文档库 最新最全的文档下载
当前位置:文档库 › 新型分离技术习题解答——第7章

新型分离技术习题解答——第7章

新型分离技术习题解答——第7章
新型分离技术习题解答——第7章

第七章 新型萃取分离技术(习题解答)

7-1 超临界流体用作萃取剂有哪些优缺点?

答:超临界流体用作萃取剂,该萃取剂在常压和室温下为气体,萃取后易与萃余相和萃取组分分离;在较低温度下操作,特别适合于天然物质的分离;可通过调节压力、温度和引入夹带剂等调整超临界流体的溶解能力,并可通过逐渐改变温度和压力把萃取组分引入到希望的产品中去。但超临界流体萃取剂的选取,需综合考虑对溶质的溶解度、选择性、化学反应可能性等一系列因素,因此,可用作超临界萃取剂的物质并不太多。

7-2 将超临界流体与萃取质分离可采用哪些方法,各有何优缺点?在选用时应考虑哪些因素? 答:超临界流体与萃取质分离可通过调节压力,调节温度,引入夹带剂等方法。

7-3 在压力为14MPa 、温度为35℃条件下,用CO 2从发酵液中萃取乙醇,所用萃取设备为高2m 的鼓泡塔,乙醇质量分数为6.5%的发酵液置于塔内,流量为1000cm 3/h 的超临界CO 2鼓泡通过发酵液,若要求乙醇萃取率为80%,计算萃取开始及结束时,萃取相CO 2中乙醇的浓度(脱气及非脱气浓度),在操作条件下,水-乙醇- CO 2的相平衡数据如图7-51所示。 解:根据题意,80%R F X R X F

= 5.2%R R F X =?= 读图得:萃取结束时:1%E X =

萃取开始时:0%E X =

7-4 在一金属板填料塔内用超临界CO 2从异丙醇-水溶液中萃取异丙醇,萃取压力为8.0MPa ,温度35℃,连续相(液相)表观流速为3.8m/h ,分散相(超临界流体)流速为7.1m/h ,二相逆流。已测得该超临界萃取填料塔液相总传质系数K DL 为6.5/h ,求得该填料塔的传质单元数N 和传质单元高度H 。 解:提示:0*i x ol olp x c

hK dx N V x x α==-? 1

11ol c d K a K K mdc αα-??=+????,其中32Re m n Ad d D K A Sc d =,12

2Ac c c D K πθ??=????

7-5 用超临界流体从某种植物或果实内萃取一种化疗物质,其在CO 2中的溶解度常为超临界流体相密度的函数,假定为0.07%。如果植物或果实中化疗物质的含量为1.2%,在逆流接触器生物质的流量为100g/min ,CO 2超临界流体为5L/h ,现假定提取90%的化疗物质,需要几级才能实现。

解:因为0 1.2%,0x y ==,100/min H g =

∴()()35//10000.07%60

0.35 =

/min 6L h g cm L g ρρ???=

∵KL E H

=而K 可查得,根据公式:

0111?Kx E y y =+?= ()()10011?L y y H x x x -=-?= 而 0211Kx E E y E ??=+- ?+?? 03111Kx E E E y E E ????+-????+-?+?

以此类推:1

01111

n

j j n n j j Kx E y E

-=-==+∑∑,即可得n ;

7-6 已知一流体混合物在不同浓度下其随温度的变化关系如图(见书本)所示,请画出对应4个浓度区间的相变行为曲线图。

解:相变行为曲线图如下图:

7-7 采用PEG/磷酸盐系统萃取肌红蛋白,肌红蛋白的等电点为7.0,当系统中分别含有0.1mol/dm 3氯化钾与0.05 mol/dm 3硫酸钠时,分配系数随pH 值如何变化,并图示说明。

解:当系统中含有3

0.1/mol dm 氯化钾时,分配系数随PH 增大而增大;

当系统中含有30.05/mol dm 氯化钾时,分配系数随PH 增大而减小;

7-8 已知胰蛋白酶的等电点为10.6,在PEG/Dx 系统中,随pH 值的增大,胰蛋白酶的分配系数如何变化? 解:根据公式0110

HA PH PKa K K -=-,其中PKa 是等电点 由上式可以得到:随PH 值得增大,胰蛋白酶的分配系数减小。在PH 增大过程中,在到达等电点10.6之前,分配系数减小的速度慢慢增大,到达等电点时,速度达到最大,超过等电点之后,速度逐渐减小。

7-9 采用双水相系统从变性DNA 中分离DNA ,在4%PEG-6000/5%Dx 双水相系统中,使用5mmol/LNaH 2PO 4和5mmol/L Na 2HPO 4的缓冲液,变性DNA 和DNA 的㏒K 分别为1.0和1.6。试求:⑴对10mg/L 的DNA 溶液,其中变性蛋白为20%,假定流率比L/H=2,当采用五级错流接触器萃取时,试求DNA 的回收率和其纯度;⑵当采用五级逆流接触器萃取时,DNA 的纯度和产量为多少?⑶仍使用五级微分萃取器,当进料流率为1/4H 并从第三级进入,那么DNA 的纯度和产量为多少?

解:(1)根据错流萃取公式

0120%0.8x =-= 1.610279.62KL E H =

=?= ∴ ()()1005550.8 2.3510179.621x x E -===?++ 050

1x x x η-=≈ 50.4y = 对于变性的DNA :'

020%x = '20E = ∴ ()

05''85' 4.8101x x E -=

=?+ '50.05y = (2)采用逆流萃取 ∵对于蛋白质来说, 1.610K =

∴()()51

1.624015525111080%179.6279.6279.620.479.6279.6279.6211j j j j Kx E y E

-=-=??++++===+++++∑∑

∴()500Ly H x x x =-?≈

对于变性蛋白质,'

10K = ∴()()51

24015525111020%12020200.120202011j j j j Kx E y E

-=-=??++++===+++++∑∑

∴产量100.88/mg L ?=

(3)并流 1.6810318.50.25KL E H

==?= ∴ 1.60100.89.97%1318.51Kx y E ?===++ '

'0'100.2 2.47%1801

Kx y E ?===++ ∴纯度9.9780.14%9.97 2.47

==+ ∴产量回收了()0209.97%2/L y mg L -=?=

7-11 肌红蛋白和牛血清蛋白的等电点分别为7.0和4.7,表面疏水性分别为-120kJ/mol 和-220kJ/mol 。试分析:双水相系统的组成和性质对肌红蛋白萃取选择性的影响如何?应选择何种双水相萃取系统,可使肌红蛋白萃取选择性较大?

解:双水相系统中成相聚合物的分子量、浓度、盐的添加量,PH 值等均会影响肌红蛋白的萃取选择性。 本题中肌红蛋白为目标产物,它与杂蛋白牛血清蛋白的等电点不同,可以添加适当的盐,并通过调节系统的PH 值,液相间电位差变大。同时,题中所示,肌红蛋白和牛血清蛋白的表面疏水性相差也较大,可利用盐等透析作用原理,通过提高成相系统的浓度,增大双水相系统的疏水性,达到目标产物与杂蛋白的分离。另外,可用分子量较大的PEG ,组成成相系统,以提高目标蛋白的选择性,使萃取剂PEG 上相的蛋白质量减少。此外,也可在磷酸盐存在下,通过调节PH 值在较佳范围内,以提高肌红蛋白的萃取选择性。

色谱分离技术

亲和色谱 亲和色谱是专门用于纯化生物大分子的色谱分离技术,它是基于固定相的配基与生物分子间的特殊生物亲和能力的不同来进行相互分离的。亲和色谱的显著特点: 具有其他分离技术所不能比拟的高选择性,且色谱过程操作条件温和,能有效地保持生物大分子高级结构的稳定性,活性样品的回收率也比较高。 所以亲和色谱被广泛用于酶、治疗蛋白、抗体、核酸、辅助因子等生物大分子以及细胞、细胞器、病毒等超分子物质的分离与纯化。 特别是对分离含量极少而又不稳定的活性物质最有效,经一步亲和色谱即可提纯几百至几千倍。 亲和色谱的基本过程: 把具有特异亲和力的一对分子的任何一方作为配基,在不伤害其生物功能情况下,与不溶性载体结合,使之固定化,装入色谱柱,然后把含有目的物质的混合液作为流动相,在有利于固定相配基和目的物质形成络合物的条件下进入色谱柱。目的物质被吸附,杂质直接流出。变换过柱溶液,使配基与其亲和物分离,获纯化的目的产物。 亲和色谱分离中经常采用的生物亲和关系 ①酶:底物、底物类似物、抑制剂、辅酶、金属离子; ②抗体:抗原、病毒、细胞; ③激素、维生素:受体蛋白、载体蛋白; ④外源凝集素:多糖、糖蛋白、细胞表面受体蛋白、细胞; ⑤核酸:互补碱基链段、组蛋白、核酸聚合酶、核酸结合蛋白; ⑥细胞:细胞表面特异蛋白、外源凝集素。 亲和色谱操作中的洗脱方法 在亲和色谱洗脱操作中,洗脱方法有两类,即普通洗脱法和专一性洗脱法。 普通洗脱法:与其他色谱分离方法一样,可以通过改变溶剂或缓冲液的类型,改变缓冲液的pH和离子强度,改变洗脱温度,以及添加促溶剂等措施进行洗脱。 专一性洗脱法:是指溶液中的配基、抑制剂或半抗原等物质与亲和层析剂上的配基,同时对生物活性物质产生竞争性的结合,从而达到洗脱的目的。一般说来,专一性洗脱可以获得很高的分辨能力。 但是,专一性洗脱剂的价格都比较昂贵,所以常与普通洗脱条件配合作用。 离子交换色谱 离子交换色谱利用被分离组分与固定相之间发生离子交换的能力差异来实现分离。离子交换色谱的固定相一般为离子交换树脂,树脂分子结构中存在许多可以电离的活性中心,待分离组分中的离子会与这些活性中心发生离子交换,形成离子交换平衡,从而在流动相与固定相之间形成分配。固定相的固有离子与待分离组分中的离子之间相互争夺固定相中的离子交换中心,并随着流动相的运动而运动,最终实现分离。

气相色谱分离技术

第三章气相色谱分离技术 第一节气相色谱系统 气相色谱法是一种很重要的,以气体为流动相,以液体或固体为固定相的色谱方法,气相色谱法(GC)有以下特点: (1)高选择性GC能够分离分析性质极为相近的物质。如氢的同位素,有机物的异构体。 (2)高效GC可在较短的时间内同时分离分析极其复杂的混合物。如用空心毛细管柱一次可以分析轻油中的200个组分。 (3)高灵敏度由于使用了高灵敏度的检测器,可以检测10-11-10-13克物质。检测浓度可达到ppt级。 (4)分析速度快GC一般只要几到几十分钟的分析时间,某些快速分析,一秒可以分析十几个组分。 GC法的应用相当广泛,在一千万个化合物中,大约有20%的物质可以用GC方法进行分析,如: 生物化学分析:GC一开始就是用于生物化学领域,气-液GC的创始人Martin首先进行了脂肪酸和脂肪胺的分析。 石油化工分析:用200m的毛细管GC法一次可以分析200个化合物。 环境分析:如水中有机物分析。 食品分析:如粮食中残留农药的分析。 药物临床分析:氨基酸、兴奋剂的分析。 法庭分析:各种物证鉴定。 空间分析:如飞船中气氛分析。 军工分析:如火药、炸药分析。

图3-1是GC的流程示意图。 9 图3-1气相色谱流程示意图 1—高压瓶,2—减压阀, 3—净化器,4—气流调节阀,5—进样口,6—气化室,7—色谱柱,8—检测器, 9—记录仪 气相色谱仪的种类很多,但主要由分离系统和检测系统组成。 3.1.1 分离系统 分离系统主要由气路系统、进样系统和色谱柱组成,其核心为色谱柱。 1.气路系统 气路系统指流动相载气流经的部分,它是一个密闭管路系统,必须严格控制管路的气密性,载气的惰性及流速的稳定性,同时流量测量必须准确,才能保证结果的准确性。载气通常用N2,He,H2,Ar等。 2.进样系统 进样系统包括进样装置和气化室。气体样品可以用注射器进样,也可用旋转式六通阀进样。气化室必须预热至设定温度。 3.色谱柱

色谱技术简介

色谱技术简介 发布者:杭州科晓化工仪器设备有限公司发布时间:2007年1月30日 Audo look6.0下载引言 色谱法是1906年俄国植物学家Michael Tswett将含有有色的植物叶子色素和溶液通过装填有白垩粒子吸附剂的柱子,企图分离它们时而发现并命名的。各种色素以不同的速率通过柱子,从而彼此分开。分离开的色素形成不同的 色带而易于区分,由此得名为色谱法(Chromatography),又称层析法。其后的一个重大进展是1941年Martin和Synge 发现了液-液(分配)色谱法[Liquid-Lipuid(partition)Chromatography,简称LIC]。他们用覆盖于吸附剂表面的并与流动相不混溶的固定液来代替以前仅有的固体吸附剂。试样组分按照其溶解在两相之间分配。Martin和Synge 因为这一工作而荣获1952 年诺贝尔化学奖。在使用柱色谱的早期年代,可靠地鉴定小量的被分离物质是困难的,所以研究发展了纸色谱法(Paper Chromatography,简称PC)。在这种“平面的”技术中,分离主要是通过滤纸上的分配来实现的。然后由于充分考虑了平面色谱法的优点而发展了薄层色谱法(Thin-Layer Chromatography,简称TLC),在这种方法中,分离系在涂布于玻璃板或某些坚硬材料上的薄层吸附剂上进行。 在Stah-l于1958年进行了经典性的工作将技术和所用材料加以标准化之后, 薄层色谱法方赢得了声誉。为了帮助提高纸色谱法或薄层色谱法对离子化合物的分离效率,可以向纸或板施加电场。这种改进了方法分别称作纸上电泳或薄层电泳。 新近发展起来的色谱法 气相色谱法是Martin和James于1952 年首先描述的,现已成为所有色谱法中最高级和最广泛使用的一种方法,它特别适用于气体混合物或挥发性液体和固体,即便对于很复杂的混合物,其分离时间也仅为几分钟左右,这已属司 空见惯。高分辩率、分析迅速和检测灵敏等几种优点之综合使气相色谱法成了几乎每个化学实验室要采用的一种常规 方法。近年来,因为新型液相色谱仪和新型柱填料的发展以及对色谱理论的更深入了解,又重新引起对密闭柱液相色 谱法的兴趣。高效液相色谱法(High-Performance Liquid Chromatography,简称HPLC)迅速成为与气相色谱法一样广泛使用的方法,对于迅速分离非挥发性的或热不稳定的试样来说,高效液相色谱法常常是更可取的。 色谱法分类 色谱法有多种类型,也有多种分类方法。 (一)按两相所处的状态分类 液体作为流动相,称为“液相色谱”(liquid chromatograp-hy);用气体作为流动相,称为“气相色谱”(gas chromatogr-aphy)。固定相也有两种状态,以固体吸附剂作为固定相和以附载在固体上的液体作为固定相,所 以层析法按两相所处的状态可以分为: 液-固色谱(liquid-solid chromatography) 液-液色谱(liquid-liquid chromatography)

柱色谱实验操作方法

一、液-固色谱原理 液-固色谱是基于吸附和溶解性质的分离技术,柱色谱属于液-固吸附色谱。 当混合物溶液加在固定相上,固体表面借各种分子间力(包括范德华力和氢键)作用于混合物中各组分,以不同的作用强度被吸附在固体表面。 由于吸附剂对各组分的吸附能力不同,当流动相流过固体表面时,混合物各组分在液-固两相间分配。吸附牢固的组分在流动相分配少,吸附弱的组分在流动相分配多。流动相流过时各组分会以不同的速率向下移动,吸附弱的组分以较快的速率向下移动。随着流动相的移动,在新接触的固定相表面上又依这种吸附-溶解过程进行新的分配,新鲜流动相流过已趋平衡的固定相表面时也重复这一过程,结果是吸附弱的组分随着流动相移动在前面,吸附强的组分移动在后面,吸附特别强的组分甚至会不随流动相移动,各种化合物在色谱柱中形成带状分布,实现混合物的分离。 二、柱色谱分离条件 (1)固定相选择 柱色谱使用的固定相材料又称吸附剂。

吸附剂对有机物的吸附作用有多种形式。以氧化铝作为固定相时,非极性或弱极性有机物只有范德华力与固定相作用,吸附较弱;极性有机物同固定相之间可能有偶极力或氢键作用,有时还有成盐作用。这些作用的强度依次为: 成盐作用> 配位作用> 氢键作用> 偶极作用> 范德华力作用。有机物的极性越强,在氧化铝上的吸附越强。 常用吸附剂有氧化铝、硅胶、活性炭等(表1)。 色谱用的氧化铝可分酸性、中性和碱性三种。酸性氧化铝pH约为4~4.5,用于分离羧酸、氨基酸等酸性物质;中性氧化铝pH值为7.5,用于分离中性物质,应用最广;碱性氧化铝pH为9~10,用于分离生物碱、胺和其它碱性化合物等。

吸附剂的活性与其含水量有关。含水量越低,活性越高。脱水的中性氧化铝称为活性氧化铝。 硅胶是中性的吸附剂,可用于分离各种有机物,是应用最为广泛的固定相材料之一。 活性炭常用于分离极性较弱或非极性有机物。 吸附剂的粒度越小,比表面越大,分离效果越明显,但流动相流过越慢,有时会产生分离带的在重叠,适得其反。 (2)流动相选择 色谱分离使用的流动相又称展开剂。 展开剂对于选定了固定相的色谱分离有重要的影响。 在色谱分离过程中混合物中各组分在吸附剂和展开剂之间发生吸附-溶解分配,强极性展开剂对极性大的有机物溶解的多,弱极性或非极性展开剂对极性小的有机物溶解的多,随展开剂的流过不同极性的有机物以不同的次序形成分离带。 在氧化铝柱中,选择适当极性的展开剂能使各种有机物按先弱后强的极性顺序形成分离带,流出色谱柱。 当一种溶剂不能实现很好的分离时,选择使用不同极性的溶剂分级洗脱。如一种溶剂作为展开剂只洗脱了混合物中一种化合物,对其它组分不能展开洗脱,需换一种极性更大的溶剂进行第二次洗脱。这样分次用不同的展开剂可以将各组分分离。 三、柱色谱分离操作

蛋白质色谱分离方法

蛋白质色谱分离方法 摘要蛋白质是生命有机体的主要成分,在生命体生长发育的各个阶段都起着重要作用。所以分离和检测蛋白质一直是人们研究的热点。依据蛋白质的物理、化学及生物学特性,已有多种分离手段,如:超滤法、SDS-PAGE、亲和层析等,其中,液相色谱分离技术由于具有重复性好、分辨率高等优势在蛋白质分离检测中得到了广泛的应用。 关键词高效液相色谱高效离子交换色谱反相高效液相色谱高效凝胶过滤色谱高效亲和色谱 一、引言 蛋白质在组织或细胞中一般都是以复杂的混合物形式存在,每种类型的细胞都含有成千种不同的蛋白质。蛋白质的分离和提纯工作是一项艰巨而繁重的任务,到目前为止,还没有一个单独的或一套现成的方法能把任何一种蛋白质完全的从复杂的混合物中提取出来,但对任何一种蛋白质都有可能选择一套适当的分离提纯程序来获取高纯度的制品。 1、蛋白质纯化的总战略考虑 蛋白质回收要采用简便易行的方法尽可能多地将目标蛋白从细胞培养上清液、细菌破碎液或组织匀浆中提取出来,收率至少达到90%以上。然后进一步作精纯化,这第一步要求去掉大部分杂蛋白,同时要使样品的体积得到充分浓缩,一般要求要浓缩几十到几百倍,粗提液的体积大大缩小,便于下一步精纯化。而且每一步都要做电泳判断纯化效果。 2、蛋白质分离纯化技术的选择 要尽可能多地了解目标蛋白的结构、氨基酸组成、氨基酸序列,以及蛋白质的空间结构所决定的物理、化学、生物化学和物理化学性质等信息,根据不同蛋白质之间的性质差异或者改变条件使之具有差异,利用一种或多种性质差异,在兼顾收率和纯度的情况下,选择最佳的蛋白质提纯方法。 二、色谱技术简介 1、色谱分离技术基本概念 色谱分离技术又称层析分离技术或色层分离技术,是一种分离复杂混合物中各个组分的有效方法。它是利用不同物质在由固定相和流动相构成的体系中具有不同的分配系数,当两相作相对运动时,这些物质随流动相一起运动,并在两相间进行反复多次的分配,从而使各物质达到分离。当流动相中携带的混合物流经

2010级色谱分离技术试题111

2010级色谱分离与技术试题 班级:工业催化10级 姓名:杨昭 学号:405504110134 1.什么是色谱分离技术? 答:色谱分离技术又称层析分离技术或色层分离技术,是一种分离复杂混合物中各个组分的有效方法。它是利用不同物质在由固定相和流动相构成的体系中具有不同的分配系数,当两相作相对运动时,这些物质随流动相一起运动,并在两相间进行反复多次的分配,从而使各物质达到分离。 2.高效液相色谱与气相色谱相比有何特点? 答:与气相色谱相比高效液相色谱具有“三高一广一快”的特点:〈1〉高压:流动相为液体,流经色谱柱时,受到的阻力较大,为了能迅速通过色谱柱,必须对载液加高压。〈2〉高效:分离效能高。可选择固定相和流动相以达到最佳分离效果,比工业精馏塔和气相色谱的分离效能高出许多倍。〈3〉高灵敏度:紫外检测器可达0.01ng,进样量在μL数量级。〈4〉应用范围广:百分之七十以上的有机化合物可用高效液相色谱分析,特别是高沸点、大分子、强极性、热稳定性差化合物的分离分析,显示出优势。〈5〉分析速度快、载液流速快:较经典液体色谱法速度快得多,通常分析一个样品在15~30 min,有些样品甚至在5 min内即可完成,一般小于1h。此外HPLC还有色谱柱可反复使用、样品不被破坏、易回收等优点,但也有缺点,与气相色谱相比各有所长,相互补充。HPLC的缺点是有“柱外效应”。在从进样到检测器之间,除了柱子以外的任何死空间(进样器、柱接头、连接管和检测池等)中,如果流动相的流型有变化,被分离物质的任何扩散和滞留都会显著地导致色谱峰的加宽,柱效率降低。HPLC检测器的灵敏度不及气相色谱。 3.分别写出速率理论在高效液相色谱法和气相色谱法(包括填充柱色谱和开管柱色谱)中的表达式,并说明理由。 答:速率理论是由荷兰学者van Deemter在1956年提出的。该方程的数学简化式为: 其中,u为流动相的线速度;A, B, C为常数,分别代表涡流扩散项系数,分子扩散项系数,传质阻力项系数。 涡流扩散项A=2λd p; 分子扩散项在气相色谱里为B/u=2γD g/u; 至于传质阻力项系数Cu对于填充柱,气相传质阻力系数Cg=0.01k2/(1+k)2*d p2/D g,固定相传质阻力系数C l=2/3*k/(1+k)2*d f2/D l,则气相色谱中的速率方程为: 在液相色谱中,涡流扩散项A=2λd p;

色谱分离技术原理及其的应用

色谱法的最早应用是用于分离植物色素,其方法是这样的:在一玻璃管中放入碳酸钙,将含有植物色素(植物叶的提取液)的石油醚倒入管中。此时,玻璃管的上端立即出现几种颜色的混合谱带。然后用纯石油醚冲洗,随着石油醚的加入,谱带不断地向下移动,并逐渐分开成几个不同颜色的谱带,继续冲洗就可分别接得各种颜色的色素,并可分别进行鉴定。色谱法也由此而得名。现在的色谱法早已不局限于色素的分离,其方法也早已得到了极大的发展,但其分离的原理仍然是一样的。我们仍然叫它色谱分析。 一、色谱分离基本原理:由以上方法可知,在色谱法中存在两相,一相是固定不动的,我们把它叫做固定相;另一相则不断流过固定相,我们把它叫做流动相。色谱法的分离原理就是利用待分离的各种物质在两相中的分配系数、吸附能力等亲和能力的不同来进行分离的。使用外力使含有样品的流动相(气体、液体)通过一固定于柱中或平板上、与流动相互不相溶的固定相表面。当流动相中携带的混合物流经固定相时,混合物中的各组分与固定相发生相互作用。由于混合物中各组分在性质和结构上的差异,与固定相之间产生的作用力的大小、强弱不同,随着流动相的移动,混合物在两相间经过反复多次的分配平衡,使得各组分被固定相保留的时间不同,从而按一定次序由固定相中先后流出。与适当的柱后检测方法结合,实现混合物中各组分的分离与检测。 二、色谱分类方法:色谱分析法有很多种类,从不同的角度出发可以有不同的分类方法。从两相的状态分类:色谱法中,流动相可以是气体,也可以是液体,由此可分为气相色谱法(GC)和液相色谱法(LC)。固定相既可以是固体,也可以是涂在固体上的液体,由此又可将气相色谱法和液相色谱法分为气-液色谱、气-固色谱、液-固色谱、液-液色谱。高效液相色谱法是继气相色谱之后,70年代初期发展起来的一种以液体做流动相的新色谱技术。高效液相色谱是在气相色谱和经典色谱的基础上发展起来的。现代液相色谱和经典液相色谱没有本质的区别。不同点仅仅是现代液相色谱比经典液相色谱有较高的效率和实现了自动化操作。经典的液相色谱法,流动相在常压下输送,所用的固定相柱效低,分析周期长。而现代液相色谱法引用了气相色谱的理论,流动相改为高压输送(最高输送压力可达4.9 107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。因此,高效液相色谱具有分析速度快、分离效能高、自动化等特点。所以人们称它为高压、高速、高效或现代液相色谱法。 液相色谱法 气相色谱不能由色谱图直接给出未知物的定性结果,而必须由已知标准作对照定性。当无纯物质对照时,定性鉴定就很困难,这时需借助质谱、红外和化学法等配合。另外大多数金属盐类和热稳定性差的物质还不能分析。此缺点可高效液相色谱法来克服。 原理和分类 液相色谱法的分离机理是基于混合物中各组分对两相亲和力的差别。根据固定相的不同,液相色谱分为液固色谱、液液色谱和键合相色谱。应用最广的是以硅胶为填料的液固色谱和以微硅胶为基质的键合相色谱。根据固定相的形式,液相色谱法可以分为柱色谱法、纸色谱法及薄层色谱法。按吸附力可分为吸附色谱、分配色谱、离子交换色谱和凝胶渗透色谱。近年来,在液相柱色谱系统中加上高压液流系统,使流动相在高压下快速流动,以提高分离效果,因此出现了高效(又称高压)液相色谱法。 液固吸附色谱 高效液相色谱中的一种,是基于物质吸附作用的不同而实现分离。其固定相是一些具有

色谱法分离原理

第十四章色谱法分离原理 一.教学内容 1.色谱分离的基本原理和基本概念 2.色谱分离的理论基础 3.色谱定性和定量分析的方法 二.重点与难点 1.塔板理论,包括流出曲线方程、理论塔板数(n)及有效理论塔板数 (n e f f)和塔板高度(H)及有效塔板高度(H e f f)的计算 2.速率理论方程 3.分离度和基本分离方程 三.教学要求 1.熟练掌握色谱分离方法的原理 2.掌握色谱流出曲线(色谱峰)所代表的各种技术参数的准确含义 3.能够利用塔板理论和速率理论方程判断影响色谱分离各种实验因素 4.学会各种定性和定量的分析方法 四.学时安排4学时 第一节概述 色谱法早在1903年由俄国植物学家茨维特分离植物色素时采用。他在研究植物叶的色素成分时,将植物叶子的萃取物倒入填有

碳酸钙的直立玻璃管内,然后加入石油醚使其自由流下,结果色素中各组分互相分离形成各种不同颜色的谱带。这种方法因此得名为色谱法。以后此法逐渐应用于无色物质的分离,“色谱”二字虽已失去原来的含义.但仍被人们沿用至今。 在色谱法中,将填入玻璃管或不锈钢管内静止不动的一相(固体或液体)称为固定相;自上而下运动的一相(一般是气体或液体)称为流动相;装有固定相的管子(玻璃管或不锈钢管)称为色谱柱。当流动相中样品混合物经过固定相时,就会与固定相发生作用,由于各组分在性质和结构上的差异,与固定相相互作用的类型、强弱也有差异,因此在同一推动力的作用下,不同组分在固定相滞留时间长短不同,从而按先后不同的次序从固定相中流出。 从不同角度,可将色谱法分类如下: 1.按两相状态分类 气体为流动相的色谱称为气相色谱(G C) 根据固定相是固体吸附剂还是固定液(附着在惰性载体上的 一薄层有机化合物液体),又可分为气固色谱(G S C)和气液色谱(GL C)。液体为流动相的色谱称液相色谱(LC) 同理液相色谱亦可分为液固色谱(L SC)和液液色谱(L LC)。超临界流体为流动相的色谱为超临界流体色谱(SF C)。随着色谱工作的发展,通过化学反应将固定液键合到载体表面,这种化学键合固定相的色谱又称化学键合相色谱(CB PC). 2.按分离机理分类 利用组分在吸附剂(固定相)上的吸附能力强弱不同而得以分离的方法,称为吸附色谱法。 利用组分在固定液(固定相)中溶解度不同而达到分离的方法称为分配色谱法。 利用组分在离子交换剂(固定相)上的亲和力大小不同而达到分离的方法,称为离子交换色谱法。

毛细管胶束电动色谱分离技术

基本原理 毛细管电色谱(Capillary electrochromatography, 简称CEC)是在毛细管中填充或在管壁涂布、键合液相色谱的固定相,然后在毛细管的两端施加高压直流电,在电场作用下产生电渗流(Electroosmotic flow ,简称EOF),流动相在电渗流的驱动下通过色谱柱。对中性化合物,其分离过程和HPLC类似,即通过溶质在固定相和流动相之间的分配差异而获得分离;当被分析的物质在流动相中带电荷时,除了和中性化合物一样的分配机理外,自身电泳淌度的差异对物质的分离也起相当的作用。 毛细管电色谱(capillary electro chromatography,CEC)以内含色谱固定相的毛细管为分离柱,兼具毛细管电泳及高效液相色谱的双重分离机理,既可分离带电物质也可分离中性物质。毛细管电色谱法是用电渗流或电渗流结合压力流来推动流动相的一种液相色谱法。 因此,毛细管电色谱法可以说是HPLC和HPCE 的有机结合,它不仅克服了HPLC 中压力流本身流速不均匀引起的峰扩展,而且柱内无压降,使峰扩展只与溶质扩散系数有关,从而获得了接近于HPCE 水平的高柱效,同时还具备了HPLC 的选择性。 HPLC是用压力驱动流动相。流速是随填充微粒的大小和柱长而变化的。流速在管中呈抛物线轮廓,因而造成了色谱峰谱带的展宽,降低了柱效。而CEC是采用电场推动流动相。其线速度是与柱的直径和填微粒的大小无关的,因而在毛细管中几乎没有流速梯度。谱带展宽效应相应的就十分小。这点是CEC与HPLC的本质差别,也是CEC

效率高于HPLC的根本。 依靠电渗流(EOF)和电渗流结合压力流推动流动相,使中性和带电荷的样品分子根据它们在色谱固定相和流动相间吸附、分配平衡常数的不同和电泳速率不同而达到分离分析。 仪器设备: 毛细管电色谱的早期研究是在改装的CE商品仪器上进行的,随着研究的深入和对研究前景的良好预期,现在已有商品仪器既可进行电泳模式也可方便地进行电色谱研究。目前,主要是Beckman 公司的P/ACE 系列和HP公司的HP3D系列。检测器根据分析样品性质的不同,可选UV 检测器( 包括DAD ) 、电化学检测器、LIF 及CE-MS等。 类型:在毛细管电色谱(CEC)中,色谱柱是电色谱的心脏,按照固定相的装填方式不同可以分为[7]:填充毛细管电色谱(PCCEC),开管毛细管电色谱(OTCEC),整体式毛细管电色谱(MCEC)。PCCEC是将固定相装填在毛细管中,OTCEC是将固定相涂渍或键合在毛细管内壁上,MCEC是通过在毛细管内原位聚合或固化的方法,制成的具有多孔结构的整体式固定相。根据分离过程中驱动力的不同可以将毛细管电色谱分为电驱动和压力驱动电色谱。前者是靠电渗流作为驱动力,这种情况下样品区带可以保持塞状流型,分离效率比较高。在最初的研究中人们都使用电驱动电色谱。压力驱动是指除了使用电渗流作为驱动力外,同时可以使用压力作为驱动力,这样可以加快分析速度,便于梯度洗脱,减小气泡生成的可能性。其缺点是流体力学所引起的抛物线流型使柱效有所损失,一般的操作过程中所使用的压力都

高速逆流色谱分离技术

四川大学 硕士研究生课程考试试卷 姓名唐昌云学号 2012224050107 学院华西药学院专业生药学 任课教师王曙教授 课程名称高等生药学 课程成绩 考试时间 2012.12.31. 四川大学

高速逆流色谱分离技术的运用 1 发展历史 高速逆流色谱(HSCCC)是在1982年,美国国立卫生院的一个教授首先研究和发展起来的一种不同于传统液相色谱法的现代色谱分离制备技术。作为一种新的色谱技术,HSCCC分离系统可以理解为以螺旋管式离心分离仪代替HPLC的柱色谱系统。HSCCC不使用固相载体作固定相, 克服了固相载体带来的样品吸附、损失、污染和峰形拖尾等缺点。由于不需要固定相,HSCCC技术具有进样量大、无不可逆吸附等优于其他色谱技术的优点,此项技术已经被广泛地应用于医药、环境、化工等领域。 2 原理 2.1 色谱分离原理 高速逆流色谱分离原理结合了液液萃取和分配色谱的优点,是一种不需任何固态载体或支撑的液-液分配色谱技术,其基本分离原理与其他同类色谱技术相同,主要是利用物质在两相间分配系数的差别进行分配。而HSCCC将两溶剂的分配体系置于高速旋转的螺旋管内,螺旋管的运动形式,是在自身自转的基础上,同时绕一公转轴旋转,形成行星运动。由此加在分配体系上的离心力场不断发生变化,使两相溶剂充分的混合和分配,从而达到洗脱分离目的。因为样品中各组分在两相中分配系数不同,导致组分在螺旋柱中的移动速度不同,因而能使样品组分按分配系数的大小次序被依次洗脱下来的一种色谱分离技术。在流动相中分配比例大的先被洗脱, 在固定相中分配比例大的后被洗脱。 2.2 固定相的保留 在高速逆流色谱仪设计方面,其有两个轴,其中一个为公转轴,一个为自转轴,两个轴由一个电动机带动。仪器的公转轴呈水平方向,圆柱形的螺旋管支持件围绕此轴进行行星式运转,同时围绕自转轴进行自转。由于螺旋管柱的行星式运动产生了一个在强度和方向上变化的离心力场,使在螺旋柱中互不相溶的两相不断混合从而达到稳定的流体动力学平衡,两相分离成两层,重相占据螺旋管的每一段的外部,轻相占据每一段的内部,并且两相沿螺旋管形成一个清晰的线性

色谱分离方法

色谱分离方法[1] 根据分离原理还可将色谱法分为吸附色谱、分配色谱、离子交换色谱、凝胶色谱、亲和色谱、电泳色谱、气相色谱等。利用物质吸附能力不同进行分离的称为吸附色谱,常用的吸附剂有硅胶、氧化铝、聚酰胺、活性炭、大孔吸附树脂等。利用物质在两相不互溶的溶剂中的分配比不同进行分离的称为分配色谱,常用的支持剂有硅胶、硅藻土、纤维粉等,液滴逆流色谱(DCCC, droplet counter current chromatography)和高速逆流色谱(HSCCC , high speed counter current chromatography)则是在分配色谱与逆流分溶相结合的基础上发展而成的一种新技术。利用物质解离程度不同进行分离的称为离子交换色谱,常用的离子交换树脂有强酸型(磺酸型)、强碱型(季胺型)、弱酸型(羧酸型)、弱碱型(三级胺型)等。利用物质分子大小不同进行分离的称为凝胶色谱(亦称分子筛或排阻色谱),常用的支持剂有葡聚糖凝胶、羟丙基葡聚糖凝胶等。利用电流通过时,离子趋电性不同进行分离的称为电泳色谱,常用的有纸电泳、琼脂电泳、凝胶电泳等。本书将根据其在天然药物分离工作中的重要性择要介绍。 色谱法的特点是分离效果好,对于经典方法难以得到分离的化合物采用色谱法往往可以得到满意的分离,但对于所用的吸附剂或支持剂、试剂、仪器设备等要求较高,技术操作较细致,操作周期也较长,故在工业生产中用得较少,目前主要是作为一种实验室常规分离方法用于天然药物中生物活性成分及化学成分的研究。 由于天然药物中有效成分的结构类型不同,理化性质也不同,所以选择的色谱方法也是不同的,要根据具体情况选定。 通常生物碱的分离可选用硅胶或氧化铝色谱,对于极性较强的生物碱可选用分配色谱或反相色谱,对于碱性较强的生物碱可选用离子交换色谱,对于水溶性生物碱如季胺型生物碱、氮氧化物生物碱等也可选用分配色谱或离子交换色谱。 苷类化合物的色谱分离与苷元的性质有关,对于水溶性较大的苷如皂苷、强心苷等通常采用分配色谱或反相色谱分离,对于水溶性较小的苷则可采用吸附色谱分离。 挥发油、甾体、萜类、萜类内酯(成苷者除外)等往往首选硅胶及氧化铝色谱,若在氧化铝色谱上有次级反应,则宜用硅胶吸附色谱分离。 黄酮类、醌类等含有酚羟基的化合物则可采用聚酰胺色谱进行分离。 有机酸、氨基酸等含有羧基或氨基类的化合物通常可选用离子交换色谱进行分离,有时也可用分配色谱进行分离。氨基酸类化合物还可采用活性炭色谱进行分离。 对于大分子化合物如多肽、多聚糖、蛋白质以及极性较大的化合物则通常采用凝胶色谱进行分离。 第一节硅胶柱色谱 硅胶色谱是最常用的色谱方法,适用于亲脂性成分的分离,广泛用于萜类、甾体、强心苷、苯丙素、黄酮、醌类、生物碱等类化合物的分离。它具有价廉、分离效果好、再生容易、适用范围广、不易与有机酸、酚类以及色素等类化合物形成不可逆吸附,样品损失较少、回收率较高、副反应较少等优点。但与氧化铝色谱相比,具有分离效果较差、样品处理量较少、对杂质的吸附能力较差等缺点。 二.硅胶吸附色谱 (一).色谱柱的选择 有多种多样的色谱柱可供选择(见图2-1)。下端带有玻璃塞的或不带有玻璃塞的以及带有垂熔筛板的均可选用。吸附色谱所用的洗脱剂均为有机溶剂,因有机溶剂可溶解在玻璃塞上起润滑和密封作用的凡士林,故对玻璃塞的密封和润滑需要用淀粉甘油糊,而不能用凡士林。在用不带有玻璃塞的色谱柱时,含氯的溶剂如氯仿、二氯甲烷等对胶管的腐蚀很大,

现代分离分析技术整理全解

1.环境中含芳烃污染无的废水样品分析检测前科采用哪些分离方法进行组分富集?纺织厂 废水中含有的十二烷基苯磺酸及氨基蒽醌化合物如何进行检测? 参考:(1)溶液萃取、固相萃取(SPE)、固相微萃取(SPME)、毛细管固相微萃取 蒸发、减压蒸馏、水蒸气蒸馏等 浓缩富集:1L CH2Cl 萃取四次(20ml*4),Na2SO4干燥,过滤,1m样品经N2流吹,1ml 乙腈:水=9:1溶解,最后超声震荡过滤。 (2)十二烷基苯磺酸——高效液相色谱和UV联用 以80%甲醇为流动相,在流动相中添加7mmol/L醋酸铵电解质,流速0.5ml/min,PH=9的条件下使用高效液相色谱和UV联用,可以快速检测十二烷基苯磺酸。检出限1.32μg/ml 氨基蒽醌的测定——可用高效液相色谱法或者薄层色谱法 高效液相色谱法:甲醇为流动相,用1,4—二氧六环:丙酮(4:1)溶解溶解标样和样品,采用CLC—ODS 0.46×15cm不锈钢色谱柱及UV474nm的检测器 薄层色谱法:先把样品用薄层板展开,把1-氨基蒽醌斑点用小刀刮下,乙醇洗脱,再用72型分光光度计测吸光值。 2.中草药等天然产物中的有效成分(如极性不同的热敏性有机化合物)如何进行分离分析, 应用哪些方法?中药大黄中的大黄素如何进行分离及分析检出? 传统提取中草药有效成分的方法有水蒸气蒸馏法、减压蒸馏法、溶剂萃取法等,这些方法通常是工艺复杂、耗时、产品纯度不高、对环境污染大,而且易残留有害物质。所以科研工作者们一直在试图寻找提取效率高、选择性好、污染小的方法,随着现代科学技术的不断发展,涌现出了许多新的分离提取方法,加快了提取过程,提高了提取效率。超临界流体萃取技术就是其中之一,较传统提取方法而言,该方法具有简便、快速、提取率高、无污染等特点。 超临界流体的特点超临界流体既具有液体对溶质有比较大溶解度的特点,又具有气体易于扩散和运动的特性,传质速率大大高于液相过程(超临界流体的扩散系数为~10-4cm2/s,液体的扩散系数为~10-5 cm2/s)。也就是说超临界流体兼具气体和液体的性质,即具有较低的粘度和较高的扩散力。所以超临界流体萃取率高,萃取速度快。 萃取和分离合二为一当饱含溶解物的超临界流体流经分离器时,由于压力下降使得流体与萃取物迅速成为两相(气液分离)而立即分开,不存在物料的相变过程,无需回收溶剂,操作方便;不仅萃取效率高,而且能耗较少,节约成本。 超临界流体萃取通常在较低温度下进行可以有效地防止热敏性成分的氧化和逸散,特别适合于那些对热敏感性强、容易氧化分解成分的分离提取。 超临界二氧化碳流体常态下是气体,无毒与萃取成分分离后,完全没有溶剂的残留,有效地解决了传统提取方法的溶剂残留问题。 流体的溶解能力与其密度的大小相关而温度、压力的微小变化都会引起流体密度的大幅度变化,并相应地表现为溶解度的变化。因此,可以利用压力、温度的变化来实现萃取和分离的过程。 参考:极性不同的热敏性有机化合物:亚临界萃取,“热敏性”成份不变性、不氧化,是天然产物活性成分“高效、保质”萃取的理想技术 传统分离纯化方法有:浸出提取法、水蒸气蒸馏法、升华法等; 新发展的分离方法:超临界流体提取,超声波、微波辅助提取,膜分离方法、分子蒸馏、离子交换层析、高效絮凝等。 大黄素 高效液相色谱是中药活性成分分离分析的有效技术之一,具有高效、灵敏、快速、准确、适用范围广、重现性好及自动化操作等优点,特别适合于分析高分子量、高沸点、不易挥发、

相关文档
相关文档 最新文档