文档库 最新最全的文档下载
当前位置:文档库 › 桥式整流电路计算

桥式整流电路计算

桥式整流电路计算
桥式整流电路计算

桥式整流电路计算

桥式整流属于全波整流,它不就是利用副边带有中心抽头的变压器,用四个二极管接成电桥形式,使在电压V2的正负半周均有电流流过负载,在负载形成单方向的全波脉动电压。

桥式整流电路计算主要参数:

单相全波整流电路图

利用副边有中心抽头的变压器与两个二极管构成如下图所示的全波整流电路。从图中可见正负半周都有电流流过负载,提高了整流效率。

全波整流的特点:

输出电压V O高;脉动小;正负半周都有电流供给负载,因而变压器得到充分利用,效率较高。

主要参数:

桥式整流电路电感滤波原理

电感滤波电路利用电感器两端的电流不能突变的特点,把电感器与负载串联起来,以达到使输出电流平滑的目的。从能量的观点瞧,当电源提供的电流增大(由电源电压增加引起)时,电感器L把能量存储起来;而当电流减小时,又把能量释放出来,使负载电流平滑,电感L有平波作用

桥式整流电路电感滤波优点:整流二极管的导电角大,峰值电流小,输出特性较平坦。

桥式整流电路电感滤波缺点:存在铁心,笨重、体积大,易引起电磁干扰,一般只适应于低电压、大电流的场合。

例10.1.1桥式整流器滤波电路如图所示,已知V1就是220V交流电源,频率为50Hz,要求直流电压

V L=30V,负载电流I L=50mA。试求电源变压器副边电压v2的有效值,选择整流二极管及滤波电容。

桥式整流电路电容滤波电路

图10、5分别就是单相桥式整流电路图与整流滤波电路的部分波形。这里假设t<0时,电容器C已经充电到交流电压V2的最大值(如波形图所示)。

结论1:由于电容的储能作用,使得输出波形比较平滑,脉动成分降低输出电压的平均值增大。

结论2:从图10、6可瞧出,滤波电路中二极管的导电角小于180o,导电时间缩短。因此,在短暂的导电时间内流过二极管很大的冲击电流,必须选择较大容量的二极管。

在纯电阻负载时:

有电容滤波时:

结论3:电容放电的时间τ=R L C越大,放电过程越慢,输出电压中脉动(纹波)成分越少,滤波效果越好。

取τ≥(3~5)T/2,T为电源交流电压的周期。

整流电路输出电压计算

对于整流电压的输出电压大小,大家一定不陌生。很多人会说,输出平均值全波0、9倍,半波0、45倍的交流有效。但就是在设计中,我们常常发现一个事实,例如在半波整流后,输出电压得到的不止0、45倍,9V 交流整流后可能有11~12V。之前我一直很困惑,就是我记错了计算倍数不?翻了很多书籍,公式当然就是没错的。那到底怎么回事?

可能之前我们在学校学这个方面知识点的时候太过注重整流电路,而忽略了脉动比的概念,所以造成我们现在很多人对这一简单的知识不就是很清晰。其实这里就是由于整流电路后面接的滤波电容有关的,查阅模电知识我们即可了解到,整流后往往会加滤波稳压,而滤波电路会改变整流输出的脉动比,并且与负载有关。因此最终整流后得到的电压除了跟整流方式有关,还与负载、滤波电容大小有关系。RL*C的数值直接影响输出电压的大小。因此滤波电容选择其实不就是随意的,而就是需要根据负载选取合适的值。

接入滤波电路后,输出电压平均值近似取值为1、2倍,负载开路取1、414倍。

RC=(3-5)T/2 来确定电容容量选择。其中T表示电网周期。

电容滤波电路适用于负载电流较小情况,而电感滤波电路适用于大负载电流。(电流较大时R较小,C较难选择)

桥式整流电路计算

桥式整流电路计算 桥式整流属于全波整流,它不是利用副边带有中心抽头的变压器,用四个二极管接成电桥形式,使在电压V2的正负半周均有电流流过负载,在负载形成单方向的全波脉动电压。 桥式整流电路计算主要参数: 单相全波整流电路图 利用副边有中心抽头的变压器和两个二极管构成如下图所示的全波整流电路。从图中可见正负半周都有电流流过负载,提高了整流效率。 全波整流的特点: 输出电压V O高;脉动小;正负半周都有电流供给负载,因而变压器得到充分利用,效率较高。 主要参数: 桥式整流电路电感滤波原理 电感滤波电路利用电感器两端的电流不能突变的特点,把电感器与负载串联起来,以达到使输出电流平滑的目的。从能量的观点看,当电源提供的电流增大(由电源电压增加引起)时,电感器L把能量存储起来;而当电流减小时,又把能量释放出来,使负载电流平滑,电感L有平波作用

桥式整流电路电感滤波优点:整流二极管的导电角大,峰值电流小,输出特性较平坦。 桥式整流电路电感滤波缺点:存在铁心,笨重、体积大,易引起电磁干扰,一般只适应于低电压、大电流的场合。 例10.1.1桥式整流器滤波电路如图所示,已知V1是220V交流电源,频率为50Hz,要求直流电压V L=30V,负载电流I L=50mA。试求电源变压器副边电压v2的有效值,选择整流二极管及滤波电容。

桥式整流电路电容滤波电路 图10.5分别是单相桥式整流电路图和整流滤波电路的部分波形。这里假设t<0时,电容器C已经充电到交流电压V2的最大值(如波形图所示)。 结论1:由于电容的储能作用,使得输出波形比较平滑,脉动成分降低输出电压的平均值增大。

整流桥电路大全

整流电路大全 9.3.7 正、负极性全波整流电路及故障处理 如图9-24所示是能够输出正、负极性单向脉动直流电压的全波整流电路。电路中的T1是电源变压器,它的次级线圈有一个中心抽头,抽头接地。电路由两组全波整流电路构成,VD2和VD4构成一组正极性全波整流电路,VD1和VD3构成另一组负极性全波整流电路,两组全波整流电路共用次级线圈。 图9-24 输出正、负极性直流电压的全波整流电路 1.电路分析方法 关于正、负极性全波整流电路分析方法说明下列2点: (1)在确定了电路结构之后,电路分析方法和普通的全波整流电路一样,只是需要分别分析两组不同极性全波整流电路,如果已经掌握了全波整流电路的工作原理,则只需要确定两组全波整流电路的组成,而不必具体分析电路。 (2)确定整流电路输出电压极性的方法是:两二极管负极相连的是正极性输出端(VD2和VD4连接端),两二极管正极相连的是负极性输出端(VD1和VD3连接端)。 2.电路工作原理分析 如表9-28所示是这一正、负极性全波整流电路的工作原理解说。 关键词说明

3.故障检测方法 关于这一电路的故障检测方法说明下列几点: (1)如果正极性和负极性直流输出电压都不正常时,可以不必检查整流二极管,而是检测电源变压器,因为几只整流二极管同时出现相同故障的可能性较小。 (2)对于某一组整流电路出现故障时,可按前面介绍的故障检测方法进行检查。这一电路中整流二极管中的二极管VD1和VD3、VD2和VD4是直流电路并联的,进行在路检测时会相互影响,所以准确的检测应该将二极管脱开电路。 4.电路故障分析 如表9-29所示是正、负极性全波整流电路的故障分析。 分页:123456

三相桥式全控整流电路

1主电路的原理 1.1主电路 其原理图如图1所示。 图1 三相桥式全控整理电路原理图 习惯将其中阴极连接在一起的3个晶闸管(VT1、VT3、VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极组。此外,习惯上希望晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。从后面的分析可知,按此编号,晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。 1.2主电路原理说明 整流电路的负载为带反电动势的阻感负载。假设将电路中的晶闸管换作二极管,这种情况也就相当于晶闸管触发角α=0o时的情况。此时,对于共阴极组的3个晶闸管,阳极所接交流电压值最高的一个导通。而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。此时电路工作波形如图2所示。

图2 反电动势α=0o时波形 α=0o时,各晶闸管均在自然换相点处换相。由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。在分析ud的波形时,既可从相电压波形分析,也可以从线电压波形分析。从相电压波形看,以变压器二次侧的中点n为参考点,共阴极组晶闸管导通时,整流输出电压ud1为相电压在正半周的包络线;共阳极组导通时,整流输出电压ud2为相电压在负半周的包络线,总的整流输出电压ud = ud1-ud2是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。

经验整流电路简单的计算公式

整流二极管可用半导体锗或硅等材料制造。硅整流二极管的击穿电压高,反向漏电流小,高温性能良好。通常高压大功率整流二极管都用高纯单晶硅制造。这种器件的结面积较大,能通过较大电流(可达上千安),但工作频率不高,一般在几十千赫以下。整流二极管主要用于各种低频整流电路。 整流电路分类: 单向、三相与多项整流电路; 还可分为半波、全波、桥式整流电路; 又可分为可控与不可控;当全部或部分整流元件为可控硅(晶闸管)时称可控整流电路 (一)不可控整流电路 1、单向二极管半波整流电路 半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低;因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。 输出直流电压U=0.45U2 流过二极管平均电流I=U/RL=0.45U2/RL 二极管截止承受的最大反向电压是Um反=1.4U2 2、单向二极管全波整流电路 因此称为全波整流,全波整流不仅利用了正半周,而且还巧妙地利用了负半周,从而大大地提高了整流效率(Usc=0.9e2,比半波整流时大一倍) 另外,这种电路中,每只整流二极管承受的最大反向电压,是变压器次级电压最大值的两倍,因此需用能承受较高电压的二极管。 输出直流电压U=0.9U2

流过二极管平均电流只是负载平均电流的一半,即流过负载的电流I=0.9U2/RL流过二极管电流I=0.45U2/RL 二极管截止时承受2.8U2的反向电压 因此选择二极管参数的依据与半波整流电路相比有所不同,由于交流正负两个半周均有电流流过负载,因此变压器的利用率比半波整流高。 二极管全波整流的另一种形式即桥式整流电路,是目前小功率整 流电路最常用的整流电路。 3、二极管全波整流的结论都适用于桥式整流电路,不同点仅是每个二 极管承受的反向电压比全波整流小了一半。 桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整洗电路小一半! U=0.9U2 流过负载电流I=0.9U2/RL 流过二极管电流I=0.45U2/RL 二极管截止承受反向电压U=1.4U2 另外,在高电压或大电流的情况下,如果手头没有承受高电压或整定大电滤的整流元件,可以把二极管串联或并联起来使用。 图5-7 示出了二极管并联的情况:两只二极管并联、每只分担电路总电流的一半,三只二极管并联,每只分担电路总电流的三分之一。总之,有几只二极管并联,"流经每只二极管的电流就等于总电流的几分之一。但是,在实际并联运用时",由于各二极管特性不完全一致,不能均分所通过的电流,会使有的管子困负担过重而烧毁。因此需在每只二极管上串联一只阻值相同的小电阻器,使各并联二极管流过的电流接近一致。这种均流电阻R 一般选用零点几欧至几十欧的电阻器。电流越大,R应选得越小。

可控硅整流电路计算题

例8.1有一电阻性负载要求0~24V连续可调的直流电压,其最大负载电流,若由交流电网220V供电与用整流变压器降至60V供电,都采用单相 半波可控整流电路,是否都能满足要求?并比较两种方案所选晶闸管的导通角、额定电压、额定电流值以及电源和变压器二次侧的功率因数和对电源的容量要求等有何不同、两种方案哪种更合理(考虑2倍裕量)? 解(1)采用220V电源直接供电,当时 采用整流变压器降至60V供电,当时 所以只要适当调节角,上述两种方案都能满足输出0~24V直流电压的要求。 (2)采用220V电源直接供电,因为,其中在输出最大 时,,,则计算得, 晶闸管承受的最大电压为 考虑2倍裕量,晶闸管额定电压 由式(8.20)知流过晶闸管的电流有效值是 ,其中,, 则 考虑2倍裕量,则晶闸管额定电流应为

因此,所选晶闸管的额定电压要大于622V,额定电流要大于107A。 电源提供的有功功率 电源的视在功率 电源侧功率因数 (3)采用整流变压器降至60V供电,已知,,由公式可解得 晶闸管承受的最大电压为 考虑2倍裕量,则晶闸管额定电压 流过晶闸管的最大电流有效值是 考虑2倍裕量,则晶闸管额定电流应为

因此,所选晶闸管的额定电压要大于169.8V,额定电流要大于65.5A。 电源提供的有功功率 电源的视在功率 则变压器侧的功率因数 例8.2单相桥式全控整流电路带大电感负载,,,计算当时,输出电压、电流的平均值以及流过晶闸管的电流平均值和有效值 以及流过晶闸管的电流平均值和有效值。若负载两端并接续流二极管,如图8.15所示,则输出电压、电流的平均值又是多少?流过晶闸管和续流二极管的平均值和有效值又是多少?并画出这两种情况下的电压、电流波形。 解(1)不接续流二极管时的电压、电流波形如图8.16(a)所示,由于是大电感负载,故由式(8.36)和式(8.27)可得 因负载电流是由两组晶闸管轮流导通提供的,故由式(8.38)知,流过晶闸管的电流平均值和有效值为

三相桥式全控整流电路分析

一、三相桥式全控整流电路分析 三相桥式全控整流电路原理图如图所示。三相桥式全控整流电路是由三相半波可控整流电路演变而来的,它由三相半波共阴极接法(VT1,VT3,VT5)和三相半波共阳极接法(VT1,VT6,VT2)的串联组合。 其工作特点是任何时刻都有不同组别的两只晶闸管同时导通,构成电流通路,因此为保证电路启动或电流断续后能正常导通,必须对不同组别应到导通的一对晶闸管同时加触发脉冲,所以触发脉冲的宽度应大于π/3的宽脉冲。宽脉冲触发要求触发功率大,易使脉冲变压器饱和,所以可以采用脉冲列代替双窄脉冲;每隔π/3换相一次,换相过程在共阴极组和共阳极组轮流进行,但只在同一组别中换相。接线图中晶闸管的编号方法使每个周期内6个管子的组合导通顺序是VT1-VT2-VT3-VT4-VT5-VT6;共阴极组T1,T3,T5的脉冲依次相差2π/3;同一相的上下两个桥臂,即VT1和VT4,VT3和VT6,VT5和VT2的脉冲相差π,给分析带来了方便;当α=O时,输出电压Ud一周期内的波形是6个线电压的包络线。所以输出脉动直流电压频率是电源频率的6倍,比三相半波电路高l倍,脉动减小,而且每次脉动的波形都一样,故该电路又可称为6脉动整流电路。

在第(1)段期间,a相电压最高,而共阴极组的晶闸管VT1被触发导通,b相电位最低,所以供阳极组的晶闸管KP6被触发导通。这时电流由a相经VT1流向负载,再经VT6流入b 相。变压器a、b两相工作,共阴极组的a相电流为正,共阳极组的b相电流为负。加在负载上的整流电压为ud=ua-ub=uab 经过60°后进入第(2)段时期。这时a相电位仍然最高,晶闸管VTl继续导通,但是c 相电位却变成最低,当经过自然换相点时触发c相晶闸管VT2,电流即从b相换到c相,VT6承受反向电压而关断。这时电流由a相流出经VTl、负载、VT2流回电源c相。变压器a、c 两相工作。这时a相电流为正,c相电流为负。在负载上的电压为ud=ua-uc=uac 再经过60°,进入第(3)段时期。这时b相电位最高,共阴极组在经过自然换相点时,触发导通晶闸管VT3,电流即从a相换到b相,c相晶闸管VT2因电位仍然最低而继续导通。此时变压器bc两相工作,在负载上的电压为ud=ub-uc=ubc 余相依此类推。 仿真实验 “alpha_deg”是移相控制角信号输入端,通过设置输入信号给它的常数模块参数便可以得到不同的触发角α,从而产生给出间隔60度的双脉冲。 二、MATLAB仿真 (1)MATLAB simulink模型如图 (2)参数设置 电源参数设置:电压设置为380V,频率设为50Hz。注意初相角的设置,a相电压设为0,b相电压设为-120,a相电压设为-240。

半波整流,全波整流,桥式整流二极管

一、半波整流电路 图1 图1是一种最简单的整流电路。它由电源变压器B、整流二极管D和负载电阻Rfz组成。变压器把市电电压变换为所需要的交变电压e2,D 再把交流电变换为脉动直流电。 下面从图2的波形图上看看二极管是怎样整流的。 图2 变压器次级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图2(a)所示。在0~π时间内,e2 为正半周即变压器上端为正下端为负。此时整流二极管承受正向电压而导通,e2 通过它加在负载电阻Rfz上,在π~2π时间内,e2 为负半周,变压器次级下端为正,上端为负。这时D承受反向电压,不导通,Rfz上无电压。在2π~3π时间内,重复0~π时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图2(b)所示,达到了整流的目的,但是,负载电压Usc 。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、留下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。 二、全波整流电路 如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图3是全波整流电路的电原理图。 图3 全波整流电路,可以看作是由两个半波整流电路组合成的。变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压e2a 、e2b ,构成e2a 、D1、Rfz与e2b 、D2 、Rfz ,两个通电回路。

整流电路计算

桥式整流属于全波整流,它不是利用副边带有中心抽头的变压器,用四个二极管接成电桥形式,使在电压V2的正负半周均有电流流过负载,在负载形成单方向的全波脉动电压。 桥式整流电路计算主要参数: 单相全波整流电路图 利用副边有中心抽头的变压器和两个二极管构成如下图所示的全波整流电路。从 图中可见,正负半周都有电流流过负载,提高了整流效率。 全波整流的特点: 输出电压V O高;脉动小;正负半周都有电流供给负载,因而变压器得到充 分利用,效率较高。 主要参数:

桥式整流电路电感滤波原理 电感滤波电路利用 电感器两端的电流不能突变的特点,把电感器与负载串联起来,以达到使输出电流平滑的目的。从能量的观点看,当电源提供的电流增大(由电源电压增加引起)时,电感器L把能量存储起来;而当电流减小时,又把能量释放出来,使负载电流平滑,电感L有平波作用 桥式整流电路电感滤波优点:整流二极管的导电角大,峰值电流小,输出特性较平坦。 桥式整流电路电感滤波缺点:存在铁心,笨重、体积大,易引起电磁干扰, 只适应于低电压、大电流的场合。

例10.1.1桥式整流器滤波电路如图所示,已知V1是220V交流电源,频率为50Hz, 直流电压V L=30V,负载电流I L=50mA。试求电源变压器副边电压v2的有效值,选择整流二极管及滤波电容。

桥式整流电路电容滤波电路 图10.5分别是单相桥式整流电路图和整流滤波电路的部分波形。这里假设‘ 、 t<0时,电容器C已经充电到交流电压V2的最大值(如波形图所示)。 结论1:电容的储能作用,使得输出波形比较平滑,脉动成分降低输出电压的平均值增大。

整流模块电路图

MDQ25A1600V的单相整流模块。在交流极我直接接入220V电压。在没有负载的情况下,输出电压为200左右可我加了负载,电压反而高了到280左右。请问是为什,怎么解决。谢谢大家。 正常,220V 是有效值 整流之后电压是直流:220*1.41=308 滤波之后是:308*0.9=277 2220V是交流电的有效值,而有效值为220V的交流电其最大值约为311V。一般整流桥输出电路中都设有由电容和电阻组成的滤波电路,电容在滤波时将整流后的电压滤平的同时,也使自己充电,两端的电压就上升,因此。整流后的直流电压一般比交流电有效值高、比交流电的最大值低,根据有关的计算,理想的情况下(不考虑整流二极管的管压降和电阻等的降压作用),输出直流电压约为1.35倍的交流电压有效值,即约为297V。实际测量时则是考虑各种压降的实际电压,因此有约280V左右的数值。 ★★★【补充】:★★★ 要得到220左右的电压可采用“可控整流电路”,即将整流桥对应两个臂的二极管用晶闸管代替,通过对晶闸管导通角的控制就可得到所需要的直流电压。如果要保留原来的整流桥,则只好采用分压的方法实现了,此时是还需再加稳压电路的。 整流桥输入交流220v,输出直流电压测量值为280v,而实际测量值为311v的故障原因设整流桥的输入交流为Vac(有效值),则整流桥的输出直流电压Vdc理论上可近似用下式表示: Vdc=(0.9----1.4)Vac

下面来讨论二种极限情况: 1.当纯阻负载(即不接滤波器)和RL负载(即电感滤波)的情况下 这时整流桥输出端为单向脉动正弦,其中的直流分量为0.9Vac,故可取系数为0.9. 2.当只有滤波电容而负载开路时(有时称为纯容负载),这时电容上的电压将充至正弦的峰值1.4Vac.故这时的系数取1.4.这是电容滤波在负载开路下的一种特殊情况.而电容滤波在带负载的情况下,视负载的大小,输出电压在(0.9--1.4)Vac之间,一般取1.2Vac左右. 因此,你测得的311V可能是在输出开路情况下测得的.而280V又可能是在带负载的情况下测得的.以上只是分析,供你参考吧. 这不是故障,整流桥输出通过电容滤波后所测电压就是输入交流电的峰值电压,1.41倍的输入电压.在输入电压为220V时,滤波电容两端的电压为308V。加上负载就降低了。 如果不接滤波电容,应该输出220*0.9=198v,

桥式整流电路分析

1、桥式整流 桥式整流电路是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定程度上克服了它的缺点。 桥式整流电路如图Z0705所示,其中图(a)、(b)、(c)是它的 三种不同画法。它是由电源变压器、四只整流二极管D1~4 和负载 电阻R L组成。四只整流二极管接成电桥形式,故称桥式整流。 桥式整流电路的工作原理如图Z0706所示。在u2的正半周,D1、 D3导通,D2、D4截止, 电流由T R次级上端经 D1→R L →D3回到 TR次级下端,在负载 RL上得到一半波整流 电压。 在u2的负半周,D1、 D3截止,D2、D4导通, 电流由Tr次级的下端 经D2→R L→D4回到 Tr次级上端,在负载RL 上得到另一半波整流 电压。 这样就在负载RL上得到一个与全波整流相同的电压波形,其电 流的计算与全波整流相同,即 UL = 0.9U2 GS0709 I L = 0.9U2/R L GS0710 流过每个二极管的平均电流为 I D= I L/2 = 0.45 U2/R L 每个二极管所承受的最高反向电压为 2、半波整流电路 半波整流电路,由电源变压器Tr整流二极管D和负载电阻RL组成,如下图所示。电路的工作过程是:在u2的正半周(ωt=0~π),二极管因加正向偏压而导通,有电流iL流过负载电阻RL。由于将二极管看作理想器件,故RL上的电压uL与u2的正半周电压基本相同。

市电(交流电网)变为稳定的直流电需经过变压、整流、滤波和稳压四个过程。利用二极管的单向导电性,将大小和方向都随时间变化的工频交流电变换成单方向的脉动直流电的过程称为整流。有时将变压器、整流电路和滤波电路一起统称为整流器。 (1)正半周u2瞬时极性a(+),b(-),VD正偏导通,二极管和负载上有电流流过。若向压降UF忽略不计,则uo=u2。 (2)负半周u2瞬时极性a(-),b(+),VD反偏截止,IF≈0,uD=u2。

半波整流全波整流桥式整流的详细介绍适合入门者

半波整流全波整流桥式整流的详细介绍适合入门者 The Standardization Office was revised on the afternoon of December 13, 2020

半波整流、全波整流、桥式整流 整流,就是把交流电变为直流电的过程。利用具有单向导电特性的器件,可以把方向和大小交变的电流变换为直流电。下面介绍利用晶体二极管组成的各种整流电路。 一、半波整流电路 图(1)是一种最简单的整流电路。它由 电源变压器B 、整流二极管D 和负载电阻 Rfz ,组成。变压器把市电电压(多为220 伏)变换为所需要的交变电压E2 ,D 再把 交流电变换为脉动直流电。 下面从右图(2)的波形图上看着二 极管是怎样整流的。 变压器砍级电压E2 ,是一 个方向和大小都随时间变化的正 弦波电压,它的波形如图(2)(a) 所示。在0~π时间内,E2 为正 半周即变压器上端为正下端为 负。此时二极管承受正向电压面 导通,E2 通过它加在负载电阻 Rfz上,在π~2π时间内,E2 为负半周,变压器次级下端为正,上端为负。这时D 承受反向电压,不导通,Rfz,上无电压。在2π~3π时间内,重复0~π时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压Usc 。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、图下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc = )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。

桥式整流电压计算

整流电路将交流电压变换成单向脉动的电压,为了改善电压的脉动程度,得到较平直的直流电压,以满足电子设备的需要,常在整流电路输出端接上滤波电路。 滤波电路主要由电容、电感元件组成,从本篇的电容滤波电路开始,分三篇分别介绍这几种滤波电路。如下图所示,在桥式整流电路负载两端并联一个电容器C,利用电容C的充放电作用,可以使负载上得到的电压较为平直。 当输入电压u2u2正半周时,如果u2>u C u2>uC,二极管VD1、VD3导通(参看《二极管单相整流电路:桥式整流工作原理及桥式整流组件(硅堆)》的单相桥式整流电路图),电流流过负载R L RL的同时,也对电容C充电,忽略二极管的正向管压降,电容C两端的电压u C uC和输入电压u2u2相同,并充电到最大值2√u22u2,当u2u2按正弦规律连续下降时,在接负载R L RL的情况下,开始时u C uC也是按u2u2的规律下降;但是,由于u2u2的下降速度大于u C uC的下降速度,所以下降到u2u C|u2|>uC时,如上图,VD2、VD4开始导通,此时电容C放电停止,u2u2重新对电容充电,使u C uC按正弦规律充电到最大值2√u22u2,然后u2u2下降到|u2|

经验整流电路简单的计算公式

经验整流电路简单的计 算公式 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

整流二极管可用半导体锗或硅等材料制造。硅整流二极管的击穿电压高,反向漏电流小,高温性能良好。通常高压大功率整流二极管都用高纯单晶硅制造。这种器件的结面积较大,能通过较大电流(可达上千安),但工作频率不高,一般在几十千赫以下。整流二极管主要用于各种低频整流电路。 整流电路分类: 单向、三相与多项整流电路; 还可分为半波、全波、桥式整流电路; 又可分为可控与不可控;当全部或部分整流元件为可控硅(晶闸管)时称可控整流电路 (一)不可控整流电路 1、单向二极管半波整流电路 半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低;因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。 输出直流电压U= 流过二极管平均电流 I=U/RL=RL 二极管截止承受的最大反向电压是 Um反= 2、单向二极管全波整流电路 因此称为全波整流,全波整流不仅利用了正半周,而且还巧妙地利用了负半周,从而大大地提高了整流效率(Usc=,比半波整流时大一倍) 另外,这种电路中,每只整流二极管承受的最大反向电压,是变压器次级电压最大值的两倍,因此需用能承受较高电压的二极管。 输出直流电压U=

流过二极管平均电流只是负载平均电流的一半,即流过负载的电流I=RL流过二极管电流I=RL 二极管截止时承受的反向电压 因此选择二极管参数的依据与半波整流电路相比有所不同,由于交流正负两个半周均有电流流过负载,因此变压器的利用率比半波整流高。 二极管全波整流的另一种形式即桥式整流电路,是目前小功率整 流电路最常用的整流电路。 3、二极管全波整流的结论都适用于桥式整流电路,不同点仅 是每个二极管承受的反向电压比全波整流小了一半。 桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整洗电路小一半! U= 流过负载电流I=RL 流过二极管电流I=RL 二极管截止承受反向电压U= 另外,在高电压或大电流的情况下,如果手头没有承受高电压或整定大电滤的整流元件,可以把二极管串联或并联起来使用。 图5-7 示出了二极管并联的情况:两只二极管并联、每只分担电路总电流的一半,三只二极管并联,每只分担电路总电流的三分之一。总之,有几只二

简单学电路——半波与全波,半波整流、全波整流、桥式整流(原创)

一、半波整流电路 图 5-1 、是一种最简单的整流电路。它由电源变压器 B 、整流二极管 D 和负载电阻Rfz ,组成。变压器把市电电压(多为220 伏)变换为所需要的交变电压e2 , D 再把交流电变 换为脉动直流电。 下面从图5-2 的波形图上看着二极管是怎样整流的。 变压器砍级电压e2 ,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。在 0 ~K 时间内, e2 为正半周即变压器上端为正下端为负。此时二极管承受正 向电压面导通, e2 通过它加在负载电阻 Rfz 上,在π~ 2π时间内, e2 为负半周,变压器

次级下端为正,上端为负。这时 D 承受反向电压,不导通,Rfz,上无电压。在π~2π 时间内,重复0 ~π时间的过程,而在3π~ 4π时间内,又重复π~2π 时间的过程? 这样反复下去,交流电的负半周就被"削 "掉了,只有正半周通过Rfz,在 Rfz 上获得了一个单一右 向(上正下负)的电压,如图5-2 ( b )所示,达到了整流的目的,但是,负载电压Usc 。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、图下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲 "一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个 周期内的平均值,即负载上的直流电压Usc =0.45e2)因此常用在高电压、小电流的场合, 而在一般无线电装置中很少采用。 二、全波整流电路 如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图5-3 是全波整流电路的电原理图。 全波整流电路,可以看作是由两个半波整流电路组合成的。变压器次级线圈中间需要引 出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压 e2a 、e2b ,构成 e2a 、 D1 、 Rfz 与 e2b 、 D2 、 Rfz ,两个通电回路。 全波整流电路的工作原理,可用图5-4所示的波形图说明。在0 ~π间内, e2a 对 Dl 为正向电压, D1 导通,在Rfz 上得到上正下负的电压;e2b对D2为反向电压,D2 不导通(见图5-4 (b )。在π- 2π时间内, e2b 对 D2 为正向电压,D2 导通,在Rfz 上得到的仍然是上正下负的电压;e2a对D1为反向电压,D1 不导通(见图5-4 ( C)。

经验:整流电路简单的计算公式

整流二极管可用半导体锗或硅等材料制造。硅整流二极管得击穿电压高,反向漏电流小,高温性能良好。通常高压大功率整流二极管都用高纯单晶硅制造。这种器件得结面积较大,能通过较大电流(可达上千安),但工作频率不高,一般在几十千赫以下。整流二极管主要用于各种低频整流电路。 整流电路分类: 单向、三相与多项整流电路; 还可分为半波、全波、桥式整流电路; 又可分为可控与不可控;当全部或部分整流元件为可控硅(晶闸管)时称可控整流电路 (一)不可控整流电路 1、单向二极管半波整流电路 半波整说就是以"牺牲"一半交流为代价而换取整流效果得,电流利用率很低;因此常用在高电压、小电流得场合,而在一般无线电装置中很少采用。 输出直流电压U=0、45U2 流过二极管平均电流I=U/RL=0、45U2/RL 二极管截止承受得最大反向电压就是Um反=1、4U2 2、单向二极管全波整流电路 因此称为全波整流,全波整流不仅利用了正半周,而且还巧妙地利用了负半周,从而大大地提高了整流效率(Usc=0、9e2,比半波整流时大一倍) 另外,这种电路中,每只整流二极管承受得最大反向电压,就是变压器次级电压最大值得两倍,因此需用能承受较高电压得二极管。 输出直流电压U=0、9U2 流过二极管平均电流只就是负载平均电流得一半,即流过负载得

电流I=0、9U2/RL流过二极管电流I=0、45U2/RL 二极管截止时承受2、8U2得反向电压 因此选择二极管参数得依据与半波整流电路相比有所不同,由于交流正负两个半周均有电流流过负载,因此变压器得利用率比半波整流高。 二极管全波整流得另一种形式即桥式整流电路,就是目前小功率整 流电路最常用得整流电路。 3、二极管全波整流得结论都适用于桥式整流电路,不同点仅 就是每个二极管承受得反向电压比全波整流小了一半。 桥式电路中每只二极管承受得反向电压等于变压器次级电压得最大值,比全波整洗电路小一半! U=0、9U2 流过负载电流I=0、9U2/RL 流过二极管电流I=0、45U2/RL 二极管截止承受反向电压U=1、4U2 另外,在高电压或大电流得情况下,如果手头没有承受高电压或整定大电滤得整流元件,可以把二极管串联或并联起来使用。 图5-7 示出了二极管并联得情况:两只二极管并联、每只分担电路总电流得一半,三只二极管并联,每只分担电路总电流得三分之一。总之,有几只二极管并联,"流经每只二极管得电流就等于总电流得几分之一。但就是,在实际并联运用时",由于各二极管特性不完全一致,不能均分所通过得电流,会使有得

桥式整流电路及工作原理详解

桥式整流电路图及工作原理介绍之我见 桥式整流电路图及工作原理介绍之我见
桥式整流电路如图 1 所示,图(a)(b)(c)是桥式整流电路的三种不同 、 、 画法。由电源变压器、四只整流二极管 D1~4 和负载电阻 RL 组成。四只整流二 极管接成电桥形式,故称桥式整流。
图 1 桥式整流电路图 桥式整流电路的工作原理 如图 2 所示。

在 u2 的正半周,D1、D3 导通,D2、D4 截止,电流由 TR 次级上端经 D1→ RL →D3 回到 TR 次级下端,在负载 RL 上得到一半波整流电压 在 u2 的负半周,D1、D3 截止,D2、D4 导通,电流由 Tr 次级的下端经 D2→ RL →D4 回到 Tr 次级上端,在负载 RL 上得到另一半波整流电压。 这样就在负载 RL 上得到一个与全波整流相同的电压波形,其电流的计算与全波 整流相同,即 UL = 0.9U2 IL = 0.9U2/RL 流过每个二极管的平均电流为 ID = IL/2 = 0.45 U2/RL 每个二极管所承受的最高反向电压为 什么叫硅桥,什么叫桥堆 目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器 件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图 Z 图 1(c)的形式。 桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反 压大的缺点,但多用了两只二极管。在半导体器件发展快,成本较低的今天,此 缺点并不突出,因而桥式整流电路在实际中应用较为广泛。

二极管整流电路原理与分析
半波整流 二极管半波整流电路实际上利用了二极管的单向导电特性。 当输入电压处于交流电压的正半周时,二极管导通,输出电压 vo=vi-vd。当输入电压处于交 流电压的负半周时,二极管截止,输出电压 vo=0。半波整流电路输入和输出电压的波形如图所 示。
二极管半波整流电路 对于使用直流电源的电动机等功率型的电气设备, 半波整流输出的脉动电压就足够了。 但对于电 子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。平滑处理 电路实际上就是在半波整流的输出端接一个电容, 在交流电压正半周时, 交流电源在通过二极管 向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。

三相桥式全控整流电路实验报告

实验三三相桥式全控整流电路实验 一.实验目的 1.熟悉MCL-18, MCL-33组件。 2.熟悉三相桥式全控整流电路的接线及工作原理。 二.实验内容 1.MCL-18的调试 2.三相桥式全控整流电路 3.观察整流状态下,模拟电路故障现象时的波形。 三.实验线路及原理 实验线路如图3-12所示。主电路由三相全控整流电路组成。触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。三相桥式整流电路的工作原理可参见“电力电子技术”的有关教材。 四.实验设备及仪器 1.MCL—Ⅱ型电机控制教学实验台主控制屏。

2.MCL-18组件 3.MCL-33组件 4.MEL-03可调电阻器(900W) 6.二踪示波器 7.万用表 五.实验方法 1.按图3-12接线,未上主电源之前,检查晶闸管的脉冲是否正常。 (1)打开MCL-18电源开关,给定电压有电压显示。 (2)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。 (3)用示波器观察每只晶闸管的控制极、阴极,应有幅度为1V—2V的脉冲。注:将面板上的Ublf接地(当三相桥式全控整流电路使用I组桥晶闸管VT1~VT6时),将I组桥式触发脉冲的六个琴键开关均拨到“接通”,琴键开关不按下为导通。 (4)将给定输出Ug接至MCL-33面板的Uct端,在Uct=0时,调节偏移电压Ub,使a=90o。(注:把示波器探头接到三相桥式整流输出端即U d 波形, 探头地线接到晶闸管阳极。) 2.三相桥式全控整流电路 (1)电阻性负载 按图接线,将Rd调至最大450W (900W并联)。 三相调压器逆时针调到底,合上主电源,调节主控制屏输出电压U uv、U vw、U wu,从0V调至70V(指相电压)。调节Uct,使a 在30o~90o范围内变化,用示波器观察记录a=30O、60O、90O时,整流电压u d=f(t),晶闸管两端电压u VT=f(t)的波形,并记录相应的Ud和交流输入电压U2 数值。 30° 60° 90° αUd (V)U2 (V) 30°14370 60°9070 90°2370 3.电感性负载 按图线路,将电感线圈(700mH)串入负载,Rd调至最大(450W)。 调节Uct,使a 在30o~90o范围内变化,用示波器观察记录a=30O、60O、90O时,整流电压u d=f(t),晶闸管两端电压u VT=f(t)的波形,并记录相应的Ud和交流输入电压U2 数值。

电路分析一之桥式整流电路

桥式整流电路

二极管的模型 1.理想模型 所谓理想模型,是指在正向偏置时,其管压降为零,相当于开关的闭合。当反向偏置时,其电 流为零,阻抗为无穷,相当于开关的断开。具有这种理想特性的二极管也叫做理想二极管。 在实际电路中,当电源电压远大于二极管的管压降时,利用此模型分析是可行的。 2.恒压降模型 所谓恒压降模型,是指二极管在正向导通时,其管压降为恒定值,且不随电流而变化。硅管的 管压降为 0.7V,锗管的管压降为 0.3V。 只有当二极管的电流 Id 大于等于 1mA 时才是正确的。 在实际电路中,此模型的应用非常广泛。
稳压二极管: 稳压二极管在工作时应反接,并串入一只电阻。 电阻的作用一是起限流作用,以保护稳压管;其次是当输入电压或负载电流变化时,通过该电 阻上电压降的变化,取出误差信号以调节稳压管的工作电流,从而起到稳压作用。 最简单的稳压电路由稳压二极管组成如图所示。 从稳压二极管的特性可知, 若能使稳压管 始终工作在它的稳压区内,则 VO.基本稳定在 Vz 左右。
当电网电压升高时,若要保持输出电压不变,则电阻器 R 上的压降应增大,即流过 R 的电流增大。这增大的电流由稳压二极管容纳,它的工作点将由 b 点移到 C 点,由特性曲 线可知此时 Vo≈Vz 基本保持不变。

若稳压二级管稳压电路负载电阻变小时,要保持输出电压不变,负载电流要变大。由于 VI 保持不变,则流过电阻 R 的电流不变。此时负载需要增大的电流由稳压管调节出来,它 的工作点将由 b 点移到 a 点。所以,稳压管可认为是利用调节流过自身的电流大小(端电 压基本不变)来满足负载电流的改变,并和限流电阻 R 配合将电流的变化转化为电压的变 化以适应电网电压的变化。
稳压二极管电路稳压存在问题:电网电压不变时,负载电流的变化范围就是 IZ 的调节 范围(几十 mA),这就限制了负载电流 I0 的变化范围。怎样才能扩大 IO 的变化范围。 桥式整流电路原理

桥式整流电路计算

桥式整流电路计算 桥式整流属于全波整流,它不就是利用副边带有中心抽头的变压器,用四个二极管接成电桥形式,使在电压V2的正负半周均有电流流过负载,在负载形成单方向的全波脉动电压。 桥式整流电路计算主要参数: 单相全波整流电路图 利用副边有中心抽头的变压器与两个二极管构成如下图所示的全波整流电路。从图中可见正负半周都有电流流过负载,提高了整流效率。 全波整流的特点: 输出电压V O高;脉动小;正负半周都有电流供给负载,因而变压器得到充分利用,效率较高。 主要参数: 桥式整流电路电感滤波原理 电感滤波电路利用电感器两端的电流不能突变的特点,把电感器与负载串联起来,以达到使输出电流平滑的目的。从能量的观点瞧,当电源提供的电流增大(由电源电压增加引起)时,电感器L把能量存储起来;而当电流减小时,又把能量释放出来,使负载电流平滑,电感L有平波作用

桥式整流电路电感滤波优点:整流二极管的导电角大,峰值电流小,输出特性较平坦。 桥式整流电路电感滤波缺点:存在铁心,笨重、体积大,易引起电磁干扰,一般只适应于低电压、大电流的场合。 例10.1.1桥式整流器滤波电路如图所示,已知V1就是220V交流电源,频率为50Hz,要求直流电压 V L=30V,负载电流I L=50mA。试求电源变压器副边电压v2的有效值,选择整流二极管及滤波电容。

桥式整流电路电容滤波电路 图10、5分别就是单相桥式整流电路图与整流滤波电路的部分波形。这里假设t<0时,电容器C已经充电到交流电压V2的最大值(如波形图所示)。 结论1:由于电容的储能作用,使得输出波形比较平滑,脉动成分降低输出电压的平均值增大。

【模电经典回顾系列】系列1 桥式整流电路分析

【模电经典回顾系列】系列1 桥式整流电路分析 学过模电的人应该对于桥式整流电路都应该不陌生,在我学模电的时 候对于桥式整流电路印象最深刻的就是它的四个二极管。在我们的日常设计中,桥式整流电路也是基本上必不可少的,因为桥式整流器对输入正弦波的利用效 率比半波整流高一倍。桥式整流是交流电转换成直流电的第一个步骤。 今天就让我们重温下当初的桥式整流电路: 桥式整流电路的工作原理如下: 输入电压u2为正半周时,对D1、D3加正向电压,Dl、D3导通;对 D2、D4加反向电压,D2、D4截止。电路中构成u2、D1、Rfz、D3通电回路,在Rfz上形成上正下负的半波整流电压; 输入电压u2为负半周时,对D2、D4加正向电压,D2、D4导通;对 D1、D3加反向电压,D1、D3截止。电路中构成u2、D2、Rfz、D4通电回路,同样在Rfz上形成上正下负的另外半波的整流电压。如此重复下去,结果在 Rfz上便得到全波整流电压。其波形分析1:电源滤波的过程分析:电源滤波 是在负载RL两端并联一只较大容量的电容器。由于电容两端电压不能突变, 因而负载两端的电压也不会突变,使输出电压得以平滑,达到滤波的目的。 波形形成过程:输出端接负载RL时,当电源供电时,向负载提供电流 的同时也向电容C充电,充电时间常数为τ充=(Ri∥RLC)≈RiC,一般Ri〈〈RL, 忽略Ri压降的影响,电容上电压将随u2迅速上升,当ωt=ωt1时,有u2=u0, 此后u2低于u0,所有二极管截止,这时电容C通过RL放电,放电时间常数 为RLC,放电时间慢,u0变化平缓。当ωt=ωt2时,u2=u0,ωt2后u2又变化到比u0大,又开始充电过程,u0迅速上升。ωt=ωt3时有u2=u0,ωt3后,电容通过RL放电。如此反复,周期性充放电。由于电容C的储能作用,RL上的

桥式整流电路图及工作原理介绍

桥式整流电路图及工作原理介绍 桥式整流电路如图1所示,图(a)、(b)、(c)是桥式整流电路的三种不同画法。由电源变压器、四只整流二极管D1~4 和负载电阻RL组成。四只整流二极管接成电桥形式,故称桥式整流。 图1 桥式整流电路图 桥式整流电路的工作原理 如图2所示。

在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→ RL →D3回到TR 次级下端,在负载RL上得到一半波整流电压 在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→ RL →D4 回到Tr次级上端,在负载RL 上得到另一半波整流电压。 这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即 UL = 0.9U2 IL = 0.9U2/RL 流过每个二极管的平均电流为 ID = IL/2 = 0.45 U2/RL 每个二极管所承受的最高反向电压为 什么叫硅桥,什么叫桥堆 目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图Z图1(c)的形式。桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。

二极管整流电路原理与分析 半波整流 二极管半波整流电路实际上利用了二极管的单向导电特性。 当输入电压处于交流电压的正半周时,二极管导通,输出电压v o=v i-v d。当输入电压处于交 流电压的负半周时,二极管截止,输出电压v o=0。半波整流电路输入和输出电压的波形如图所 示。 二极管半波整流电路 对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。平滑处理电路实际上就是在半波整流的输出端接一个电容,在交流电压正半周时,交流电源在通过二极管向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。 电容输出的二极管半波整流电路仿真演示 通过上述分析可以得到半波整流电路的基本特点如下: