文档库 最新最全的文档下载
当前位置:文档库 › 高一数学必修一函数的基本性练习题

高一数学必修一函数的基本性练习题

高一数学必修一函数的基本性练习题
高一数学必修一函数的基本性练习题

函数的基本性质综合练习

一.选择题:(本大题共10题,每小题5分,共50分)

1.若函数ax y =与x b y -=在(0,+∞)上都是减函数,则bx ax y +=2在),0(∞上是( ) A .增函数 B .减函数 C .先增后减 D .先减后增

2.已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是 ( )

A .1

B .2

C .3

D .4

3.设)(x f 是(-∞,+∞)上的增函数a 为实数,则有 ( )

A .)2()(a f a f <

B .)()(2a f a f <

C .)()(2a f a a f <+

D .)()1(2

a f a f >+ 4.如果奇函数)(x f 在区间[3,7]上是增函数且最大值为5,那么)(x f 在区间[-7,-3]上是( )

A .增函数且最小值是-5

B .增函数且最大值是-5

C .减函数且最大值是-5

D .减函数且最小值是-5

5.已知定义域为}0|{≠x x 的函数)(x f 为偶函数,且)(x f 在区间(-∞,0)上是增函数,若0)3(=-f ,则0)(

x f 的解集为( ) A .(-3,0)∪(0,3) B .(-∞,-3)∪(0,3) C .(-∞,-3)∪(3,+∞) D .(-3,0)∪(3,+∞) 6.当]5,0[∈x 时,函数c x x x f +-=43)(2的值域为( )

A .[c,55+c ]

B .[-43+c ,c ]

C .[-43

+c,55+c ] D .[c,20+c ] 7.设)(x f 为定义在R 上的奇函数.当0≥x 时,b x x f x ++=22)((b 为常数),则)1(-f 等于( )

A .3

B .1

C .-1

D .-3

8.下列函数在(0,1)上是增函数的是( )

A .x y 21-=

B .1-=x y

C .x x y 22+-=

D .5=y

9.下列四个集合:①}1|{2+=∈=x y R x A ;②

},1|{2R x x y y B ∈+==;③},1|),{(2R x x y y x C ∈+==;④}1{的实数不小于=D .其中相同的集合是( )

A .①与②

B .①与④

C .②与③

D .②与④ 10.给出下列命题:

①x

y 1=在定义域内为减函数;②2)1(-=x y 在),0(∞ 上是增函数;③x y 1-=在)0,(-∞上为增函数;④kx y =不是增函数就是减函数。

其中错误的有 ( )

A.0个

B.1个

C.2个

D.3个

二、填空题(本大每题5分,共20分)

11.设函数()()()1f x x x a =++为偶函数,则a =______.

12.已知函数582++=ax x y 在),1[+∞上递增,那么a 的取值范围是__________________.

13.函数1

2+=x y 在[]3,0上的最大值为 __________ 14.如果奇函数()f x 在区间[]1,2上是减函数,且最大值为3,那么()f x 在区间[]2,1-- 上有 值,其最值为_____.

三、解答题(本大题共5小题,共80分)

15.(本小题12分)求证:函数11-=

x y 在区间),1(+∞上为单调递减函数。

16.(本小题12分)画出函数|6|2--=x x y 的图像,并写出此函数的单调区间.

17.(本小题14分)已知()x f 是定义在R 上的奇函数,且当0>x 时,()13++=x x x f ,求()x f 的解析式。

18.(本小题14分)已知)(x f =,,342

R x x x ∈++用函数))((R t t g ∈表示函数)(x f 在区间[]1,+t t 上的最小值,求)(t g 的表达式。

19.(本小题14分)(1)判断函数4y x x

=+

在(0,)+∞上的单调性,并进行证明,然后画出其图像。 (2)对于(0,)x ∈+∞,1y x x =+,呢?2y x x

=+呢? (3)你能由此推出a y x x =+(0)a >(0,)x ∈+∞的图像性质吗?

20.(本小题满分14分)已知函x

a x x f +=2)(,且2)1(-=f , (1)证明函数)(x f 是奇函数;

(2)证明)(x f 在(1,+∞)上是增函数;

(3)求函数)(x f 在[2,5]上的最大值与最小值.

必修一函数的单调性专题讲解(经典)

第一章 函数的基本性质之单调性 一、基本知识 1.定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值21,x x ,当 21x x <时,都有 ))()()(()(2121x f x f x f x f ><或,那么就说函数)(x f y =在这个区间上是增(或减)函数。 重点 2.证明方法和步骤: (1) 取值:设21,x x 是给定区间上任意两个值,且21x x <; (2) 作差:)()(21x f x f -; (3) 变形:(如因式分解、配方等); (4) 定号:即0)()(0)()(2121<->-x f x f x f x f 或; (5) 根据定义下结论。 3.常见函数的单调性 时, 在R 上是增函数;k<0时, 在R 上是减函数 (2),在(—∞,0),(0,+∞)上是增函数, (k<0时),在(—∞,0),(0,+∞)上是减函数, (3)二次函数的单调性:对函数c bx ax x f ++=2)()0(≠a , 当0>a 时函数)(x f 在对称轴a b x 2- =的左侧单调减小,右侧单调增加; 当0

高一数学必修一 函数知识点总结

3. 函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型),(,)(2n m x c bx ax x f ∈++=的形式; ②逆求法(反求法):通过反解,用y 来表示x ,再由x 的取值范围,通过解不等式,得出y 的取值范围;常用来解,型 如: ),(,n m x d cx b ax y ∈++= ; ④换元法:通过变量代换转化为能求值域的函数,化归思想; 常针对根号,举例: 令 ,原式转化为: ,再利用配方法。 ⑤利用函数有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如: )0(>+ =k x k x y ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。 ⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。 二.函数的性质 1.函数的单调性(局部性质) (1)增函数 设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1?<∈对任意的 注:① 函数上的区间I 且x 1,x 2∈I.若2 121)()(x x x f x f -->0(x 1≠x 2),则函数f(x)在区间I 上是增函数; 若2121)()(x x x f x f --<0(x 1≠x 2),则函数f(x)是在区间I 上是减函数。 ② 用定义证明单调性的步骤: <1>设x1,x2∈M ,且21x x <;则 <2> )()(21x f x f -作差整理; <3>判断差的符号; <4>下结论; ③ 增+增=增 减+减=减 ④ 复合函数y=f[g(x)]单调性:同增异减 [](内层) (外层)) (,则)(,)((x f y x u u f y ??===

高中数学必修一教案-函数的单调性

课题:§1.3.1函数的单调性 教学目的:(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义; (2)学会运用函数图象理解和研究函数的性质; (3)能够熟练应用定义判断数在某区间上的的单调性. 教学重点:函数的单调性及其几何意义. 教学难点:利用函数的单调性定义判断、证明函数的单调性. 教学过程: 一、引入课题 1.观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:○1随x的增大,y的值有什么变化? ○2能否看出函数的最大、最小值? ○3函数图象是否具有某种对称性? 2.画出下列函数的图象,观察其变化规律:1.f(x) = x ○1从左至右图象上升还是下降 ______? ○2在区间 ____________ 上,随着x的增大,f(x)的值随着 ________ . 2.f(x) = -2x+1 ○1从左至右图象上升还是下降 ______? ○2在区间 ____________ 上,随着x的增大,f(x)的值随着 ________ . 3.f(x) = x2 ○1在区间 ____________ 上,f(x)的值随着x的增大而 ________ . ○2在区间 ____________ 上,f(x)的值随着x的增大而 ________ . 二、新课教学

(一)函数单调性定义 1.增函数 一般地,设函数y=f(x)的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1

人教版数学必修一函数的单调性与最大值

一、函数的单调性 1.增函数和减函数 一般地,设函数f(x)的定义域为I 如果对于定义域I内某个区间D上的任意两个自变量的值,,当时,都有f()f(),那么就说函数f(x)在区间D上是减函数 2.函数的单调性与单调区间 如果函数y=f(x)在区间D上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有单调性,区间D叫做y=f(x)的单调区间 (1)在某个区间具有单调性:①这个区间可以是整个定义域.如:y=x 在整个定义域R上是增函数,②这个区间也可以是定义域的真子集,如:y=x2在定义域(-∞,+∞)上不具有单调性,但在(-∞,0 ] 上是减函数,在 [ 0,+∞)上是增函数

(2)单调性是函数在某一区间上的“整体”性质,因此定义中的,有以下几个特征:一是任意性,,即“任意取,”,“任意”两字不能丢;二是有大小,通常规定;三是属于同一单调区间(3)单调性能使自变量取值之间的不等关系和函数值得不等关系正逆互推,即由f(x)是增函数且f()< (4)有的函数不具有单调性,如函数y=,它的定义域为R,但不具有单调性,函数y=x+1,x∈Z它的定义域不是区间,也不能说它在其定义域上具有单调性 (5)如果函数f(x)在其定义域内的两个区间A,B 上都是增(减)函数,一般不能认为f(x)在A∪B上是增(减)函数,例如f(x)=在(-∞,0)上是减函数,在(0,+∞)上是减函数,但是不能说其在(-∞,0)∪(0,+∞)上是减函数,在这里,正确的写法应为:“(-∞,0),(0,+∞)”或“(-∞,0)和(0,+∞)” (6)图像特征:在某区间上,单调递增的函数f(x),从左向右看,其图像时上升的,单调递减的函数f(x),从左向右看,其图像时下降的 (7)函数在某一点处的单调性无意义

高中数学必修一函数难题

高中函数大题专练 2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。 ① 对任意的[0,1]x ∈,总有()0f x ≥; ② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。 已知函数2()g x x =与()21x h x a =?-是定义在[0,1]上的函数。 (1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值; (3)在(2)的条件下,讨论方程(21)()x g h x m -+=()m R ∈解的个数情况。 3.已知函数| |212)(x x x f - =. (1)若2)(=x f ,求x 的值; (2)若0)()2(2≥+t mf t f t 对于[2,3]t ∈恒成立,求实数m 的取值范围. 4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x ?-?=??? 0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式. (2)请你作出函数)(x f 的大致图像. (3)当0a b <<时,若()()f a f b =,求ab 的取值范围. (4)若关于x 的方程0)()(2=++c x bf x f 有7个不同实数解,求,b c 满足的条件. 5.已知函数()(0)|| b f x a x x =-≠。 (1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围; (2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围; (3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是 [,]m n ,则称()g x 是[,]m n 上的闭函数。若函数()f x 是某区间上的闭函数,试探求,a b 应满足的条件。 6、设bx ax x f += 2)(,求满足下列条件的实数a 的值:至少有一个正实数b ,使函数)(x f 的定义域和值域相同。 7.对于函数)(x f ,若存在R x ∈0 ,使00)(x x f =成立,则称点00(,)x x 为函数的不动点。

高中数学必修一函数的概念知识点总结

必修一第一章 集合与函数概念 二、函数 知识点8:函数的概念以及区间 1》函数概念 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =()f x 注意:①x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域 ②与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域. 2》区间和无穷大 ①设a 、b 是两个实数,且a=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞. 3》决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数. 典例分析 题型1:函数定义的考察 例1:集合A=}{40≤≤x x ,B=}{20≤≤y y ,下列不表示从A 到B 的函数是( ) A 、x y x f 21)(= → B 、x y x f 31 )(=→ C 、 x y x f 32 )(=→ D 、x y x f =→)( 例2:下列对应关系是否是从A 到B 的函数: ① }{;:,0,x x f x x B R A →>== ②,:,,B A f N B Z A →==求平方; ③B A f Z B Z A →==:,,,求算术平方根; ④B A f Z B N A →==:,,,求平方; ⑤A=[-2,2],B=[-3,3],B A f →:,求立方。 是函数的是_________________。 题型2:区间的表示 例1:用区间表示下列集合 (1) }{1≥x x =_____________。 (2)}{42≤x x x 且=_____________。 (4)}{3-≤x x =______________。 题型3:求函数的定义域和值域 例1:求函数的定义域 (1)32+=x y (2)1 21 y x =+- (3)2 1-= x y (4)y = (5) 0)1(3 1 4++++ +=x x x y

高中数学必修一函数的性质单调性测试题含答案解析

函数的性质单调性 1.在区间(0,+∞)上不是增函数的函数是() 222xxyxyyyx+ 1 DC..B.A.==2=3+1 +=2+1 x2mxxfx+5在区间[-2,+∞]上是增函数,在区间-2.函数((-∞,-)=42) 上是减函数,f(1)等于(则) B.1 C.17 A.-7 D.25 fxyfx+5)的递增区间是 (( (-2,3)上是增函数,则)=3.函数 ()在区间A.(3,8) B.(-7,-2) C.(-2,3) D.(0,5) ax?1axf的取值范围是 ).函数上单调递增,则实数(()=-2,+∞在区间() 4x?211,+∞) C.(-2,+∞) D.(-∞,-1)∪(1) A.(0,B.( ,+∞) 22fxabfafbfxab]内(, ())=0]上单调,且在区间([) ()<5.已 知函数0()在区间[,,则方程 A.至少有一实根 B.至多有一实根 C.没 有实根 D.必有唯一的实根 22gxxgxfxxxf) (.已知函数)=( ))=8+2( 2--,那么函数,如果 (() 6 A.在区间(-1,0)上是减函数 B.在区间(0,1)上是减函数 C.在区间(-2,0)上是增函数 D.在区间(0,2)上是增函数 fxf(x|,1)是其图象上的两点,那么不等式上的增函数,A(0,-1).已知函数7、(B(3)是R+1)|<1的解集的补集是 A.(-1,2) B.(1,4) C.(-∞,-1)∪[4,+∞) D.(-∞,-1)∪[2,+∞) fxtftf(5=,都有)(5R的函数+(上单调递减,对任意实数)在区间(-∞,5)8.定 义域为tfff(13) <(9)(-1)-<),下列式子一定成立的是 A.fffffffff(9) <-(13)<(-1) <1)B.(13)<(13) D(9)<.(-1) C.((9)<f(x)?|x|和g(x)?x(2?x)的递增 区间依次是(.函数9 ) B. A. C. D )??[1,[0,????)),][0,,(??,0],(??1]??),(??,1[(??,0],1,??????a4?,?的取值范 围是(10.已知函数)在区间上是减函数,则实数221fx??xx?2a?aaaa≥.3 .D≤≤3 B.5 ≥-3 C A.fxabab≤0,则下列不等式中正确的是(∈R且+11.已知())在区间(-∞,+∞上是增函数,)、 fafbfafbfafbfafb) ()(+)≤A .(()+(≤-)-()+B()].-()+

高中数学必修1函数的基本性质

高中数学必修1函数的基本性质 1.奇偶性 (1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。 如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。 注意: ○ 1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○ 2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。 (2)利用定义判断函数奇偶性的格式步骤: ○ 1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○ 2 确定f (-x )与f (x )的关系; ○ 3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。 (3)简单性质: ①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称; ②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇?奇=偶,偶+偶=偶,偶?偶=偶,奇?偶=奇 2.单调性 (1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1f (x 2)),那么就说f (x )在区间D 上是增函数(减函数); 注意: ○ 1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○ 2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1

数学必修一函数的单调性学案

数学必修一函数的单调性学案 学习目标要求: 1.理解函数单调性的概念; 2.掌握判断函数单调性的一般方法; 3.体验数形结合思想在函数性质研究中的价值,掌握其应用。 一、函数单调性的概念 1:增函数 (1)定义:设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1f(x2),那么就说函数f(x)在区间D上是减函数,区间D称为函数f(x)的单调递减区间。 (2)几何意义:函数f(x)的图象在区间D上是下降的,如图所示: 3:单调性与单调区间 定义:如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。 思考:

(1)单调性是函数在定义域上的“整体”性质吗? 不是,由定义中“定义域I内某个区间D”知函数的单调递增区间或单调递减区间是其定义域的子集,这说明单调性是与“区间”紧密相关的,一个函数在定义域的不同区间可以有不同的单调性。 (2)定义中的“x1、x2”具备什么特征? 定义中的x1、x2有以下几个特征:一是任意性,即任意取x1,x2,证明单调性时更不可随意以两个特殊值替换;二是有大小,通常规定x10,减函数有错误!未找到引用源。<0 二、判断函数单调性的一般方法 (1)定义法:利用定义严格判断。一般步骤如下: ①取值:任选定义域中同一单调区间D上的自变量值x1,x2,且设x1

必修一函数的单调性经典易错习题

函数的单调性 一、选择题 1.下列函数中,在区间(0,2)上为增函数的是…………………………………( ) A.y =3-x B.y =x 2+1 C.y =-x 2 D.y =x 2-2x -3 2.若函数y =(a +1)x +b ,x ∈R 在其定义域上是增函数,则…………………( ) A.a >-1 B.a <-1 C.b >0 D.b <0 3.若函数y =kx +b 是R 上的减函数,那么…………………………………( ) A.k<0 B.k>0 C.k ≠0 D. 4.函数f(x)=??? 2x +6x +7 x ∈[1,2] x ∈[-1,1],则f(x)的最大值、最小值为……( ) A.10,6 B.10,8 C.8,6 D. 5.下列四个函数在()-0∞,上为增函数的有( ) (1)y x = (2)x y x = (3)2 x y x =- (4)x y x x =+ A.(1)和(2) B.(2)和(3) C.(3)和(4) D.(1)和(4) 6.设()f x 是(),-∞+∞上的减函数,则( ) .()(2)A f a f a > 2.()()B f a f a < 2.()()C f a a f a +< 2.(1)()D f a f a +< 7.设函数()()21f x a x b =-+在R 上是严格单调减函数,则( ) 1.2A a ≥ 1.2B a ≤ 1.2C a > 1 .2D a < 8.下列函数中,在区间(0,2)上为增函数的是( ) .3A y x =- 2.1B y x =+ 2.C y x =- 2.23D y x x =-+ 9.已知函数22 4,0()4,0 x x x f x x x x ?+≥?=?-,则实数a 的取值范围是( ) ()().,12,A -∞-+∞ ().1,2B - ().2,1C - ()().,21,D -∞-+∞ 10.已知()f x 为R 上的减函数,则满足()11f f x ?? > ??? 的实数x 的取值范围是( ) ().,1A -∞ ().1,B +∞ ()().,00,1C -∞ ()().,01,D -∞+∞ 11.函数 的增区间是( )。 A . B . C . D .

高一数学必修一函数必背知识点整理

高一数学必修一函数必背知识点整理 高一数学必修一函数必背知识点 1、函数定义域、值域求法综合 2.、函数奇偶性与单调性问题的解题策略 3、恒成立问题的求解策略 4、反函数的几种题型及方法 5、二次函数根的问题——一题多解 &指数函数y=a^x a^a*a^b=a^a+ba>0,a、b属于Q a^a^b=a^aba>0,a、b属于Q ab^a=a^a*b^aa>0,a、b属于Q 指数函数对称规律: 1、函数y=a^x与y=a^-x关于y轴对称 2、函数y=a^x与y=-a^x关于x轴对称 3、函数y=a^x与y=-a^-x关于坐标原点对称 幂函数y=x^aa属于R 1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数. 2、幂函数性质归纳. 1所有的幂函数在0,+∞都有定义并且图象都过点1,1; 2时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸; 3时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴. 方程的根与函数的零点 1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。 即:方程有实数根函数的图象与轴有交点函数有零点. 3、函数零点的求法: 1 代数法求方程的实数根; 2 几何法对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数. 1△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点. 2△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点. 3△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点. 感谢您的阅读,祝您生活愉快。

高中数学必修一函数单调性练习题

函数单调性练习题 1、函数()x x f 1-=的增区间是_____ ___ 2、函数()x x f 2=的减区间是_____ ___ 3、函数()222+-=x x x f 的增区间是_____ ;减区间是_____ ___ 4、函数()228x x x f -+=的增区间是_____ ;减区间是_____ ___ 5、若函数b mx y +=在()+∞∞-,上是增函数,则 A .0>b B .0m D .0f D .增函数且()00>f 7、函数()1 1--=x x f 的单调区间是_____ 8、函数()322-+=x x x f 的增区间是_____ ;减区间是_____ ___ 9、函数()()215+-=x a x f 在R 上为增函数,则a 的取值范围是_____ 10、函数()x x f -=在[)+∞,a 上为减函数,则a 的取值范围是_____

11、函数()()2122+-+=x m x x f 在(]4,∞-上为减函数,则m 的取值范围是_ 12、函数()542+-=mx x x f 在[)+∞-,2上为增函数,则()1f 的取值范围是 A .()251≥f B .()251=f C .()251≤f D .()251

(新)高中数学必修一函数部分难题汇总

函数部分难题汇总 1.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或2 2.为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移, 这个平移是( ) A .沿x 轴向右平移1个单位 B .沿x 轴向右平移 1 2个单位 C .沿x 轴向左平移1个单位 D .沿x 轴向左平移1 2 个单位 3.设? ??<+≥-=)10()],6([) 10(,2)(x x f f x x x f 则)5(f 的值为( ) A .10 B .11 C .12 D .13 4.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( ) A .[]052 , B. []-14, C. []-55, D. []-37, 5.函数x x x y += 的图象是( ) 6.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( ) A .)2()1()2 3(f f f <-<- B .)2()2 3()1(f f f <-<- C .)23()1()2(-<-

高中数学必修一函数的性质单调性与奇偶性典型精讲精练

1文档收集于互联网,已整理,word 版本可编辑. 函数单调性 证明格式: ① 取任意两个数12,x x 属于定义域D ,且令12x x <(反之亦可); ② 作差12()()f x f x -并因式分解; ③ 判定 12()()f x f x -的正负性,并由此说明函数的增减性; 例 1 用定义法判定下列函数的增减性: ① y x =; ②2y x =; ③3y x =; ④y = ⑤1 y x = ; 练习:1. 判断函数()f x = 2.证明函数 3()f x x x =+在R 上是增函数; 例 2 已知函数 1 ()(0)f x x x x =+>,求证:函数的单调减区间为(0,1],增区间为[1,)+∞,并画出图像; 练习:证明函数 x x x f 2 )(+ =在),2(+∞上是增函数。 3.复合函数的单调性 复合函数的单调性判断(同增异减):构造中间过度函数,按定义比较函数大小并确定函数的单调性; 例 3 判断函数的单调性: (1 ) ()f x = (2 )()f x =; (3) 2 1 ()2 f x x = +; 练习:① y = ②2 13y x = -; ③ 2 154y x x = +-; ④ y ; 4.函数的单调性的等价关系 设[]1212,,,x x a b x x ∈≠那么 []1212()()()0x x f x f x -->?[]1212()() 0(),f x f x f x a b x x ->?-在上是增函数; []1212()()()0x x f x f x --时,()1f x >且对任意的,a b 都有()()()f a b f a f b +=? (1)求证: (0)1f = ; (2)求证:对任意的x R ∈恒有 ()0f x > ; (3)求证:f(x)是R 上的增函数 ; (4)若2()(2)1f x f x x ?->,求x 的取值范围 相关练习 1、设 ()f x 的图像关于原点对称,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ?<的解集是………………( ) A {}|303x x x -<<>或 B {}|303x x x <-<<或 C {}|33x x x <->或 D {}|3003x x x -<<<<或 2、若 )(x f 的图像关于y 轴对称,且在[)+∞,0上是减函数,则235()(2)2 2 f f a a -++与的大小关系…( ) A )2 3(-f >)25 2(2++a a f B )23 (-f <)25 2(2++a a f C ) 23 (-f ≥ )2 5 2(2++a a f D 3() 2f -≤25(2)2 f a a ++

必修一函数的单调性1(含答案)

函数(一) 单调性 一、 基础知识 1、 增函数:设函数()f x 的定义域为I,如果对于I 内某个区间D 的任意两个自变量12,x x ,当12 x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数,区间D 叫做函数的增区间。 2、 减函数:设函数()f x 的定义域为I,如果对于I 内某个区间D 的任意两个自变量12,x x ,当12 x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数,区间D 叫做函数的减区间。 3、 单调性:如果函数()f x 在区间D 上式增函数或者减函数,那么就是函数()f x 在这一区间上具有 单调性,区间D 叫做函数的单调区间。 4、 单调区间:指的是函数具有单调性的最大取值区间。 5、证明单调性的步骤:做差→变形→判号→得结论。 6、单调函数的组合:某两个单调函数在同一区间内的加减后所得函数单调性 增函数+ 增函数=增函数,减函数+减函数=减函数, 增函数—减函数=增函数,减函数—增函数=减函数 奇函数?奇函数=偶函数,偶函数?偶函数=偶函数 奇函数?偶函数=奇函数 二、习题精练 1、(1)证明函数2()f x x x =+在)+∞上递增 (2)证明函数2()f x x x =-在()0,+∞上递增。 2、(1)找出函数223y x x =-++的增区间 (2)找出223y x x =-++的减区间 3、(1)函数[)2 ()485,f x x kx =--+∞在区间上单调递增,求实数k 的取值范围。 (2)函数[)2 ()485,f x x kx =--+∞的增区间为,求实数k 的取值范围。 4、(1)已知函数{22,12,1 ()x ax x ax x f x -+<+≥=是R 上的增函数,求a 的范围 (2)已知函数{2(4),2 416,2()x a x x ax x f x -<+-≥=是R 上的增函数,求a 的范围 5、求函数21y x =- 6、 已知函数()y f x =在区间(0,)+∞单调递减,请填空。

高一数学必修一函数及其表示-函数的概念

1.2函数及其表示 §1.2.1函数的概念 【教学目的】 1、使学生理解函数的概念,明确决定函数的定义域、值域和对应法则三个要素; 2、理解函数符号的含义,能根据函数表达式求出定义域、值域; 3、使学生能够正确使用“区间”、“无穷大”的记号; 4、使学生明白静与动的辩证关系,激发学生学习数学的兴趣和积极性。 【教学重点】 在对应的基础上理解函数的概念 【教学难点】 函数概念的理解 【教学过程】 一、复习引入 〖提问〗初中学习的(传统)的函数的定义是什么?初中学过哪些函数? 〖回答〗设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数,并将自变量x 取值的集合叫做函数的定义域,和自变量x 的值对应的y 值叫做函数值,函数值的集合叫做函数的值域,这种用变量叙述的函数定义我们称之为函 数的传统定义。 〖讲述〗初中已经学过:正比例函数、反比例函数、一次函数、二次函数等。 〖提问〗问题1:y =1(x ∈R )是函数吗? 问题2:y =x 与y = x x 2 是同一函数吗? 〖投影〗观察对应: 〖分析〗观察分析集合A 与B 之间的元素有什么对应关系? 二、讲授新课 函数的概念 (一)函数与映射 〖投影〗函数:设A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个

数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =)(x f ,x ∈A 。其中x 叫自变量,x 的取值范围A 叫做函数y =)(x f 的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{)(x f |x ∈A},叫做函数y =)(x f 的值域。 函数符号y =)(x f 表示“y 是x 的函数”,有时简记作函数)(x f 。 函数的三要素:对应法则f 、定义域A 、值域{)(x f |x ∈A} 注:只有当这三要素完全相同时,两个函数才能称为同一函数。 映射:设,A B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射. 如果集合A 中的元素x 对应集合B 中元素y ,那么集合A 中的元素x 叫集合B 中元素y 的原象,集合B 中元素y 叫合A 中的元素x 的象. 映射概念的理解 (1)映射B A f →:包含三个要素:原像集合A ,像集合B(或B 的子集)以及从集合A 到集合B 的对应法则f .两个集合A,B 可以是数集,也可以是点集或其他集合.对应法则f 可用文字表述,也可以用符号表示.映射是一种特殊的对应关系,它具有: (1)方向性:映射是有次序的,一般地从A 到B 的映射与从B 到A 的映射是不同的; (2)任意性:集合A 中的任意一个元素都有像,但不要求B 中的每一个元素都有原像; (3)唯一性:集合A 中元素的像是唯一的,即不允许“一对多”,但可以“多对一”. 函数与映射的关系 函数是一种特殊的映射.映射与函数概念间的关系可由下表给出. 映射B A f →: 函数B y A x x f y ∈∈=,),( 集合A,B 可为任何集合,其元素可以是物,人,数等 函数的定义域和值域均为非空的数集 对于集合A 中任一元素a ,在集合B 中都有唯一确定的像 对函数的定义域中每一个x ,值域中都有唯一确定的值与之对应 对集合B 中任一元素b ,在集合A 中不一定有原像 对值域中每一个函数值,在定义域中都有确定的自变量的值与之对应 函数是特殊的映射,映射是函数的推广. 〖注意〗(1)函数实际上就是集合A 到集合B 的一个特殊对应f :A →B 。这里A ,B 为非空的数集。 (2)A :定义域,原象的集合;{)(x f |x ∈A}:值域,象的集合,其中{)(x f |x ∈A}?B ;f :对应法则,x ∈A ,y ∈B (3)函数符号:y =)(x f ,y 是x 的函数,简记) (x f 〖回顾〗(二)已学函数的定义域和值域: 1、一次函数)(x f =ax +b (a ≠0):定义域R ,值域R 2、反比例函数)(x f = x k (k ≠0):定义域{x |x ≠0},值域{y | y ≠0} 3、二次函数)(x f =ax 2 +bx +c (a ≠0):定义域R ,值域:当a >0时,{y |y ≥a b a c 442 -};

必修一函数的单调性题型归纳

函数的单调性与最值 一、知识点归纳 1、函数单调性的性质: (1)增函数:如果对于属于定义域内某个区间上的任意两个自变量的值,当时, 都有,. (2)减函数:如果对于属于定义域内某个区间的任意两个自变量的值,当时, 都有, . (3)函数的单调性还有以下性质. 1、函数与函数的单调性相反. 2、当恒为正或恒为负时,函数与的单调性相反. 3、在公共区间内,增函数+增函数=增函数,增函数-减函数=增函数等. 4、如果,函数与函数具有相同的单调性.(如果,单调性相反.) 若,则函数与具有相反的单调性. 若,函数与函数具有相同的单调性. (若,单调性相反.) 函数在上具有单调性,则在上具有相反的单调性. 2、复合函数的单调性。 定义:如果函数,则称为的复合函数。 复合函数的单调性的判断:同增异减。 I 12,x x 12x x <()()12f x f x <()()1212 0f x f x x x ->-I 12,x x 12x x <()()12f x f x >()()12120f x f x x x -<-()f x ()f x -()f x () 1f x ()f x 0k >()kf x ()f x 0k <()0f x ≠() 1f x ()f x ()0f x >()f x ()f x ()0f x <()f x R ()f x -R ()(),,,u g x x A u A y f u =∈∈=()y f g x =????x

二、例题精讲 题型一、单调性讨论或证明 定义法证明单调性的等价形式:设,那么 在上是增函数; 在上是减函数. 例1、(不含参)证明:21)(x x f = 在()0,∞-上是增函数. 变式1、判断在上的单调性. 例2、(含参)求函数在区间内的单调性. 例3、(抽象函数)设()y f x =的单增区间是(2,6),求函数(2)y f x =-的单调区间. 题型二、比较函数值的大小 例4、已知函数)(x f y =在[)+∞,0上是减函数,试比较)4 3 (f 与)1(2+-a a f 的大小. []1212,,,x x a b x x ∈≠()()()()()()12121212 00f x f x x x f x f x f x x x --->?>?????-[],a b ()()()()()()12121212 00f x f x x x f x f x f x x x ----()1,1-

相关文档 最新文档