文档库 最新最全的文档下载
当前位置:文档库 › 泛函分析复习重点

泛函分析复习重点

复习要点:课上讲的重要知识点掌握基本结论和例子.

特别是几个重要的定理(压缩映象原理;开映象地理;Banach 逆算子定理;闭图像定理;共鸣定理;Hahn-Banach 定理及几何形式;凸集分离定理)

重要复习题:

一课堂例题

1.设X 是Hilbert 空间,M 是X 的闭子空间.证明: M M =⊥⊥)(.

2.设X 是Hilbert 空间,M 是X 的非空子集.证明:X spanM =的充分必要条件是

}0{=⊥

M

.

3.设T 是],[b a L 到],[b a C 的线性算子,对],[b a L f ∈?,定义?

=x

a

dt t f x Tf )())((,

(],[b a x ∈?). 求.||||T

4.设T 是],[b a L 到],[b a L 的线性算子,对],[b a L f ∈?,定义?

=x

a

dt t f x Tf )())((,

(],[b a x ∈?). 求.||||T

5.在1l 上定义右推移算子T : ),,,,(21n x x x ),,,,,0(21 n x x x ,求T 的共轭算子*T 以及.||||T

6.用闭图像定理证明Banach 逆算子定理.

7.设X 是Banach 空间,线性算子X X T →:是幂等的,即T T =2,且T 的零空间

)(T N 和值域)(T R 均是闭的.证明: T

是有界线性算子.

8.X 是线性赋范空间,X x ∈0.证明:|)(|sup ||||01

||||0*

x f x f X f =∈=

二课后习题

1.5.1.; 1.6.5;

2.

3.2; 2.

4.5; 2.4.6; 2.

5.12;

2.5.18; 2.5.20.

(完整版)泛函分析复习与总结,推荐文档

《泛函分析》复习与总结 (2014年6月26日星期四 10:20--- 11:50) 第一部分 空间及其性质 泛函分析的主要内容分为空间和算子两大部分. 空间包括泛函 分析所学过的各种抽象空间, 函数空间, 向量空间等, 也包括空间的 性质, 例如完备性, 紧性, 线性性质, 空间中集合的各种性质等等。 以下几点是对第一部分内容的归纳和总结。 一.空间 (1)距离空间 (集合+距离)!验证距离的三个条件:称为是距离空间,如果对于 (,)X ρ,,x y z X ∈(i) 【非负性】,并且当且仅当 (,)0x y ρ≥(,)0x y ρ=【正定性】; x y =(ii) 【对称性】; (,)(,)x y y x ρρ=(iii) 【三角不等式】。 (,)(,)(,)x y x y y z ρρρ≤+距离空间的典型代表:空间、空间、所有的赋范线性空间、 s S 所有的内积空间。 (2)赋范线性空间 (线性空间 + 范数) !验证范数的三个条件:称为是赋范线性空间,如果 (,||||)X ?是数域(或)上的线性空间,对于和 X K =?K =£a K ∈,成立 ,x y X ∈(i) 【非负性】,并且当且仅当【正定性】 ||||0x ≥||||0x =0x =; (ii) 【齐次性】; ||||||||||ax a x =?

(iii) 【三角不等式】。 ||||||||||||x y x y +≤+赋范线性空间的典型代表:空间()、空间(n ?1,2,3,n =L n £) 、空间()、空间(1,2,3,n =L p l 1p ≤≤∞([,])p L a b )、空间、空间、Banach 空间、所有的1p ≤≤∞[,]C a b [,]k C a b 内积空间(范数是由内积导出的范数)。 (3)内积空间 (线性空间 + 内积) !验证内积的四个条件:称为是内积空间,如果 (,(,))X ??是数域(或)上的线性空间,对于和 X K =?K =£a K ∈,成立 ,,x y z X ∈(i) 【非负性】,并且当且仅当【正 (,)0x x ≥(,)0x x =0x =定性】; (ii) 【第一变元可加性】; (,)(,)(,)x y z x z x z +=+(iii) 【第一变元齐次性】; (,)(,)ax z a x z =(iv) 【共轭对称性】。 (,)(,)x z z x =内积空间的典型代表:空间()、空间(n ?1,2,3,n =L n £) 、空间、空间。1,2,3,n =L 2l 2([,])L a b 注. 1) 从概念的外延来理解, 有如下的关系: {内积空间}{赋范线性空间}{距离空间}. ??2) 内积可导出范数, 范数可导出距离, 反之未必. 例如在赋范 线性空间中, 如果范数满足平行四边形公式, 则由范数可以定义内 积. 3) 在距离空间中,,当 0k x x ρ??→?0(,)0k x x ρ→; k →∞赋范线性空间中,,当;|||| 0k x x ???→?0||||0k x x -→k →∞

泛函分析答案

泛函分析答案: 1、 所有元素均为0的n ×n 矩阵 2、 设E 为一线性空间,L 是E 中的一个子集,若对任意的x,y ∈L ,以及变数λ和μ均有λx +μy ∈L ,则L 称为线性空间E 的一个子空间。子空间心室包含零元素,因为当λ和μ均为0时,λx +μy =0∈L ,则L 必定含零元素。 3、 设L 是线性空间E 的子空间,x 0∈E\L,则集合x 0+L={x 0+l,l ∈L}称为E 中一个线性流形。 4、 设M 是线性空间E 中一个集合,如果对任何x,y ∈M ,以及λ+μ=1,λ≥0,μ≥0的 λ和μ,都有λx +μy ∈M ,则称M 为E 中的凸集。 5、 设x,y 是线性空间E 中的两个元素,d(x,y)为其之间的距离,它必须满足以下条件: (1) 非负性:d(x,y)>0,且d(x,y)=0<―――>x=y (2) d(x,y)=d(y,x) (3) 三角不等式:d(x,y)≤d(x,z)+d(y,z) for every x,y,z ∈E n 维欧几里德空间常用距离定义: 】 设x={x 1,x 2,…x n }T ,y={y 1y 2,…y n }T d 2(x,y)=( 21 ||n i i i x y =-∑)1/2 d 1(x,y)=1 ||n i i i x y =-∑ d p (x,y) = ( 1 ||n p i i i x y =-∑ )1/p d ∞(x,y)=1max ||i i i n x y ≤≤- 6、距离空间(x,d)中的点列{x n }收敛到x 0是指d(x n ,x 0)0(n ∞),这时记作 0lim n n x x -->∞ =,或 简单地记作x n x 0 7、设||x||是线性空间E 中的任何一个元素x 的范数,其须满足以下条件: (1)||x||≥0,且||x||=0 iff x=0 (2)||λx||=λ||x||,λ为常数 (3)||x+y||≤||x||+||y||,for every x,y ∈E 8、设E 为线性赋范空间,{x n }∞ n=1是其中的一个无穷列,如果对于任何ε>0,总存在自然数N ,使得当n>N,m>N 时,均有|x m -x n |<ε,则称序列{x n }是E 中的基本列。若E 的基本列的收敛元仍属于E ,则称E 为完备的线性赋范空间,即为Banach 空间。线性赋范空间中的基本列不一定收敛。 9、有限维的线性赋范空间必然完备,所以它必定是Banach 空间。 $ 10、如果内积空间能在由内积诱导的赋范空间完备,则此内积空间称为Hilbert 空间。 11、L 2(a,b )为定义在(a,b)上平方可积函数空间,即设f(t)∈L 2(a,b ), 2|()|b a f t dt ? <∞。 当 L 2(a,b )中内积的定义为(f,g )= _____ ()()b a f t g t dt ? (其中f(t),g(t)∈L 2(a,b ))时其为Hilbert 空间。 ★ 12、算子表示一种作用,一种映射。设X 和Y 是给定的两个线性赋范空间,集合D ?X , 若对D 中的每一个x ,均有Y 中的一个确定的变量y 与其对应,则说这种对应关系确定

《应用泛函分析》前四章重点复习大纲

1 第1章预备知识 1.1集合的一般知识 1.1.1概念、集合的运算 上限集、上极限 下限集、下极限 1.1.2映射与逆映射 1.1.3可列集 可列集 集合的对等关系~(定义1.1)1.2实数集的基本结构 1.2.1建立实数的原则及实数的序关系 阿基米德有序域(定义1.4)1.2.2确界与确界原理 上确界sup E(定义1.5) 下确界inf E 确界原理(定理1.7) 1.2.3实数集的度量结构 数列极限与函数极限 单调有界原理 区间套定理 Bolzano-Weierstrass定理 Heine-Bore定理 Cauchy收敛准则 1.3函数列及函数项技术的收敛性1.3.1函数的连续性与一致连续 函数的一致连续性(定义1.10)1.3.2函数列和函数项级数的一致收敛 逐点收敛(定义1.11) 一致收敛(定义1.12) Weierstrass M-判别法(定理1.15)1.3.3一致收敛的性质 极限与积分可交换次序 1.4 Lebesgue积分 1.4.1一维点集的测度 开集、闭集 有界开集、闭集的测度m G m F 外测度内测度 可测集(定义1.16) 1.4.2可测函数 简单函数(定义1.18) 零测度集 按测度收敛 1.4.3 Lebesgue积分 有界可测集上的Lebesgue积分 Levi引理 Lebesgue控制收敛定理(性质1.9) R可积、L可积 1.4.4 Rn空间上的Lebesgue定理 1.5 空间 Lp空间(定义1.28) Holder不等式 Minkowski不等式(性质1.16)

2 第2章度量空间与赋范线性空间 2.1度量空间的基本概念 2.1.1距离空间 度量函数 度量空间(X,ρ) 2.1.2距离空间中点列的收敛性 点列一致收敛 按度量收敛 2.2度量空间中的开、闭集与连续映射 2.2.1度量空间中的开集、闭集 开球、闭球 内点、外点、边界点、聚点 开集、闭集 2.2.2度量空间上的连续映射 度量空间中的连续映射(定义2.7) 同胚映射 2.3度量空间中的可分性、完备性与列紧性 2.3.1度量空间的可分性 稠密子集(定义2.9) 可分性 2.3.2度量空间的完备性 度量空间中Cauchy列(定义2.11) 完备性 完备子空间 距离空间中的闭球套定理(定理2.9) 闭球套半径趋于零,则闭球的交为2.3.3度量空间的列紧性 列紧集、紧集(定义2.13) 全有界集 2.4 Banach压缩映射原理 压缩映像 不动点 Banach压缩映射原理(定理2.16)2.4.1应用 隐函数存在性定理(例2.31) 2.5 线性空间 2.5.1线性空间的定义 线性空间(定义2.17) 维数与基、直和 2.5.2线性算子与线性泛函 线性算子 线性泛函(定义2.18) 零空间ker(T)与值域空间R(T) 2.6 赋范线性空间 2.6.1赋范线性空间的定义及例子 赋范线性空间 Banach空间(定义2.20) 2.6.2赋范线性空间的性质 收敛性——一致收敛 绝对收敛 连续性与有界性 2.6.3有限维赋范线性空间 N维实赋范线性空间

泛函分析复习提要

泛函分析复习提要 一、填空 1. 设X 是度量空间,E 和M 是X 中两个子集,如果 ,则称集M 在集E 中 稠密。如果X 有一个可数的稠密子集,则称X 是 空间。 2. 设X 是度量空间, M 是X 中子集,若 ,则称M 是第一纲集。 3. 设T 为复Hilbert 空间X 上的有界线性算子,若对任何x X ∈,有*Tx T x =, 则T 为 算子。 ( Hilbert 空间H 上的有界线性算子T 是正常算子的充要条件是 。) 4. 若复Hilbert 空间X 上有界线性算子T 满足对一切x X ∈,,Tx x <>是实数,则 T 为 算子。 ( Hilbert 空间H 上的有界线性算子T 是自伴算子的充要条件是 。) 5.设X 是赋范线性空间,X '是X 的共轭空间,泛函列(1,2,)n f X n '∈= ,如果 存在f X '∈,使得对任意的x X ∈,都有 ,则称{}n f 弱*收敛于f 。 6. 设,X Y 是赋范线性空间,(,)n T B X Y ∈,1,2,n = ,若存在(,)T B X Y ∈使得对任意的x X ∈,有 ,则称{}n T 强收敛于T 。 7. 完备的赋范线性空间称为 空间,完备的内积空间称为 空间 8. 赋范线性空间X 到赋范线性空间Y 上的有界线性算子T 的范数T = 9. 设X 是内积空间,则称 是由内积导出的范数。 10.设X 是赋范空间,X 的范数是由内积引出的充要条件是 。 11. 设Y 是Hilbert 空间的闭子空间,则Y 与Y ⊥⊥满足 。 12.设X 是赋范空间,:()T D T X X ?→的线性算子,当T 满足 时, 则T 是闭算子。 二、叙述下列定义及定理 1. 里斯(Riesz )定理; 2. 实空间上的汉恩-巴拿赫泛函延拓定理;

泛函分析答案

泛函分析答案: 1、所有元素均为0的n ×n 矩阵 2、设E 为一线性空间,L 是E 中的一个子集,若对任意的x,y ∈L ,以及变数λ和μ均有λx +μy ∈L ,则L 称为线性空间E 的一个子空间。子空间心室包含零元素,因为当λ和μ均为0时,λx +μy =0∈L ,则L 必定含零元素。 3、设L 是线性空间E 的子空间,x 0∈E\L,则集合x 0+L={x 0+l,l ∈L}称为E 中一个线性流形。 4、设M 是线性空间E 中一个集合,如果对任何x,y ∈M ,以及λ+μ=1,λ≥0,μ≥0的λ和μ,都有λx +μy ∈M ,则称M 为E 中的凸集。 5、设x,y 是线性空间E 中的两个元素,d(x,y)为其之间的距离,它必须满足以下条件: (1) 非负性:d(x,y)>0,且d(x,y)=0<―――>x=y (2) d(x,y)=d(y,x) (3) 三角不等式:d(x,y)≤d(x,z)+d(y,z)foreveryx,y,z ∈E n 维欧几里德空间常用距离定义: 设x={x 1,x 2,…x n }T ,y={y 1y 2,…y n }T d 2(x,y)=(21 ||n i i i x y =-∑)1/2 d 1(x,y)=1 ||n i i i x y =-∑ d p (x,y)=(1 ||n p i i i x y =-∑)1/p d ∞(x,y)=1max ||i i i n x y ≤≤- 6、距离空间(x,d)中的点列{x n }收敛到x 0是指d(x n ,x 0)?0(n ?∞),这时记作 0lim n n x x -->∞ =,或简单地记作x n ?x 0 7、设||x||是线性空间E 中的任何一个元素x 的范数,其须满足以下条件: (1)||x||≥0,且||x||=0 iffx=0 (2)||λx||=λ||x||,λ为常数 (3)||x+y||≤||x||+||y||,foreveryx,y ∈E 8、设E 为线性赋范空间,{x n }∞n=1是其中的一个无穷列,如果对于任何ε>0,总存在自然数N ,使得当n>N,m>N 时,均有|x m -x n |<ε,则称序列{x n }是E 中的基本列。若E 的基本列的收敛元仍属于E ,则称E 为完备的线性赋范空间,即为Banach 空间。线性赋范空间中的基本列不一定收敛。 9、有限维的线性赋范空间必然完备,所以它必定是Banach 空间。 10、如果内积空间能在由内积诱导的赋范空间完备,则此内积空间称为Hilbert 空间。 11、L 2 (a,b )为定义在(a,b)上平方可积函数空间,即设f(t)∈L 2 (a,b ),2|()|b a f t dt ?<∞。

泛函分析习题解答

第七章 习题解答 1.设(X ,d )为一度量空间,令 }),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U 问),(0εx U 的闭包是否等于),(0εx S ? 解 不一定。例如离散空间(X ,d )。)1,(0x U ={0x },而)1,(0x S =X 。 因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。 2. 设 ],[b a C ∞是区间],[b a 上无限次可微函数的全体,定义 证明],[b a C ∞按),(g f d 成度量空间。 证明 (1)若),(g f d =0,则) ()(1)()(max ) () ()()(t g t f t g t f r r r r b t a -+-≤≤=0,即f=g (2))()(1)()(max 2 1 ),()()()()(0t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞ =∑ =d (f ,g )+d (g ,h ) 因此],[b a C ∞按),(g f d 成度量空间。 3. 设B 是度量空间X 中的闭集,证明必有一列开集ΛΛn o o o 21,包含B ,而且B o n n =?∞ =1 。 证明 令n n n o n n B x d Bo o .2,1},1 ),({K =<==是开集:设n o x ∈0,则存在B x ∈1,使 n x x d 1),(10<。设,0),(1 10>-=x x d n δ则易验证n o x U ?),(0δ,这就证明了n o 是 开集 显然B o n n ??∞=1 。若n n o x ∞ =?∈1 则对每一个n ,有B x n ∈使n x x d 1 ),(1< ,因此

应用泛函分析相关习题.doc

泛函分析练习题 一?名词解释: 1.范数与线性赋范空间 2.无处稠密子集与第一纲集 3.紧集与相对紧集 4.开映射 5.共貌算子 6.内点、内部: 7.线性算子、线性范函: 8.自然嵌入算子 9.共貌算子 10.内积与内积空间: 11.弱有界集: 12.紧算子: 13.凸集 14.有界集 15.距离 16.可分 17.Cauchy 列 18.自反空间 二、定理叙述 1、压缩映射原理 2.共鸣定理 3.逆算子定理 4.闭图像定理 5.实空间上的Hahn-Banach延拓定理 6、Bai re纲定理 7、开映射定理 8、Riesz表现定理 三证明题: 1.若(x,p)是度量空间,则d = d也使X成为度量空间。 1 + Q 证明:Vx,y,zcX 显然有(1)d(x, y) > 0 ,日3,),)= 0当且仅当x = (2) d(x9y) = d(y,x) (3)由/(/) = — = !一一, (/>0)关于,单调递增,得 1+,1+r d(x, z) = PE < Q(x,.y)+Q(y,z)

' 1 + Q(x, z) 一1 + p(x, y) + Q(y, z) 匕Q(x,)') | Q()',z) 一1 + Q(3)1+ /?(),, z) = d(x,y) + d(y,z) 故』也是X上的度量。 2,设H是内积空间,天则当尤〃—尤,乂T y时"(七,月)t (寻),),即内积关于两变元连续。 证明:| (% X,)一(x, y) I2 =| (x/t - x, >; - y)\2<\\x n-x\\-\\y tt-y\\ 己知即II七一尤II—0,|| 乂一>||—0。 故有I ,以)一(x, y)『—。 即Cw〃)T(x,y)。 5.设7x(r) = 若T是从心[0,1]-匕[0,1]的算子,计算||T||;若T是从 ZJ0,1]T ZJ0,1]的算子再求1171。 解:(1)当T是从ZJ0,l]—匕[0,1]的算子。 取x&)=同,贝j]||x()||2=1>||片)川=[后广出=*. 所以||T||>-^e 故有11『11=±? (2)当T是从ZJ0,1]T ZJ0,1]的算子时 ||八||2=(。誓⑴力度严=nxii2 Vn,(!--

理工大泛函分析复习题.docx

-、(10分)设d(x, y)为空间X上的距离。证明 l + d(3) 也是X上的距离。 1、求证/(X,r)为3空间。(其中X为/空间,丫为B空间) 2、S是由一切序列兀=(召,兀2,?…,£,???)组成的集合,在S中定义距离为 p(x,y ,求证S是一个完备的距离空间。 3、Hilbert空间X中的正交投影算子为线性有界算子。 4、附加题 开映射定理(P92) 设x,y都是B空间,若TG/(x,r)是一个满射,则卩是开映射。Hahn—Banach延拓定理(%) 设X是T空间,X。是X的线性子空间,人是定义在X。上的有界线性泛函,则在X上必有有界线性泛函/满足: ⑴芦(兀)=九(兀)(办丘Xo)(延拓条件); (2)||/|| = UII0(保范条件), 其中表示人在X。上的范数。 闭图像定理(乙8)设都是3空间,若丁是X T Y的闭线性算子,并且D(T)是闭的,则卩是连续的。 共鸣定理(毘9)设X是B空间,丫是£空间,如果 Wu/(X,Y),使得sup||Ar||

x-x0 = inf x-y yeM 七、(15分)设/(兀)=匸兀(『)力—[比)力,求证:/G(C[-1,1])\且求||/||。 八、(15分)简答题 1?试说明C[a,b]与I3[a,b]中函数的差异; 2.泛函分析也称无穷维分析,为什么耍研究无穷维分析,试举例说明; 3.H订bert空间是最接近有限维Euclid空间的空间,请做简要说明。 一、在C[-1,1]上定义内积V /,g〉=[/(f)ga)〃,若记M为C[-1,1]屮奇函数全 体,N为C[-l,l]中偶函数全体,求证:M十W二且丄。 设厶为内积空间H中的一个稠密子集,且x丄厶,证明x = 0. 二、在R中赋予距离p(x,y) =| arctan x-arctan y |,问(R,p)是完备空间吗?为什么?设Tx(t) = rx(r),若T是从厶[0,1] t厶[0,1]的算了,计算||T||;若T是从 Q0,1]T Q0,1]的算子再求||门 四论述题: 1、证明C[a,b]完备,并叙述证明空间完备的一般步骤。 2、论述紧集、相对紧集、完全有界集、有界集的关系。 3、证明||x||=maxx(r)为心,刃上范数,并论述证明范数的一般步骤。 ie[a,b] 设H是内积空间,£,兀儿则当X" t X,儿Ty时,(£,几)T(x,y),即内积 关于两变元连续。 10?设叭叭皿赋范空何,?“ 八码),证明 ⑴+ 7V, (2) fit (】)任取f€E;及则 (T: + T t) V(r)r s)?> f(T^) + /(r?z > -r:/(z) + Ty(x) = (T: +T;)/(z) ? 山人工的任尴性.得: 《珀 + T护= + <2)由共馳算子性质1?■即得:工

泛函分析复习指导

2013-2014-2泛函分析复习参考题 一、名词解释 1.度量空间; 2.可分空间; 3.压缩映射原理; 4.线性空间; 5.范数线性空间; 6.内积空间; 7.贝塞尔不定式以及帕塞瓦尔等式。 二、填空题 1. l ∞ 空间为_____________________,其标准距离为___________________________ 2. 2l 空间为_____________________,其标准距离为___________________________ 3. 度量空间X 到Y 中的映射T 是X 上连续映射的充要条件为___________________ 4. {}n x 为度量空间X 中的柯西列是指____________________________________________ 5.完备度量空间X 的子空间M 是完备空间的充要条件为____________________________ 6.M 为线性空间X 的一个非空子集,spanM 表示_______________;如果X spanM ?,那么_____________________________ 7. 2[,]L a b 空间为____________________,其标准范数为____________________________,2[,]L a b ________(是或不是)巴拿赫空间 8.设X 是n 维赋线性空间,{}12,, ,n e e e 是X 的一组基,则存在常数M 和M ',使得对一切1n k k k x e ξ==∑都有_____________________________成立 9.设T 是赋范线性空间X 到Y 中的线性算子,则T 为有界算子的充要条件为___________,算子T 的范数为___________________________________________ 10.设X 是赋范线性空间,f 是X 上线性泛函,那么f 是X 上连续泛函的充要条件为f 的零空间()N f 是X 中的_________________________

应用泛函分析复习资料小结

-` 第一章实分析概要 本章将简要的介绍数学分析与实变函数的一些基础知识,特别是点集的勒贝格测度与勒贝格积分理论。这些知识不仅是学习泛函分析的必要准备,而且在数学及其它学科中有直接的应用。 第一节集合及其运算第 二节实数的完备性第三 节可数集与不可数集 第四节直线上的点集与连续函数第 五节点集的勒贝格测度与可测函数

-` 1

-` 第六节勒贝格积分 第一节集合及其运算 1)A∪A=A,A∩A=A; 2)A∪ Φ=A,A∩ Φ=Φ; 3)若A?B,则A∪B=B,A∩B=A,A\B=Φ; 4) 设X为基本集,则 A ∪ A C= X , A ∩ A C=Φ, ( A C)C= A, A \ B = A ∩ B C 又若A?B,则A C?B C。 集合的运算法则: 2

-` 交换律 A ∪ B = B ∪ A, A ∩ B = B ∩ A ; 结合律( A∪B) ∪C=A∪ (B∪C) =A∪B∪C; ( A∩B) ∩C=A∩ (B∩C) =A∩B∩C; 分配律( A∪B) ∩C= ( A∩C) ∪ (B∩C) ; ( A∩B) ∪C= ( A∪C) ∩ (B∪C) ; ( A \ B) ∩C= ( A∩C) \ (B∩C) . 定理 1.1 设X为基本集,Aα为任意集组,则 1) ( U Aα )C=I ( Aα )C (1.6) α∈I α∈I 2) ( I Aα )C=U ( Aα )C (1.7) α∈I α∈I A \ ( A \ B)= A I B 3

第二节实数的完备性 2.1有理数的稠密性 2.2实数的完备性定理 定义 2.1(闭区间套) 设{[a n,b n]}(n=1,2,L, )是一列闭区间,a n

最新泛函分析考试题集与答案

泛函分析复习题2012 1.在实数轴R 上,令p y x y x d ||),(-=,当p 为何值时,R 是度量 空间,p 为何值时,R 是赋范空间。 解:若R 是度量空间,所以R z y x ∈?,,,必须有: ),(),(),(z y d y x d z x d +≤成立 即p p p z y y x z x ||||||-+-≤-,取1,0,1-===z y x , 有2112=+≤p p p ,所以,1≤p 若R 是赋范空间,p x x x d ||||||)0,(==,所以R k x ∈?,, 必须有:||||||||||x k kx ?=成立,即p p x k kx ||||||=,1=p , 当1≤p 时,若R 是度量空间,1=p 时,若R 是赋范空间。 2.若),(d X 是度量空间,则)1,m in(1d d =,d d d +=12也是使X 成为度量空间。 解:由于),(d X 是度量空间,所以X z y x ∈?,,有: 1)0),(≥y x d ,因此0)1),,(m in(),(1≥=y x d y x d 和0) ,(1) ,(),(2≥+= y x d y x d y x d 且当y x =时0),(=y x d , 于是0)1),,(m in(),(1==y x d y x d 和0) ,(1) ,(),(2=+=y x d y x d y x d 以及若

0)1),,(m in(),(1==y x d y x d 或0) ,(1) ,(),(2=+= y x d y x d y x d 均有0),(=y x d 成立,于是y x =成立 2)),(),(y x d x y d =, 因此),()1),,(m in()1),,(m in(),(11y x d y x d x y d x y d === 和),() ,(1) ,(),(1),(),(22y x d y x d y x d x y d x y d x y d =+=+= 3)),(),(),(z y d y x d z x d +≤,因此 }1),,(),(m in{)1),,(m in(),(1z y d y x d z x d z x d +≤= ),(),()1),,(m in()1),,(m in(11z y d y x d z y d y x d +=+≤ 以及设x x x f += 1)(,0)1(1)(2 >+='x x f ,所以)(x f 单增, 所以) ,(),(1),(),(),(1),(),(2z y d y x d z y d y x d z x d z x d z x d +++≤+= ),(),(1) ,(),(),(1),(z y d y x d z y d z y d y x d y x d +++++= ),(),() ,(1) ,(),(1),(22z y d y x d z y d z y d y x d y x d +=+++≤ 综上所述)1,m in(1d d =和d d d += 12均满足度量空间的三条件, 故),(1y x d 和),(2y x d 均使X 成为度量空间。

应用泛函分析相关习题

泛函分析练习题 一名词解释: 1.范数与线性赋范空间 2.无处稠密子集与第一纲集 3.紧集与相对紧集 4.开映射 5.共轭算子 6. 内点、内部: 7. 线性算子、线性范函: 8. 自然嵌入算子 9. 共轭算子 10. 内积与内积空间: 11. 弱有界集: 12. 紧算子: 13. 凸集 14. 有界集 15. 距离 16. 可分 17. Cauchy 列 18.自反空间 二、定理叙述 1、 压缩映射原理 2. 共鸣定理 3.逆算子定理 4. 闭图像定理 5.实空间上的Hahn-Banach 延拓定理 6、Baire 纲定理 7、开映射定理 8、Riesz 表现定理 三证明题: 1.若(,)x ρ是度量空间,则1d ρρ= +也使X 成为度量空间。 证明:,,x y z X ?∈ 显然有 (1)(,)0d x y ≥,(,)0d x y =当且仅当x y =。 (2)(,)(,)d x y d y x = (3)由1()111t f t t t = =-++,(0)t >关于t 单调递增,得 (,)(,)(,)(,)1(,)1(,)(,) x z x y y z d x z x z x y y z ρρρρρρ+=≤+++

(,)(,)1(,)1(,) x y y z x y y z ρρρρ≤+++ (,)(,)d x y d y z =+ 故d 也是X 上的度量。 2, 设H 是内积空间,,,,n n x x y y H ∈,则当,n n x x y y →→时,(,)(,)n n x y x y →,即内积关于两变元连续。 证明:22|(,)(,)||(,)|||||||||n n n n n n x y x y x x y y x x y y -=--≤-?- 已知 ,n n x x y y →→,即||||0,||||0n n x x y y -→-→。 故有 2|(,)(,)|0n n x y x y -→ 即 (,)(,)n n x y x y →。 5.设2()(),Tx t t x t =若T 是从21[0,1][0,1]L L →的算子,计算||||;T 若T 是从 22[0,1][0,1]L L →的算子再求||||T 。 解:(1)当T 是从21[0,1][0,1]L L →的算子。 1 2 10|||||()|Tx t x t dt =?≤? 所以 |||| T ≤。 取2 0()x t =,则02|||| 1.x = 4010||||Tx dt ==? 所以 |||| T ≥。 故有 |||. T = (2)当T 是从22[0,1][0,1]L L →的算子时 11 421/221/22200||||(())(())||||Tx t x t dt x t dt x =≤=?? 所以 |||| 1.T ≤

泛函分析的应用

现代数学基础学习报告 泛函分析应用 院系: 专业: 导师: 姓名: 学号:

摘要 信号与系统的泛函分析是以泛函理论为工具描述和研究信号与系统特性的近代分析方法。这种方法可使信号与系统的表示更加抽象与概括,并使连续与离散、时域与频域、分析与综合达到统一,从而在信号与系统学科中得到了日益广泛的应用。本文仅就其基本理论及其在电路设计中的应用加以简要的介绍。本文将利用泛函分析中的度量空间的理论研究信号处理纠错的问题,首先介绍度量空间相关理论,然后举例分析其在信号纠错处理中的解决过程,通过应用泛函知识,使纠错过程变得更简便和概括。然后简单介绍泛函的理论知识,使其应用到求解最低功耗电源的设计中,结果表明应用泛函理论可以将求解过程变得更加简便和清晰。

1.泛函分析介绍 泛函分特点和内容[1] 泛函分析是20世纪30年代形成的分科,是从变分问题,积分方程和的研究中发展起来的。它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的泛函,算子和。它可以看作无限维向量空间的解析几何及。泛函分析在,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的。 泛函分析的特点是它不但把古典分析的基本概念和方法一般化了,而且还把这些概念和方法几何化了。比如,不同类型的函数可以看作是“”的点或矢量,这样最后得到了“抽象空间”这个一般的概念。它既包含了以前讨论过的几何对象,也包括了不同的函数空间。 泛函分析对于研究现代物理学是一个有力的工具。n维空间可以用来描述具有n个的系统的运动,实际上需要有新的来描述具有无穷多自由度的力学系统。比如梁的震动问题就是无穷多力学系统的例子。一般来说,从力学过渡到连续介质力学,就要由有穷自由度系统过渡到无穷自由度系统。现代物理学中的理论就属于无穷自由度系统。 正如研究有穷自由度系统要求n维空间的几何学和作为工具一样,研究无穷自由度的系统需要无穷维空间的几何学和分析学,这正是泛函分析的基本内容。因此,泛函分析也可以通俗的叫做无穷的几何学和微积分学。古典分析中的基本方法,也就是用的对象去逼近非线性的对象,完全可以运用到泛函分析这门学科中。 泛函分析是分析数学中最“年轻”的分支,是古典分析观点的推广,综合函数论、几何和代数的观点研究无穷维向量空间上的函数、算子、和。他在二十世纪四十到五十年代就已经成为一门理论完备、内容丰富的数学学科了。 半个多世纪来,泛函分析一方面以其他众多学科所提供的素材来提取自己研究的对象和某些研究手段,并形成了自己的许多重要分支,例如算子谱理论、巴拿赫代数、拓扑线性空间理论、等等;另一方面,它也强有力地推动着其他不少分析学科的发展。它在、概率论、函数论、连续介质力学、、计算数学、、等学科中都有重要的应用,还是建立理论的基本工具,也是研究无限个自由度的重要而自然的工具之一。今天,它的观点和方法已经渗入到不少工程技术性的学科之中,已成为近代分析的基础之一。 泛函分析在数学物理方程、、、、等学科有着广泛的应用。近十几年来,泛函分析在工程技术方面有获得更为有效的应用。它还渗透到数学内部的各个分支中去,起着重要的作用。 泛函的理论[2]

泛函分析复习题

泛函分析期末复习题(2005-2006年度) (1)所有n n 矩阵可以构成一个线性空间。试问这个线性空间中的零元素是什么? (2)什么是线性空间的子空间?子空间是否一定包含零元素?为什么? (3)什么是线性流形? (4)什么是线性空间中的凸集? (5)如果一个度量能够成为一个线性空间上定义的距离,那么这个度量必须满足什么条件?试给出几个在n维欧几里德空间上常用的距离定义 (6)距离空间) X上的收敛是如何定义的? , (d

(7)线性空间上定义的范数必须满足哪些条件? (8)什么是巴拿赫空间?赋范空间中的基本列一定收敛吗? (9)有限维的线性赋范空间都是巴拿赫空间吗? (10)什么是希尔伯特空间? (11)),(2b L空间是如何构成的?在怎样的内积定义下其可以成为a 一个希尔伯特空间? (12)什么是算子?为什么要求算子T的定义域) D是一个子空 (T 间? (13)算子的范数是如何定义的?从直观角度谈谈对算子范数定义

的理解。 (14)线性算子的零空间一定是值域空间中的子空间吗? (15)什么是有界算子?举一个无界算子的例子。 (16)算子的强收敛是如何定义的? (17)设X为一个线性赋范空间,而Y为一个Banach空间。那么从X到Y的线性算子所构成的空间), L是否构成一个Banach空 (Y X 间? (18)什么是压缩映像原理?它在力学中有什么重要应用? (19)什么是泛函?什么是泛函的范数?

(20) 什么是线性赋泛空间X 的共轭空间?线性赋泛空间X 的共轭 空间是否总是完备的? (21) 什么是弱收敛?弱收敛与强收敛之间是什么关系? (22) 什么是的Gateaux 微分? (23) 什么是泛函的(一阶)变分?它是如何定义的? (24) 形如dt t x t x t g t x J b a ))(),(,())(('?=的泛函,其对应的Euler-Lagrange 方程是什么? (25) 什么是结构的应变能密度?什么是余能密度?二者关系如 何?试画图说明。

泛函分析在桥梁工程中的应用

应用泛函分析解决桥梁工程中的一个问题 摘要:本文简单介绍泛函分析方法和在力学和桥梁工程中的若干应用,包括泛函观点下的结构数学理论、超圆方法、变分法、变分不等式与凸分析、算子的特征值与谱方法等。并通过两个例子来说明泛函在力学和桥梁工程当中的应用。 关键词:泛函变分法桥梁工程 中图分类号:U441.5 一泛函分析概述 泛函分析(Functional Analysis)其研究的主要对象是函数构成的空间,是研究无穷维线性空间上的泛函数与算子理论的一门分析数学。无穷维线性空间是描述具无限多自由度的物理系统的数学工具。泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科,是由对变换(如傅立叶变换等)的性质的研究和对微分方程以及积分方程的研究发展而来的。使用泛函作为表述源自变分法,代表作用于函数的函数。因此,泛函分析是定量地研究诸如连续介质力学等一类具有无穷多自由度的物理系统的有力工具。根据不同拓扑和代数结构,泛函空间划分为各个类别。力学和桥梁工程中常见的有: 1、度量空间:现代数学中一种基本的、重要的、最接近于欧几里得空间的抽象空间。19世纪末叶,德国数学家G.康托尔创立了集合论,为各种抽象空间的建立奠定了基础。20世纪初期,法国数学家M.-R.弗雷歇发现许多分析学的成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度量空间的概念。度量空间中最符合我们对于现实直观理解的是三维欧氏空间。这个空间中的欧几里德度量定义两点之间距离为连接这两点的直线的长度。定义:设X为一个集合,一个映射d:X×X→R。若对于任何x,y,z属于X,有(I)(正定性)d(x,y)≥0,且d(x,y)=0当且仅当x = y;(II)(对称性)d(x,y)=d(y,x);(III)(三角不等式)d(x,z)≤d(x,y)+d(y,z)则称d为集合X的一个度量(或距离)。称偶对(X,d)为一个度量空间,或者称X为一个对于度量d而言的度量空间。 2、赋范线性空间 泛函分析研究的主要是实数域或复数域上的完备赋范线性空间。这类空间被称为巴拿赫空间,巴拿赫空间中最重要的特例被称为希尔伯特空间。希尔伯特空间可以利用以下结论完全分类,即对于任意两个希尔伯特空间,若其基的基数相等,则它们必彼此同构。对于有限维希尔伯特空间而言,其上的连续线性算子即是线性代数中所研究的线性变换。 3、巴拿赫空间理论(Banach space) 巴拿赫空间理论是1920年由波兰数学家巴拿赫(S.Banach)一手创立的,数学分析中常用的许多空间都是巴拿赫空间及其推广,它们有许多重要的应用。大多数巴拿赫空间是无穷维空间,可看成通常向量空间的无穷维推广sup n n x x ,巴拿赫空间(Banach space)是一种赋有“长度”的线性空间﹐泛函分析研究的基本对象之一。数学分析各个分支的发展为巴拿赫空间理论的诞生提供了许多丰富而生动的素材。 4、内积空间。内积的引入使该空间更直观形象,内容格外丰富。内积把普通的几何术语差不多全带到抽象空间中。例如:长度、两向量交角、直交性、直交投影、就范直交系、点(向量)和子空间的距离等。使抽象泛函空间涂上浓厚的几何色彩。力学家和桥梁工程师对此尤感兴趣。由于内积可诱导范数,内积空间是特殊线性赋范空间,但反之不然。与普通欧式空间最相像的应数下述Hilbert空间; 5、Hilbert空间。它是完备的内积空间,内容最丰富。例如Fourier展开、Bessel 不等式和Parseval等式等。由于本文讨论泛函的力学应用,必须提及的最后一类空间是Sobolev空间。

泛函分析答案

泛函分析题1_3列紧集p19 1.3.1 在完备的度量空间中,求证:为了子集A是列紧的,其充分必要条件是对?ε > 0,存在A的列紧的ε网. 证明:(1) 若子集A是列紧的,由Hausdorff定理, ?ε > 0,存在A的有限ε网N. 而有限集是列紧的,故存在A的列紧的ε网N. (2) 若?ε > 0,存在A的列紧的ε/2网B. 因B列紧,由Hausdorff定理,存在B的有限ε/2网C. 因C ?B ?A,故C为A的有限ε网. 因空间是完备的,再用Hausdorff定理,知A是列紧的. 1.3.2 在度量空间中,求证:紧集上的连续函数必是有界的,并且能达到它的上、下确界. 证明:设(X, ρ)是度量空间,D是紧子集,f : D→ 是连续函数. (1) 若f无上界,则?n∈ +,存在x n∈D,使得f (x n) > 1/n. 因D是紧集,故D是自列紧的. 所以{x n}存在收敛子列x n(k) →x0∈D (k→∞). 由f的连续性,f (x n(k))→f (x0) (k→∞). 但由f (x n) > 1/n知f (x n)→ +∞(n→∞), 所以 f (x n(k))→ +∞ (k→∞),矛盾. 故f有上界.同理,故f有下界. (2) 设M = sup x∈D f(x),则?n∈ +,存在y n∈D,使得f (y n) > M- 1/n. {y n}存在子列y n(k) →y0∈D (k→∞). 因此f ( y0 ) ≥M. 而根据M的定义,又有f ( y0 ) ≤M. 所以f ( y0 ) = M.因此f能达到它的上确界. 同理,f能达到它的下确界. 1.3.3 在度量空间中,求证:完全有界的集合是有界的,并通过考虑l 2的子集E = {e k }k≥ 1,其中e k = { 0, 0, ..., 1, 0, ... } (只是第k个坐标为1,其余都是0 ),来说明一个集合可以是有界的但不完全有界的. 证明:(1) 若A是度量空间(X, ρ)中的完全有界集. 则存在A的有限1-网N = { x0, x1, x2, ..., x n }. 令R = ∑1 ≤j≤nρ(x0, x j) + 1. 则?x∈A,存在某个j使得0 ≤j≤n,且ρ(x, x j) < 1. 因此,ρ(x, x0) ≤ρ(x, x j) + ρ(x j, x0) ≤ 1 + ∑1 ≤j≤nρ(x0, x j) = R. 所以A是度量空间(X, ρ)中的有界集. (2) 注意到ρ(e k , e j) = 21/2 ( ?k ≠ j ), 故E中任意点列都不是Cauchy列. 所以,E中任意点列都没有收敛子列(否则,该收敛子列就是Cauchy列,矛盾).

相关文档
相关文档 最新文档