文档库 最新最全的文档下载
当前位置:文档库 › 大学物理化学汇总..

大学物理化学汇总..

大学物理化学汇总..
大学物理化学汇总..

物理化学习题汇总

一、填空题

1.一定量的某理想气体,经过节流膨胀,此过程的ΔU =0 ,ΔH =0,ΔS >0,ΔG <0.(填>,<,=0或无法确定)

热力学第三定律可表示为:在绝对0K,任何物质完美晶体的熵值为零。

2.理想气体状态方程的适用条件:理想气体;高温低压下的真实气体。

3.可逆膨胀,体系对环境做最大功;可逆压缩。环境对体系做最小功。

4.可逆相变满足的条件:恒温,恒压,两相平衡。

5.可逆循环的热温商之和等于零,可逆过程的热温商 = dS.

6.自发过程都有做功的能力,反自发过程需环境对系统做功,自发过程的终点是平衡态。

10.理想气体在等温条件下反抗恒定外压膨胀,该变化过程中系统的熵变ΔSsys > 0 及环境的熵变ΔSsur < 0 。

(理想气体等温膨胀,体积增加,熵增加,但要从环境吸热,故环境的熵减少。)11.在50℃时,液体A的饱和蒸汽压是液体B的饱和蒸汽压的3倍,A和B两液体形成理想液态混合物,达气液平衡时,液相中A的摩尔分数为0.5,则气相中B的摩尔分数yB为______。

0.25yB=PB/P=PB*xB/(PA*xA+PB*xB)

13.道尔顿定理的内容:混合气体的总压力等于各组分单独存在于混合气体的温度体积条件下所产生压力的总和。

14.热力学第二定理表达式 ds ≧ &Q / T 。

15.熵增原理的适用条件绝热条件或隔离系统。

16.353.15K时苯和甲苯的蒸气压分别为100KPa和38.7KPa二者形成混合物,其平衡气相的组成Y苯为0.30,则液相的组成X苯为 0.142 。

17.在室温下,一定量的苯和甲苯混合,这一过程所对应的DH大约为 0 。

18.反应能否自发进行的判据。

答案:dS条件是绝热体系或隔离系统,(dA)T,V,Wf=o0,(dG)T,P,Wf。

20.节流膨胀的的定义。

答案:在绝热条件下气体的的始末态压力分别保持恒定不变情况下的膨胀过程。

21.吉布斯-杜亥姆方程描述了的相互变化关系。

答案:各组分偏摩尔量的变化。

22.绝热可逆过程;Q= 0;W= rU =nRTlnv1/v2; rH =nCpmrT;rS=0;rG= nCpmrT; rA= nRTlnv1/v2.

答:绝热过程的Q=O,并且根据可逆功的计算公式便可得出一系列值。

23.当产生制冷效应是,节流膨胀系数Uj-t=﹤0 。

答:节流膨胀dp﹤0,制冷dt>0,异号,所以小于零。

24.两个不同温度的热源之间工作的所有热机,以可逆热机效率最大。

答:在卡诺循环中,两个绝热可逆过程做功相同,符号相反。两个恒温可逆过程,因可逆过程功最大。因此两个恒温可逆过程功加和最大,所以卡诺循环效率最大。

25.可逆相变的条件是:恒温,恒压,两相平衡。可逆相变过程熵变计算:rβαS=nrβαHm/T.

26.对于纯物质,其化学势就等于它的摩尔吉布斯函数;对于混合物或溶液中组分B的偏摩尔吉布斯函数GB定义为B的化学势。

27.理想气体在微观上具有那两个特征:分子间无相互作用力,分子本身不占体积。

28.节流膨胀为恒焓过程。

29.在绝热条件下,系统发生不可逆过程其熵增加。

30.在理想气体的单纯PVT变化过程中,不论过程与否,系统的热力学能量增量ΔU均可由Cv,m借助来计算。

注:因为恒容,W=0,Q=ΔU,而不恒容时,Q≠ΔU。

答案:恒容ΔU= nCv,mΔT

O,g)在100℃,101.325 kPa下全部凝结成液态水。求过程31.1mol水蒸气(H

2

的功W= 。

注:W=﹣Pamb﹙V1-V2﹚≈Pamb Vg﹙液态的水体积很小,可以不计﹚=P﹙nRT /P﹚=RT。

答案:3.102kJ

32.一定量理想气体经节流膨胀过程,μj-t= ;ΔH= ; Δ

U ;W= ;气体的ΔS= ;ΔG= ;ΔA= 。

注:因为是绝热的,所以ΔT=0,ΔQ=0,ΔV=0,所以W=ΔU=0,ΔH=0,所以由ΔQ/T得ΔS,ΔG、ΔA有定义式得出答案。

答案:0,0,0,0,0,0,0。

答案:92.87℃。

35.计算下列各恒温过程的熵变(气体看作理想气体)。

答:(1) nARln(V/VA) + nBRln(V/VB) = 0 (2) nRln(2V/2V) = 0

39.气体氦自初态273.2K,1013.25kPa,10dm3经绝热可逆过程膨胀至101.325KPa。分别求出该过程的终态体积、温度及过程的Q=--------、W=--------、ΔU=--------- 和ΔH=--------。

解析γ=5/3

n=PV/RT=1013250×10×10-3/8.314×273.2=4.461mol

∵ p

1V

1

γ=p

2

V

2

γ

V

2=39.81dm3 ; T

2

=P

2

V

2

/nR=108.76K

Q=0 ; W=△U=nCv,m(T

2-T

1

)=-9148.3J

△H=nCp,m(T

2-T

1

)=-15247.2J

40.等温可逆过程中:du=---------,Q=---------,△H=--------.△A=----------,△G=----------,△S=----------.

解析:du=0,Q=-W=nRTIn(V终/V始),△H=0,,△A=△G=-T△S=nRTIn(V始/V终), △S=Q/T=nRTIn(V终/V始)

41.在绝热条件下,气体的始末态压力分别保持恒定不变的膨胀过程称为节流膨胀。

42. 1mol理想气体在等温下通过可逆膨胀至体积增加到10倍,其熵ΔS=-----------。

等温可逆膨胀

解析:

J/K

19.14

10

ln

3145

.

8

1

ln

)

(

1

1

1

2

=

?

?

=

=

=

?

=

?

V

V

V

V

nR

T

Q

S

S

R

sys

43.恒温100。C下,在带有一活塞的气缸中装有3.5mol的水蒸气H

2

O(g),当缓

慢地压缩到压力p=101.325kPa时才可能有水滴H

2

O(l)出现。

解析:因为100。C时水的饱和蒸汽压为101.325kPa,故当压缩至p=101.325时候才会有水滴出现。

44.系统内部及系统与环境之间,在一系列无限接近平衡条件下进行的过程,称为可逆过程。

45.在一个体积恒定为2m3,W`=0的绝热反应器中,发生某化学反应是系统温度升高1200。C,压力增加300kPa,此过程的ΔU=0;ΔH=600KJ。

解析:ΔH=Δu+Δ(pv)=VΔP=600KJ

46.在300K的常压下,2mol的某固体物质完全升华过程的体积功W=-4.99KJ。

解析:W=-pΔV=-pV

B

=-npt=(-2*8.314*3000)J=-4.99KJ

47.一定量单原子理想气体经历某过程的Δ(pv)=20KJ,则此过程的ΔU=30KJ;ΔH=50KJ。

解析:ΔU=nCv,mΔT=n*1.5R*ΔT=30KJ,ΔH=nCp,mΔT=n*2.5R*ΔT=50KJ

48.绝热恒压状态下,终态温度升高,体积增大,其过程的W<0, ΔU<0, ΔH=0. 解析:在恒压,体积增大条件下,W(-p×δv)<0,在绝热状态下,Q=0,ΔU=Q+W<0,ΔH=ΔU+Δ(pv), ΔU=-Δ(pv), ΔH=0.

49.温度为400Κ,体积为2立方米的容器中装有2mol的理想气体A和8mol的理想气体B,则该混合气体中B的分压力PB=13. 302ΚPa。

解析:由道尔顿定律得:PB=nBRT/V=(8×8.314×400/2)Pa=13.302ΚPa. 52.加压的液态氨NH3(l)通过节流阀迅速蒸发为NH3(g),则此过程的ΔU<0,ΔH=0,ΔS>0.

解析:ΔU=ΔH-Δ(PV)=-Δ(PV)=-P2Vg+P1Vl<0;节流膨胀过程ΔH=0,Q=0,液体向气体转变过程中的混乱度增加,所以ΔS>0。

56.反应2N

2(g) +3H

2

(g) 2NH

3

(g),已知△

Go

(NH

3

)=-16.

5 kJ·mo l-1,△

r Ho

=90.0 kJ·mol-1,△

r

So

=0.20 kJ·mol-1·K-1。则在标

准态下逆向进行的最低温度为450K。

57.1mol单原子理想气体始态为273K、pθ,若经历恒温下压力加倍的可逆过程,则该过程的⊿S=-5.763 J·K-1,⊿A=1573 J。

59.卡诺认为:“————————”这就是卡诺定理。

(所有工作在同一高温热源与低温热源之间的热机,其效率都不能超过可逆机) 60.A物质溶解于互不相容的a和b两相中,该物质在a和b相中分别以A和A2的形式存在,当两相达到平衡时,该物质在两相中的化学势有下列关系:————。

61.理想气体经节流膨胀,dS_0,dG_0(><)。

62.在衡熵恒容只做体积功的封闭体系里,当热力学函数达到——最——值时,体系处于平衡状态。(U 小)

68.系統由相同的始态经过不同的途径达到相同的末态,若途径a的Qa=2.078KJ,Wa=—69.157KJ,而途径b的Qb=—0.692KJ。则Wb=()。

答案:—1.387KJ

解析:状态函数热力学能的改变量只与系统的始末态有关,

根据热力学第一定律,△U=W+Q,有,

△ U=Wa+Qa=Wb+Qb,

故Wb=Wa+Qa—Qb=(—4.157+2.078+0.692)KJ=—1.387KJ。

72.理想气体发生绝热可逆膨胀过程后,系统的△U

答案:△U=0

73.理想气体的混合过程,混合过程△Smix:

答案:△Smix=0

74.化学势的正确表达式是()

答案:(?G/?nB)T,P,n

75.恒温恒压下的一切相变化必然朝着化学势()的方向自动进行。

答案:减小。

1.理想气体节流膨胀时△H_0, △U_0(>、=、<)。

2.有两个可逆热机,热机1在800K与400K的两热源间工作,热机2在600K与200K的两热源间工作,则两热机的工作效率η1_η2(>、=、<)。

3.一封闭体系进行可逆循环,其热温商之和_0(>、=、<)。

4.对于隔离系统中的任意过程有△U_0(>、=、<)。

答案:1.= = 2.< 3.= 4.=

8. 选择“>”、“<”、“=”中的一个填入下列空格:理想气体经节流膨胀,ΔS _____ 0,ΔG _____ 0

8.[答] > , <

因为理想气体经节流膨胀后温度不变,而压力降低,体积增大。

所以ΔS = nRln(V2/V1) > 0,ΔG = nRTln(p2/p1) < 0 。

13.一定量的理想气体,从同一初态分别经历等温可逆膨胀、绝热膨逆膨胀到具有相同压力的终态,终态体积分别为V1、V2,得 V1 > V2。

答案:因绝热过程无法从环境吸热,则同样温度下压力较低,体积较小。

14. 理想气体在恒温条件下,经恒外压压缩至某一压力,此变化中体系的熵变ΔS体及环境的熵变ΔS环应为:ΔS体 < 0, ΔS环 > 0。

答案:理想气体恒温压缩混乱度减小,故熵减小;而理想气体恒温压缩时内能不变,得到的功要以热的形式释放给环境,故环境得到热ΔS环 > 0。

19.说明下列有关功的计算公式的使用条件

(1)W=-p(外)ΔV

(2)W=-nRTlnV2/V

(3)W≈-pV=-nRT

(4)W=CvΔT

dVpW)(外可知:

(1)外压恒定过程。则W=-p(外)ΔV。

(2)理想气体恒温可逆过程。此时p(外)=p(内),pV=nRT,

(3) 液体在恒温恒压条件下

(4) 理想气体的绝热过程

20.在一定温度下,发生变化的孤立体系,其总熵________

解:总是增大,因孤立系发生的变化必为自发过程,根据熵增原理其熵必增加

21.理想气体经历等温可逆过程,其熵变的计算公式是:

ΔS =nRln(V2/V1)

22.在101.325kPa 下,385K 的水变为同温下的水蒸汽。对于该变化过程, ΔS

体+ΔS 环___0

解:大于,因该变化为自发过程

23. 系统由相同的始态经过不同途径达到相同的末态。若途径a 的Q a =2.078kJ ,

W a = -4.157kJ ;而途径b 的Q b = -0.692kJ 。求W b ( )

解:因两条途径的始末态相同,故有△U a =△U b ,则 b b a a W Q W Q +=+

所以有,kJ Q W Q W b a a b 387.1692.0157.4078.2-=+-=-+=

24. 4mol 某理想气体,温度升高20℃,求△H -△U( )

解:

665.16J

208.3144 )20()( 2020,,20,20,=??=-+==-=-=?-?????

++++T K T nR nRdT dT C C n dT nC dT nC U H K

T T K T T m V m p K T T m V K T T

m p

26. 始态为T 1=300K ,p 1=200kPa 的某双原子气体 1 mol ,经下列不同途径变化

到T 2=300K ,p 2=100 kPa 的末态, 恒温可逆膨胀Q( )△S( )

解: 恒温可逆膨胀,dT =0,△U = 0,根据热力学第一定律,得

)/ln(12p p nRT W Q -=-=

= {- 1×8.314×300×ln (100/200)} J = 1729 J=1.729 kJ

)/ln(12p p nR S -=?= {- 1×8.314×ln (100/200)} J ·K -1 = 5.764 J ·K -1

28.卡诺热机的效率只与 ___________ 有关,而与________ 无关.答案详

解:根据定义可知为 两个热源的温度 工作物质

29. 已知下列反应的平衡常数:H2(g) + S(s) = H2S(s)为K1 ;

S(s) + O2(g) = SO2(g)为K2 。则反

应 H2(g) + SO2(g) = O2(g) + H2S(g)的平衡常数为

________ ( K1/K2。由反应式可知,K= K1/K2)

31.已知温度T 时,液体A 的蒸气压为13330Pa ,液体B 的蒸气压为6665Pa ,设

A 与

B 构成理想液体混合物,则当A 在溶液中摩尔分数为0.5时,其在气相中的

尔分数为________.

()Pa x p x p p B B A A 199955.06665133305.0**?=+?=?+?=

33.恒温恒压下,在a 与b 组成的均相体系中,若a 的偏摩尔体积随溶度的改变

而增加,则b 的偏摩尔体积将如何变化?

减小,吉布斯-杜亥姆公式

36.体系经历一个不可逆循环后--------------------? 环境的熵一定增加。

.37.公式?G W ='的适用条件是封闭系统 , 等温等压可逆过程。

2.按系统与环境之间物质及能量的传递情况,系统可分为敞开系统、封闭系统、

隔离 系统。

47.若某状态下的空气经节流膨胀过程的?(pV )>0,则μJ-T (无法确定);?H

(=0)?U

=(-?(pV )<0)。

选择填入:(a )>0;(b )=0;(c )<0;(d )无法确定。

48.绝热恒压状态下,终态温度升高,体积增大,其过程的W<0, ΔU<0, ΔH=0.

解析:在恒压,体积增大条件下,W(-p ×δv)<0,在绝热状态下,Q=0,ΔU=Q+W<0,

ΔH=ΔU+Δ(pv), ΔU=-Δ(pv), ΔH=0.

51. 理想气体的微观特征是(理想气体的分子间无作用,分子本身不占有体积)。

在临界状态下,任何真实气体的宏观特征是(气相,液相不分)。

52.封闭系统由某一始态出发,经历一循环过程,此过程的△U (=0);△H (=0),

Q 与W 关系是(Q=-W ),但Q 与W 数值(无法确定),因为(循环过程具体途径未

知)。

32199955.0133305.0=??=Pa Pa y A

53.理想气体经节流膨胀后△U(=)0,△S(>)0,△G(<)0

54.某系统进行不可逆循环后, 其系统的(S=0,环境的S>0)

55.热力学第二定律告诉我们只有(可逆)过程的热温商才与体系的熵变相等。

56.在等温等压,不作其它功的条件下,自发过程总是向着吉布斯自由能(减小)的方进行

57.在(绝热条件)下气体的始末态压力分别(保持恒定不变)得情况下地膨胀过程称为(节流膨胀)

58.一定量的某种理想气体,在确定该气体状态时,只需要说明系统的(T,p)【对于定量定组成的均相系统,所有状态函数中只有两个独立变量。】

61.在恒熵、恒容不做非体积功的封闭体系中,当热力学函数___到达最___值的状态为平衡状态。 U;小

65.当溶液中的溶质浓度增大时,溶质化学势()(增大、减小、不变)

67.1摩尔理想气体等温膨胀使终态体积等于终态体积的100倍,其熵变为()38.29J/k

二、选择题

1.在273k,标准压力下,冰融化成水的过程中,下列正确的是(B)

A:w<0 B:dH=Qp c:dH<0 D:dU

2.任一体系经一循环过程回到始态,则不一定为零的是(D)

A:dG B:dS C:dU D:Q

3.下面的说法符合热力学第一定律的是

(A) 在一完全绝热且边界为刚性的密闭容器中发生化学反应时,其内能一定变化

(B) 在无功过程中, 内能变化等于过程热, 这表明内能增量不一定与热力学过程无关

(C) 封闭系统在指定的两个平衡态之间经历绝热变化时, 系统所做的功与途径无关

(D) 气体在绝热膨胀或绝热压缩过程中, 其内能的变化值与过程完成的方式无关

答案:C。因绝热时ΔU=Q+W=W。(A)中无热交换、无体积功故ΔU=Q+W=0。(B)在无功过程中ΔU=Q,说明始末态相同热有定值,并不说明内能的变化与过程有关。(D)中若气体绝热可逆膨胀与绝热不可逆膨胀所做的功显然是不同的,故ΔU亦是不同的。这与内能为状态函数的性质并不矛盾,因从同一始态出发,经绝热可逆膨胀与绝热不可逆膨胀不可能到达同一终态。

4.理想气体自由膨胀与范德华气体绝热自由膨胀的区别在于范德华气体经绝热自由膨胀后

(A) ΔH≠0 (B) W=0 (C) ΔU≠0 (D) Q=0

答案:A。上述两过程因绝热和不做功故W与Q均为零。于是ΔU亦均为零。理想气体自由膨胀的焓未变,但范德华气体绝热自由膨胀的焓却不等于零。因为真实气体的焓不仅是温度的函数也是压力或体积的函数。

6.在一绝热恒容箱中, 将NO(g)和O2(g)混合,假定气体都是理想的, 达到平衡后肯定都不为零的量是

(A) Q, W, ΔU (B) Q, ΔU, ΔH (C) ΔH, ΔS, ΔG (D) ΔS, ΔU, W

答案:C。此条件下Q、W和ΔU都为零。由ΔH=ΔU+Δ(pV)可见反应前后压力有变化故ΔH不为零,微观状态数有变化故ΔS不为零,ΔG=ΔH-Δ(TS)亦不为零。

7.理想气体在恒温条件下,经恒外压压缩至某一压力,此变化中体系的熵变ΔS 体及环境的熵变ΔS环应为:

(A)ΔS体>0,ΔS环<0(B)ΔS体<0,ΔS环>0(C)ΔS体>0,ΔS环=0(D)ΔS体<0,ΔS环=0

答案:B。理想气体恒温压缩混乱度减小,故熵减小;而理想气体恒温压缩时内能不变,得到的功要以热的形式释放给环境,故环境得到热ΔS环>0。

8.关于吉布斯函数G, 下面的说法中不正确的是

(A) ΔG≤W',在做非体积功的各种热力学过程中都成立

(B)在等温等压且不做非体积功的条件下对于各种可能的变动系统在平衡态的吉氏函数最小

(C) 在等温等压且不做非体积功时,吉氏函数增加的过程不可能发生

(D) 在等温等压下,一个系统的吉氏函数减少值大于非体积功的过程不可能发生答案:A.因只有在恒温恒压过程中ΔG≤W'才成立。

9.关于热力学第二定律下列哪种说法是错误的

(A) 热不能自动从低温流向高温

(B) 不可能从单一热源吸热做功而无其它变化

(C) 第二类永动机是造不成的

(D) 热不可能全部转化为功

答案:D。正确的说法应该是,热不可能全部转化为功而不引起其它变化

10.对于一个封闭系统,下列说法中正确的有:( D )。

( A ) 等容绝热过程ΔU = 0; ( B ) 等容过程所作的功等于零;

( C ) 绝热过程;ΔU=-∫pdv; ( D ) 循环过程ΔU = 0。

11. 在373K和标准大气压下,水汽化为蒸汽,由于过程的温度和压力都恒定,所以( D )

(A)ΔU=0 (B)ΔH=0 (C)ΔH<0 (D)ΔH>0

12、对于组成恒定的系统,下列偏导数何者小于零:( B )

(A )P S H )(??; (B )T V A )(??; (C )V S U )(??; (D )T P G )(??

13. 理想气体进行绝热自由膨胀,下列各组答案正确的是( A )

(A )△S >0 △U=0 (B )△S <0 △U <0

(C )△S=0 △U=0 (D )△S=0 △U <0 14. 下述过程,体系的ΔG何者为零?

(A) 理想气体的等温膨胀 (B) 孤立体系的任意过程 (C) 在100℃,101325Pa 下1m o l 水蒸发成水汽 (D )绝热可逆过程

答案:C 可逆相变ΔG 为零

15. 关于熵的性质下面的说法中不正确的是

(A) 环境的熵变与过程有关

(B) 某些自发过程中可以为系统创造出熵

(C) 熵变等于过程的热温商

(D) 系统的熵等于系统内各部分熵之和

答案:C 。正确的说法应为熵变等于过程的可逆热温商。

16. 关于亥姆霍兹函数A 下面的说法中不正确的是

(A) A 的值与物质的量成正比

(B) 虽然A 具有能量的量纲但它不是能量

(C) A 是守恒的参量

(D) A 的绝对值不能确定

答案:C

17.B 物质在α相中的浓度大于在β相中的浓度,当两相接触时,有(D )

A B 由α相向β转移 B B 由β相向α相转移 C B 在两项中处于平衡 D 无法确定

22.在体积为V 、温度为T 及压力为P 的系统中,反应PCl5(g)? PCl3 (g) + Cl2 (g)处于平衡状态,若保持T 不变,增加气体总压,使系统体积变为1/2V ,则AB 的解离度( C )

(A )不变 (B )增加 (C )减少 (D )无法确定

23.在同一温度下,某气体物质的摩尔定压热容Cp,m 与摩尔定容热容C v ,m 之间的

关系为:(B)

(A)Cp,mCv,m

(C)Cp,m=C v,m (D)难以比较

Cp,m-Cv,m=R

24.某体系在非等压过程中加热,吸热Q,使温度从T1升至T2,则此过程的焓增量ΔH为:(C)

(A)ΔH=Q ; (B)ΔH=0 ;

(C)ΔH=ΔU+Δ(PV) ;(D)ΔH等于别的值

25.对偏摩尔体积有下列描述,其正确的是:(C)

(A)偏摩尔体积是某组分在溶液中所占有的真实体积

(B)偏摩尔体积具有加和性

(C)偏摩尔体积有可能是负值

(D)体系中所有组分的偏摩尔体积都是互不相关的

29.理想气体在等温条件下,经恒外压压缩至稳定,此变化中的体系熵变?S体及环境熵变?S环应为:(B)

(A)?S体>0,?S环<0 (B)?S体<0,?S环>0 (C)?S体>0,?S环=0 (D)?S体<0,?S环=0

解析:变化前后理想气体的温度不变,但体积减小,所以ΔS体<0;若把体系和环境加在一起看作一个新的孤立体系,则经此变化后,孤立体系经历的是不可逆变化,所以ΔS孤立=ΔS体+ΔS环>0;因此ΔS环>0。

30.下列定义式中,表达正确的是( B )。

A.G=H+TS

B. G=A+PV

C. A=U+TS C. H=U—PV

31.在一个绝热钢瓶中,发生一个放热的分子数增加的化学反应,那么( C )

A.Q>0,W>0,ΔU>0

B.ΔQ=0,W=0,ΔU<0

C.Q=0,W=0,ΔU=0

D.Q<0,W>0,ΔU<0

32.关于热力学可逆过程,下面的说法中不正确的是

(A) 可逆过程不一定是循环过程

(B) 在等温可逆过程中,系统做功时,系统损失的能量最小

(C) 在等温可逆过程中,环境做功时,系统得到的功最小

(D) 可逆过程中的任何一个中间态都可从正逆两个方向到达

答案:B。因可逆过程系统做最大功,故系统损失的能量最大

33. 氢气和氧气在绝热钢瓶中生成水

(A)ΔS=0(B) ΔG=0(C) ΔH=0(D) ΔU=0

答案:D。绝热钢瓶中进行的反应无热交换、无体积功,即Q=W=0,故ΔU=0。此过程为绝热不可逆过程故ΔS>0。此过程恒容ΔH=ΔU+Δ(pV)=VΔp,因Δp不等于零故ΔH亦不为零。恒温、恒压不做其它的可逆过程ΔG=0,上述过程并非此过程。

36.2mol A物质和3mol B物质在等温等压下混和形成液体混合物,该系统中A 和B的偏摩尔体积分别为1.79x10-5m32mol-1, 2.15x10-5m32mol-1, 则混合物的总体积为:

(A)9.67 10-5m3

(B)9.8510-5m3

(C)1.003 10-4m3

(D)8.9510-5m3

答案:C。V=nAVA+nBVB。

37. 对任一过程,与反应途径无关的是

(A) 体系的内能变化

(B) 体系对外作的功

(C) 体系得到的功

(D) 体系吸收的热

答案:A。只有内能为状态函数与途径无关,仅取决于始态和终态。

38.在一绝热恒容箱中, 将NO(g)和O2(g)混合,?假定气体都是理想的, 达到平衡后肯定都不为零的量是

(A) Q, W, ΔU

(B) Q, ΔU, ΔH

(C) ΔH, ΔS, ΔG

(D) ΔS, ΔU, W

答案:C。此条件下Q、W和ΔU都为零。由ΔH=ΔU+Δ(pV)可见反应前后压

力有变化故ΔH不为零,微观状态数有变化故ΔS不为零,ΔG=ΔH-Δ(TS)亦不为零。

2. .理想气体恒温条件下反抗恒外压膨胀,则

(1)ΔH=ΔU+Δ(pV),ΔU=0,Δ(pV)=0,故ΔH=0

(2)ΔH=ΔU+pΔV,ΔU=0,pΔV≠0,故ΔH≠0

上面两个考虑问题的方法哪个是正确的?

答:方法(1)是正确的。理想气体内能只是温度的函数,因恒温故ΔU=0,理想气体恒温下pV=nRT为常数,故Δ(pV)=0。方法(2)的错误在于H=U+pV 中的p 是指系统的压力。在反抗恒外压膨胀过程中,系统的压力既不是常数亦不等于外压,因此不能认为Δ(pV)=pΔV。

3. 在下列过程中, ΔG=ΔA的是

(A) 液体等温蒸发 (B) 气体绝热可逆膨胀

(C) 理想气体在等温下混合 (D) 等温等压下的化学反应

答案:C。由ΔG=ΔA+Δ(pV)可知若Δ(pV)=0则ΔG=ΔA

7. 涉及焓的下列说法中正确的是( )

(A) 单质的焓值均等于零

(B) 在等温过程中焓变为零

(C) 在绝热可逆过程中焓变为零

(D) 化学反应中系统的焓变不一定大于内能变化

正确答案:D 因为焓变ΔH=ΔU+Δ(pV),可以看出若Δ(pV)<0则ΔH<ΔU。

9.在一定温度下,发生变化的孤立体系,其总熵()(A )不

变(B) 可能增大或减小

(C ) 总是减小 (D)总是增大

正确答案:D 因孤立系发生的变化必为自发过程,根据熵增原理其熵必增加。

10. 氮气进行绝热可逆膨胀()

(A)ΔU=0(B) ΔS=0

(C) ΔA=0(D) ΔG=0

正确答案:B 绝热系统的可逆过程熵变为零。

15.在一绝热恒容箱中, 将NO(g)和O2(g)混合,?假定气体都是理想的, 达到

平衡后肯定都不为零的量是

(A) Q, W, ΔU (B) Q, ΔU, ΔH (C) ΔH, ΔS, ΔG (D) ΔS, ΔU, W

答案:C 。此条件下Q 、W 和ΔU 都为零。由ΔH =ΔU +Δ(pV )可见反应前后压力有变化故ΔH 不为零,微观状态数有变化故ΔS 不为零,ΔG =ΔH -Δ(TS )亦不为零。

16 在下列过程中, ΔG =ΔA 的是

(A) 液体等温蒸发 (B) 气体绝热可逆膨胀

(C) 理想气体在等温下混合 (D) 等温等压下的化学反应 答案:C 。由ΔG =ΔA +Δ(pV )可知若Δ(pV )=0则ΔG =ΔA

17 理想气体在恒温条件下,经恒外压压缩至某一压力,此变化中体系的熵变ΔS 体及环境的熵变ΔS 环应为:

(A) ΔS 体 > 0, ΔS 环 < 0 (B) ΔS 体 < 0, ΔS 环 > 0 (C) ΔS 体 > 0, ΔS 环 = 0 (D) ΔS 体 < 0, ΔS 环 = 0

答案:B 。理想气体恒温压缩混乱度减小,故熵减小;而理想气体恒温压缩时内能不变,得到的功要以热的形式释放给环境,故环境得到热ΔS 环 > 0

三、计算题

1、5mol 单原子理想气体从始态300K 、50KPa 状态下,先绝热可逆压缩至100Kpa ,再恒压冷却使其体积缩小至85dm3,求整个过程的W 、Q 、△U

H 及△S 。 解:由绝热可逆方程T 2=204.47K

ΔU =nC V,m (T 2?T 0)= =-5.957kJ

ΔH =nC P,m (T 2?T 0)= =-9.929kJ

ΔS =ΔS 1+ΔS 2 =ΔS 2=nC p,m ln T 2/T 1 =-68.659J.K

-1 Q=Q 1+Q 2= nC P,m (T 2

?T 1)=-19.89KJ W=ΔU-Q=13.93 KJ

2.1 mol He (假设为理想气体)其始态为3122.4 dm V =、1273 K T =,经由一任

意变化到达终态为52210Pa p =?、2303 K T =。试计算此过程中系统的S ?。

解: ()31115

8.31427322.410Pa 1.10310Pa p nRT V -??==????=?

22

,m 11

5-1-15ln ln 53032101 ln ln J K 3.48 J K 2273 1.10310p T p S nC nR T p R R ?=-???=?-?=-? ????

3. 2 mol 某单原子分子理想气体其始态为510Pa ,273 K ,经过一绝热压缩过程

至终态为5410Pa ?,546 K 。试求算S ?,并判断此绝热过程是否可逆。 解:

22,m 11

5-1-15ln

ln 54641028.314 2.5ln ln J K 5.76 J K 27310p T p S nC nR T p ?=-???=???-?=? ??

? 绝热过程0=Q ,则0=T Q ,所以,T

Q S >?,此过程为不可逆。

大学物理化学实验全集

实验六.二组分固-液体系相图的绘制 一、实验目的 (1)热分析法测绘Sn-Bi二元合金相图 (2)掌握热分析法的测量技术 (3)掌握热电偶测量温度的基本原理以及数字控温仪和升降温电炉的使用方法 二、实验原理 用几何图形来表示多相平衡体系中有哪些相,各相的成分如何,不同相的相对量是多少,以及它们随浓度、温度、压力等变量变化的关系图叫相图。以体系所含物质的组成为自变量,温度为应变量所得到的T-x图就是常见的一种相图。 绘制相图的方法很多,热分析法就是常用的一种实验方法。即按一定比例配成一两组分体系,将体系加热到熔点以上成为液态,然后使其逐渐冷却,每隔一定时间记录一次温度,以体系的温度对时间的关系曲线称为步冷曲线。熔融体系在均匀冷却过程中无相变时,其温度将连续均匀下降,得到一条平滑的冷却曲线,当冷却过程中发生相变时,放出相变热,使热损失有所抵偿,冷却曲线就会出现转折。当两组分同时析出时,冷却速度甚至变为零,冷却曲线出现水平段。转折点或平台所对应的温度,即为该组成合金的相变温度。 取一系列组成不同的二元合金,测得冷却曲线,再将相应的转折点连接起来即得到二元合金相图(如下图所示) 三、实验所用仪器、试剂 1.KWL-09可控升降温电炉,SWKY-1数字控温仪 2.编号为1-6的六个金属硬质试管依次分装:纯铋、含锡20%,42%,60%,80%的合金、纯锡。8号试管为空管。 四、实验步骤 1.安装并调整SWKY-1数字控温仪与KWL-09可控升降温电炉,将控温仪与电炉用电缆连接。2号炉膛(右侧)放8号空管,将与控温仪相连的温度传感器(传感器2)插入其中 2.1.将装有试剂的试管1放入1号炉膛(注意安全,始终用铁夹小心夹住试管),并将与电炉连接的温度传感器(传感器1)插入炉膛旁边的另一小孔中(注:不要将传感器1插入试管中)。将2号传感器插入放有8号空管的炉膛2 2.2.调节控温仪(工作/量数按钮),将电炉温度设定为350℃,再调为工作状态,此时1号炉膛开始加热。调节定时按钮,是时间显示为30s。将电炉“冷风量调节”电压调到零,“加热量调节”调到180V(电压过低加热太慢,电压过高有损仪器使用寿命),给2号炉膛预热到200度左右(避免温度下降过快,减小试管冷却时发生过冷现象的可能) 2.3.当温度显示1号炉膛温度达到350℃时,再等10min左右。待温度稳定后将预热后的8号空管用铁夹移出去,并将1号试管夹入2号炉膛。换入2号试管加热,熔融。关闭“加热量调节”,此时控温仪显示温度上升,当温度上升到310℃以上时,打开“冷风量调节”,电压调为1.5V。此时温度开始下降,当温度降到接近300℃时,开始记录温度。每隔30s,控温仪会响一声,依次记下此时的仪表读数即可。

北京理工大学物理化学A(南大版)上册知识点总结

物理化学上册公式总结 第一章.气体 一、理想气体适用 ①波义耳定律:定温下,一定量的气体,其体积与压力成反比 pV=C ②盖·吕萨克定律:对定量气体,定压下,体积与T成正比 V t=C`T ③阿伏伽德罗定律:同温同压下,同体积的各种气体所含分子数相同。 ④理想气体状态方程式 pV=nRT 推导:气体体积随压力温度和气体分子数量改变,即: V=f(p,T,N) 对于一定量气体,N为常数dN=0,所以 dV=(?V/?p)T,N dp+(?V/?T)p,N dT 根据波义耳定律,有V=C/P,∴(?V/?p)T,N=-C/p2=-V/p 根据盖·吕萨克定律,V=C`T,有(?V/?T)p,N=C`=V/T 代入上式,得到 dV/V=-dp/p+dT/T 积分得 lnV+lnp=lnT+常数

若所取气体为1mol,则体积为V m,常数记作lnR,即得 pV m=RT 上式两边同时乘以物质的量n,则得 pV=nRT ⑤道尔顿分压定律:混合气体的总压等于各气体分压之和。 ⑥阿马格分体积定律:在一定温度压力下,混合气体的体积等于组成该气体的各组分分体积之和。 ⑦气体分子在重力场的分布 设在高度h处的压力为p,高度h+dh的压力为p-dp,则压力差为 dp=-ρgdh 假定气体符合理想气体状态方程,则ρ=Mp/RT,代入上式, -dp/p=Mgdh/RT 对上式积分,得lnp/p0=-Mgh/RT ∴p=p0exp(-Mgh/RT) ρ=ρ0exp(-Mgh/RT)或n=n0exp(-Mgh/RT) 二、实际气体适用 ①压缩因子Z Z=pV m/RT 对于理想气体,Z=1,对实际气体,当Z大于1,表明同温度同压力下,实际气体体积大于理想气体方程计算所得结果,即实际气体的可压缩性比理想气体小。当Z小于1,情况则相反。 ②范德华方程式

(完整版)浙江大学物理化学实验思考题答案

一、恒温槽的性能测试 1.影响恒温槽灵敏度的主要因素有哪些?如和提高恒温槽的灵敏度? 答:影响灵敏度的主要因素包括:1)继电器的灵敏度;2)加热套功率;3)使用介质的比热;4)控制温度与室温温差;5)搅拌是否均匀等。 要提高灵敏度:1)继电器动作灵敏;2)加热套功率在保证足够提供因温差导致的热损失的前提下,功率适当较小;3)使用比热较大的介质,如水;4)控制温度与室温要有一定温差;5)搅拌均匀等。 2.从能量守恒的角度讨论,应该如何选择加热器的功率大小? 答:从能量守恒角度考虑,控制加热器功率使得加热器提供的能量恰好和恒温槽因为与室温之间的温差导致的热损失相当时,恒温槽的温度即恒定不变。但因偶然因素,如室内风速、风向变动等,导致恒温槽热损失并不能恒定。因此应该控制加热器功率接近并略大于恒温槽热损失速率。 3.你认为可以用那些测温元件测量恒温槽温度波动? 答:1)通过读取温度值,确定温度波动,如采用高精度水银温度计、铂电阻温度计等;2)采用温差测量仪表测量温度波动值,如贝克曼温度计等;3)热敏元件,如铂、半导体等,配以适当的电子仪表,将温度波动转变为电信号测量温度波动,如精密电子温差测量仪等。 4.如果所需恒定的温度低于室温,如何装备恒温槽? 答:恒温槽中加装制冷装置,即可控制恒温槽的温度低于室温。 5.恒温槽能够控制的温度范围? 答:普通恒温槽(只有加热功能)的控制温度应高于室温、低于介质的沸点,并留有一定的差值;具有制冷功能的恒温槽控制温度可以低于室温,但不能低于使用介质的凝固点。 其它相关问题: 1.在恒温槽中使用过大的加热电压会使得波动曲线:( B ) A.波动周期短,温度波动大; B.波动周期长,温度波动大; C.波动周期短,温度波动小; D.波动周期长,温度波动小。

大学物理化学实验报告---液体饱和蒸汽压的测定

纯液体饱和蒸汽压的测量 目的要求 一、 明确纯液体饱和蒸气压的定义和汽液两相平衡的概念,深入了解纯液体饱 和蒸气压与温度的关系公式——克劳修斯-克拉贝龙方程式。 二、 用数字式真空计测量不同温度下环己烷的饱和蒸气压。初步掌握真空实验 技术。 三、 学会用图解法求被测液体在实验温度范围内的平均摩尔气化热与正常沸 点。 实验原理 通常温度下(距离临界温度较远时),纯液体与其蒸气达平衡时的蒸气压称为该温度下液体的饱和蒸气压,简称为蒸气压。蒸发1mol 液体所吸收的热量称为该温度下液体的摩尔气化热。 液体的蒸气压随温度而变化,温度升高时,蒸气压增大;温度降低时,蒸气压降低,这主要与分子的动能有关。当蒸气压等于外界压力时,液体便沸腾,此时的温度称为沸点,外压不同时,液体沸点将相应改变,当外压为1atm (101.325kPa )时,液体的沸点称为该液体的正常沸点。 液体的饱和蒸气压与温度的关系用克劳修斯-克拉贝龙方程式表示: 2 m vap d ln d RT H T p ?= (1) 式中,R 为摩尔气体常数;T 为热力学温度;Δvap H m 为在温度T 时纯液体的摩尔 气化热。 假定Δvap H m 与温度无关,或因温度范围较小,Δvap H m 可以近似作为常数,积分上式,得: C T R H p +??-=1 ln m vap (2) 其中C 为积分常数。由此式可以看出,以ln p 对1/T 作图,应为一直线,直线的斜率为 R H m vap ?- ,由斜率可求算液体的Δvap H m 。 静态法测定液体饱和蒸气压,是指在某一温度下,直接测量饱和蒸气压,此 法一般适用于蒸气压比较大的液体。静态法测量不同温度下纯液体饱和蒸气压,有升温法和降温法二种。本次实验采用升温法测定不同温度下纯液体的饱和蒸气压,所用仪器是纯液体饱和蒸气压测定装置,如图1所示: 平衡管由A 球和U 型管B 、C 组成。平衡管上接一冷凝管,以橡皮管与压

天津大学版物理化学复习提纲

物理化学复习提纲 一、 热力学第一定律 1. 热力学第一定律:ΔU = Q -W (dU=δQ -δW ,封闭体系、静止、无 外场作用) *热Q,习惯上以系统吸热为正值,而以系统放热为负值;功W ,习惯上以系统对环境作功为正值,而以环境对系统作功为负值。 **体积功 δW=(f 外dl =p 外·Adl )=p 外dV=nRT ?21/V V V dV =nRTlnV 2/V 1=nRTlnp 1/p 2 2. 焓:定义为H ≡U+pV ;U ,H 与Q ,W 区别(状态函数与否?) 对于封闭体系,Δ H= Qp, ΔU= Qv, ΔU= -W (绝热过程) 3. Q 、W 、ΔU 、ΔH 的计算 a. ΔU=T nCv.md T T ?21= nCv.m(T 2-T 1) b. ΔH=T nCp.md T T ?21= nCp.m(T 2-T 1) c. Q :Qp=T nCp.md T T ?21;Qv=T nCv.md T T ?2 1 d. T ,P 衡定的相变过程:W=p (V 2-V 1);Qp=ΔH=n ΔH m ;ΔU=ΔH -p(V 2-V 1) 4. 热化学 a. 化学反应的热效应,ΔH=∑H(产物)-∑H (反应物)=ΔU+p ΔV (定压反应) b. 生成热及燃烧热,Δf H 0m (标准热);Δr H 0m (反应热)

c. 盖斯定律及基尔戈夫方程 [G .R.Kirchhoff, (?ΔH/?T)=C p(B) -C p(A)= ΔCp] 二、 热力学第二定律 1. 卡诺循环与卡诺定理:η=W/Q 2=Q 2+Q 1/Q 2=T 2-T 1/T 2,及是 (Q 1/T 1+Q 2/T 2=0)卡诺热机在两个热源T 1及T 2之间工作时,两个热源的“热温商”之和等于零。 2. 熵的定义:dS=δQr/T, dS ≠δQir/T (克劳修斯Clausius 不等式, dS ≥δQ/T ;对于孤立体系dS ≥0,及孤立系统中所发生任意过程总是向着熵增大的方向进行)。 熵的统计意义:熵是系统混乱度的度量。有序性高的状态 所对应的微观状态数少,混乱度高的状态所对应的微观状态数多,有S=kln Ω, 定义:S 0K =0, 有 ΔS=S (T)-S 0K =dT T Cp T ??/0 3. P 、V 、T 衡时熵的计算: a. ΔS=nRlnP 1/P 2=nRlnV 2/V 1(理气,T 衡过程) b. ΔS=n T T nCp.md T T /21?(P 衡,T 变) c. ΔS=n T T nCv.md T T /21?(V 衡,T 变) d. ΔS=nC v.m lnT 2/T 1+ nC p.m lnV 2/V 1(理气P 、T 、V 均有变化时) 4. T 、P 衡相变过程:ΔS=ΔH 相变/T 相变 5. 判据: a. ΔS 孤{不能实现可逆,平衡不可逆,自发 00 0?=? (ΔS 孤=ΔS 体+ΔS 环, ΔS 环=-Q 体/T 环)

物理化学试验-华南理工大学

物理化学实验Ⅰ 课程名称:物理化学实验Ⅰ 英文名称:Experiments in Physical Chemistry 课程代码:147012 学分:0.5 课程总学时:16 实验学时:16 (其中,上机学时:0) 课程性质:?必修□选修 是否独立设课:?是□否 课程类别:?基础实验□专业基础实验□专业领域实验 含有综合性、设计性实验:?是□否 面向专业:高分子材料科学与工程、材料科学与工程(无机非金属材料科学与工程、材料化学) 先修课程:物理、物理化学、无机化学实验、有机化学实验、分析化学实验等课程。 大纲编制人:课程负责人张震实验室负责人刘仕文 一、教学信息 教学的目标与任务: 该课程是本专业的一门重要的基础课程,物理化学实验的特点是利用物理方法来研究化学系统变化规律,是从事本专业相关工作必须掌握的基本技术课程。其任务是通过本课程的学习,使学生达到以下三方面的训练: (1)通过实验加深学生对物理化学原理的认识,培养学生理论联系实际的能力; (2)使学生学会常用的物理化学实验方法和测试技术,提高学生的实验操作能力和独立工作能力; (3)培养学生查阅手册、处理实验数据和撰写实验报告的能力,使学生受到初步的物理性质研究方法的训练。 教学基本要求: 物理化学实验的特点是利用物理方法来研究化学系统变化规律,实验中常用多种物理测量仪器。因此在物理化学实验教学中,应注意基本测量技术的训练及初步培养学生选择和配套仪器进行实验研究工作的能力。 物理化学实验包括下列内容: (1)热力学部分量热、相平衡和化学平衡实验是这部分的基本内容。还可以选择稀溶液的依数性、溶液组分的活度系数或热分析等方面的实验。

浙江大学远程物理化学离线作业答案(2016)

浙江大学远程教育学院 《物理化学》课程作业(必做)(2016) 第一章热力学第一定律 一、填空题 1. 系统的性质分为广度性质和_____强度性质________。 2. 热力学第一定律的数学表达式是Δq=u+W。 3. ΔU=Q v的适用条件是封闭系统中等容非体积功为零。 4. O2(g)的的标准摩尔燃烧焓等于零(填“小于”、“大于”或“等于” )。 二、简答题 1. 什么是系统?什么是环境? 答:将一部分物质从其他部分中划分出来,作为研究对象,这一部分物质就称为系统;系统之外与系统密切相关的部分称为环境。 2. 什么是等压过程?什么是可逆过程? 答: 等压过程是在环境压力恒定下,系统始,终态压力相同且等于环境压力的过程。某系统经过一过程由状态1变为状态2之后,如果能使系统和环境都完全复原,则该过程称为可逆过程。 3. 什么是热力学第一定律? 答:自然界的一切物质都具有能量,能量有多咱不同的形式,能量可以从一种形式转化为另一种形式,能量的总量在转化过程中保持不变。 4. 什么是标准摩尔生成焓?什么是标准摩尔燃烧焓? 答:自然界的一切物质都具有能量,能量有多咱不同的形式,能量可以从一种形式转化为另一种形式,能量的总量在转化过程中保持不变。 三、计算题 1. 1 mol单原子理想气体在298K时,在恒定外压为终态压力下从15.00 dm3等温膨胀到40.00 dm3,求该过程的Q、W、ΔU和ΔH。 ΔU=ΔH=0 答:P=nRT/V=(1*8.31*298)/(40/1000)=61.94KPa

W=-61.94*(40-15)=-1548.5J Q=-W=1548.5J 2. 1 mol 水在100℃、101.3kPa 下蒸发为水蒸气,吸热40.7kJ ,求该过程的Q 、W 、△U 和△H 。 答:Q =40.7Kj W=-3.10kJ △U=37.6Kj △H=40.7kJ 3. 已知298.2K 时,NaCl(s)、H 2SO 4(l)、Na 2SO 4 (s)和HCl(g)的标准摩尔生成焓分别为-411、 -811.3、-1383和-92.3 kJ·mol -1,求下列反应的θm r H ?和θm r U ? 2NaCl(s) + H 2SO 4(l) = Na 2SO 4(s) + 2HCl(g) 答:2NaCl(s)+H2SO4(1)=Na2SO4(s)+2HCl(g) △rHme=(∑H)产物-(∑H)反应物 =(-1383-92.3*2)-(-411*2-811.3) =65.7KJ/mol 4. 已知298.2K 时,C (石墨)、H 2(g )和C 2H 6(g )的标准摩尔燃烧焓分别为-393.5 kJ·mol -1、 -285.8 kJ·mol -1和-1559.8 kJ·mol -1。计算下列反应的θm r H ?和θm r U ?: 2C (石墨) + 3H 2(g )→ C 2H 6(g ) 答:θm r H ? =-84.6kJ/mol θm r U ? =-79.6kJ/mol 第二章热力学第二定律 一、填空题 1. 理想气体的卡诺循环由等温可逆膨胀、绝热可逆膨胀、等温可逆压缩和绝热可逆压缩所组成。 2. 工作在高温热源373K 与低温热源298K 之间的卡诺热机的效率为 0.2 。 3. 1mol 100℃,100kPa 液态水的吉布斯能大于1mol 100℃,100kPa 气态水的吉布斯能(填“小于”、“大于”或“等于” ) 4. 吉布斯能判据的适用条件是封闭系统等温等压和非体积功为零的过程。 二、简答题

大学物理化学实验汇总

实验一 电导的测定及其应用 一、实验目的 1、 测量氯化钾水溶液的电导率,求算它的无限稀释摩尔电导率。 2、 用电导率测量醋酸在水溶液中的解平衡常数。 3、 掌握恒温水槽及电导率仪的使用方法。 二、实验原理 1、根据电导公式:G=kA/l 式中k 为该电解质溶液目的电导率,其中 l/A 称为电导池常数,由于l 与A 不易精确测量,因此,试验中就是用一种已知电导率的溶液求出电导池常数k cell ,然后把欲测的溶液放入该电导池测出其电导值,再根据公式G=kA/l 求出摩尔电导率 , k 与 的关系为: 2、 总就是随着溶液的浓度的降低而增大的, 对于强电解质系 对于特定的电解质与溶剂来说,在一定温度下,A 就是一个常数,所以将 作图得到一 条直线,将所得的直线推至c=0可求得A m ∞。 3、对于弱电解质,其 无法用 ,由离子独立运动定律: 求得,其中 A m ∞+ 与A m ∞-分别表示正、负离子的无限稀摩尔电导率,它与温度及离子的本性有关。在无限稀的弱电解质中: 以cAm 对 作图,根据其斜率求出K 、、 三、实验仪器及试剂 仪器:梅特勒326电导仪1台,量杯50ml 2只 ,移液管125ml 9只,洗瓶1只 ,洗耳球1只。 试剂:10、00mol/m3 KCl 溶液, 100、0 mol/m3HAC 溶液 , 电导水。 四、实验步骤 1、 打开电导率仪器开关,预热5分钟。 2、 KCl 溶液电导率的测定: (1) 用移液管准确移取25ml 10、00mol/m3的KCl 溶液,置于洁净、干燥的量杯中,测定器电 导率3次,取其平均值。 (2) 再用移液管准确量取25、00ml 电导水,置于上述量杯中,搅拌均匀后,测定器电导率3 次,取其平均值。 m c κ = Λ m m,+ m, νν+--∞ ∞ ∞ =+ΛΛΛ m Λ m Λ m Λ m m ∞ =-ΛΛ m Λ m m ∞ =-ΛΛ m m = α∞ΛΛ() 2 m m m m 2 m m m m 1c c c K c c ∞∞ ∞∞?? ??-?=-=ΛΛΛΛΛΛΛΛΛ

大学物理化学下册(第五版傅献彩)知识点分析归纳-(1)

第八章电解质溶液

、 第九章 1.可逆电极有哪些主要类型每种类型试举一例,并写出该电极的还原反应。对于气体电极和氧化还原电极在书写电极表示式时应注意什么问题 答:可逆电极有三种类型: (1)金属气体电极如Zn(s)|Zn2+ (m) Zn2+(m) +2e- = Zn(s) (2)金属难溶盐和金属难溶氧化物电极如Ag(s)|AgCl(s)|Cl-(m),AgCl(s)+ e- = Ag(s)+Cl-(m) (3)氧化还原电极如:Pt|Fe3+(m1),Fe2+(m2) Fe3+(m1) +e- = Fe2+(m2) 对于气体电极和氧化还原电极,在书写时要标明电极反应所依附的惰性金属。 》 2.什么叫电池的电动势用伏特表侧得的电池的端电压与电池的电动势是否相同为何在测电动势时要用对消法 答:正、负两端的电势差叫电动势。不同。当把伏特计与电池接通后,必须有适量的电流通过才能使伏特计显示,这样电池中发生化学反应,溶液浓度发生改变,同时电池有内阻,也会有电压降,所以只能在没有电流通过的情况下才能测量电池的电动势。 3.为什么Weslon标准电池的负极采用含有Cd的质量分数约为~的Cd一Hg齐时,标准电池都有稳定的电动势值试用Cd一Hg的二元相图说明。标准电池的电动势会随温度而变化吗答:在Cd一Hg的二元相图上,Cd的质量分数约为~的Cd一Hg齐落在与Cd一Hg固溶体的两相平衡区,在一定温度下Cd一Hg齐的活度有定值。因为标准电池的电动势在定温下只与Cd一Hg 齐的活度有关,所以电动势也有定值,但电动势会随温度而改变。 4.用书面表示电池时有哪些通用符号为什么电极电势有正、有负用实验能测到负的电动势吗

大学物理化学实验思考题答案总结

蔗糖水解速率常数的测定 1.蔗糖水解反应速率常数和哪些因素有关? 答:主要和温度、反应物浓度和作为催化剂的H+浓度有关。 2.在测量蔗糖转化速率常数时,选用长的旋光管好?还是短的旋光管好? 答:选用长的旋光管好。旋光度和旋光管长度呈正比。对于旋光能力较弱或者较稀的溶液,为了提高准确度,降低读数的相对误差,应选用较长的旋光管。根据公式(a)=a*1000/LC,在其他条件不变的情况下,L越长,a越大,则a的相对测量误差越小。 3.如何根据蔗糖、葡萄糖、果糖的比旋光度数据计算? 答:α0=〔α蔗糖〕Dt℃L[蔗糖]0/100 α∞=〔α葡萄糖〕Dt℃L[葡萄糖]∞/100+〔α果糖〕Dt℃L[果糖]∞/100 式中:[α蔗糖]Dt℃,[α葡萄糖]Dt℃,[α果糖]Dt℃分别表示用钠黄光作光源在t℃时蔗糖、葡萄糖和果糖的比旋光度,L(用dm表示)为旋光管的长度,[蔗糖]0为反应液中蔗糖的初始浓度,[葡萄糖]∞和[果糖]∞表示葡萄糖和果糖在反应完成时的浓度。 设t=20℃L=2 dm [蔗糖]0=10g/100mL 则: α0=66.6×2×10/100=13.32° α∞=×2×10/100×(52.2-91.9)=-3.94° 4.试估计本实验的误差,怎样减少误差? 答:本实验的误差主要是蔗糖反应在整个实验过程中不恒温。在混合蔗糖溶液和盐酸时,尤其在测定旋光度时,温度已不再是测量温度,可以改用带有恒温实施的旋光仪,保证实验在恒温下进行,在本实验条件下,测定时要力求动作迅速熟练。其他误差主要是用旋光仪测定时的读数误差,调节明暗度判断终点的误差,移取反应物时的体积误差,计时误差等等,这些都由主观因素决定,可通过认真预习实验,实验过程中严格进行操作来避免。 乙酸乙酯皂化反应速率常数测定 电导的测定及其应用 1、本实验为何要测水的电导率? 答:因为普通蒸馏水中常溶有CO2和氨等杂质而存在一定电导,故实验所测的电导值是欲测电解质和水的电导的总和。作电导实验时需纯度较高的水,称为电导水。水的电导率相对弱电解质的电导率来说是不能够忽略的。所以要测水的电导率。 2、实验中为何通常用镀铂黑电极?铂黑电极使用时应注意什么?为什么?

复旦大学药学物理化学1000题动力学101-120

101 下列基元反应哪一个反应的活化能为零 A A 2+ B 2→2AB B A ?+B C →AB+C ? C A 2+M →2A ?+M D A ?+A ?+M →A 2+M D 两个自由基结合成稳定分子是不需要活化能的 102 若某反应的活化能为80kJ ?mol – 1则反应温度由20°C 升高到30°C 时其反应速率常数约为原来的 A 2倍 B 3倍 C 4倍 D 5倍 B 可由Arrhenius 方程计算 3k k 0839129313031R 80000T 1T 1R E k k 1212a 12 ≈∴= ??= ??=.ln 103 若某反应的反应热?H 为100kJ ?mol – 1则该反应的活化能 A 必定小于或等于100kJ ?mol – 1 B 必定大于或等于100kJ ?mol – 1 C 可以大于也可以小于100kJ ?mol – 1 D 只能小于100kJ ?mol – 1 B 反应热?H 与活化能E a 关系如图 因此E a 必定大于或等于100kJ ?mol – 1 104 若某反应的反应热?H 为–100kJ ?mol – 1则该反应的活化能 A 必定小于或等于100kJ ?mol – 1 B 必定大于或等于100kJ ?mol – 1

C 可以大于也可以小于100kJ ?mol –1 D 只能小于100kJ ?mol – 1 C 反应热?H 与活化能E 关系如图 因此E a 与?H 无确定关系可以大于也可以小于100kJ ?mol – 1 105 HI 生成反应的反应热?H 生成为负值即HI 分解反应的反应热?H 分解为正值则HI 分解反应的活化能E 与反应热的关系为 A E?H 分解 D E = ?H 分解 C E 与?H 分解关系见图 E>?H 分解 106 根据范特霍夫规则一般化学反应温度升高10度反应速率增加2~4倍对于在室温298K 时遵守此规则的化学反应其活化能的范围约是 A 40~400kJ ?mol – 1 B 50~250kJ ?mol – 1 C 100kJ ?mol – 1左右 D 53~106kJ ?mol – 1 D 由Arrhenius 公式 T 1T 1R Ea k k ??=''ln 当反应速率增加2倍时 29813081R Ea ln2 ??=E a =53kJ ?mol – 1 当反应速率增加4倍时 29813081R Ea ln4 ?? =E a =106kJ ?mol –1 107

大学物理化学知识点归纳只是分享

大学物理化学知识点 归纳

第一章 气体的pvT 关系 一、 理想气体状态方程 pV=(m/M )RT=nRT (1.1) 或pV m =p (V/n )=RT (1.2) 式中p 、V 、T 及n 的单位分别为P a 、m 3、K 及mol 。V m =V/n 称为气体的摩尔体积,其单位为m 3·mol 。R=8.314510J ·mol -1 ·K -1称为摩尔气体常数。 此式适用于理想,近似于地适用 于低压下的真实气体。 二、理想气体混合物 1.理想气体混合物的状态方程 (1.3) pV=nRT=(∑B B n )RT pV=mRT/M mix (1.4) 式中M mix 为混合物的摩尔质量,其可表示为 M mix def ∑B B y M B (1.5) M mix =m/n= ∑B B m /∑B B n (1.6) 式中M B 为混合物中某一种组分B 的摩尔质量。以上两式既适用于各种混合气体,也适用于液态或固态等均匀相混合系统平均摩尔质量的计算。 2.道尔顿定律 p B =n B RT/V=y B p (1.7) P=∑B B p (1.8) 理想气体混合物中某一种组分B 的分压等于该组分单独存在于混合气体的温度T 及总体积V 的条件下所具有的压力。而混合气体的总压即等于各组分单独存在于混合气体的温度、体积条件下产生压力的总和。以上两

式适用于理想气体混合系统,也近似适用于低压混合系统。 3.阿马加定律 V B * =n B RT/p=y B V (1.9) V=∑V B * (1.10) V B *表示理想气体混合物中物质B 的分体积,等于纯气体B 在混合物的温度及总压条件下所占有的体积。理想气体混合物的体积具有加和性,在相同温度、压力下,混合后的总体积等于混合前各组分的体积之和。以上两式适用于理想气体混合系统,也近似适用于低压混合系统。 三、临界参数 每种液体都存在有一个特殊的温度,在该温度以上,无论加多大压力,都不可能使气体液化,我们把这个温度称为临界温度,以T c 或t c 表示。我们将临界温度T c 时的饱和蒸气 压称为临界压力,以p c 表示。在临界温度和临界压力下,物质的摩尔体积称为临界摩尔体积,以V m,c 表示。临 界温度、临界压力下的状态称为临界 状态。 四、真实气体状态方程 1.范德华方程 (p+a/V m 2)(V m -b)=RT (1.11) 或(p+an 2/V 2)(V-nb)=nRT (1.12) 上述两式中的a 和b 可视为仅与气体种类有关而与温度无关的常数,称为范德华常数。a 的单位为Pa ·m 6 ·mol ,b 的单位是m 3mol.-1。该 方程适用于几个兆帕气压范围内实际气体p 、V 、T 的计算。 2.维里方程 Z(p ,T)=1+Bp+Cp+Dp+… (1.13) 或Z(V m, ,T)=1+B/V m +C /

最新浙大物化2003及答案浙江大学试题(乙)及答案_(1)教程文件

浙 江 大 学 二00三年攻读硕士学们研究生入学考试试题 考试科目_________物理化学(乙)_____编号_______ 注意:答案必须写在答题纸上,写在试卷或草稿纸上均无效 一、填空(60分)(有单位的应写出) 1.绘制双参数普遍化压缩因子图的基本依据是( )。 2.焦耳实验(A )、焦耳-汤姆生实验(B )分别得出了什么结论: A ( ),B ( ) 3.1mol 理想气体于恒压下降温1℃,气体与环境交换的功W 为( )。 4.1kg 空气由20℃绝热膨胀降温至-20℃,该过程的Q =( ),W =( ), ΔU =( ),ΔH =( )。设空气为理想气体,-1 -1 ,20.92J mol K V m C =??。 5.在常温常压下,1kg 水中加入NaBr ,水溶液的体积(cm -3)与溶液的质量摩尔浓度b 的关系为:3/2 21002.9323.189 2.1970.178V b b b =++-,当b=0.50mol ?kg -1时,在溶液中 H 2O (A )的偏摩尔体积V A =( )。 6.在某一温度下将碘溶解于CCl 4中,当碘的摩尔分数x (I 2)在0.01-0.04范围内时,此溶液符合稀溶液规律。今测得平衡时气相中碘的蒸气压与液相中碘的摩尔分数之间的两组数据如下:2(I )/kPa p 1.638 16.72 x (I 2) 0.03 0.5 则x (I 2)=0.5时,溶液中碘的活度2(I )a =( ),活度系数2(I )γ=( )。 7.已知1000K 时生成水煤气的反应22C()H O()CO()H ()s g g g +=+,在101.325kPa 时,平衡转化率α=0.844, 则111.458kPa 时的平衡转化率为( )。 8.已知20℃时,水-空气的界面张力为3 -1 72.7510N m ,-??当20℃,101.325kPa 下,可逆地增加水的表面积4cm -2时,体系的ΔG 为( )。 9.一定温度下,243Al (SO )溶液的质量摩尔浓度为b ,其平均活度系数为γ±,则其平均活度α±可表示为( )。 10.20℃时,丁酸水溶液的表面张力可以表示为:0ln(1),a bc σσ=-+式中0σ为纯水的表面张力,a 和b 均为常数,若3 -1 3 -1 13.110N m ,19.62dm mol ,a b -=??=?则浓度

复旦物化1000题

61 对于由AgNO 3和过量的KBr溶液制备得到的溶胶以下的说法中何者是正确的 A 定位离子是Ag+ B 反离子是Br– C 扩散层带负电 D 它是负溶胶 D 由于KBr过量生成的AgBr吸附Br–而成为负溶胶反离子是K+扩散层带正电 62 对于As2S3溶胶下列电解质中聚沉能力最强的是 A LiCl B NaCl C CaCl2 D AlCl3 D As 2S3是负溶胶它的反离子正离子的价数越高聚沉能力越强Al3+价数最高 63 对于Al2O3溶胶下列电解质中聚沉能力最强的是 A KCl B KNO3 C K3[Fe(CN)6] D K2C2O4 C Al 2O3是正溶胶它的反离子负离子的价数越高聚沉能力越强[Fe(CN)6]3–价数最高 64 用AgNO 3和KI过量制备的AgI溶胶下列电解质中对溶胶聚沉能力最强的是 A La(NO3)3 B Mg(NO3)2 C NaNO3 D KNO3 A 当KI过量时制备的AgI溶胶是负溶胶它的反离子正离子的价数越高聚沉能力越强La3+价数最高 65 测定不同电解质对某一浓度的Fe(OH) 溶胶的聚沉值mmol/L数据如下 1/2BaCl2K2SO4 NaCl KCl 0.205 9.65 9.25 9.00 由此得到下面的结论中哪个是不正确的

A Fe(OH)3是正溶胶 B 正离子对聚沉影响不大 C 二价负离子比一价负离子聚沉能力强 D 相同浓度的KCl和BaCl2聚沉能力相似 D 带有二价负离子的K2SO4的聚沉值最小即聚沉能力最强说明Fe(OH)3是正溶胶选项A B C都是正确的相同浓度的KCl和BaCl2后者Cl–浓度比前者大一倍因此聚沉能力不等 66 测定不同电解质对某一浓度Fe(OH) 溶胶的聚沉值mmol/L数据如下 KCl KI K2SO4 KBr 0.205 16.0 12.5 9.00 由此得到下面的结论中哪个是不正确的 A Fe(OH)3是正溶胶 B 二价负离子比一价负离子聚沉能力强 C 一价负离子聚沉能力排序为Cl–>Br–>I– D 一价负离子聚沉值排序为Cl–>Br–>I– D 带有二价负离子的K2SO4的聚沉值比一价离子小得多即聚沉能力强得多说明Fe(OH)3 是正溶胶选项A B C都是正确的选项D按聚沉值排序排反了 67 在Fe(OH)3Mg(OH)2As2S3和AgI制备时AgNO3过量四种溶胶中哪一个与其他三种溶胶混合时会发生聚沉 A Fe(OH)3 B Mg(OH)2 C As2S3 D AgI C As2S3是负溶胶其他三种多为正溶胶正负溶胶混合会发生聚沉 68 江河水中含有的泥沙混悬物在出海口附近发生沉淀原因有多种其中与胶体化学有关的因素是 A 盐析作用 B 电解质聚沉作用 C 溶胶互沉作用 D 破乳作用 B 江河水在出海口与海水混合海水中含大量电解质使泥沙混悬物发生沉淀

最新浙大物理化学在线作业答案

您的本次作业分数为:100分单选题 1.【第01章】Q=ΔH的适用条件是()。 A 封闭系统中非体积功为零的等压过程 B 封闭系统中非体积功为零的等容过程 C 封闭系统 D 等温过程 正确答案:A 单选题 2.【第01章】()的标准摩尔生成焓等于零。 A C(石墨) B C(金刚石) C CO2 D CO 正确答案:A 单选题 3.【第01章】()具有强度性质。 A S B V C G D η(粘度) 正确答案:D 单选题 4.【第01章】()的标准摩尔燃烧焓等于零。 A C(石墨) B C(金刚石) C CO2 D CO 正确答案:C

单选题 5.【第01章】()是状态函数。 A G B △U C W D Q 正确答案:A 单选题 6.【第01章】()下列叙述中不属于状态函数特征的是。 A 系统变化时,状态函数的改变值只由系统的始、终态决定。 B 系统状态确定后,状态函数的值也确定。 C 状态函数均有加和性。 D 经循环过程,状态函数的值不变。 正确答案:C 单选题 7.【第01章】理想气体在绝热、恒定外压下膨胀的()。 A ΔU =0,W<0 B ΔH=0,W>0 C ΔU >0,△H>0 D ΔU <0,ΔH<0 正确答案:D 判断题 8.【第01章】H2和O2在绝热钢瓶中发生反应的△H等于零。() 正确错误 正确答案: 错 判断题 9.【第01章】理想气体节流膨胀过程的△U = 0。() 正确错误 正确答案: 对 判断题

10.【第01章】标准状态下,最稳定单质的热力学能等于零。() 正确错误 正确答案: 错 判断题 11.【第01章】实际气体节流膨胀过程的△H = 0。() 正确错误 正确答案: 对 判断题 12.【第01章】C(石墨)的标准摩尔燃烧焓等于零。() 正确错误 正确答案: 错 判断题 13.【第01章】H2O(l)的标准摩尔燃烧焓等于零。() 正确错误 正确答案: 对 判断题 14.【第01章】由于p和V都是状态函数,则(p+V)也是状态函数。() 正确错误 正确答案: 错 判断题 15.【第01章】状态函数改变后,状态一定改变。() 正确错误 正确答案: 对 单选题 16.【第02章】1mol 100℃、101.3kPa的液态水向真空膨胀成100℃、101.3kPa的水蒸气,该过程的()。 A Q=0,△H=0 B △U =0,△H=0 C △S=0,△F =0 D W=0,△G=0 正确答案:D 单选题 17.【第02章】1 mol 90℃、101.3kPa 的过冷水蒸气在等温等压下变为水,该过程的()。 A △G >0,△S >0

大学物理化学实验报告-化学电池温度系数的测定课件.doc

物理化学实验报告 院系化学化工学院 班级化学061 学号13 姓名沈建明

实验名称 化学电池温度系数的测定 日期 2009.4.20 同组者姓名 史黄亮 室温 19.60 ℃ 气压 102.0 kPa 成绩 一、目的和要求 1、掌握可逆电池电动势的测量原理和电位差计的操作技术; 2、学会几种电极和盐桥的制备方法; 3、通过原电池电动势的测定求算有关 热力学函数。 二、基本原理 (一)、凡是能使化学能转变为电能的装置都称之为电池对定温定压下的可 逆电池而言 : r m (1) nFE T , p G E S nF (2) r m T p E H nE F nF T (3) r m T p 式中,F 为法拉弟(Farady)常数;n 为电极反应式中电子的计量系数 ;E 为电池 的电动势。

另, 可逆电池应满足如下条件: 1.电池反应可逆,亦即电池电极反应可逆。 2.电池中不允许存在任何不可逆的液接界。 即充放电过程必须在平衡态下进行,3.电池必须在可逆的情况下 工作,

因此在制备可逆电池、 测定可逆电池的电动势时应符合上述条件, 不高的测量中,常用正负离子迁移数比较接近的盐类构成 “盐桥 ”来消除液接电 位。用电位差计测量电动势也可满足通过电池电流为无限小的条件。 (二)、求电池反应的 Δ r G m 、Δr S m 、Δr H m 设计电池如下 : Ag(s) | AgCl(s) |饱和 KCl | Hg 2Cl 2(s) | Hg(l) 分别 测定电池在各个温度下的电动势,作 E — T 图,从曲线斜率可求得任一温度 下的 E T p 利用公式 (1),(2),(3) 即可求得该电池反应的 Δ r G m 、Δr S m 、Δr H m 三、仪器、试剂 SDC — Ⅱ数字电位差综合测试仪 1 台 精密稳压电源(或蓄电池) SC — 15A 超级恒温槽 铜电极 2 只 铂电极 1 只 饱和甘汞电极 1 只 恒温夹套烧杯 2 只 HCl ( 0.1000mol k ·g-1) AgNO3 ( 0.1000mol k ·g-1) 镀银溶液 镀铜溶液 四、实验步骤 一、电极的制备 1.银电极的制备 将欲用的两只 Pt 电极(一个电极 Pt 较短,作为阳极, 另一个电极作为阴极, 用于镀银) 浸入稀硝酸溶液片刻, 取出用蒸馏水洗净。 将洗净的电极分别插入盛 有镀银液( AgNO 3 3g ,浓氨水, KI 60g )中,控制电流为 0.3mA ,电镀 1h ,得 白色紧密的镀银电极一只。 2. Ag-AgCl 电极制备 在精确度 KCl 饱和溶液

浙江大学物理化学甲考试大纲

浙江大学物理化学(甲)大纲 一、内容: 涵盖物理化学(占80%左右)和结构化学(占20%左右)。 二、物理化学大纲 1.气体的PVT关系 基本内容:理想气体状态方程;分压定律和分体积定律;理想气体的微观模型;气体的液化;范德华方程与维里方程;临界性质;对应状态原理;压缩因子图。 2.热力学第一定律 基本概念:重要热力学概念;热力学第一定律;热、功;内能;焓;热容;可逆体积功;相变焓;反应焓;节流膨胀。 基本内容:热力学基本概念及术语;热力学第一定律的表述与数学表达式;Qv=ΔU,Qp=ΔH及H的定义;过程热的计算;Cp与Cv的关系;由Cp计算Qp和ΔH;理想气体的等温可逆过程与绝热可逆过程功的计算;其他常见过程功的计算;相变焓、相变过程、相变热的计算;化学变化过程、化学反应热效应的计算;化学反应进度;标准热力学函数的计算。 3.热力学第二定律 基本概念:卡诺循环,过程可能性判据,热力学第二定律,熵及熵变,第三定律,吉布斯自由能,亥姆霍兹自由能,热力学基本方程及麦克斯韦关系式,特性函数,克-克方程。 基本内容:卡诺循环;自发过程的共同特征;卡诺定理与热力学第二定律,熵增原理;熵函数,熵判据;各种典型过程熵变的计算;热力学第三定律,规定熵与标准熵;亥姆霍兹函数与吉布斯函数;ΔA与ΔG判据;一些基本过程ΔG的计算与应用;热力学基本方程与麦克斯韦关系式;吉布斯—亥姆霍兹方程;克拉贝龙方程及其应用。 4.多组分系统热力学 基本概念:偏摩尔量,化学势,化学势判据,拉乌尔定律,亨利定律,理想液态混合物,理想稀溶液,稀溶液的依数性,逸度与逸度因子,活度与活度因子,热力学标准态。 基本内容:偏摩尔量与摩尔量;偏摩尔量的集合公式;Gibbs-Duhem方程;化学势的定义与各类系统化学势的表示式;化学势判据;拉乌尔定律与享利定律;理想液态混合物的定义及其特征;稀溶液的定义及其依数性;逸度与逸度因子的计算;活度和活度因子的计算;标准态选择与活度的关系;简单汽液平衡计算。

大学物理化学实验报告-原电池电动势的测定.docx

大学物理化学实验报告-原电池电动势的测 定 篇一:原电池电动势的测定实验报告_浙江大学 (1) 实验报告 课程名称:大学化学实验p实验类型:中级化学实验实验项目名称:原电池电动势的测定 同组学生姓名:无指导老师冷文华 一、实验目的和要求(必填)二、实验内容和原理(必填)三、实验材料与试剂(必填)四、实验器材与仪器(必填)五、操作方法和实验步骤(必填)六、实验数据记录和处理七、实验结果与分析(必填)八、讨论、心得 一、实验目的和要求 用补偿法测量原电池电动势,并用数学方法分析二、实验原理: 补偿法测电源电动势的原理: 必须严格控制电流在接近于零的情况下来测定电池的电动势,因为有电流通过电极时,极化作用的存在将无法测得可逆电动势。 为此,可用一个方向相反但数值相同的电动势对抗待测电池的电动势,使电路中没有电流通过,这时测得的两级的电势差就等于该电池的电动势e。 如图所示,电位差计就是根据补偿法原理的,它由工作电流回路、标准回路和测量电极回路组成。 ① 工作电流电路:首先调节可变电阻rp,使均匀划线ab上有一定的电势降。 ② 标准回路:将变换开关sw合向es,对工作电流进行标定。借助调节rp 使得ig=0来实现es=uca。③ 测量回路:sw扳回ex,调节电势测量旋钮,直到ig=0。读出ex。 uj-25高电势直流电位差计: 1、转换开关旋钮:相当于上图中sw,指在n处,即sw接通en,指在x1,即接通未知电池ex。 2、电计按钮:原理图中的k。 3、工作电流调节旋钮:粗、中、细、微旋钮相当于原理图中的可变电阻rp。

-1-2-3-4-5-6 4、电势测量旋钮:中间6只旋钮,×10,×10,×10,×10,×10,×10,被测电动势由此 示出。 三、仪器与试剂: 仪器:电位差计一台,惠斯登标准电池一只,工作电源,饱和甘汞电池一支,银—氯化银电极一支,100ml容量瓶5个,50ml滴定管一支,恒温槽一套,饱和氯化钾盐桥。 -1 试剂:0.200mol·lkcl溶液 四、实验步骤: 1、配制溶液。 -1-1-1-1 将0.200 mol·l的kcl溶液分别稀释成0.0100 mol·l,0.0300 mol·l,0.0500 mol·l,0.0700 -1-1 mol·l,0.0900 mol·l各100ml。 2、根据补偿法原理连接电路,恒温槽恒温至25℃。 3、将转换开关拨至n处,调节工作电流调节旋钮粗。中、细,依次按下电计旋钮粗、细,直至检流计 示数为零。 4、连好待测电池,hg |hg2cl2,kcl(饱和)‖kcl(c)|agcl |ag 5、将转换开关拨至x1位置,从大到小旋转测量旋钮,按下电计按钮,直至检流计示数为零为止,6个 小窗口的读数即为待测电极的电动势。 -1-1-1-1 6、改变电极中c依次为0.0100 mol·l,0.0300 mol·l,0.0500 mol·l,0.0700 mol·l,0.0900 -1 mol·l,测各不同浓度下的电极电势ex。

相关文档