA Fig. 3b Radiant On-Axis Intensity?I E/?T-0.35%/°C I FDC = 50 mA Temperature Coefficient-0.35 I FDC = 100 mA

Viewing Angle

HSDL-42202θ1/230deg I FDC = 50 mA Fig. 6 HSDL-42302θ1/217deg I FDC = 50 mA Fig. 7 Peak WavelengthλPK860875895nm I FDC = 50 mA Fig. 1 Peak Wavelength?λ/?T0.25nm/°C I FDC = 50 mA Temperature Coefficient

Spectral Width–at FWHM?λ37nm I FDC = 50 mA Fig. 1 Optical Rise and Fall t r/t f40ns I FDC = 50 mA

Times, 10%-90%

Bandwidth f c9MHz I F = 50 mA Fig. 8

±10 mA

Ordering Information

Part Number Lead Form Shipping Option

HSDL-4220Straight Bulk

HSDL-4230Straight Bulk

4-50

4-51

I F D C – M A X . D C F O R W A R D C U R R E N T – m A

T A – AMBIENT TEMPERATURE – °C

N O R M A L I Z E D

R A D I A N T I N T E N S I T Y

I FPK – PEAK FORWARD CURRENT – mA

R E L A T I V E R A D I A N T I N T E N S I T Y (N O R M A L I Z E

D A T 50 m A )

I FDC – DC FORWARD CURRENT – mA R E L

A T I V E R A D I A N T I N T E N S I T Y

λ – WAVELENGTH – nm

V F – F O R W A R D V O L T A G E – V

T A – AMBIENT TEMPERATURE – °C Figure 1. Relative Radiant Intensity vs. Wavelength.Figure 2a. DC Forward Current vs.Forward Voltage.Figure 2b. Peak Forward Current vs.Forward Voltage.

Figure 2c. Forward Voltage vs Ambient Temperature.Figure 3a. Relative Radiant Intensity vs. DC Forward Current.Figure 3b. Normalized Radiant

Intensity vs. Peak Forward Current.

Figure 4. Maximum DC Forward Current vs. Ambient Temperature.Derated Based on T JMAX = 110°C.

Figure 5. Maximum Peak Forward Current vs. Duty Factor.

I F P K – P E A K F O R W A R D C U R R E N T –

m A

DUTY FACTOR

I F P K – P E A K F O R W A R D C U R R E N T – m A

V F – FORWARD VOLTAGE – V

I

F D C – D C F O R W A R D C U R R E N T – m A

V F – FORWARD VOLTAGE – V

4-52

θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)

R E L A T I V E R A D I A N T I N T E N S I T Y

1.0

0.90.80.70.60.50.40.30.20.1

°Figure 6. Relative Radiant Intensity vs.Angular Displacement HSDL-4220.

θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)

1.0

0.90.80.70.60.50.40.30.20.1

°R E L A T I V E R A D I A N T I N T E N S I T Y

Figure 7. Relative Radiant Intensity vs.Angular Displacement HSDL-4230.

R E L A T I V E R A D I A N T I N T E N S I T Y –

d B

f – FREQUENCY – Hz

Figure 8. Relative Radiant Intensity vs. Frequency.

Note: At the time of this publication, Light Emitting Diodes (LEDs) that are contained in this product are regulated for eye safety in Europe by the Commission for European Electrotechnical Standardization (CENELEC) EN60825-1. Please refer to Application Briefs I-008, I-009, I-015 for more information.

相关文档