文档库 最新最全的文档下载
当前位置:文档库 › 潜油电泵高压增注技术

潜油电泵高压增注技术

潜油电泵高压增注技术
潜油电泵高压增注技术

潜油电泵高压增注技术

董国强王红艳邱永发许明勇(河南省濮阳市中原油田采油工程技术研究院电潜泵研究所,河南濮阳457001井口悬挂器密封井口,实现潜油电泵增压注水。通过现场应用效果良好,能够满足生产开发需求。

潜油电泵高压增注机组安装形式目前,油田用于注水设备主要有两种,即地面离心泵、柱塞泵。地面离心泵排量大,注水费用低,需要固定的厂房、注水管网,是规模注水开发的主要方式;柱塞泵压力高、泵效高,适应于建立小型注水站适应小型高压注水区块,需要建立泵房、管网等,有时需要打水源井。潜油电泵高压增注技术即在基于成熟潜油电泵产品的基础上,解决因受到现有管网设计、管网距离、注水压力升高等条件制约的油田低渗透油层及边远井区等的注水。

1工艺原理1-来水管线;2-高压止回阀;3-高压过电缆井口;4-变频控制柜;5-油管挂;6-动力电缆;7-倒置离心泵;8-引接电缆;9-注水口;10-保护器;11-潜油电机;12-注水层利用地面来水,经井口高压止回阀流经离心泵增压通过注水口增压到油套环形空间,注入到注水层,实现笼统注水。为了满足高压增注的特殊要求及安装施工方便,需要采用倒置式离心泵结构;考虑无气体影响,把油气分离器置换为结构简单的注水口;利用成熟的变频控制技术实现注水量的灵活调节;设计高压过电缆偏心井口悬挂器,实现井口高压密封。机组

安装形式如。

2关键技术2.1倒置式离心泵采用聚四氟耐磨减磨垫,半浮式外加厚离心泵设计结构,轴承配合处采用硬质合金设计,满足离心泵在注水条件下的性能测试要求。离心泵举升扬程根据实际注水要求进行装配。

2.2高压过电缆偏心井口悬挂器设计偏心井口悬挂器,在满足承压能力、悬挂能力及井口配合尺寸的条件下,设计三个电缆线芯穿越孔,电缆与内孔之间用锥型橡胶体密封,上下用锁紧帽压紧。结构如。

该装置室内试验压力40MPa,5分钟无渗漏现象,测量电缆对地绝缘电阻>2500MD.拆卸后50中高新域私2012.05检查电缆外表无破损,测量电缆对地绝缘电阻> 38.5m3,油由1.8t上升到3.5t,含水由92%下降到1、电缆线芯2、上锁紧帽3、上锥形密封体4、悬挂器本体5、下锥形密封体6、下锁紧帽高压过电缆偏心井口悬挂器示意现场试验3.1应用井实例系统来水压力14.5MPa,泵压24.5MPa,油压20.9MPa,套压20.9MPa,配注50m3,对应油井HC5- 110,为提高注水效果,对H5-92井实施潜油电泵高压增注工艺,要求日注水量50m3,可实现注水量及注水压力调节。

3.2应用效果压370V,工作频率30Hz,系统来水压力1

4.5MPa,注水压力21MPa(套压),日注水量51m3,满足地质及工程要求,目前该井注水正常。对应油井HC5-110见到良好效果,日产液量由21.6m3上升到4结论第一,潜油电泵高压增注工艺技术能满足油田注水要求,注水量可根据实际需要利用变频进行灵活调节。

第二,地面无需建设泵房、无噪声、无介质漏失造成的环境污染、运转寿命长、免地面维护等特点。尤其是对新开发区块和边远区块的更能节约注水成本。

第三,高压部分全部移到井下,安全性能更可靠。

第四,因机组工作环境温度低(系统来水温度50C以下)更有利于电机及电缆工作寿命的延长。

第五,实际泵挂深度浅,使潜油电泵机组的费用大幅度降低,有利于工艺的推广应用。同时扩大潜油电泵的应用范围。

第六,该工艺目前只应用于笼统注水。如要实现分层注水,需对注水管柱及井下工具进行合理调整及匹配。

采油工程—— 电动潜油离心泵采油

第四章无杆泵采油

第四章无杆泵采油 无杆泵机械采油方法与有杆泵采油的主要区别: 不需用抽油杆传递地面动力,而是用电缆或高压液体将地面能量传输到井下,带动井下机组把原油抽至地面。常用的无杆泵包括电动潜油离心泵、水力活塞泵、水力射流泵和螺杆泵等。 电动潜油离心泵采油 一、电动潜油离心泵采油装置及其工作原理 电动潜油离心泵是一种在井下工作的多级离心泵,用油管下入井内,地面电源通过潜油泵专用电缆输入井下潜油电机,使电机带动多级离心泵旋转产生离心力,将井中的原油举升到地面。 电潜泵由井下部分、地面部分和联系井下地面的中间部分组成。 井下部分主要是电潜泵的机组,它由多级离心泵、保护器和潜油电动机三部分组成,起着抽油的主要作用。 地面部分由变压器组、自动控制台及辅助设备组成。自动控制台用来控制电潜泵工作,同时保护潜油电动机,防止电动机电缆系统短路和电动机过载。 电动潜油离心泵装置示意图 1—变压器组;2—电流表;3—配电盘;4—接线盒;5—地面电缆;6—井口装置;7—溢流阀;8—单流阀;9—油管;10—泵头;11—多级离心泵;12—吸人口;13—保护器;14—电动机;15—扶正器;16—套管;17—电缆护罩;18,20—电缆;19—电缆接头 中间部分由电缆和油管组成。将电流从地面部分传送给井下部分,采用的是特殊结构的电缆(圆电缆和扁电缆)。在油井中利用钢带将电缆和油管柱、泵、保护器外壳固定在一起。

(一) 电动潜油离心泵型号及主要部件 1.电动潜油离心泵型号 1) 电动潜油离心泵机组表示方法 示例:额定扬程1000m,额定排量200m3/d ,适用油井温度120℃的119mm 电动潜油离心泵机组表示为:QYDB119—200/1000E。 2)泵型号表示方法 示例:额定排量500m3/d,额定扬程2000m的98mm通用节泵表示为:QYB98—500/2000T。 2.电动潜油离心泵主要部件 1) 潜油电动机 示例:容量45kW的114mm潜油电泵机组用的电动机表示为:YQYll4—45S。 电动机用于驱动离心泵转动。一般为两极三相鼠笼式感应电动机,工作原理与地面电动机相同。根据实际需要电动机可以采用几级串联达到特定的

潜油电泵模拟试题

潜油电泵模拟试题 一、选择题(将正确的选项号填入括号内) 1.下列选项中,( )是电动潜油泵井的地面装置。 (A)多级离心泵(B)保护器 (C)潜油电动机(D)接线盒 2.下列选项中,( )是电动潜油泵井的井下装置。 (A)控制屏(B)保护器(C)变压器(D)接线盒 3.电动潜油泵井的专用电缆属于( )。 (A)中间部分(B)井下部分(C)地面部分(D)控制部分 4.电动潜油泵井电流卡片是描绘( )曲线。 (A)井下机组电流随时间变化的关系(B)井下机组电流与井口产量的关系 (C)井下机组电流与井底流压的关系(D)井下机组扭矩随时间变化的关系 5.电动潜油泵井电流卡片是装在( )。 (A)井口接线盒内(B)井下机组保护器内 (C)地面控制屏内(D)地面变压器上 6.对如图所示的电动潜油泵井电流卡片,错误的叙述是( )。 (A)是一张日卡(B)必要时也可当周卡用 (C)电流卡片顺时针运行(D)记录笔要放在左侧 7.在如图所示的电动潜油泵井井口生产流程示意图中,( )的叙述是不正确的。 (A)电动潜油泵井关井时,6是关闭的(B)电动潜油泵井关井时,2是开着的 (C)电动潜油泵井关井时,4是关闭的(D)电动潜油泵井并关井时,3是可以开着的 8.在如图所示的电动潜油泵井井口流程示意图中,( )的叙述是正确的。 (A)电动潜油泵井关井时,1是一定要关闭的 (B)电动潜油泵井测静压时,2是要关闭的 (C)电动潜油泵井测动液面时,2是要关闭的 (D)电动潜油泵井更换油嘴时,2是要开着的

9.电动潜油泵井在( )时,可不必把正常运行的井下机组停下来。 (A)更换双翼油嘴流程(B)测动液面 (C)供电线路检修(D)测静压 10.下列有关电动潜油泵井停止操作叙述,其中( )的说法是正确的。 (A)停机后选择开关位于“off'’挡位 (B)停机后选择开关位于“hand'’挡位 (C)选择开关由“off'’一“hand'’挡位 (D)停机后选择开关位于“ON'’挡位 11.电动潜油泵井的机组运行指示灯至少要有( )个。 (A)一(B)二(C)三(D)四 12.电动潜油泵井的机组运行时( )是正确的。 (A)红色的指示灯亮(B)黄色的指示灯亮 (C)绿色的指示灯亮(D)三个指示灯都亮 13.电动潜油泵井机组保护主要是通过( )来实现的。 (A)机组电阻(B)机组电压(C)机组电流(D)机组相序 14.下列选项中,( )不属电动潜油泵井机组保护的内容。 (A)机组电阻(B)机组过载电流 (C)机组欠载电流(D)机组相序 15.电动潜油泵井控制屏上的电流卡片反映的是( )。 (A)机组某相工作电流(B)机组三相工作电流 (C)机组某相工作电压(D)机组三相工作电压 16.电动潜油泵井从控制屏上录取的资料是( )。 (A)电流(B)油压(C)静压(D)流压 17.电动潜油泵井记录仪电流与实际电流不符,其原因可能是( )。 (A)控制电压太低(B)笔尖连杆松动、移位 (C)电泵反转(D)缺相运转 18.电动潜油泵井采油就是把( )的油通过潜油泵采出到地面。 (A)套管(B)油管(C)多级离心泵(D)油层 19.电动潜油泵井采油特点的叙述,其中( )的说法是不正确的。 (A)电动潜油泵井采油和抽油机井采油在原理上基本是相同的 (B)电动潜油泵井采油对斜井、超深井均适用 (C)电动潜油泵井采油时不能降低井底压力 (D)电动潜油泵井采油是一种人工举升采油的方法 20.有关电动潜油泵井采油原理的描述,其中( )是正确的o (A)油层流人井底的油一套管一井口装置一地面 (B)油层流人井底的油一套管一油管一多级离心泵一井口装置一地面 (C)油层流人井底的油一油管一多级离心泵一井口装置一地面 (D)油层流人井底的油一分离器一多级离心泵一油管一井口装置一地面 21.电动潜油泵装置中,( )是可以自动保护过载或欠载的设备。 (A)控制屏(B)接线盒(C)保护器(D)变压器 22.电动潜油泵装置中,( )可以防止天然气沿电缆内层进入控制屏而引起爆炸, (A)保护器(B)接线盒(C)电机(D)分离器 23.地面上的( )将电网电压转变为电动潜油泵装置所需要的电压。 (A)变压器(B)控制屏(C)接线盒(D)电缆

采油工程试卷

一、名词解释(每小题2分,共20分) 1.油井流入动态 指油井产量与井底流动压力的关系。 2.滑脱损失 由于油井井筒流体间密度差异,在混合物向上流动过程中,小密度流体流速大于大密度流体流速,引起的小密度流体超越大密度流体上升而引起的压力损失。 3.气举启动压力 气举井启动过程中,当环形空间内的液面将最终达到管鞋(或注气点)处时的井口注入压力。 4.扭矩因数 悬点载荷在曲柄轴上造成的扭矩与悬点载荷的比值。 5.速敏 在流体与地层无任何物理化学作用的前提下,当流体在地层中流动时,会引起颗粒运移并堵塞孔隙和喉道,引起地层渗透率下降的现象。 6.基质酸化 在低于岩石破裂压力下将酸注入地层,依靠酸液的溶蚀作用恢复或提高井筒附近油层渗透性的工艺。 7.吸水剖面 一定注入压力下各层段的吸水量的分布。 8.填砂裂缝的导流能力 油层条件下填砂裂缝渗透率与裂缝宽度的乘积。 9.酸压裂缝的有效长度 酸压过程中,由于裂缝壁面被酸不均匀溶蚀,施工结束后仍具有相当导流能力的裂缝长度。10.蜡的初始结晶温度 当温度降到某一数值时,原油中溶解的蜡开始析出时的温度。 二、填空题(每空格0.5分,共20分) 1.在气液两相垂直管流中,流体的压力梯度主要由(1) 重力梯度、(2) 摩擦梯度和(3) 加速度梯度三部分组成。 2.采用常规方法开采稠油油藏时,常用的井筒降粘技术主要包括(4) 化学降粘技术和(5) 热力降粘技术。 3.常用的油气井完井方式包括(6) 裸眼完井、(7) 射孔完井、(8) 砾石充填完井和(9) 衬管完井等。4.压裂液滤失于地层主要受三种机理的控制:(10) 压裂液粘度、(11) 储层岩石和流体压缩性、(12) 压裂液的造壁性。

电动潜油螺杆泵

电动潜油螺杆泵 目录 第一章井下采油单螺杆泵的现状及发展 (1) 第二章电动潜油螺杆泵在疑难井中的应用 (3) 第三章大排量井下电动潜油螺杆泵研究与应用 (8) 第四章大庆油田改变采油技术现状势在必行 (10) 第五章螺杆泵工况测试技术 (12)

第一章井下采油单螺杆泵的现状及发展 摘要井下采油单螺杆泵因具有较高的系统效率而日益受到重视。目前已开发的并下单螺杆泵有地面驱动采油单螺杆泵、电动潜油单螺杆泵、单螺杆波动机—单螺杆泵装置和多头螺杆泵。筒述了单螺杆泵定于衬套选用的材料和转子的表面处至方式,介绍了单螺杆泵在国外的使用情况。指出井下采油单螺杆泵主要朝增大泵的下井深度,加大泵的排量,延长泵的使用寿命和拓宽泵的使用范围等方向发展。最后就国内开发和推广螺杆泵工作规划提出了建议。 前言 井下来油单螺杆泵作为一种实用的采油机械应用于石油工业已有20多年的历史。1986年大庆油田从加拿大Griffin公司引进螺杆泵在油田试用,从此国内厂家便开始了较系统地研制井下采油螺杆泵。螺杆泵的结构非常简单,特别适合于高粘度、高含砂量的油井,并且有较高的工作效率。 美国一石油公司曾对螺杆泵采油系统、电动潜油离心泵和有杆泵抽油系统3种采油设备,在水驱采油井中进行了同样条件下的采油试验。试验结果表明,3种采油系统的效率分别为63.4%、52.4%和50.4%,其中螺杆泵采油系统的效率最高。此外,螺杆泵采油系统的装备投资费用比另外两种采油装备低20%—30%以上。 主要结构型式 目前,井下采油螺杆泵大致可分为以下4种结构型式。 1.地面驱动采油单螺杆泵 地面驱动采油单螺杆泵是井下来油螺杆泵中最简单的结构型式,也是国内外井下采油单螺杆泵采用的主要结构型式。由于是利用抽油杆传递泵所需要的扭矩,因此在大徘量情况下很难实现深井采油。 地面驱动单螺杆泵的驱动头动力主要由电动机或液马达提供。由电动机作动力的驱动头,有的采用变频调速,有的利用胶带和减速器共同调速,还有的直接利用减速器调速。利用液马达作动力调节泵的转速非常方便。 2.电动潜油单螺杆泵 电动潜油单螺杆泵的最大特点是不需要抽油杆传递动力,特别适合于深井、斜井和水平井采油作业。 较早开展这种泵的研究工作的是前苏联和法国。近年来,美国等发达国家也开始重视电动潜抽螺杆泵的开发,并在多砂、高粘深井、定向井、水平井中应用,取得了很好的效果。在某些情况下,电动潜油螺杆泵的使用寿命甚至比电动潜油离心泵高5倍。电动潜油螺杆泵寿命的提高,大大降低了采油成本,使一些原经济上无开采价值的油井有了良好的效益。电动潜油螺杆泵由螺杆泵、柔性轴、装有轴承的密封短节、齿轮减速器和潜油电动机等组成。为了使泵的旋转速度降到500r/min以下,有以下3种方案可供选择。 (1)采用6极潜油电动机,在60HZ时,电动机的转速为1000r/min,再利用变速装置,转速可以降到500r /min以下。 (2)采用4极潜油电动机,在60HZ时,电动机的转速为1700r/min,再利用单行星齿轮减速器减速(如 传动比4:1),转速可降到425r/min以下。

采油工程期末考试复习资料

名词解释 1油井流入动态:油井产量与井底流动压力的关系,它反映了油藏向该井供油的能力。 2滑脱损失:由于油井井筒流体间密度差异,在混合物向上流动过程中,小密度流体流速大于大密度流体流速,引起的小密度流体超越大密度流体上升而引起的压力损失。 3气举启动压力:气举井启动过程中,当环形空间内的液面将最终达到管鞋处时的井口注入压力。 4扭矩因数:悬点载荷在曲柄轴上造成的扭矩与悬点载荷的比值。 5速敏:在流体与地层无任何物理化学作用的前提下,当液体在地层中流动时,会引起颗粒运移并堵塞孔隙和喉道,引起地层渗透率下降的现象。 6基质酸化:在低于岩石破裂压力下将酸注入地层,依靠酸液的溶蚀作用恢复或提高井筒附近油层渗透性的工艺。 7吸水剖面:一定注入压力下各层段的吸水量的分布。 8填砂裂缝的导流能力:油层条件下填砂裂缝渗透率与裂缝宽度的乘积。 9酸压裂缝的有效长度:酸压过程中,由于裂缝壁面被酸不均匀溶蚀,施工结束后仍具有相当导流能力的裂缝长度。 10蜡的初始结晶温度:当温度降到某一数值时,原油中溶解的蜡开始析出时的温度。 11:采油指数:是指单位压差下的油井产量,反映了油层性质、流体物性、完井条件及泄油面积等与产量的关系。 12气举采油:是指人为地从地面将高压气体注入停喷的油井中,以降低举升管中的流压梯度,利用气体的能量举升液体的人工举升方法。 13吸水指数:表示注水井在单位井底压差下的日注水量。 14沉没度:泵下入动液面以下深度位置。 15原油的密闭集输:在原油的集输过程中,原油所经过的整个系统都是密闭的,既不与大气接触。 16滤失系数:压裂液在每一分钟内通过裂缝壁面1m^3面积的滤失量, 17滑脱现象:气液混流时,由于气相密度明显小于液相密度,在上升流动中,轻质气相其运动速度会快于重质液相,这种由于两相间物性差异所产生的气相超越液相流动。 18酸液有效作用距离:当酸液浓度降低到一定程度后(一般为初始浓度的10%),酸液变为残酸,酸液由活性酸变为残酸之前所流经裂缝的距离。 19破裂压力梯度:地层破裂压力与地层深度的比值。************************* 7分析常规有杆泵生产过程中抽油杆柱下端受压的主要原因。 答:(1)柱塞与泵筒的摩擦力;(2)抽油杆下端处流体的压强产生的作用力;(3)流体通过游动阀孔产生的阻力;(4)抽油杆柱与井筒流体的摩擦力;(5)抽油杆柱与油管间的摩擦力;(6)抽油杆柱和井筒流体的惯性力和振动力等。 8作出自喷井油层-油管-油嘴三种流动的协调曲线,并说明各曲线的名称,标出该油井生产时的协调点及地层渗流和油管中多相管流造成的压力损失。 答:自喷井油层-油管-油嘴三种流动的协调曲线: 曲线A:流入动态曲线;表示地层渗流压力损失,为地层静压; 曲线B:满足油嘴临界流动的井口油压与产量关系曲线;表示油管中多相管流造成的压力损失,为井底压力; 曲线C:嘴流特性曲线;表示井口压力。 曲线B与曲线C的交点G为协调点

潜油电泵采油工艺的设计说明

潜油电泵采油工艺设计 一、设计概要 潜油电泵是油田中使用的一种重要的无杆采油设备。近几年来,特别是国外,生产现场的装机总容量超过了20%,是油田高产稳产的重要手段。典型的潜油电泵系统主要由地面部分和井下部分组成。地面部分主要包括:变压器、控制屏和接线盒; 井下部分包括:井下管柱、井下电缆、多级离心泵、气液分离器、保护器和潜油电机。动力通过电缆传递给井下电机,使潜油电机带动多级离心泵旋转,将井下液体举升到地面。 1.1设计目的 通过设计计算,了解潜油电泵采油系统组成,工艺方案的基本设计思路,设计容,掌握方案设计的基本方法,步骤以及设计中所涉及的基本计算,加强系统的工程训练,培养分析和解决实际工程问题的能力。 1.2设计容 根据油井基本情况,通过潜油电泵举升系统设计计算: 1.2.1确定油井产能 1.2.2确定井筒压力温度。井筒压力温度预测主要是根据油井基 本资料,计算井筒泵以下温度及压力分布,得到泵入口温度及 吸入压力。 1.2.3确定泵入口气液比。泵入口气液比是选择气液分离器的依 据,根据油井基本资料、泵入口压力温度及流体物性计算方法计算泵入口气液比。 1.2.4确定潜油电泵系统设备 1.2.4.1气液分离器。根据供选择的分离器分别计算安装分离 器后的进泵气液比,由设计原则(进泵气液比要求)选用气 液分离器。气液分离器效率越高,成本越高,通常只需要选 择满足设计原则的分离器。

1.2.4.2选择多级离心泵。潜油电泵的选择主要是选择泵型及 计算所需要的级数。根据计算出来的油井产量、总扬程,并 由供选择的离心泵特性曲线来选择配备多级离心泵。 1.2.4.3选择潜油电机。当潜油泵的型号、扬程及所需要的级 数被确定以后,计算泵所需功率。选择电机功率还应考虑分 离器和保护器的机械损耗功率。一般情况下,气液分离器的 机械损耗功率为1.5KW,保护器为1.0KW。 1.2.4.4选择潜油电缆。潜油电缆的选择主要是确定电缆型号 及压降。电缆的电压降一般应小于30V/304.8m,电流不能超 过电缆的最大载流能力。从成本角度考虑,电压降越小,成 本越高,通常只需选择满足要求的电缆。 1.2.4.5选择变压器。选择变压器就是确定系统所需要变压器 容量,其容量必须能够满足电机最大负载的启动,应根据电 机的负载来确定变压器的容量。 1.2.4.6选择控制屏。普通控制屏就是根据现场使用条件和潜 油电泵机组性能要求来进行选择的,但主要还是根据电机的 功率、额定电流和地面所需的电压来选择控制屏的容量,以 保证电机在满载情况下长期运行。 1.3设计原则 为了合理地选择潜油电泵设备,使其运行最可靠及最经济,在进行选泵设计时,必须遵照以下几点原则: 1.3.1满足设计产液量要求; 1.3.2选择潜油电泵,必须使泵在最高效率点或最高效率点附近 工作,使泵效尽可能达到最高; 1.3.3潜油电机的输出功率必须能够满足泵举升液体所需要功率 要求; 1.3.4电缆、控制屏及变压器的选择,在保证套管尺寸要求的情 况下,电缆的耐压和型号选择要尽量大一些,以减少其功率损失。为了考虑以后更换排量大一些的泵,控制屏和变压器的容量选择要稍大一些; 1.3.5进泵气液比不能超过10%。

中国石油大学(华东)06-07《采油工程》试卷及答案.doc.docx

2006 —2007 学年第一学期〈〈釆油工程》试卷 (参考答案与评分标准) 专业班级石工2010-01 ____________姓名 ___________________________学号 ___________________________

题号二三四总分得分 阅卷人 一、名词解释(每小题 2 分,共 20 分) 1.油井流入动态 指油井产量与井底流动压力的关系。 2.滑脱损失

由于油井井筒流体间密度差异,在混合物向上流动过程中,小密度流体流速大于大密度流体 流速,引起的小密度流体超越大密度流体上升而引起的压力损失。 3. 气举启动压力 气举井启动过程中,当环形空间内的液面将最终达到管鞋( 或注气点 ) 处时的井口注入压力。 4.扭矩因数 悬点载荷在曲柄轴上造成的扭矩与悬点载荷的比值。 5.速敏 在流体与地层无任何物理化学作用的前提下,当流体在地层中流动时,会引起颗粒运移并堵塞孔隙和喉道,引起地层渗透率下降的现象。 6.基质酸化 在低于岩石破裂压力下将酸注入地层,依靠酸液的溶蚀作用恢S 或提高井筒附近油层渗透性的工艺。 7.吸水剖面 一定注入压力下各层段的吸水量的分布。 8.填砂裂缝的导流能力 油层条件下填砂裂缝渗透率与裂缝宽度的乘积。 9.酸压裂缝的有效长度 酸压过程中,由于裂缝壁面被酸不均匀溶蚀,施工结束后仍具有相当导流能力的裂缝长度。 10.蜡的初始结晶温度 当温度降到某一数值吋,原油中溶解的蜡开始析出吋的温度。

二、填空题 ( 每空格0.5分,共20分 ) 1.在气液两相垂直管流屮,流体的压力梯度主要由(1) 重力梯度、 (2) 摩擦梯度和 (3) 加速度梯度三部分组成。 2.采用常规方法开采稠汕油藏时,常用的井筒降粘技术主要包括(4) 化学降粘技术和 (5) 热力降粘技术。 3.常用的汕气井完井方式包括 (6) 裸眼完井、 (7) 射孔完井、 (8) 砾石充填完井和 (9) 衬管完 I 等。 4.压裂液滤失于地层主要受三种机理的控制:(10) 压裂液粘度、 (11) 储层六石和流体压缩性、(12) 压裂液的造壁性。 5.根据压裂过程中注入井内的压裂液在不同施工阶段的任务,压裂液可分为:(13) 前置液、( 14) 携砂液和 (15) 顶替液。 6.写出叫种具体的防砂方法:(16)(17)(18)(19)砾石充填防砂、衬管防砂、筛管防砂、滤砂管防砂、

重华潜油电泵简介

潜油电泵简介陕西重华泵业有限公司

一、潜油电泵概述 二、潜油电泵机组的组成 三、潜油电泵机组的工作原理及特点 四、保护器的作用、种类、组成、结构工作原理及装配工艺 五、潜油电机的作用、工作原理、组成结构特点、及基本参数 六、潜油泵的作用、种类、工作原理、组成、结构特点、基本参数、及使用条件

一、潜油电泵概述 潜油电泵机组是一种机械采油设备。其作用就是将井下的液体抽送到地面。;机组耐温等级分别适用于井温90℃、 120℃、 150℃、 180℃;工作介质除原油外,还有水、天然气、砂等。 二、潜油电泵机组的组成 潜油电泵机组主要由三个部分组成 1、井下部分:潜油离心泵、分离器、保护器、潜油电机、潜油电缆; 2、地面设备:定频驱动:降压变压器、控制柜;变频驱动:降压变压器、变频器、升压变压器; 3、辅助设备:扶正器、测温测压装臵、单流阀、泄油阀、接线盒。

三、潜油电泵机组的工作原理及特点 1、工作原理:潜油电泵机组以电能为动力源,电网电压首先经过降压变压器改变电压后,输入到变频器中,经过变频器换至所需的电源频率后,输入到升压变压器,将电压提升到电机所需电压(400~3000v),通过潜油电缆将电能输给潜油电机,潜油电机将电能转换为机械能,带动潜油离心泵高速旋转,潜油离心泵中的每级叶轮、导壳使井液压力逐步提高,在潜油泵出口处达到潜油泵要求的举升扬程,井液通过油管被举升至地面,再通过地面管线传送至地面集输系统。 2.潜油电泵机组的工作特点 ●扬程高(≤3000m); ●可以根据产液变化要求进行变频调速(50~60Hz); ●地面设备占用面积和空间小,适用于海上平台; ●排量范围大(≤30~4700m3/d); ●使用寿命长; ●便于管理; 四、保护器的作用、种类及、工作原理 1.保护器简介:保护器也称潜油电机保护器,它在电 泵机组中直接与电机相连接,起到保护电机的作用。潜油 电机要达到长期运转和反复起动,电机腔体的密封和电机 油的补充都是很困难的必须有一个特定装臵使电机在不同 的井况中保持良好的密封和容纳,补偿电机油因温度的变 化而引起的热胀冷缩。这种特定的装臵就是潜油电泵机组 的保护器。

天津潜油电泵及其厂家介绍

潜油电泵特点是体积小、重量轻、扬程高,该泵具有独特的平衡装置,运行时不产生向下的轴向力,因此扬程可大幅度提高,适用于地下水位较低、或需要扬程较高的场合,流量在每小时100方以下。下文对该泵做个简单的介绍 一、潜油电泵机组的组成 井下部分:电机、保护器、油气分离器(或进口段)、潜油泵、PSI、电缆、止回阀、泄流阀等。 潜油电泵机组井下部分为细长圆柱体结构,长度可达几十米,电机、保护器、油气分离器(或进口段)、潜油泵的轴均用花键套连接,外壳用法兰螺栓连接。

井上部分:变压器、控制柜(控制站)、接线盒等。 二、潜油电泵机组的供电流程 地面电网→变压器→控制柜→接线盒→电缆→电机 三、潜油电泵机组的抽油流程 油气分离器(或进口段)→潜油泵→止回阀→泄流阀→油管→井口→输油系统 四、压力、温度信号传输流程 压力、温度检测装置(PSI) →电机绕组→井下电缆→地面电缆→控制柜中压力、温度传感器组件→地面读数表。 当潜由电泵机组配有压办、温度检测装置时,可以测量井下压力、温度值,压力、温度检测装置安装于电机的底部。 五、电机结构特征 电机主要由定了、转子、结构支承系统,油路循环系统、引线连接系统组成。 根据电机结构,电机运行产生的温升,必须通过井波散热冷却,因此电机必须潜入井内液面以下,射礼段以上工作,以免损坏机组。 电机内充满电机油,具有良好的绝缘性和导热性,电机的油路替环系统使电机轴承得到润滑,并将电机中产生的热能传到电机外壳,它的上部止推轴承承受电机转子的自重。 电机定子绕组采市耐油、耐水、的高温的新型薄膜绕包线,并整体灌注特殊绝缘漆,在油、气、水温度和压力的综合作用下,具有良好的绝缘性能。 由于制达,运输、安装等多种原因、单节电机制造长度限制在10米以内,大功率电机采用串联结构,按其需要制造成多节电机,相同额定电流的电机可以串接,电机额定功率为各节电机功率之和,额定电压为各节电机电压之和。 德能泵业(天津)有限公司是一家集生产制造、技术研发、项目设计为一体的大型泵类

潜油电泵现场存在的问题分析及处理讨论

潜油电泵现场存在的问题分析及处理讨论 【摘要】本文主要是讨论了对于潜油电泵井的现场管理中需要注意的事项,对生产中潜油泵电流卡片和其他方面可能存在的故障进行分析,探讨合理的处理方式来提电泵机组的使用寿命,从而提高原油产量。 【关键词】潜油电泵;管理;故障 本文主要讨论的是无杆泵,不借助抽油杆传递动力的抽油设备电动潜油电泵。当油层的能量不足以维持自喷时必须人为从地面补充能量,这样才能把原油举升出井口,如果补充能量的方式是用机械能量把油采出地面的,称为机械采油。目前,国内外机械采油装置主要分为有杆泵和无杆泵两种。潜油电泵采油技术发展是从引进到消化,吸收到创新的全过程。这项技术近年来得到了推广,在生产规模和技术发展上都有了很大的进步。电泵井管理的好坏直接影响着原油的产量及电泵机组的运转周期。因此,加强日常管理和电泵机组的维护及故障处理,才能提高电泵机组的使用寿命,从而提高原油产量。本文主要分析潜油电泵的管理、维护和故障处理几个方面。 一、潜油泵电流卡片分析及故障处理 潜油泵井电流卡片是反映潜油泵运行过程中时间与潜油电机的电流变化关系曲线,它是潜油泵井日常生产管理的主要依据。正常的电流卡片中,电流曲线应为一条平滑的曲线。电流卡片的原因分包括泵受气干扰和过载停机,其他的故障包括电压波动和供液不足等。 泵在受气干扰中运行的电流卡片是原油脱气,大量气体进泵引起电流波动,导致产量下降。防止方法为是在泵吸入口加气锚或旋转式油气分离器;合理控制套管气;保证机组合理的沉淀度;井液中加入一定量的破乳剂。 过载停机的电流卡片是机组启动后,电流逐渐上升到额定电流值正常运行;随后逐渐上升,最后达到过载电流整定值,过载停机。预防及处理方法:正常过载停机应进行洗井;下泵前冲砂,出砂井上提机组;定时清蜡和热洗地面管线;处理缺相,或更换机组。 当供电电压波动时,为了满足泵的功率需求,马达电流也会随之波动。原因为供电线路上大功率柱塞泵突然启动引发电压瞬时下降、附近抽油机井多口同时启动,或是有雷击现象。防止办法:在大面积断电后,等其他设备启动后再启泵,并装上避雷设备。 由于地层供液不足,泵抽空最终过载关停,系统会自动重启。当电流降低,产液量和泵效就会降低,直至无液进泵,导致欠载停机。原因是在电泵井投产初期,选泵不当,或在生产一段时间后,油井供液。处理办法:缩小油嘴;加深泵挂;更换小排量的机组。

潜油电泵专用变频器在油田的应用

潜油电泵专用变频器在油田的应用 (一)概述 随着我国石油工业发展和油田开发的需要,为了提高油田采油速度和最终采收率,应用机械采油方法,是整个油田开发过程中一个重要步骤。潜油电泵作为一种比较新的机械采油设备,近十年来在我国已得到广泛应用,并得到不断完善和发展。 潜油电泵是井下工作的多级离心泵,同油管一起下入井内,地面电源通过变压器、控制屏和潜油电缆将电能输送给井下潜油电机,使电机带动多级离心泵旋转,将电能转换为机械能,把油井中的井液举升到地面。 由于潜油电泵的机组与泵是在地面以下两千多米的井底工作,工作环境非常恶劣(高温、强腐蚀等),传统的供电方式-----全压、工频使它故障频繁,运行成本大增。潜油电泵损坏后提到地面上来修理,仅工程费一项就达五万元,价值十万元的电缆平均提上放下五次就须更换,潜油电泵平均每十个月就须维修一次,维修费用约八万元。传统的供电方式危害甚多,例如: 1、潜油电泵全速运转,当井下液量不富余时,容易抽空,甚至造成死井,一旦死井,则损失惨重。 2、油田供电电压常有波动,使电机欠励磁或过励磁,电机被烧时有发生。 3、两千米的井下电缆带来了150V左右的线路损耗,由于这部分

损耗无法补偿,从而影响了电机的正常工作。 (二)潜油电泵专用变频器的应用 潜油电泵在工频启动时,启动电流大,电机电缆的压降较大,使得电机电缆在启动过程中的反压较高,使绝缘性能降低,每次开机都会使电泵寿命大打折扣,大大影响了潜油电泵的使用寿命。潜油电泵在正常工作时,普遍存在着电机负载率较低的情况,“大马拉小车”现象严重。潜油电泵的功率因数都较低,无功损耗较大,耗电量多。根据油田开发方案的要求,潜油电泵应根据地质情况的变化,调节抽油量。传统的调节方式是靠更换油嘴来调节产量,这样既造成能量损失又不能精确地控制。有时使得电机与泵长期在高压状态下运行;有时使得油井出沙严重,使设备寿命缩短,不能符合开发方案的要求。要解决以上问题,只有采用变频控制系统,调节油压、调节产量。我们对胜利油田的二十多口电泵井进行了变频运行改造,起到了良好的效果。 潜油电泵专用变频器有以下特点: 1、可实现电泵软启动、软停车,延长电泵的使用寿命,保护电机、电缆,节约维修费用。 2、提高电泵系统的功率因数,节电效果明显。 3、提高管网的品质,可实现电泵系统的闭环控制,增加电泵系统的工作安全性。 4、可靠性高,操作方便,可以实现输出电压、电流的连续调节,以达到输出功率连续可调的目的,使电泵采油系统处于最佳工作状

采油工程复习题

1采油工程复习题 一、填空题 1.完井方式是指油层与井底的连通方式、井底结构及完井工艺。 2.替喷法是用密度较轻的液体将井内密度较大的液体替出。 3.抽汲不但有降压诱喷的作用,还有解除油层某种堵塞的作用。 4.采油树的作用是控制和调节油井的生产等。 5.完井是指裸眼钻达设计井深后,使井底和油层以一定结构连通起来的工艺。 6.气举排液有常规气举排液、混气水气举排液、连续油管气举排液和泡沫排液法等几种。7.自喷井井口装置按连接形式有螺纹式、法兰式和卡箍式三种。 8.油嘴的作用是控制和调节油井的产量。 9.油层的三种差异是层间差异、平面差异和层内差异。 10.自喷井从油层到地面的四个基本流动过程是油层中的渗流、井筒多项流、嘴流和地面管线流。 11.泡流的特点是,油是连续相,气是非连续相,气泡的流速大于油的流速。 12.气举采油的原理是,依靠从地面注入的高压气体与油层产出的流体在井筒中混合,利用气体的膨胀使井筒中的混合液密度降低,从而将井筒内的流体举出。 13.为了使油井稳产高产,必须对油层的三种差异进行调整,通过实践证明,有效的方法是油井---------------,注水井-----------------。 14.雾流的特点是,气体是连续相,液体是非连续相,气泡的流速大于油的流速。 15.气举的主要能量是依靠外来高压气体的能量,而自喷井主要依靠油层本身的能量。16.游梁式抽油机主要有动力设备、减速机构、换向机构和辅助装置四大部分组成。 17.CYJ12-3.3-70B抽油机的悬点最大允许载荷是12KN,光杆最大冲程长度是3.3M。18.深井泵在上冲程时,-----------------打开,-----------------关闭。 19.悬绳器是连接------------与------------------的工具。 20.抽油机悬点静载荷主要包括-----------------载荷和-----------------载荷。 21.CYJ10-3-37抽油机的曲柄轴最大允许扭矩是-------------,光杆最大冲程长度是----------------。 22.深井柱塞泵在下冲程中,---------------打开,-----------------关闭。 23。抽油机悬点动载荷主要包括-------------载荷、--------------载荷及振动载荷。 24.提高泵效的措施有------------方面的措施、------------方面的措施及设备和管理方面的措施。

关于编制潜油电泵用管项目可行性研究报告编制说明

潜油电泵用管项目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司编制时间:https://www.wendangku.net/doc/5d16945415.html, 高级工程师:高建

关于编制潜油电泵用管项目可行性研究报 告编制说明 (模版型) 【立项 批地 融资 招商】 核心提示: 1、本报告为模板形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。 2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整) 编制单位:北京中投信德国际信息咨询有限公司 专 业 撰写节能评估报告资金申请报告项目建议书 商业计划书可行性研究报告

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目主管部门 (1) 1.1.6项目投资规模 (2) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (3) 1.1.9项目建设期限 (3) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4编制原则 (4) 1.5研究范围 (5) 1.6主要经济技术指标 (5) 1.7综合评价 (6) 第二章项目背景及必要性可行性分析 (7) 2.1项目提出背景 (7) 2.2本次建设项目发起缘由 (7) 2.3项目建设必要性分析 (7) 2.3.1促进我国潜油电泵用管产业快速发展的需要 (8) 2.3.2加快当地高新技术产业发展的重要举措 (8) 2.3.3满足我国的工业发展需求的需要 (8) 2.3.4符合现行产业政策及清洁生产要求 (8) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (9) 2.3.6增加就业带动相关产业链发展的需要 (9) 2.3.7促进项目建设地经济发展进程的的需要 (10) 2.4项目可行性分析 (10) 2.4.1政策可行性 (10) 2.4.2市场可行性 (10) 2.4.3技术可行性 (11) 2.4.4管理可行性 (11) 2.4.5财务可行性 (11) 2.5潜油电泵用管项目发展概况 (12)

塔里木油田深井超深井电泵采油技术应用分析

塔里木油田深井超深井电泵采油技术应用分析 我国是石油大国,石油储量丰富,但大都是未探明的,而且多数埋藏在地底深层。如今,如何勘探开采地底深层的油气资源成了各公司竞争的主要目标。经过长期发展,我国的油气勘探技术有了很大进步,包括深井超深井开采技术。塔里木油田是中国陆上第二大油田,石油储量十分丰富,对我国西部经济开发起着不可代替的作用。但由于其自身特点,多是些深井超深井,开采难度大,而深井超深井技术很是复杂,需以科学理论作指导,配以高质量的团队,采用先进设备进行开采工作。 1 塔里木油田的特点 在石油的开采过程中,井下作业主要有以下功能: (1)维护作业; (2)措施作业; (3)新井投产; (4)大修作业。与东部油田不同,塔里木油田有其独特的特点。 首先,其分布范围较广,当前已经覆盖了包括塔中、克拉、玛扎塔克以及哈德、迪那等十多个地区,作业战线纵横绵延近千公里,不但工作任务繁重,而且生产难度大。其次,由于塔里木油田多是深井超深井,深度平均在4500m~5000m ,即便是浅井也至少有3000m,而东河油田则可深达6000m,所以,工作起来比较复杂,其设备必须有很高的配制,通常会采用3000m的钻机或者大修机,即便是日常的维护工作,也必须依靠大修设备来完成。如果井下作业的分类以修井机设备为参考,那么塔里木油田所有的作业都属于大修范围。再者,单井作业的成本较高。在深井或超深井运用大修设备进行开采工作,必然会耗费大量的财力、人力、物力,而且其作业周期较长,如此一来,又要增加作业成本。 塔里木油田还有一特点,就是井下条件复杂,压力和温度都较高,

在进行作业时,几乎全部要安装封井器,多为35MPa 或70MPa,对于个别的压力超高的气井,则需采用105MPa的封井器,并配以相關的辅助工具。当进入中后期开发阶段,常会出现管柱腐蚀的现象,有时其他工具也会失去原有效用,加大了井下作业的难度。由于东部油田和塔里木油田存在着一定的差异,在东部油田浅井中使用的操作规程和技术标准,如果应用到塔里木深井超深井作业中,未必完全适合。此外,由于气井过深,塔里木油田在开发过程中采用的是井网多套开发层系模式,实现稀井高产。增加了井下作业的复杂性,同时风险也大。 2 深井超深井钻井技术 我国深井超深井钻井技术开始于上世纪60年代,因为起步较晚,而且受诸多条件限制,与欧美一些发达国家相比,还有待进一步提高。不过,经过长期的努力发展,还是取得了一定的成就,最为重要的是在不断摸索中走出了一条新的道路,以自主研发为主,并有选择地借鉴国外经验,引入其先进技术,而且在国内外市场的竞争力都有了很大提升。为了能够掌握既经济环保又安全优质的深井超深井钻井技术,我国开展了大量深井钻井理论研究,涉及到诸多方面,包括物理化学、钻井流体力学、井下控制工程学以及岩石工程力学和破碎力学等,有了地保障了该技术的进一步发展。从目前的整体状况来看,我国深井超深井钻井技术与国外先进水平的差距约5一10a,井下工具及测量仪器方面与国外先进水平的差距更大,约为10~15a 。 与美国相比,我国陆上深井超深井钻井技术在应用过程中,由于井下情况特别复杂,钻井周期长、成本高,容易发生事故,主要表现如下:复杂层段井眼常出现严重不协调的现象;井口机械化与自动化整体水平低;地层工程的特性参数预测精度低;高陡构造井斜较为明显,钻具事故频频发生;某些地方由于地质较硬,钻机难以前进,以至于钻速缓慢,而一些先进的钻井或测井工具主要依赖于进口;钻井液体系与处理剂配套应用效果差;防斜打直未配备先进的垂直钻井系统等。

潜油电泵工艺

潜油电泵工艺 一、潜油电泵结构 图5-1潜油电泵结构图 1-变压器2-控制屏3-接线盒4-地面管线5-井口6-泄油阀7-单流阀 8-多级离心泵9-潜油电缆10-分离器 1. 潜油电泵系统由三大部分七大件组成。 井下部分:包括潜油电机、保护器、分离器和多级离心泵; 中间部分:潜油电缆; 地面部分:变频柜和变压器; 2. 潜油电泵各结构介绍 潜油电机:主要由定子系统、转子系统、止推轴承、油循环系统及上下接头等组成,给多级离心泵提供动力。 多级离心泵:由多级叶轮和导轮组成、分多节串联的离心泵。用于把油井中的液体举升到地面。

油气分离器:主要油沉降式和旋转式两种。 保护器:用来补偿电机内润滑油的损失,并起到平衡电机内外压力、防止井液进入电机及承受泵的轴向负荷作用。 3. 潜油电泵的工作原理:电潜泵工作时,地面电源通过变压器变为电机所需要的工作电压,输入到控制屏内,然后经由电缆将电能传给井下电机,使电机带动离心泵旋转,把井液通过分离器抽入泵内,进泵的液体由泵的叶轮逐级增压,经油管举升到地面。 4. 电潜泵型号:QYDB50/2500 QYDB:QY-潜油运行,DB-电泵。 理论排量:50m3/d, 泵挂:2500m。 二、运行现状分析 潜油电泵采油作为一种大排量、高效率、管理方便的机械采油方式,在油田得到了广泛的应用。然而,对于复杂断块油田来说,油水井的对应连通性差,部分潜油电泵井出现供液不足,影响到潜油电泵的正常生产及井下机组运转寿命。 油井深达数千米,变频器与电动机之间距离也是数千米,因此要求变频器输出波形为正弦波,谐波愈小愈好,否则线路压降很大,电机无输出力矩,拖不动负荷。用现代高新技术改造现有的油田采油设备是大势所趋。用现代自控技术和变频调速技术来为油田潜油电泵提供理想电源是这种技术改造过程中的一个重要组成部分。潜油电泵的电压等级多为1140V 和2300V。潜泵按放在地平面以下1000~3000米处,工作环境极度恶劣(高温、强腐蚀等),传统的供电方式—全压、工频使它故障频繁,运行成本大增。潜泵损坏后提到地面上来修理,仅工程费一项就达5万元,价值10万元的电缆平均提上放下5次就须更换,潜泵平均每10个月就须维修一次,维修费用约8万元。传统供电方式危害甚多。例如: (1)潜泵全速运转,当井下液量不富余时,容易抽空,甚至造成死井,一旦死井,则损失惨重。 (2)全压、工频工作启动电流大,冲击扭矩大,不但浪费了电,还对电机寿命有很大影响。(3)油田供电电压常有波动,使电机欠激励或过激励,电机被烧时有发生。 (4)几千米的井下电缆带来了150V左右的线路损耗,由于这部分损耗无法补偿,从而影响了电机的正常工作。 由上可看出,潜泵的传统供电方式必须改造,比较理想的供电设备应具备如下特性:(1)软启动

潜油电泵保护器的作用

一、保护器的作用 保护器的主要功能是密封潜油电机,防止井液进入电机。保护器能使电机内部压力和吸入口处压力保持平衡,同时当电机运行时,电机内的润滑油因温度升高而膨胀,保护器内有足够的空间储存因膨胀而溢出的油。反之,当润滑油的温度下降而收缩时,保护器内的油又可返回补充给电机。保护器的上端与分离器(吸入口)相连,且轴端相接,以使泵轴的重量、液压负载以及叶轮的轴向力全部或部分地传到保护器的止推轴承上。保护器的下端与电机相连,并允许电机轴由于升温而伸长。 综上所述,保护器的作用基本上有五个: (1)提供电机油膨胀体积。电机和保护器注满了电机油,用于润滑轴承和冷却电机。在机组安装、运行和起井 过程中,电机油将膨胀或收缩,电机油体积的变化要 由保护器来补偿。 (2)压力平衡。保护器用于平衡电机内部与井筒之间的压力,消除轴密封周围的压力不平衡。 (3)隔离井液。保护器起到防止井液进入电机的作用。 (4)承受轴向力。保护器承担来自泵的向下的轴向力,以避免电机止推系统承担该轴向力。当泵在非正常工作 时,保护器的上止推系统用于防止泵的向上的轴向力 增加。 (5)传递扭矩。保护器传递从电机轴到泵轴的扭矩。包括

传递壳体的反向扭矩。 二、保护器的种类 目前国内外使用的保护器,从其原理来看,使用比较普遍的有两种:沉淀式保护器和胶囊式保护器。 一、保护器的结构及原理 潜油电泵保护器的作用决定了保护器的基本结构是以隔离电机油和井液为主要目的,使电机不仅在油井中运行能够有足 够的电机油来提供润滑,而且在停机变冷时,保护器能够为电 机补充不足的电机油,防止井液进入电机。隔离的手段有用胶 囊隔离、根据两种液体的相对密度不同隔离和用重油隔离。 保护器的基本结构可分为:沉淀式保护器、胶囊式保护器、联通式保护器。根据地质条件和要求不同,保护器的结构也可 以自由组合为:沉淀与胶囊结合、双沉淀、双胶囊等组合式保 护器。 保护器的原理是根据不同液体的密度不同、性质不同,在混合时不相互溶解、分层沉淀,密度大的液体沉淀于下层。电 机油的密度低于井液的密度,机组下井后井液进入保护器与电 机油混合腔的上部。当保护器呼吸时,保护器内的电机油通过 保护器护轴管上部的呼吸孔与电机相通,为电机提供补充或容 纳,经过长时间的运转,机组反复启动停机,腔体内的电机油

电动潜油离心泵单级高扬程叶导轮的设计与应用

电动潜油离心泵单级高扬程叶导轮的设计与应用 赵 斌1,杨艳芬2,任雪琴2 (1.中原油田分公司采油三厂,山东莘县;2.中原油田分公司采油工程技术研究院,河南濮阳 457001) 摘 要:通过对潜油电动离心泵的叶导轮内的液体质点的运动研究,建立其运动方式的速度三角形,同时研究影响叶导轮抽液性能的结构尺寸和性能参数,主要包括: 铸件表面光洁度的影响; 叶导轮的流道开口尺寸和叶片出口角。在上述研究的基础上,对目前使用的叶导轮进行优化,开发研制出单级高扬程的叶导轮。此项研究的成功,可以减少离心泵的级数,从而节约其组装成本,创造良好的经济效益。 关键词:潜油电动离心泵;叶导轮;结构尺寸;性能参数;优化设计 中图分类号:T E964.02 文献标识码:A 文章编号:1006—7981(2010)13—0046—02 潜油电动离心泵为多级离心泵,每一级由一个旋转的叶轮和固定的导轮组成。多级离心泵叶轮与导轮的装配结构图见图1: 当潜油电机带动泵轴上叶轮高速旋转时,充满在叶轮流道内的液体在离心力的作用下,依靠导轮的导流,从叶轮中心沿叶片间的流道被引向下一级叶轮,这样流过所有的叶轮和导轮,使液压能量逐步增加,最终获得一定的扬程将井液举升至地面。叶轮和导轮性能的优劣直接决定和影响潜油电动离心泵 抽液的功效。 图1 叶导轮装配图 1 理论研究 1.1 液体在叶轮内的运动研究[2] 叶轮是离心泵的核心部分,液体在叶轮内的运动是复杂的,它的运动方式可以看成:一方面液体在叶片推动下随叶轮作u= r 的圆周运动;另一方面液体沿叶片以相对速度w 作相对运动。液体相对固定的泵壳所具有的绝对速度c 是圆周速度u 和相对速度w 的矢量和,即c=u+w ,速度三角形见图2:其中图中 为绝对速度c 与圆周速度u 正方向间的夹 角; 为相对速度w 与圆周速度u 反方向间的夹角。 图2 液体质点在叶导内的运动的速度三角形 1.2 叶导轮几何结构的影响 叶导轮的结构尺寸和性能参数的合理优化直接决定着离心泵性能的好坏,经过研究发现,叶导轮几何结构中的微小变化对离心泵性能的影响:1.2.1 表面光洁度的影响 影响铸件表面粗糙度的可变因素,包括金属的浇铸温度、砂的含水量、型砂和金属的化学成份、吹型芯的空气压力及其它一些因素。用铸造叶轮和用固体材料加工成的叶轮组成的离心泵进行试验,结果表明,在几何形状完全相同的情况下,这两种离心泵之间的扬程差仅与流道表面粗糙度的不同有关。 叶轮和导轮的流道由机械加工而成的离心泵可产生较高的扬程,同时还可以采用打光叶轮及导轮的流道、修圆棱角及抛光叶轮的方法来提高泵效,经过试验,叶轮和导轮的内流道经抛光处理可提高泵效6%~7%。1.2.2 尺寸变化 图3为一叶轮结构图,图中标出叶轮产生扬程的两个关键尺寸:叶轮流道开口尺寸和叶轮的出口 46 内蒙古石油化工 2010年第13期  收稿日期:2010-04-14 作者简介:赵斌(1971-),男,工程师,1990年7月毕业于中原石油学校采油工程专业;2004年7月毕业于西安石油大 学。现在中原油田采油三厂明二油藏经营管理区工作。

相关文档