文档库 最新最全的文档下载
当前位置:文档库 › 高一数学点到平面距离的求法

高一数学点到平面距离的求法

高一数学点到平面距离的求法
高一数学点到平面距离的求法

例谈点到平面距离的求法

立体几何的空间距离是历年高考考查的重点和热点。由于线面距离、面面距离以及两异面直线间的距离都可以转化为点到平面的距离来解决,因此点到平面的距离更值得我们关注。

点到平面的距离的求法可分为三大类: 一、由点向平面引垂线,且垂足位置可确定

转化到在某平面内,求出点和垂足间的线段的长。 1、 用定义直接构造法

例1、如图,三棱锥S-ABC 中,ABC ?是等腰三角形,

2AB BC a ==,

0120ABC ∠=,且SA ⊥面ABC ,SA=3a 。求点A 到平面SBC 的距离。 解:作

AD BC ⊥交BC 于D,连结SD.

SA ⊥平面ABC,根据三垂线定理有SD BC ⊥

又SD AD D ?=,BC ∴⊥平面SAD 。又BC ?平面SBC , ∴平面SBC ⊥平面ADS ,且平面SBC ?平面ADS=SD

∴过点A 作AH SD ⊥于H ,则AH ⊥平面SBC 。在Rt SAD ?中,

SA=3a,

0sin60AD AB ==

,32

a AH ∴=

=

故点A 到平面SBC 的距离为

32

a 。 【点评】利用构造法关键是定位点在面内的射影。常常要寻找过已知点且与所给面垂直的面,再过已知点作两垂面交线的垂线。 2、转移构造法 (1)利用平行线转换点

例2、在直三棱柱111ABC A B C -中,11AB BC ⊥,1,AB CC a BC b ===(b >a )

(1)求证:

11AC AB ⊥ (2)求点1B 到平面1ABC 的距离.

解:(1)连结

1A B ,则11AB A B ⊥,又11AB BC ⊥,故111AB A BC ⊥面。知

111AC AB ⊥,得1111AC ABB A ⊥面,知11AC AB ⊥。

(2)由(1)得1

11ABC AAC ⊥面面.

11111,A B AB A B ABC ∴平面1111A ABC ABC ∴到平面的距离等于B 到平面的距离

过1A 作

11AG AC ⊥于G , 11AB ACC A ⊥平面, 1AB AG ∴⊥

从而11AG ABC ⊥平面. 故1

AG

即为所求的距离。易求1AG b

=。

【点评】利用直线与平面平行,把所求的点到平面的距离转移到平行线上另一点到平面的距离来求,

是我们常用的方法。

(2)对称转移或利用定比分点

C

C

例3、如图,已知ABCD 是矩形,AB =a ,AD = b ,PA

平面ABCD ,PA =2c ,Q 是PA 的中点.求P 到

平面BQD 的距离.

解:过A 作AE

BD ⊥垂足为E ,连结QE 。∵平面BQD 经过线段PA 的中点,∴P

到平面BQD 的距离等于A 到平面BQD 的距离.在△AQE 中,作AH

QE 于H .∵BD

AE ,

BD QE ,∴BD 平面AQE .∴BD AH ,AH 平面BQE ,即AH 为A 到平面BQD 的距离.

在Rt △AQE 中,∵AQ =c ,AE =

2

2

b

a a

b +,∴AH =

2

2

2

2

2

2

a

c c b b a abc ++.

例4、已知正方体的棱长为1,O 为上底面

1111A B C D 的中心。

求点O 到平面

11ABC D 的距离。

析:点1A 到平面

1111A B C D 的距离为线段1A E

的长,易求得1A E =

.又O 为

11AC 的中点,故点

O 到平面11ABC D

的距离为4

【点评】 转移构造常利用已知平面点分某条斜线段所成的比,体现着转化的思想。 二、由点向平面引垂线,垂足无法确定或难确定时 1、等体积法(利用三棱锥的体积公式) 例5、已知在棱长为1的正方体-ABCD A B C D ''''中,E 、F 分别是A B ''、CD 的

中点,求点B 到平面

AEC F

'的距离。

解:连结AE 、BF 、EF ,则点B 到平面

AEC F

'的距离即为点B 到平面AEF 的

距离。设点B 到平面AEF 的距离为h, 根据--=E ABF B AEF V V 则

1

1=3

3ABF

AEF

EG S

h

S ,得h 【点评】 由于四面体以不同面为底的体积相等,因而等体积法的关键是将距离看成是某四面体的高。 2、 运用面面角或利用斜线和平面所成的角

例6、在直角梯形ABCD 中,0

90D BAD ∠=∠=,1

2

AD DC AB a ==

=。将ADC ?沿AC 折起

使D 到'

D ,如果二面角'

D

AC B --为060,求点'D 到面ABC 的距离。

?

A

解:设'

D 在平面ABC 内的射影为O,

E 为AC 的中点,连结OE

A

B

A

由于

'D E AC ⊥,故'D EO ∠为二面角的平面角,即'D EO ∠=060。又'D E =

2

a ,所以

'D O ='D E 0sin 60=

4

a 。 例7、已知ABCD是边长为4的正方形,E、F分别是AB、AD的中点,GC垂直于ABCD所在平面,且GC=2,求点B 到平面EFG的距离. 解:设M为FE与CB的延长线的交点,作GM BR

⊥,R为垂足. 又EB GM ⊥,

所以平面BER⊥平面EFG。又ER为它们的交线

∴∠REB就是EB与平面EFG所成的角θ 由△MRB∽△MCG,可得

10

2

=?=?=MG CG MB RB MG MB CG RB ,

在Rt△REB中, sin sin 11

BR BER ER θ

=∠=

=

于是得所求之距离sin 11

d EB BER =?∠=

【点评】此法体现着角与距离间的转化,另一个变化是利用距离求角,应引起我们的足够重视。 3、利用两平行平面的距离确定 对上例,有如下的计算方法:

解: 把平面EFG 补成一个正四棱柱的截面所在的平面.则面GMT 是正四棱柱ABCD —A 1B 1C 1D 1经过F 、E 、G 的截面所在的平面.MG 交BB 1于N ,TG 交DD 1于Q.作BP//MG ,交CG 于P ,连结DP.则有平面GTM//平面PDB 。它们之间的距离就是所求之距离,于是可以把点B 平移到平面PDB 上任何一个位置。

而这两个平行平面的距离d 又同三棱柱GQN —PDB 的体积有关,所以可以利用三棱柱的体积确定所求之距离。则有三棱柱GQN —PDB 的体积V 的关系式:

BN S d S V CD B PD B ?=?=??(*).易求出BN=

2

3

,CP=

43

,,

BD=24

,PBD S ?=

,8=?CDB S 由关系式(*)可得,

3

2

83118?=?d

于是平行平面间的距离

11112=

d ,即点B 到面EFG 的距离为11

。 【点评】若两平面平行,则平面内的任一条直线到另一个平面的距离等于两平面间的距离,对于分别位于两个平行平面内的异面直线之间的距离也等于两平面间的距离。在解题过程中要注意体会。

三、向量法

例8、 如图所示的多面体是由底面为ABCD 的长方体被截面AEC 1F 所截面而得到的,其中AB=4,BC=2,CC 1=3,BE=1.

求: 点C 到平面AEC 1F 的距离.

解:建立如图所示的空间直角坐标系,则A (2,0,0),

C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ). ∵AEC 1F 为平行四边形,

11,

,(2,0,)(2,0,2),2.(0,0,2).

AEC F AF EC z z F ∴∴=-=-∴=∴由为平行四边形由得 设1n 为平面AEC 1F 的法向量,

)1,,(,11y x n ADF n =故可设不垂直于平面显然 110,0410

2020

0,n AE x y x y n AF ??=?+?+=????-?+?+=?=???由得??

???-==∴???=+-=+.41,

1,022,014y x x y 即111),3,0,0(n CC CC 与设又=的夹角为a ,则 .33

33

4116

1

133|

|||cos 1111=++

?=

?=

n CC α ∴C 到平面AEC 1F

的距离为1||cos 3d

CC α===

【点评】若点P 为平面α外一点,点A 为平面α内任一点,平面的法向量为

,则点P 到平面α的

距离公式为d =

。当我们学习了空间解几以后,还有点到平面的距离公式,这里从略。

2020年高一上学期数学11月月考试卷

2020年高一上学期数学11月月考试卷 姓名:________ 班级:________ 成绩:________ 一、单选题 (共12题;共24分) 1. (2分) (2019高一下·上饶月考) 若角,,(,),则角与的终边的位置关系是() A . 重合 B . 关于原点对称 C . 关于轴对称 D . 关于轴对称 2. (2分)给出下列命题,其中正确的是() (1)弧度角与实数之间建立了一一对应的关系 (2)终边相同的角必相等 (3)锐角必是第一象限角 (4)小于90°的角是锐角 (5)第二象限的角必大于第一象限角 A . (1) B . (1)(2)(5) C . (3)(4)(5) D . (1)(3) 3. (2分)(2017高二下·牡丹江期末) 定义在上的函数对任意都有 ,且函数的图象关于成中心对称,若满足不等式

,则当时,的取值范围是() A . B . C . D . 4. (2分) (2018高三上·海南期中) 若,则 A . B . C . D . 5. (2分)将函数y=sinx的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是() A . y=sin(2x﹣) B . y=sin(2x﹣) C . y=sin(x﹣) D . y=sin(x﹣)

6. (2分)sin660°=() A . - B . C . - D . 7. (2分),则的值为() A . B . C . D . 8. (2分)设函数,则D(x) () A . 是偶函数而不是奇函数 B . 是奇函数而不是偶函数 C . 既是偶函数又是奇函数 D . 既不是偶函数也不是奇函数 9. (2分) (2016高一上·哈尔滨期中) 已知函数f(x)是定义在R上的偶函数,且在[0,+∞)上单调递增,若f(﹣1)=0,则不等式f(2x﹣1)>0解集为() A . (﹣∞,0)∪(1,+∞) B . (﹣6,0)∪(1,3)

【精选】高一数学11月月考试题

吉林省汪清县2017-2018学年高一数学11月月考试题注意事项: 1. 答题前填写好自己的姓名、班级、考号等信息 2. 请将答案正确填写在答题卡上 一、单项选择(每小题4分,共40分) 1、下列说法中正确的是() A.棱柱的侧面可以是三角形 B.正方体和长方体都是特殊的四棱柱 C.所有的几何体的表面都能展成平面图形 D.棱柱的各条棱都相等 2、下图是由哪个平面图形旋转得到的() A. B. C. D. 3、图是正方体的平面展开图,在这个正方体中:

①BM与DE平行;②CN与BE是异面直线; ③CN与BM成60°角④DM与BN垂直 以上四个命题中,正确的是() A. ①②③ B. ②④ C. ②③④ D. ③④ 4、如图,是水平放置的的直观图,则的面积为 A. 6 B. C. 12 D. 5、如图所示为一个简单几何体的三视图,则其对应的实物是() A. B. C. D. 6、已知为直线,为平面,,,则与之间的关系是( ) A. 平行 B. 垂直 C. 异面 D. 平行或异面

7、直线的倾斜角为() A.150o B.120o C.60o D.30o 8、已知α,β是平面,m,n是直线.下列命题中不.正确的是() A. 若m∥n,m⊥α,则n⊥α B. 若m∥α,α∩β=n,则m∥n C. 若m⊥α,m⊥β,则α∥β D. 若m⊥α,,则α⊥β 9 、如图,网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则此几何体的表 面积是() A. B. C. D. 10、如图,已知四棱锥的侧棱长与底面边长都是2,且SO⊥平面ABCD,O为底面的中心,则侧棱与底面所成的角为( ) A.75° B.60° C.45° D.30° 二、填空题(每小题4分,共16分) 11、已知一空间几何体的三视图如图所示,则该几何体的体积为___________

点到平面距离的若干典型求法知识交流

点到平面距离的若干 典型求法

点到平面距离的若干典型求法 目录 1.引言 (1) 2.预备知识 (1) 3.求点到平面距离的若干求法 (3) 3.1定义法求点到平面距离 (3) 3.2转化法求点到平面距离 (5) 3.3等体积法求点到平面距离 (7) 3.4利用二面角求点到平面距离 (8) 3.5向量法求点到平面距离 (9) 3.6最值法求点到平面距离 (11) 3.7公式法求点到平面距离 (13) 1.引言 求点到平面的距离是高考立体几何部分必考的热点题型之一,也是学生较难准确把握难点问题之一。点到平面的距离的求解方法是多种多样的,本讲将着重介绍了几何方法(如体积法,二面角法)、代数方法(如向量法、公式法)及常用数学思维方法(如转化法、最值法)等角度等七种较为典型的求解方法,以达到秒杀得分之功效。 2.预备知识 (1)正射影的定义:(如图1所示)从平面外一点P向平面α引垂线,垂足为P',则点P'叫做点P在平面α上的正射影,简称为射影。同时把线段PP'叫作点P与平面α的垂线段。

图1 (2)点到平面距离定义:一点到它在一个平面上的正射影的距离叫作这点到这个平面的距离,也即点与平面间垂线段的长度。 (3) 四面体的体积公式 13 V Sh = 其中V 表示四面体体积,S 、h 分别表示四面体的一个底面的面积及该底面所对应的高。 (4)直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。 (5)三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它和这条斜线也垂直。 (6)二面角及二面角大小:平面内的一条直线l 把平面分为两部分,其中的每一部分都叫做半平面,从一条直线出发的两个半平面所组成的图形,叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面。图2所示为平面α与平面β所成的二面角,记作二面角l αβ--,其中l 为二面角的棱。如图在棱l 上任取一点O ,过点O 分别在平面α及平面β上作l 的垂线OA 、OB ,则把平面角AOB ∠叫作二面角l αβ--的平面角,AOB ∠的大小称为二面角l αβ--的大小。在很多时候为了简便叙述,也把AOB ∠称作α与平面β所成的二面角。

2018-2019学年高一数学11月月考试题

高一年级数学科试题 考试时间:120分钟 一、选择题:本大题共10小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合}02|{>-=x x A ,集合}31|{<<=x x B ,则A ∩B=( ) A .(﹣1,3) B .(﹣1,0) C .(1,2) D .(2,3) 2.下列函数中,既是偶函数又存在零点的是( ) A .x y ln = B .12+=x y C .x y cos = D .x y sin =- 3.函数)1lg(1)(++-=x x x f 的定义域是( ) A .(﹣∞,﹣1) B .(﹣1,1] C .(﹣1,+∞) D .(﹣1,1]∪(1,+∞) 4.已知函数???>≤+=) 0(2)0(12x x x x y ,若10)(=a f ,则的值是( ) A .3或﹣3B .﹣3C .﹣3或5D .3或﹣3或5 5.下列函数中,在(0,+∞)上单调递增的是( ) A .x y -=1 B .21x y -= C .x y 21-= D .x y 2 1log 1-= 6.函数x x f 2log 1)(+=与x x g -=12)(在同一直角坐标系下的图象大致是( ) A . B . C . D . 7.已知2.08=a ,3.0)21 (=b ,6.03=c ,3 2ln =d ,则( ) A .d <c <b <a B .d <b <a <c C .b <c <a <d D .c <a <b <d 8.已知)(x f y =是定义在R 上的偶函数,当0≥x 时,x x x f 2)(2-=,若

点到平面的距离的计算

预备知识 (1)正射影的定义:(如图1所示)从平面外一点P 向平面α引垂线,垂足为P ',则点P '叫做点P 在平面α上的正射影,简称为射影。同时把线段PP '叫作点P 与平面α的垂线段。 图1 (2)点到平面距离定义:一点到它在一个平面上的正射影的距离叫作这点到这个平面的距离,也即点与平面间垂线段的长度。 (3) 四面体的体积公式 13 V Sh = 其中V 表示四面体体积,S 、h 分别表示四面体的一个底面的面积及该底面所对应的高。 (4)直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。 (5)三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它和这条斜线也垂直。 (6)二面角及二面角大小:平面内的一条直线l 把平面分为两部分,其中的每一部分都叫做半平面,从一条直线出发的两个半平面所组成的图形,叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面。图2所示为平面α与平面β所成的二面角,记作二面角l αβ--,其中l 为二面角的棱。如图在棱l 上任取一点O ,过点O 分别在平面α及平面β上作l 的垂线OA 、OB ,则把平面角AOB ∠叫作二面角l αβ--的平面角,AOB ∠的大小称为二面角l αβ--的大小。在很多时候为了

简便叙述,也把AOB ∠称作α与平面β所成的二面角。 图2 1、定义法求点到平面距离(直接法) 定义法求点到平面距离是根据点到平面的定义直接作出或者寻找出点与平面间的垂线段,进而根据平面几何的知识计算垂线段长度而求得点与平面距离的一种常用方法。定义法求点到平面距离的关键在于找出或作出垂线段,而垂线段是由所给点及其在平面射影间线段,应而这种方法往往在很多时候需要找出或作出点在平面的射影。 以下几条结论常常作为寻找射影点的依据: (1)两平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们交线的直线垂直于另一个平面。 (2) 如果一个角所在平面外一点到角的两边的距离相等,那么这个点在该平面内的射影在这个角的角平分线所在的直线上。 (3)经过一个角的顶点引这个角所在平面的斜线。设斜线和已知两边的夹角为锐角且相等,则这条斜线在这个平面的射影是这个角的角平分线。 (4)若三棱锥的三条棱长相等,则顶点在底面上的射影是底面三角形的外心。 例如图4所示,所示的正方体ABCD A B C D '''' -棱长为a,求点A'到平面AB D''的距离。

点到平面的距离的几种求法_人教版

点到平面的距离的几种求法 2 基本概念 从平面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.这点和垂足间的线段叫做这点到平面的垂线段.其实点到平面的距离就是这点到平面的垂线段长. 例:(如图1)若PA ⊥α于A ,则P 点到平面α的距离就是线段PA 的长. 点到平面的距离有如下三条性质: (1)存在性 对于任意一个平面和这个平面外任意一点 都存在着距离. (2)唯一性 一个平面和平面外一点间的距离是唯一的. (3)最小性 平面外一点的距离是这点到这个平面内任意一点的连接线段长度的最小值. 3 例题求解 已知ABCD是边长为4的正方形,E、F分别是AB、A D的中点,GC垂直于ABCD所在平面,且GC=2,求点B 到平面EFG的距离. 3.1 直接用定义求点到平面的距离 3.1.1 直接作出所求距离求其长 解法一:(如图2)为了作出点B 到平面EFG 的距离,延长FE 交CB 的延长线于M, 连 结GM ,作BN⊥BC,交GM于N,则有BN∥CG ∴BN⊥平面ABCD ∴BN⊥EM 作BP⊥EM,交EM 于P ∴平面BPN⊥平面EFG 作BQ⊥PN,垂足为Q ∴BQ⊥平面EFG ∴BQ是点B到平面EFG 的距离 易求出BN=2/3,BP= 2, 32222=+=BN BP PN 在PBN Rt ?中 BN PB BQ PN ?=? 11112=∴BQ 图 1

3.1.2 不直接作出所求距离间接求之 (1) 利用二面角的平面角 引理1:(如图3)若二面角N CD M --的大小为α,M A ∈,CD AB ⊥,a AB =点A到平面N的距离AO=d, 则有 αsin a d = (1) 其中的α也就是二面角的大小,而并不强 求要作出经过AB的二面角的平面角. 解法二:(如图4)过点B作EF BP ⊥,交FE的延长线 于P,易知 2=BP ,这就是点B到二面角C-EF-G 的棱EF的距离.连结AC交EF于H,连结GH 易证∠GHC就是二面角C-EF-G的平面角. ∵ GC=2,AC=24,AH=2, ∴ CH=23 ,GH=22 ∴ 222 sin =∠GHC , 于是由(1)得所求之距离 11112222 2sin =?=∠?=GHC BP d (2) 利用斜线和平面所成的角 引理2 (如图5)OP 为平面α的一条斜线,OP A ∈,l OA =,OP 与α所成的角为θ,A到平面α的距离为d,则有 θsin l d = (2) 注:经过OP 与α垂直的平面与α相交,交线 与OP 所成的锐角就是θ,这里并不强求要作出点A在α上的射影B,连结OB 得θ. 解法三:(如图6),设M为FE与CB的延长线的交点,作 GM BR ⊥,R为垂足. 图3 图 4 图 5

高中数学-直线的交点坐标与距离公式教案

第一课时 3.3-1两直线的交点坐标教案 一、教学目标 (一)知能目标:1。直线和直线的交点 2.二元一次方程组的解 (二)情感目标:1。通过两直线交点和二元一次方程组的联系,从而认识事物之间的内的联系。 2.能够用辩证的观点看问题。 二、教学重点,难点 重点:判断两直线是否相交,求交点坐标。 难点:两直线相交与二元一次方程的关系。 三、教学过程: (一)课题导入 用大屏幕打出直角坐标系中两直线,移动直线,让学生观察这两直线的位置关系。课堂设问一:由直线方程的概念,我们知道直线上的一点与二元一次方程的解的关系,那如果两直线相交于一点,这一点与这两条直线的方程有何关系? (二)探研新知 分析任务,分组讨论,判断两直线的位置关系已知两直线L1:A1x+B1y +C1=0,L2:A2x+B2y+C2=0 如何判断这两条直线的关系? 教师引导学生先从点与直线的位置关系入手,看表一,并填空。 几何元素及关系代数表示 点A A(a,b) 直线L L:Ax+By+C=0 点A在直线上 直线L1与 L2的交点A 课堂设问二:如果两条直线相交,怎样求交点坐标?交点坐标与二元一次方程组有什关系?

学生进行分组讨论,教师引导学生归纳出两直线是否相交与其方程所组成的方程组有何关系? (1) 若二元一次方程组有唯一解,L 1与L2 相交。 (2) 若二元一次方程组无解,则L 1与 L2平行。 (3) 若二元一次方程组有无数解,则L 1 与L2重合。 课后探究:两直线是否相交与其方程组成的方程组的系数有何关系? 1. 例题讲解,规范表示,解决问题 例题1:求下列两直线交点坐标 L1 :3x+4y-2=0 L1:2x+y +2=0 解:解方程组 34202220x y x y +-=??++=? 得 x=-2,y=2 所以L1与L2的交点坐标为M (-2,2),如图3。3。1。 6 4 2 -2 -4 -55 y x 教师可以让学生自己动手解方程组,看解题是否规范,条理是否清楚,表达是否简洁,然后才进行讲解。 同类练习:书本114页第1,2题。

点到平面距离的若干典型求法

点到平面距离的若干典型求法 目录 1.引言 (1) 2.预备知识 (1) 3.求点到平面距离的若干求法 (3) 3.1定义法求点到平面距离 (3) 3.2转化法求点到平面距离 (5) 3.3等体积法求点到平面距离 (7) 3.4利用二面角求点到平面距离 (8) 3.5向量法求点到平面距离 (9) 3.6最值法求点到平面距离 (11) 3.7公式法求点到平面距离 (13) 1.引言 求点到平面的距离是高考立体几何部分必考的热点题型之一,也是学生较难准确把握难点问题之一。点到平面的距离的求解方法是多种多样的,本讲将着重介绍了几何方法(如体积法,二面角法)、代数方法(如向量法、公式法)及常用数学思维方法(如转化法、最值法)等角度等七种较为典型的求解方法,以达到秒杀得分之功效。 2.预备知识 (1)正射影的定义:(如图1所示)从平面外一点P向平面α引垂线,垂足为P',则点P'叫做点P在平面α上的正射影,简称为射影。同时把线段PP'叫作点P与平面α的垂线段。

图1 (2)点到平面距离定义:一点到它在一个平面上的正射影的距离叫作这点到这个平面的距离,也即点与平面间垂线段的长度。 (3) 四面体的体积公式 13 V Sh = 其中V 表示四面体体积,S 、h 分别表示四面体的一个底面的面积及该底面所对应的高。 (4)直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。 (5)三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它和这条斜线也垂直。 (6)二面角及二面角大小:平面内的一条直线l 把平面分为两部分,其中的每一部分都叫做半平面,从一条直线出发的两个半平面所组成的图形,叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面。图2所示为平面α与平面β所成的二面角,记作二面角l αβ--,其中l 为二面角的棱。如图在棱l 上任取一点O ,过点O 分别在平面α及平面β上作l 的垂线OA 、OB ,则把平面角AOB ∠叫作二面角l αβ--的平面角,AOB ∠的大小称为二面角l αβ--的大小。在很多时候为了简便叙述,也把AOB ∠称作α与平面β所成的二面角。 图2 (7)空间向量内积: 代数定义: 设两个向量111(,,)a x y z =,222(,,)b x y z =,则将两个向量对应分量的乘积之和定义为向量a 与b 的内积,记作a b ,依定义有a b =121212x x y y z z ++

点面距离的几种求法

点面距离的几种求法 距离的计算是历年高考的重点与热点,求距离问题可以和多种知识相结合,是诸多知识的交汇点。而点到平面的距离是是距离问题中的重中之重,线到面的距离及面到面的距离都转化为点到面的距离,线面角、二面角,多面体的体积等都可以借助点面距离使之得以解决。 求点到面的距离方法多而且灵活,可以根据定义从改点作平面的 垂线,有时直接利用已知点求距离比较困难,我们可以把点到平面的距离转化到其它点到面的距离或用空间向量法、或利用三棱锥等体积法等。下面通过几道例题介绍常用的点到面的距离求法: 1、 利用定义作垂线,解三角形。 例1, 在棱长为1的正方体1111D C B A ABCD -中,点P 在棱1CC 上,且 1CC =4CP ,求点P 到平面1ABD 的距离。 解: ∵!DC //AB ,∴平面1ABD 与平面D ABC 1是一个平面,∴点P 到平面11D ABC 的距离即为所求。过点P 作PM ⊥!BC 于M ,∵AB ⊥面 C C BB 11,PM ?面C C BB 11,∴AB ⊥PM 。AB 1C B ?=B , 1 C 1 D 1 A P M D A B C 1 B ,

∴PM ⊥1!D ABC ,∴PM 就是所求的距离,又∵ 0!45=∠BCC ,4 3!= P C ,在PM C R t !?中, 8 2 343224510= ?=?= PM P C PM Sin . 2、 转化成其它点到面的距离: 2 C A A

、向量法: 例3、 在棱长为1的正方体1111D C B A ABCD -中,点E, F 分别是 11,D A BC 的中点,求点A 到平面EDF B 1的距离。∥⊥ 解: 建系,如图,设点A 到平面EDF B 1的距离为 d , 平面EDF B 1的法 向量 =(x,y,z),则: AB → →?, y n → )1,2 1,0(),0,2 1,1(=→-=→DF DE

高一数学11月月考试题

高级第一学期11月阶段性考试数学试题 一.选择题(每小题5分,共60分) 1. 设集合{|lg },{|1}A x y x B x x ===≤,则=?B A ( ) A. (0,)+∞ B. [1,)+∞ . (0,1] D.(,1]-∞ 2. 已知角α的终边经过点)3,4(-,则=αcos ( ) A. 54 B. 54- C.5 3- D. 53 3. 下列各组函数的图象相同的是( ) A 、 B 、24()2 x f x x -=-与g (x )=x +2 C 、 D 、 4. 已知函数()26 log f x x x = -,在下列区间中,包含()f x 零点的区间是( ) A.()0,1 B.()1,2 C.()2,4 D.()4,+∞ 5. 下列函数中,既是偶函数又存在零点的是( ) (A )y =cosx (B )2 1y x =+ (C )y =sinx (D )y =lnx 6. 函数y =的单减区间是( ) A .(),1-∞- B .()1,-+∞ C .()3,1-- D .()1,1- 7.若5 sin 13 α=- ,且α为第四象限角,则tan α的值等于( ) A .125 B .125- C .512 D .512 - 8. 已知函数1222,1()log (1),1 x x f x x x -?-≤=?-+>? ,且()3f a =-,则(6)f a -=( ) (A )74- (B )54- (C )34- (D )14 - 9.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系kx b y e +=( 2.718...e =为自然对数的底数,,k b 为常数).若该食品在0℃的保鲜时间是192小时,在 22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( ) )()(x g x f 与2 )()(,)(x x g x x f ==0 )(,1)(x x g x f ==???-==x x x g x x f )(|,|)()0()0(<≥x x

等积法求体积点到面的距离【教师版】

等积法求三棱锥的体积【教师版】2014/10/14 由于三棱锥是由4个三角形围成的四面体,任何一个三角形都可以看成其底面。但在求体积时需要选择合适的底和高,这就需要灵活换底面,但是三棱锥的体积保持不变。这种方法我们称为“等积法”,它是三棱锥求体积的巧妙方法,也是其“专属产品”。其他的,如四棱锥求体积就不能随意换底,不能用等积法求体积。另外,等积法的优越性还体现在求“点到平面的距离”中。 【注意】等积法求体积时,要谨记“先证后求”的原则,先作出或证明底面的高,再计算三棱锥的体积。 例1

例2.(2011佛山一中三校联考) 如图,已知三棱锥A —BPC 中,AP ⊥PC , AC ⊥BC , M 为AB 中点,D 为PB 中点,且△PMB 为正三角形。 (Ⅰ)求证:DM ∥平面APC ; (Ⅱ)求证:平面ABC ⊥平面APC ; (Ⅲ)若BC =4,AB =20,求三棱锥D —BCM 的体积. 例2.解:(Ⅰ)由已知得,MD 是?ABP 的中位线 ∴AP MD ∥ ……………2分 APC AP APC MD 面面??, ∴APC MD 面∥ ……………4分 (Ⅱ)PMB ? 为正三角形,D 为PB 的中点, ∴PB MD ⊥, …………………5分 ∴PB AP ⊥ …………………6分 又P PC PB PC AP =?⊥, ∴PBC AP 面⊥ ……………………7分 PBC BC 面? ∴BC AP ⊥ 又A AP AC AC BC =?⊥, APC BC 面⊥∴ ………………9分 ABC BC 面? ∴平面ABC ⊥平面APC ………………10分 (Ⅲ)∵PBC MD 面⊥,∴MD 是三棱锥M —DBC 的高,且MD =53…11分 又在直角三角形PCB 中,由PB =10,BC =4,可得PC =221 ………12分 于是1 2 BCD BCP S S ??= =221 ………………………………………………13分 ∴D BCM V -=7103 1 ==-Sh V DBC M …………………………14分

天一大联考2017-2018高一11月数学

天一大联考 2017—2018学年度高一年级阶段性测试(一) 数学 第Ⅰ卷(选择题) 一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求. 1.已知集合{}{}|14,2,1,4,8,9A x Z x B =∈-≤≤=--,设C A B =?,则集合C 的非空子集的个数为 A. 8 B. 7 C. 4 D. 3 2.函数()()lg 34f x x x =--的定义域为 A. []3,4 B.(]3,4 C. ()3,4 D.[)3,4 3.函数()392x f x x =-++的零点所在的区间为 A. ()0,1 B. ()1,2 C. ()2,3 D.()3,4 4.已知函数()222,0log ,0 x x f x x x ?≥?=?≠的图象恒过点,则下列函数中图象不经过点P 的是 A. 1y x =- B. ()2log 24y x =+ C. 25y x =+21x y -=+ 7.已知集合{}112111|331,|2733x A x a x a B x +??????=≤≤+=<

2021年高一数学11月月考试卷

2021年高一数学11月月考试卷 班级 高一( )班 姓名 成绩 殷伟康 (xx-11-26) 1、集合11{|,},{|,}2442 k k M x x k Z N x x k Z ==+∈==+∈,则( ) A 、 B 、 C 、 D 、 2、定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若,,则中的所有元素数字之和为( ) A .9 B. 14 C.18 D.21 3、已知且,则的值( ) A . B . C . D .- 4、P= {y|y=sin ,x ∈N* },则P 为( ) A .{-, } B .{-,0, } C .{y|-1≤y ≤1} D .{-1,- ,0, ,1} 5、α为第二象限角,其终边上一点为P(x,5),且cos= 24x,则sin α的值为( ) A 、104 B 、64 C 、24 D 、-104 6. 函数的值域是 ( ) A 、 B 、 C 、 D 、 7函数y=sin(π4 -2x)的单调递增区间是( )(k ∈z)A 、[k π-π8 ,k π+3π8 ] B 、[2kπ+3π8 ,2kπ+ 7π8] C 、[kπ+ 3π8,kπ+7π8 ] D 、[2kπ-π8,2kπ+3π8 ] 8、函数的定义域为( ) A 、 B 、 C 、 D 、 9、函数的值域是( ) A .[-1,1] B . C . D . 10、已知偶函数f(x)在上是增函数,且f(1)=0,则满足xf(x)<0的x 的取值的范围为( ) A 、(-1,1) B 、[-1,1] C 、 D 、 11、给出幂函数y=x n 在第一象限内的图象 , n 取±2 , ±四个值, 则相应于曲线C 1 , C 2 , C 3 , C 4的n 依次为 ( )

向量法求空间点到平面的距离教案

学习必备 欢迎下载 向量法求空间点到面距离(教案) 新课导入: 我们在路上行走时遇到障碍物一般会想到将障碍物挪开,那还有别的方法吗? 对!绕过去。在生活中我们都知道转弯,那么在学习上我们不妨也让思维转个弯,绕过难点 用另一种方法解决。 我们知道要想求空间一点到一个面的距离,就必须要先找到这个距离,而找这个距离恰恰是 一个比较难解决的问题,我们今天就让思维转个弯,用向量法解决这个难题。 一、复习引入: 1、 空间中如何求点到面距离? 方法1、直接做或找距离; 方法2、;等体积 方法3、空间向量。 2、向量数量积公式 a · b =a b cos θ(θ为a 与b 的夹角) 二、向量法求点到平面的距离 教材分析 重点: 点面距离的距离公式应用及解决问题的步骤 难点: 找到所需的点坐标跟面的法向量 教学目的 1. 能借助平面的法向量求点到面、线到面、面到面、异面直线间的距离。 2. 能将求线面距离、面面距离问题转化为求点到面的距离问题。 3. 加强坐标运算能力的培养,提高坐标运算的速度和准确性。

学习必备欢迎下载

学习必备 欢迎下载 若AB 是平面α的任一条斜线段,则在BOA Rt ? ABO COS ∠? ? 如果令平面的法向量为n ,考虑到法向量的方向,可以得到点B 到平面的距离为 BO 因此要求一个点到平面的距离,可以分为以下三步:(1)找出从该点出发的平面的任一 条斜线段对应的向量(2)求出该平面的一个法向量(3)求出法向量与斜线段对应的向量的 数量积的绝对值再除以法向量的模 思考、已知不共线的三点坐标,如何求经过这三点的平面的一个法向量? 例1、在空间直角坐标系中,已知(3,0,0),(0,4,0)A B ,(0,0,2)C ,试求平面ABC 的一个法向量. 解:设平面ABC 的一个法向量为(,,)n x y z = 则n AB n AC ⊥⊥,.∵(3,4,0)AB =-,(3,0,2)AC =- ∴(,,)(3,4,0)0(,,)(3,0,2)0x y z x y z ?-=???-=?即340320x y x z -+=??-+=? ∴3432y x z x ?=????=?? 取4x =,则(4,3,6)n = ∴(4,3,6)n =是平面ABC 的一个法向量. 例2、如图,已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,求点B 到平面EFG 的距离. 解:如图,建立空间直角坐标系C -xyz . 由题设C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0), F(4,2,0),G(0,0,2). (2,2,0),(2,4,2),B (2,0,0)EF EG E =-=--=设平面EFG 的一个法向量 为(,,)n x y z = 2202420 11(,,1)33 n EF n EG x y x y n ⊥⊥-=?∴?--+=?∴=,

向量法求空间点到平面的距离教案

向量法求空间点到面距离(教案) 新课导入: 我们在路上行走时遇到障碍物一般会想到将障碍物挪开,那还有别的方法吗? 对!绕过去。在生活中我们都知道转弯,那么在学习上我们不妨也让思维转个弯,绕过难点 用另一种方法解决。 我们知道要想求空间一点到一个面的距离,就必须要先找到这个距离,而找这个距离恰恰是 一个比较难解决的问题,我们今天就让思维转个弯,用向量法解决这个难题。 一、复习引入: 1、 空间中如何求点到面距离? 方法1、直接做或找距离; 方法2、;等体积 方法3、空间向量。 2、向量数量积公式 a · b =a b cos θ(θ为a 与b 的夹角) 二、向量法求点到平面的距离 剖析:如图, BO 平面 ,垂足为O ,则点B 到平面 的距离是线段BO 的长度。 教材分析 重点: 点面距离的距离公式应用及解决问题的步骤 难点: 找到所需的点坐标跟面的法向量 教学目的 1. 能借助平面的法向量求点到面、线到面、面到面、异面直线间的距离。 2. 能将求线面距离、面面距离问题转化为求点到面的距离问题。 3. 加强坐标运算能力的培养,提高坐标运算的速度和准确性。

若AB 是平面 的任一条斜线段,则在BOA Rt ABO COS ? 如果令平面的法向量为n ,考虑到法向量的方向,可以得到点B 到平面的距离为 BO 因此要求一个点到平面的距离,可以分为以下三步:(1)找出从该点出发的平面的任一 条斜线段对应的向量(2)求出该平面的一个法向量(3)求出法向量与斜线段对应的向量的 数量积的绝对值再除以法向量的模 思考、已知不共线的三点坐标,如何求经过这三点的平面的一个法向量? 例1、在空间直角坐标系中,已知(3,0,0),(0,4,0)A B ,(0,0,2)C ,试求平面ABC 的一个法向量. 解:设平面ABC 的一个法向量为(,,)n x y z r 则n AB n AC r u u u r r u u u r ,.∵(3,4,0)AB u u u r ,(3,0,2)AC u u u r ∴(,,)(3,4,0)0(,,)(3,0,2)0x y z x y z 即340320x y x z ∴3432y x z x 取4x ,则(4,3,6)n r ∴(4,3,6)n r 是平面ABC 的一个法向量. 例2、如图,已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,求点B 到平面EFG 的距离. 解:如图,建立空间直角坐标系C -xyz . 由题设C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0), F(4,2,0),G(0,0,2). (2,2,0),(2,4,2),B (2,0,0)EF EG E u u u r u u u r u u u r 设平面EFG 的一个法向量 为(,,)n x y z r 2202420 11(,,1)33 n EF n EG x y x y n r u u u r r u u u r r ,

高一数学上学期第三次(11月)月考试题

2016-2017学年度沾益区一中学校11月月考卷 数学试卷 考试时间:120分钟 一、选择题:本大题10小题,每小题5分,满分50分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、已知全集I ={0,1,2,3,4},集合{1,2,3}M =,{0,3,4}N =,则() I M N 等于 ( ) A.{0,4} B.{3,4} C.{1,2} D. ? 2、设集合2{650}M x x x =-+=,2{50}N x x x =-=,则M N 等于 ( ) A.{0} B.{0,5} C.{0,1,5} D.{0,-1,-5} 3、计算:9823log log ?= ( ) A 12 B 10 C 8 D 6 4、函数2(01)x y a a a =+>≠且图象一定过点 ( ) A (0,1) B (0,3) C (1,0) D (3,0) 5、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相吻合是 ( ) 6、函数12 log y x =的定义域是( )

A {x |x >0} B {x |x ≥1} C {x |x ≤1} D {x |0<x ≤1} 7、已知集合A ={1,2},集合B ={(x ,y )|x +y =3},则A ∩B =( ) A .{1} B .{2} C .{(1,2)} D .? 8、设x x e 1e )x (g 1x 1x lg )x (f +=-+=,,则 ( ) A f(x)与g(x)都是奇函数 B f(x)是奇函数,g(x)是偶函数 C f(x)与g(x)都是偶函数 D f(x)是偶函数,g(x)是奇函数 9、使得函数2x 2 1x ln )x (f -+=有零点的一个区间是 ( ) A (0,1) B (1,2) C (2,3) D (3,4) 10、若0.52a =,πlog 3b =,2log 0.5c =,则( ) A a b c >> B b a c >> C c a b >> D b c a >> 11.下列函数中,是偶函数且在区间(0,)+∞上是减函数的为( ) A .1y x = B .2y x = C .21y x = D .1()2 x y = 12.已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}中元素的个数是( ) A .1 B .3 C .5 D .9 二、填空题:本大题共4小题,每小题5分,满分20分 13、函数5()2log (3)f x x =++在区间[-2,2]上的值域是______ 14、计算:2391- ??? ??+3 2 64=______

求点到平面距离的基本方法

利用两个平面垂直,直接作出点到平面的距离. 2, A .AM为点A到平面的距 求点到平面距离的基本方法 北京农大附中闫小川 求点到平面的距离是立体几何中的一个基本问题,是高考的一个热点,也 是同学学习中的一个难点.本文通过对一道典型例题的多种解法的探讨,概括出 求点到平面的距离的几种基本方法. (I )求证:AE 平面BCE ; (n )求二面角B AC E的大小; (m )求点D到平面ACE的距离. (I)、( n)解略,(m)解如下: 、直接法 例 (2005年福建高考题)如图1,直二面角 D AB E中,四边形ABCD 是边长为2的正方形,AE EB,F为CE上的点, 且BF 平面ACE. D B

解:如图3,过点A 作AG 峑EC ,连结DG,CG ,则平面ADG //平面BCE , ???平面BCE 平面ACE , ???平面ADG 平面ACE , 作DH AG,垂足为H ,则DH 平面ACE. ??? DH 是点D 到平面ACE 的距离. 二、平行线法 ,B 为I 上任意一点,AM , BN ,则AM BN . 点A 到平面的距离转化为平行于平面 的直线I 到平面的距离,再转化为直 线I 上任意一点B 到平面 的距离. 解:如图5,过点D 作DM 屯AE ,连结CM ,则DM //平面ACE , 点D 到平面ACE 的距离转化为直线 DM 到平面ACE 的距离,再转化为点 M 到平面ACE 的距离. 作MN CE,垂足为N , 在 Rt ADG 中, DH AD DG 2 迈 2/3 AG 76 3 如图 4, A 1,1 // C B

???平面CEM 平面ACE , ??? MN 平面 ACE , ??? MN 是点M 到平面ACE 的距离. 三、斜线法 利用平面的斜线及三角形相似,转化为求斜线上的点到平面的距离 .如图 AO O , A,B l , AM , BN ,若竺 t,则 AM t BN.点 A 到 BO 平面 的距离转化为求直线I 上的点B 到平面 的距离. 解:如图8, BD 与AC 的交点为Q ,即BD 平面ACE Q , ??? DQ BQ , ???点D 到平面ACE 的距离与点B 到平面ACE 的距离相等. ???平面BCE 平面ACE ,BF 平面ACE , ? BF 是点B 到平面ACE 的距离. 在 Rt CEM 中,MN EM CM 2 72 C E 7 6 6、7, l N

2019-2020学年高一数学上学期11月月考试题

2019-2020 学年高一数学上学期 11 月月考试题
一、选择题(每小题 5 分,共 12 小题 60 分)
1、在
中与
终边相同的角有( )
A. 个
B. 个
C. 个
2、若角 与 的终边垂直,则 与 的关系是( )
D. 个
A.
B.
C.
D.
3、函数
的单调增区间为( )
A.
,
B.
,
C.
,
D.
,
4、若
,则
()
A. 5、将函数
B.
C.
D.
图象向左平移 个长度单位,再把所得图象上各点的横坐标
缩短到原来的一半(纵坐标不变),所得图象的函数解析式是( )
A.
B.
C.
D.
6、已知
,则
的值等于( )
A.
B.
C.
D.
7、在平面直角坐标系中,角 的顶点与原点重合,始边与 轴的非负半轴重合,终边过点
,则
()
A.
B.
C.
D.
实用文档

8、下列函数中,在其定义域内既是偶函数又在
上单调递增的函数是( )
A.
B.
C.
D.
9、定义在 上的奇函数 满足
,且当
时,
,
则下列结论正确的是( )
A.
B.
C.
D.
10、已知
,
,则 的值是 )
A.
B.
C.
D.
11、已知 A.
,则
B.
C.
的值为( ) D.
12、如果 弧度的圆心角所对的弦长为 ,那么这个圆心所对的弧长为( )
A.
B.
C.
D.
二、填空题(每小题 5 分,共 4 小题 20 分)
13、已知方程
,其在区间
内解的个数为__________.
14、已知 ,
,
,
,则
__________.
实用文档

高中数学立体几何专题:空间距离的各种计算(含答案)

高中数学立体几何 空间距离 1.两条异面直线间的距离 和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离. 2.点到平面的距离 从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离 如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离 和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离. 题型一:两条异面直线间的距离 【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离; 【规范解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线. (2)在Rt △BEF 中,BF = a 23 ,BE =a 21, 所以EF 2=BF 2-BE 2=a 2 12,即EF =a 22 . 由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为 a 2 2 . 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED . ∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB . ∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离. ∵CE =23,∴CF =FD =21,∠EFC =90°,EF =2221232 2 =??? ??-??? ? ??. ∴AB 、CD 的距离是 2 2 . 【解后归纳】 求两条异面直线之间的距离的基本方法: (1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度. (2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离 . 例1题图 例2题图

相关文档
相关文档 最新文档