文档库 最新最全的文档下载
当前位置:文档库 › 醋酸乙烯合成的物料衡算

醋酸乙烯合成的物料衡算

醋酸乙烯合成的物料衡算
醋酸乙烯合成的物料衡算

第五章 醋酸乙烯合成的物料衡算

5、1 反应器的物料衡算

设计要求:

年产11万吨聚乙烯醇,产品平均聚合度为1795,生成产时间为每年330天。

产品分子式为:CH 2─CHOH

n

CH 2─CHOCOCH 3

m

由多品种聚乙烯醇质量指标(Q/OWAL001-1999)可得,PVA 的聚合度为400~2800,本项目平均聚合度为1700,醇解度选取95%得:

???

??=?+=+%95%1001700m

n n

n m 解可得: m=85 n=1615 平均分子量:

kmol

kg O H C O H C M m n pvc /78372285861615442)()(26422=+?+?=++=

产品产量h kmol F PVA

/1611.078372

2433010101078372243303

4=????=??=年产量 所需单体量 h kmol F n m F PVC VAC /87.2731611.01700)(=?=+= h t h kg F M W PVC PVC VAC /55.23/82.2355287.27386==?=?= 工艺条件假设(数据参考马延贵 .《聚乙烯醇生产技术》.纺织工业出版社.1988):

乙炔单程转化率 %151=X 以乙炔计算的醋酸乙烯的选择性

%901=S

醋酸转化率 %352=X 以醋酸计算醋酸乙烯的选择性

%12.962=S 乙醛收率%3106.01=Y 巴豆醛收率

%

0621.02=Y

则:乙炔收率 ???

?

???=?===?=?=%65.442686

%5.13%5.1315.09.011Z p m M M Y Y X S Y 质量收率:摩尔收率: 由方程式 :

VAC

HAC H C →+22

乙炔进料=

h t Y W m VAC /74.52%

65.4455.23== 根据反应器入口各组分的组成可计算总进料量

52.74

W 109.4248.2%

=

=总 依次计算其他组分进料数量如表5-1

表5-1 反应器的进料表

出口组成计算 由下列方程式计算

22H C

+HAC VAC

26 60 86 x y 23.55 2COOH CH 3

O H CO CO CH 2223)(++

120 58 44 18 48.69?35%-16.43 m n p

22H C +O H 2 CHO CH 3

18 44

z 52.74?0.3106%

由上述三个方程求:x=7.12t/h y=16.43t/h z=0.065 m=0.29 n=0.22 p=0.092

所以出口流量如下:

1、22H C : h t X W W /83.44%)151(74.52)1(11011=-?=-=

2、COOH CH 3:h t X W W /65.31%)351(69.48)1(22021=-?=-=

3、VAC : h t W W W VAC /01.2646.255.233031=+=+=

4、2N : h t W W /45.34041==

5、CHO CH 3: h t W Y W W /34.116.1%3106.074.525011051=+?=+?= 6

CHO CHCH CH 22=:h t W Y W W /18.015.0%0621.074.526021061=+?=+?=

7、2CO : h t W W /66.022.044.0n 7071=+=+=

8、O H 2: h t W W /36.0065.0092.033.0z p 8081=-+=-+= 9、其他: 65.091=W t/h

因此可得反应器的出料表,见表5-2.

表5-2 反应器的出料表

5、3CH CHO

1.22

2.42 2CO

0.66 1.32 合计

50.16

100

表5-4 液相组成

()32CH CO

0.29 0.49 3CH CHO 0.12 0.23 46C H O

0.18 0.30 VAC 26.01 43.88 HAC

31.65

53.4

2H O

0.36 0.6 其他 0.65 1.1 合计

59.274

100

5、3 清洗工段物料衡算:

汽液分离器出来的汽相组成清洗后,3CH CHO 、22C H 被解析。所以可得解析塔出口汽相组成表5-5。

表5-5 解析塔出口汽相组成

22C H 44.83 97.35 3CH CHO

1.22

2.65 合计

46.05

100

汽液分离器出来的汽相组成清洗后,2N 、2CO 被吸收。所以可得吸收塔出口汽相组成表5-6。

2N 3.45 83.94 2CO

0.66 16.06 合计

4.11

100

5、4 乙炔净化工段物料衡算:

5、4、1 循环气物料平衡

乙炔与醋酸为循环物料,由反应器的出口物料组成,可以得到乙炔与醋酸的物料组成,所以可到循环气物料平衡表5-7。

5、4、2 精乙炔物料组成的计算

由出口参考资料聚乙烯醇生产技术 33页可得,精乙炔的技术规格:

表5-8 精乙炔的技术规格

序号项目单位指标

1 纯度% 99

2 磷化氢% 0.0037

3 硫化氢% 0.0039

4 比活性度s <30

汽液分离器汽相组分部分放空以保证氮气不累积,其余部分返回反应器进口与精乙炔混合使用。

设循环气与放空气质量比为x,根据精乙炔技术规格要求表5-8,计算精乙炔组成:

精乙炔量=7.91/99%=7.99t/h

由循环气物料平衡表见表5-7与气液分离器出口汽相组成表5-3,可得:

(0.66-0.66x+3.45-3.45x)=7.99-7.91 x=0.9805

二氧化碳的量为:0.66-0.66?0.9805=0.013

氮气的量为:3.45-3.45?0.9805=0.067

由此得,精乙炔组成如表5-9:

表5-9 所以精乙炔的组成见下表

组分数量 t/h 组成(w%)

乙炔7.91 99.00

二氧化碳0.013 0.16

氮气0.067 0.84

总计7.99 100

5、4、3 粗乙炔组成的计算

由参考资料聚乙烯醇生产技术32页可得粗乙炔的技术规格:

表5-10 粗乙炔的技术规格

序号 项目 单位 指标 合格 勉强 1 乙炔含量 % >98 2 磷化氢 % <0.05 <0.10 3 硫化氢 % <0.10 <0.15 4 压力(表压) mm 水柱

>150 5

温度

<30

由表5-10得,根据乙炔的质量流率计算乙炔的摩尔流率:

3

17.9110304.2326

F K mol h ?=

= 同理得:

二氧化碳的摩尔流率:

3

20.013100.3044

F K mol h ?==

氮气的摩尔流率为:

3

30.06710 2.3928

F K mol h ?==

所以粗乙炔的总摩尔流率为:

()()

123F +304.23+0.30+2.39

307.3810.00050.00110.00050.001F F F Kmol h +=

==----总

乙炔、二氧化碳、氮气的摩尔组成分别为:

乙炔:

304.23

100%98.98%307.38

?= 二氧化碳:

0.30

100%0.10%307.38?= 氮气:

%78.0%10038

.30739

.2=? 由粗乙炔的技术规格表5-10知:

磷化氢的摩尔组成取为0.05%,硫化氢的摩尔组成为0.1%,由此计

40.05%307.380.05%0.15F F Kmol h =?=?=总

硫化氢的摩尔流率为:50.1%307.380.10%0.31F F Kmol h =?=?=总 由以上数据计算得到,粗乙炔各组分的质量流率与组成,见表5-11:

表5-11 粗乙炔组成见下表

组成 数量(t/h) 组成(Wt%) 数量(kmol/h)

(mol%)

乙炔 7.91

98.80 304.23 98.97 二氧化碳 0.013

0.16

0.30

0.10

氮气 0.067 0.84 2.39 0.78 磷化氢 0.0051 0.06 0.15 0.05 硫化氢 0.011 0.14 0.31 0.10 总计

8.006

100

307.38

100

清净剂次氯酸钠用料的计算:

次氯酸钠是由氯气和氢氧化钠反应生成,是一种强氧化剂,能分解放出氧原子,将乙炔中的杂质磷化氢、硫化氢净化。

设除去磷化氢消耗的次氯酸钠的量为x t h ,除去硫化氢消耗的次氯酸钠的量为y t h 。

33444a a PH N ClO H PO N Cl

+→+

34 4?74.5 0.0051 x

22444a a H S N ClO H SO N Cl

+→+

34 4?74.5 0.0111 y 由此可得:

X=0.045t h ,0.096y t h =

那么消耗次氯酸钠的总量为:0.141x y t h

+=

氢氧化钠与氯气用量的计算:

设氢氧化钠用量为:m t h ,氯气用量为n t h 。

222a a a N OH Cl N Cl N ClO H O

+→++

240? 71 74.5

m n 0.141

由此可得:m=0.15t h ,n=0.134t h

次氯酸钠中有效氯的成分为0.14135.574.50.067t h ?÷=(符合工业生产的要求) 5、5 反应器热量衡算

分子量M (g/m )ol

沸点o t (℃) 汽化潜热v H ?(J/mol ) 液相热溶L (J/mol

汽相热溶 (kcal/kg.

C o

乙炔 26 -84.0 0.469

醋酸 60

118.0 710392.2? 510384.1? 0.35 醋酸乙烯 86

72.5

710157.3?

510926.1? 0.291 乙醛 44 20.85 710483.2? 510400.1? 0.412 巴豆醛 70

102.2 710446.3? 510688.1? 0.40

丙酮

58

56.29 710956.2? 510388.1?

二氧化碳 44 0.232 氮气 28

0.25

18

100 71008.4?

410559.7? 0.458

循环油 156

0.63

备注:1 4.18KCal KJ

=

丙酮汽相热容p C =0.1384J Kmol K ? 导热油的密度 1.02/g h ρ=

根据工艺条件的选择反应器入口气体温度140O C ,反应温度(既出口温度)180O C 。

1、反应放出热量()92.8622.18KJ Kcal mol ????反应热

h

KCal W W Q /104393.586/100018.22)1046.21055.23(86

/18.221000)(6

3

3

30311?=???-?=??-=

2 、气体从140C o 升到180C o 吸热为2Q (1) 乙炔吸热量h kcal t cw q /108940.9)140180(1074.52469.0531?=-???=?= (2) 醋

酸吸热量h kcal t cw q /108166.6)140180(1069.4835.0532?=-???=?= (3醋

乙烯吸

量h kcal t cw q /108634.2)140180(1046.2291.0433?=-???=?=

(4) 氮气吸热量h kcal t cw q /1045.3)140180(1045.325.0434?=-???=?= (5) 乙醛

热量h kcal t cw q /109117.1)140180(1016.1412.0435?=-???=?= (6) 巴

吸热量h kcal t cw q /104.2)140180(1015.04.0336?=-???=?= (7二氧

吸热量h kcal t cw q /100832.4)140180(1044.0232.0337?=-???=?=

(8)

水蒸气

吸热量

h kcal t cw q /100456.6)140180(1033.0485.0338?=-???=?=

其它吸热可以忽略

所以h kcal q Q i i /107660.168

12?==∑= 3、被载热油带走的热量4Q

a. 假设反应器有热损失53110/Q kcal h =?(经验取值)

则:6564123() 5.439310(17.6581)10 3.573510Q Q Q Q Kcal h =-+=?-+?=? b 假设反应器无热损失

则:()'66412 5.4393 1.765810 3.673510/Q Q Q kcal h

=-=-?=?

4、反应热利用率 %46.32%10010

4393.5107658.1%1006

6

12=???=?=Q Q η 反应器热量衡算: 相关物质的物性参数表 其中丙酮 K kmol J C p ./107582.84?=

5、导热油用量 W 油(0.63/, 1.02/,10o p t C kcal h g h C ρ==?=油) a. 反应器有热损失

3

354W 10Q =100.6310 3.573510156

????=?油

156 3.5735

W 88.49/0.6310

t h ?=

=?油

33

3

88.491086.75/1.0210

W V m h ρ?===?油

油油 b .反应器内无热损失

3

'

364W 10Q =100.6310 3.673510156

????=?油

156 3.6735

W 90.96/0.6310

t h ?=

=?油

33

3

90.961089.18/1.0210

W V m h ρ?===?油

油油 5、6 分离器热量衡算

一段冷却:(控制温度范围:180—100o C ,一段出料温度:100o C , 醋酸温度50—90o C )

反应器出口混合汽的温度经汽液分离器一段冷却后,温度由180o C 降到100o C ,在此过程中大部分重组分醋酸冷凝下来,同时水,巴豆醛也几乎全部冷凝下来,余下的组分通往二段继续冷却。

'36221(1):44.83100.469 4.187(180100)7.0410/C H Q kJ h =????-=? '3522(2): 3.45100.25 4.187(180100) 2.8910/N Q kJ h =????-=?

'3533(3): 1.34100.412 4.187(180100) 1.8510/CH CHO Q kJ h =????-=? '3524(4):0.66100.232 4.187(180100)0.51310/CO Q kJ h

=????-=?

3

'

453353

0.2910(5):8.75810(10080)0.35010/5810

p t W CH COCH Q C kJ h M ?=???=???-=??''356(6): 4.1826.01100.291 4.187(180100)25.410/p t VAC Q W C kJ h

=????=????-=?3

'

3

46270.3610(7):0.36100.458 4.187(180100) 4.08108.7110/18

H O Q kJ h

?=????-+??=?''

'

'

833

4

326(8): 4.1831.651031.65100.35 4.187(180118) 2.3921060

31.6510 1.38410(118100)

60

16.8110p t v t

W W HAC Q W C H L M M

KJ h

=????+??+????=????-+???+???-=? ''

'

'

469333

425(9): 4.180.18100.40 4.187(180102.22)0.18100.1810

3.44610 1.66810(102.22100)70701.1310p t v t

W W C H O Q W C H L M M

KJ h

=????+??+???=????-+

????+???-=?

''

'

'

1033

3

42(10): 1.2 4.18[0.65100.35 4.1870.65100.6510

23.9210+0.1384106060/p t v t

W W Q W C H L M M

kJ h =?????+??+???=????????????5其它:按醋酸处理(180-118)+

(118-100)]=4.1110

所以 一段总冷量

10

'710

3.6310/i i Q Q kJ h ===?∑

二段冷却 (气体温度 100-50o C )醋酸温度(20-30o C ) 由一段冷却来的气体经过二段冷却后温度由100o C 降到50o C ,在此过程中相对重的组分VAC (即产品)几乎全部冷凝下来,同时几乎所有的丙酮也冷凝下来,余下的组分含有22C H ,2N ,23,CO CH CHO 通往三段冷却。

'''36221(1): 4.1844.83100.469 4.187(10050) 4.4010/p t C H Q W C kJ h =????=????-=?

'''3522(2): 4.18 3.45100.25 4.18(10050) 1.8110/p t N Q W C kJ h

=????=????-=?

'''3423(3): 4.180.66100.232 4.187(10050) 3.2110/p t CO Q W C kJ h =????=????-=?

'''3534(4): 4.18 1.34100.412 4.187(10050) 1.1610/p t CH CHO Q W C kJ h

=????=????-=? ''

'

'

33533443325(5): 4.180.29100.29108.75810(10056.29) 2.95610581058

0.2910 1.38810(56.2950)

58

1.7110/p t v t

W W CH COCH Q W C H L M M

kJ h

=????+??+?????=???-+????+???-=? ''

''

'

633

4

327(6): 4.1826.011026.01100.291 4.187(10072.5) 3.1571086

26.0110 1.92610(72.550) 1.1710/86

p t v t

W W VAC Q W C H L M M

kJ h

=????+??+????=????-+???+???-=? 6

''720

1.2410/i i Q Q kJ h ===?∑

三段冷却:(气体温度50—0 ℃),盐水冷却

由二段冷却来的气体经过三段冷却后温度由50 ℃降到0 ℃,根据经验在此过程中只有9.3%3CH CHO 冷却下来, 余下的大量汽相

3CH CHO 与22C H ,2N , 2CO 混合气 1%左右放空,以防惰性气体累积,

其余做循环气。

''''36221(1): 4.1844.83100.469 4.187(500) 4.4010/p t C H Q W C kJ h =????=????-=?

'''3522(2): 4.18 3.45100.25 4.187(500) 1.8110/p t N Q W C kJ h =????=????-=? ''''3423(3)(4): 4.180.66100.232 4.187(500) 3.2110/p t CO Q W C kJ h

=????=????-=?

''''3344

(4): 4.18 1.34100.412 4.187(5020.85)6.7510/p t CH CHO Q W C kJ h

=????=????-=?

(乙醛近似认为全部在汽相)

4

'''630

4.6810/i i Q Q kJ h ===?∑

综上气体分离器所需要的冷量为7123 5.3310/Q Q Q kJ h ++=?

(注:本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待您的好评与关注!)

精馏塔中的物料衡算

3.4精馏塔的工艺条件及有关物性数据的计算 3.4.1操作温度的计算 1.)塔顶温度计算 查文献乙醇-水溶液中乙醇摩尔分数为0.70和0.80时,其沸点分别为78.7℃78.4℃塔顶温度为 D T ,则由内插法: 0.7078.7 0.800.7078.478.7D D x T --=--, 78.24D T ?=℃ 3.)塔釜的温度 查文献乙醇-水溶液中乙醇摩尔分数为0.00和0.05时,其沸点分别为100℃和90.6℃设塔顶温度为 W T ,则由内插法: 0.00100 0.050.0090.6100 W W x T --=--, 96.92W T ?=℃ 则 精馏段的平均温度: 278.2482.13 80.192 m T +==℃ 提馏段的平均温度: 196.9282.13 89.532 m T += =℃ 3.4.2操作压强 塔顶压强:P D =100 kpa 取每层塔板压降:ΔP=133.322 pa 则 进料板压力: 1000.77104.9F P kpa =+?= 塔釜 压力: 1000.77104.9W P kpa =+?= 则 精馏段的平均操作压强: 1100104.9 102.52 m P kpa +== 提馏段的平均操作压强: 2110.5104.9 107.72m P +== .)液相的平均密度 0.843 D x =0.013W x =

由 1 1 i i i n αρρ ==∑ 计算 (1.)对于塔顶 078.24D T C = 查文献 3741.83/A kg m ρ=,3972.9/B kg m ρ= 质量分率 ()0.84346.07 0.93210.84346.0710.84318.02 A α?= =?+-? 10.0679B A αα=-= 则 1A B D A B ααρρρ= +?A B A LB D 1L ρααρρ=+ D ρ31775.2/0.93210.0679 763.6972.9 m kg ==+ (2.)对于进料板 82.13F T C = 查文献 3739.6/A kg m ρ=,3970.50/B kg m ρ= 质量分率 ()0.215746.07 0.41270.215746.0710.215718.02 A α?= =?+-? 10.5102B A αα=-= 则 1A B F A B ααρρρ= +?A B A LB 1F L ρααρρ=+ F ρ31862.1/0.41270.5873 739.6970.5 m kg ==+ (3.)对于塔釜 096.92W T C = 160.009195x = 查文献 3721.2/A kg m ρ=,3955.1/B kg m ρ=

板式精馏塔项目设计方案

板式精馏塔设计方案 第三节精馏方案简介 (1) 精馏塔的物料衡算; (2) 塔板数的确定: (3) 精馏塔的工艺条件及有关物件数据的计算; (4) 精馏塔的塔体工艺尺寸计算; (5) 塔板主要工艺尺寸的计算; (6) 塔板的流体力学验算: (7) 塔板负荷性能图; (8) 精馏塔接管尺寸计算; (9) 绘制生产工艺流程图; (10) 绘制精馏塔设计条件图; (11) 对设计过程的评述和有关问题的讨论。 设计方案的确定及工艺流程的说明 原料液由泵从原料储罐中引岀,在预热器中预热至84 C后送入连续板式精馏塔(筛板塔),塔顶上升蒸汽 流采用强制循环式列管全凝器冷凝后一部分作为回流液,其余作为产品经冷却至25 C后送至产品槽;塔釜采用热虹吸立式再沸器提供气相流,塔釜残液送至废热锅炉。 第四节:精馏工艺流程草图及说明

、流程方案的选择

1. 生产流程方案的确定: 原料主要有三个组分:C2°、C3二、C3°,生产方案有两种:(见下图A , B )如 任务书规定: 图(A ) 为按挥发度递减顺序采出,图(B )为按挥发度递增顺序采出。在基本有机化工 生产过程中,按挥发度递减的顺序依次采出馏分的流程较常见。 因各组分采出之 前只需一次汽化和冷凝,即可得到产品。而图(B )所示方法中,除最难挥发组 分外。其它组分在采出前需经过多次汽化和冷凝才能得到产品, 能量(热量和冷 量)消耗大。并且,由于物料的循环增多,使物料处理量加大,塔径也相应加大, 再沸器、冷凝器的传热面积相应加大,设备投资费用大,公用工程消耗增多,故 应选用图(A )所示的是生产方案。 2. 工艺流程分离法的选择: 在工艺流程方面,主要有深冷分离和常温加压分离法。 脱乙烷塔,丙烯精制 塔采用常温加压分离法。因为 C2, C3在常压下沸点较低呈气态采用加压精馏沸 点可提高,这样就无须冷冻设备,可使用一般水为冷却介质,操作比较方便工艺 简单,而且就精馏过程而言,获得高压比获得低温在设备和能量消耗方面更为经 济一些,但高压会使釜温增加,引起重组分的聚合,使烃的相对挥发度降低,分 离难度加大。可是深冷分离法需采用制冷剂来得到低温, 采用闭式热泵流程,将 精馏塔和制冷循环结合起来,工艺流程复杂。综合考滤故选用常温加压分离法流 程。 1、 脱乙烷塔:根据原料组成及计算:精馏段只设四块浮伐 塔板,塔顶采用分 凝器、全回流操作 2、 丙烯精制塔:混合物借精馏法进行分离时它的难易程度取决 于混合 物的沸点差即取决于他们的相对挥发度丙烷一丙烯的 C2 C3 = C3 ° iC4 W% 5.00 73.20 20.80 0.52 0.48 100 工艺特点: 原料 C 工 C 。 (A ) (B )

吸收塔的计算

第4节吸收塔的计算 吸收过程既可在板式塔内进行,也可在填料塔内进行。在板式塔中气液逐级接触,而在填料塔中气液则呈连续接触。本章对于吸收操作的分析和计算主要结合连续接触方式进行。 填料塔内充以某种特定形状的固体填料以构成填料层。填料层是塔实现气、液接触的主要部位。填料的主要作用是:①填料层内空隙体积所占比例很大,填料间隙形成不规则的弯曲通道,气体通过时可达到很高的湍动程度;②单位体积填料层内提供很大的固体表面,液体分布于填料表面呈膜状流下,增大了气、液之间的接触面积。 通常填料塔的工艺计算包括如下项目: (1)在选定吸收剂的基础上确定吸收剂的用量; (2)计算塔的主要工艺尺寸,包括塔径和塔的有效高度,对填料塔,有效高度是填料层高度,而对板式塔,则是实际板层数与板间距的乘积。 计算的基本依据是物料衡算,气、液平衡关系及速率关系。 下面的讨论限于如下假设条件: (1)吸收为低浓度等温物理吸收,总吸收系数为常数; (2)惰性组分B在溶剂中完全不溶解,溶剂在操作条件下完全不挥发,惰性气体和吸收剂在整个吸收塔中均为常量; (3)吸收塔中气、液两相逆流流动。 吸收塔的物料衡算与操作线方程式 全塔物料衡算图2-12所示是一个定态操作逆流接触的吸收塔,图中各符号的意义如下:

V -惰性气体的流量,kmol (B )/s ; L —纯吸收剂的流量,kmol (S )/S ; Y 1;、Y 2—分别为进出吸收塔气体中溶质物质量的比,kmol (A )/kmol (B );X 1、X 2——分别为出塔及进塔液体中溶质物质量的比,kmol (A )/kmol (S )。注意,本章中塔底截面一律以下标“l ”表示,塔顶截面一律以下标“2”表示。 在全塔范围内作溶质的物料衡算,得: VY 1+LX 2=VY 2+LX 1 或V (Y 1-Y 2)=L (X 1-X 2) (2-38) 一般情况下,进塔混合气体的流量和组成是吸收任务所规定的,若吸收剂的流量与组成已被确定,则V 、Y 、L 及X 2。为已知数,再根据规定的溶质回收率,便可求得气体出塔时的溶质含量,即: Y 2=Y l (1-фA ) (2-39) 式中фA 为溶质的吸收率或回收率。 通过全塔物料衡算式2-38可以求得吸收液组成X 1。于是,在吸收塔的底部与顶部两个截面上,气、液两相的组成Y 1、X l 与Y 2、X 2均成为已知数。 2.吸收塔的操作线方程式与操作线 2 1 图2-12 物料衡算示意图

精馏塔的物料衡算

1 精馏塔的物料衡算 1.1 原料液及塔顶和塔底的摩尔分率 甲醇的摩尔质量 A M =3 2.04kg/kmol 水的摩尔质量 B M =18.02kg/kmol 315.002 .18/55.004.32/45.004 .32/45.0=+= F x xD=(0.98/32.04)/(0.98/32.04+0.02/18.02)=0.898 1.2 原料液及塔顶和塔底产品的平均摩尔质量 F M =0.315?32.04+(1-0.315) ?18.02=22.44kg/kmol D M =0.898?32.04+(1-0.898) ?18.02=30.61kg/kmol 1.3 物料衡算 原料处理量 F=17500000/(330?24?22.4)=98.467kmol/h 总物料衡算 98.467=D+W 甲醇物料衡算 ωX +=?W D 898.0315.0467.98 联立解得 D=48.462kmol/h W=93.136kmol/h Xw=0.001 W M =0.001?32.04+(1-0.001) ?18.02=18.03kg/kmol 2 塔板数的确定 2.1 理论板层数N T 的求取 2.1.1 相对挥发度的求取 表1:甲醇的x-y-t 平衡表, 温度/℃ x y 温度/℃ x y 100 0 0 71.3 59.37 81.83

92.9 5.31 28.34 70.0 68.49 84.92 90.3 7.67 40.01 68.0 85.62 89.62 88.9 9.26 43.53 66.9 87.41 91.94 85.0 13.15 54.55 64.7 100 100 81.6 20.83 62.73 78.0 28.18 67.15 73.8 46.20 77.56 72.7 52.92 79.71 将表1中x-y 分别代入) 1()1(A A A A y x y x --=α得表2 表2:甲醇的α-t 表 温度/℃ 挥发度 温度/℃ 挥发度 92.9 7.05 72.7 3.50 90.3 8.03 71.3 3.08 88.9 7.55 70.0 2.59 85.0 7.93 68.0 1.45 81.6 6.40 66.9 1.63 78.0 5.27 73.8 4.02 所以==∑1212...21a a a m α 4.2 2.1.2进料热状态参数q 值的确定 根据t-x-y 图查得x F =0.315的温度t 泡=77.6℃ 冷液进料:60℃ t m =2 6.7760+=68.8℃ 查得该温度下甲醇和水的比热容和汽化热如下: 比热(68.8℃)kJ/kg K 汽化热(77.6℃)kJ/kg 水 4.186 2334.39 甲醇 2.84 1091.25 则Cp=2.84×0.315+4.186×0.685=3.7579 kJ/kg K r 汽=1091.25×0.315+2334.39×0.685=1942.8 kJ/kg

精馏段和提馏段操作线方程

《精馏段和提馏段操作线方程》教学设计

线方程可通过塔板间的物料衡算求得。 在连续精馏塔中,因原料液不断从塔的中部加入,致使精馏段和提馏段具有不同的操作关系,现分别予以讨论。 讲授新知讲述: 1、精馏段操作线方程 在图片虚线范围(包括精馏段的 第n+1层板以上塔段及冷凝器)内作 物料衡算,以单位时间为基准,可得: 总物料衡算:V=L+D 易挥发组分的物料衡算: V y n+1=Lx n+Dx D 式中: V——精馏段内每块塔板上升的蒸汽 摩尔流量,kmol/h; L——精馏段内每块塔板下降的液体 摩尔流量,kmol/h; y n+1——从精馏段第n+1板上升的蒸 汽组成,摩尔分率; x n——从精馏段第n板下降的液体组 成,摩尔分率。 聆听并看下图 学生书写记忆: D n n x D L D x D L L y + + + = +1 1 1 1+ + + = +R x x R R y D n n 分析归纳:(小组发言) 关于精馏段操作线方程的两点 讨论(1)该方程表示在一定操作条 件下,从任意板下降的液体组成x n 和 与其相邻的下一层板上升的蒸汽组 成y n+1 之间的关系。

将以上两式联立后,有: D n n x D L D x D L L y +++=+1 令R =L /D ,R 称为回流比,于是上式可写作: 111+++= +R x x R R y D n n 以上两式均称为精馏段操作线方程。 点评小组的发言:(略) (2)该方程为一直线方程,该直线过对角线上a (x D ,x D )点,以R /(R +1)为斜率,或在y 轴上的截距为 x D /(R +1)。 讲授新知 讲述: 2、 提馏段操作线方程 在图虚线范围(包括提馏段第m 层板以下塔段及再沸器)内作物料衡算,以单位时间为基准,可得: 总物料衡算:L’=V’+W 易挥发组分衡算:L’x m =V’y m+1+Wx W 式中: L ’——提馏段中每块塔板下降的液体流量,kmol/h ; V ’——提馏段中每块塔板上升的蒸汽流量,kmol/h ; x m ——提馏段第m 块塔板下降液体中 易挥发组分的摩尔分率; y m +1——提馏段第m +1块塔板上升蒸 聆听并看下图 学生书写记忆: W m m x W L W x W L L y ---= +''''' 1

精馏的物料衡算(正式版)

文件编号:TP-AR-L3291 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 精馏的物料衡算(正式版)

精馏的物料衡算(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 一、全塔物料衡算 连续精馏过程中,塔顶和塔底产品的流量与组 成,是和进料的流量与组成有关的。它们之间的关系 可通过全塔物料衡算求得。衡算范围如图10—2虚线 框内所示。 总物料平衡 F=D+W (10—1) 易挥发组分平衡 Fxr=DxD+Wxw (10—2) 式中 F 原料液摩尔流量,kmol/h; D——馏出液摩尔流量,kmol/h; W——釜残液摩尔流量,kmol/h; XF——料液中易挥发组分的摩尔分数;

XD 馏出液中易挥发组分的摩尔分数; XW 釜残液中易挥发组分的摩尔分数。 只要已知其中4个参数,就可以求出其他二参数。一般情况下F、cF、cD、Xw由生产任务规定。上式中F、D、W也可采用质量流量,相应地XF、XD、Xw用质量分数。 式中 D/F,W/F——工程上分别称其为馏出液采出率和残液采出率。 精馏生产中还常用回收率的概念。所谓回收率,是指某组分通过精馏回收的 全塔物料衡算方程虽然简单,但对指导精馏生产却是至关重要的。实际生产中,精馏塔的进料是由前

精馏塔全塔物料衡算

一、精馏塔全塔物料衡算 )(:)(:)(:s kmol W s kmol D s kmol F 塔底残液流量塔顶产品流量进料量:塔底组成 :塔顶组成、下同):原料组成(摩尔分数x x x w D F a t F 4102.1?= 00F 46=x 00D 93=x 00W 1=x kmol kg 04.32=M 甲醇 kmol kg 02.18=M 水 原料甲醇组成: 00F 4.3202.18/5404.32/4604 .32/46=+= x 塔顶组成:00D 2.8802 .18/704.32/9304 .32/93=+=x 塔底组成:00W 6.002 .18/9904.32/104 .32/1=+=x 进料量: s kmol a t F 23 44 10205.23600 24300] 02.18/)324.01(04.32/324.0[10102.1102.1-?=??-+??=?= 物料衡算式为: x x x W D F W D W D F F +=+= 联立代入求解:3 108-?=D 2 10405.1-?=W 二、常压下甲醇—水气液平衡组成(摩尔)与温度关系 1、温度 C C C o o o t t t t t t t t t 2.99.......................... 06.0100 31.509.9210076.66 (100) 2.887 .6441.871009.667.6452.68....................67.74.323.9026.967.79.883.90W W W D D D F F F =--=--=--=--=--=--::: 精馏段平均温度: C o t t t 64.67276 .6652.682 D F 1=+= += 提馏段平均温度: C o t t t 86.832 76 .6652.682 W F 2 =+= +=

精馏塔的物料衡算

甲苯-四氯化碳混合液的浮阀精馏 塔设计 系部:化学工程系 专业班级:普08应用化工(1)班 姓名: 指导老师: 时间:2010年5月8日 新疆轻工职业技术学院

目录 摘要 (2) 关键词 (2) 前言 (2) 1精馏 (2) 2工艺条件 (3) 3精馏塔的物料衡算 (4) 4板数的确定 (5) 5精馏塔的工艺条件及有关物性数据的计算 (7) 6精馏塔的塔体工艺尺寸计 (9) 7塔板主要工艺尺寸的计算 (10) 8筛板的流体力学验算 (11) 9塔板负荷性能图 (13) 小结 (16) 参考文献 (18) 致谢 (19)

摘要:精馏在化工生产过程中起着非常重要的作用。精馏是研究化工及其它相关过程中物质的分离和提纯方法的一门技术。在许多重要化工工业中,例如化工、石油化工、炼油、等,必须对物料和产物进行分离和提纯,才能使加工过程进行,并得到符合使用要求的产品。本设计将通过给定的生产操作工艺条件自行设计苯-四氯化碳物系的分离和精馏。 关键词:甲苯四氯化碳塔板数精馏提馏 前言 化工生产中所处理的原料,中间产物,粗产品几乎都是由若干组分组成的混合物,而且其中大部分都是均相物质。生产中为了满足储存,运输,加工和使用的需求,时常需要将这些混合物分离为较纯净或几乎纯态的物质。 精馏是分离液体混合物最常用的一种单元操作,在化工,炼油,石油化工等工业得到广泛应用。精馏过程在能量计的驱动下,使气,液两相多次直接接触和分离,利用液相混合物中各相分挥发度的不同,使挥发组分由液相向气相转移,难挥发组分由气相向液相转移。实现原料混合物中各组成分离该过程是同时进行传质传热的过程。本次设计任务为设计一定处理量的甲苯和四氯化碳混合物精馏塔。 化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;本课程设计的主要内容是精馏过程的物料衡算,工艺计算,结构设计和校核。 1 精馏 1.1 精馏的原理 利用混合物中各组分挥发能力的差异,通过液相和气相的回流,使气、液两相逆向多级接触,在热能驱动和相平衡关系的约束下,使得易挥发组分(轻组分)不断从液相往气相中转移,而难挥发组分却由气相向液相中迁移,使混合物得到不断分离,称该过程为精馏。该过程中,传热、传质过程同时进行,属传质控制。 1.2 精馏塔设备

水吸收氨气过程填料吸收塔的设计

课程设计任务书 一、设计题目:水吸收氨气过程填料吸收塔的设计; 试设计一座填料吸收塔,采用清水吸收混于空气中的氨气。混合气体的处理量为2600m3/h,其中含氨为7%(体积分数),混合气体的进料温度为25℃。要求:氨气的回收率达到98%。(20℃氨在水中的溶解度系数为H=0.725kmol/(m3.kPa) 二、工艺操作条件: (1)操作平均压力常压 (2)操作温度: t=20℃ (3)吸收剂用量为最小用量的倍数自己确定 (4)选用填料类型及规格自选。 三、设计内容 (1)设计方案的确定和说明 (2)吸收塔的物料衡算; (3)吸收塔的工艺尺寸计算; (4)填料层压降的计算; (5)液体分布器简要设计; (6)绘制液体分布器施工图 (7)吸收塔接管尺寸计算; (8)设计参数一览表; (9)绘制生产工艺流程图(A4号图纸); (10)绘制吸收塔设计条件图(A4号图纸); (11)对设计过程的评述和有关问题的讨论。

目录 1. 设计方案简介 (1) 1.1设计方案的确定 (1) 1.2填料的选择 (1) 2. 工艺计算 (1) 2.1 基础物性数据 (1) 2.1.1液相物性的数据 (1) 2.1.2气相物性的数据 (1) 2.1.3气液相平衡数据 (1) 2.1.4 物料衡算 (1) 2.2 填料塔的工艺尺寸的计算 (2) 2.2.1 塔径的计算 (2) 2.2.2 填料层高度计算 (3) 2.2.3 填料层压降计算 (6) 2.2.4 液体分布器简要设计 (7) 3. 辅助设备的计算及选型 (8) 3.1 填料支承设备 (8) 3.2填料压紧装置 (8) 3.3液体再分布装置 (8) 4. 设计一览表 (9) 5. 后记 (9) 6. 参考文献 (9) 7. 主要符号说明 (10) 8. 附图(工艺流程简图、主体设备设计条件图)

第二节精馏原理、第三节精馏塔物料衡算习

第二节精馏原理、第三节精馏塔物料衡算 复习 【学习目标】 1、理解精馏的原理,精馏过程及连续精馏的流程。 2、理解全塔物料方程、操作线方程,掌握有关的计算。 【学习过程】 一、简单蒸馏 1、简单蒸馏的定义: 2、简单蒸馏时一种、蒸馏操作。 3、简单蒸馏包含、和等设备。 4、随着蒸馏过程的进行,釜液中易挥发组分的含量不断,与之平衡的气相组成中易挥发组分的含量不断,釜中液体的泡点逐渐。 二、精馏原理 1、精馏过程就是将液相多次和将气相多次的过程,液体混合物经过 和后,便可以得到几乎完全的分离。 2、精馏装置的作用 ⑴塔板的作用 精馏塔塔板上气相中易挥发组分从上而下逐板;液相中难挥发组分从上而下逐渐;温度从上而下逐渐。 ⑵精馏段是指,其作用是 。 ⑶提馏段是指,其作用是 。 ⑷回流的作用 。⑸塔釜的作用 。 3、精馏连续进行的必要条件是。 4、精馏可以分为和。 三、精馏塔物料衡算的前提 1、为了简化精馏衡算,通常引入下列几种假设、、 和。 2、恒摩尔汽化是指 。 3、恒摩尔溢流是指 。 四、精馏塔物料衡算 1、精馏塔物料衡算包括、和。 2、全塔物料衡算的表达式为和。 3、精馏段操作线方程表达式为或。该方程的斜率分别为、;截距分别为、。 4、提馏段操作线方程表达式为或。该方程的斜率分别为、;截距分别为、。 5、精馏塔的进料状况包括(q )、(q )、 ( q )、(q )和(q )。 6、进料热状况参数表达式为,当进料状况为液体时,表达式为 。 7、进料状况方程(q线方程)的表达式为,代表提馏段操作线和精馏段操作线焦点轨迹方程。 8、精馏段操作线、提馏段操作线和进料状况操作线与对角线交点分别为、 和。 【基础练习】 1、在精馏塔内自上而下,气相中易挥发组分的含量逐板( ) A、增多 B、减少 C、不变 D、先减少后增多 2、在精馏操作中自上而下,精馏塔内温度的变化情况( )

2精馏塔的物料衡算

重庆大学课程设计报告 课程设计题目:甲醇—水分离过程填料 精馏塔塔设计 学院:化学化工学院 专业:制药工程01班 年级: 2008级 姓名:刘晶 学号: 20087057 完成时间: 2011年7月6日 成绩: 平时成绩(20%): 图纸成绩(40%): 报告成绩(40%): 指导老师:张红晶

1、设计简要 1.1 设计任务及概述 在抗生素类药物生产中,需要甲醇溶液洗涤晶体,洗涤过滤后产生废甲醇溶液,其组成为含甲醇50%、水50%(质量分数),另含有少量的药物固体微粒。为使废甲醇溶液重复利用,拟建一套填料精馏塔,对废甲醇进行精馏,得到含水量≦0.3%(质量分数)的甲醇溶液。设计要求废甲醇溶液处理量为日产3吨,塔底废水中甲醇含量≦0.5%(质量分数)。 操作条件: (1) 常压; (2) 拉西环,填料规格。 1.2 设计方案 填料塔简介 填料塔是提供气-液、液-液系统相接触的设备。填料塔外壳一般是圆筒形,也可采用方形。材质有木材、轻金属或强化塑料等。填料塔的基本组成单元有: ①:壳体(外壳可以是由金属(钢、合金或有色金属)、塑料、木材,或是以橡胶、塑料、砖为内层或衬里的复合材料制成。虽然通入内层的管口、支承和砖的机械安装尺寸并不是决定设备尺寸的主要因素,但仍需要足够重视; ②:填料(一节或多节,分布器和填料是填料塔性能的核心部分。为了正确选择合适的填料,要了解填料的操作性能,同时还要研究各种形式填料的形状差异对操作性能的影响); ③:填料支承(填料支承可以由留有一定空隙的栅条组成,其作用是防止填料坠落;也可以通过专门的改进设计来引导气体和液体的流动。塔的操作性能的好坏无疑会受填料支承的影响); ④:液体分布器(液体分布的好坏是影响填料塔操作效率的重要因素。液体分布不良会降低填料的有效湿润面积,并促使液体形成沟流); ⑤:中间支承和再分布器(液体通过填料或沿塔壁流下一定的高度需要重新进行分布); ⑥:气液进出口。 塔的结构和装配的各种机械形式会影响到它的设计并反映到塔的操作性能上,应该力求在最低压降的条件下,采用各种办法提高流体之间的接触效率,并设法减少雾沫夹带或壁效应带来的效率损失。与此同时,塔的设计必须符合由

精馏塔计算方法

目录 1 设计任务书 (1) 1.1 设计题目……………………………………………………………………………………………………………………………………………………………………… 1.2 已知条件……………………………………………………………………………………………………………………………………………………………………… 1.3设计要求………………………………………………………………………………………………………………………………………………………………………… 2 精馏设计方案选定 (1) 2.1 精馏方式选择………………………………………………………………………………………………………………………………………………………………… 2.2 操作压力的选择………………………………………………………………………………………………………………………………………………………………… 2.4 加料方式和加热状态的选择…………………………………………………………………………………………………………………………………………………… 2.3 塔板形式的选择………………………………………………………………………………………………………………………………………………………………… 2.5 再沸器、冷凝器等附属设备的安排…………………………………………………………………………………………………………………………………………… 2.6 精馏流程示意图………………………………………………………………………………………………………………………………………………………………… 3 精馏塔工艺计算 (2) 3.1 物料衡算………………………………………………………………………………………………………………………………………………………………………… 3.2 精馏工艺条件计算……………………………………………………………………………………………………………………………………………………………… 3.3热量衡算………………………………………………………………………………………………………………………………………………………………………… 4 塔板工艺尺寸设计 (4) 4.1 设计板参数………………………………………………………………………………………………………………………………………………………………………

乙醇-水连续精馏塔的设计

化工原理课程设计任务书一 一、设计题目:乙醇精馏塔 二、设计任务及条件 (1)、进料含乙醇38.2%,其余为水(均为质量分率,下同) (2)、产品乙醇含量不低于93.1%; (3)、釜残液中乙醇含量不高于0.01%; (4)、生产能力5000T/Y乙醇产品,年开工7200小时 (5)、操作条件: ①间接蒸汽加热;②塔顶压强:1. 03 atm(绝对压强) ③进料热状况:泡点进料;④回流比:R=5 ⑤单板压降:75mm液柱 三、设计内容 (1)、流程的确定与说明; (2)、塔板和塔径计算; (3)、塔盘结构设计: i. 浮阀塔盘工艺尺寸及布置简图;ii. 流体力学验算;iii. 塔板负荷性能图。(4)、其它:i. 加热蒸汽消耗量;ii. 冷凝器的传热面积及冷却水的消耗量 四、设计成果 (1)设计说明书一份; (2)A4设计图纸包括:流程图、精馏塔工艺条件图。 化工原理课程设计任务书(6) (一) 设计题目 乙醇-水连续精馏塔的设计 (二) 设计任务及操作条件 1) 进精馏塔的料液含乙醇25%(质量分数,下同),其余为水; 2) 产品的乙醇含量不得低于94%; 3) 残液中乙醇含量不得高于0.1%; 4) 生产能力为日产(24小时)吨94%的乙醇产品; 5) 操作条件 a) 塔顶压力 4kPa(表压) b) 进料热状态自选 c) 回流比自选 d) 加热蒸气压力 0.5MPa(表压) e) 单板压降≤0.7kPa。 (三) 塔板类型

浮阀塔。 (四) 厂址 厂址为武汉地区。 (五) 设计内容 1、设计说明书的内容 1) 精馏塔的物料衡算; 2) 塔板数的确定; 3) 精馏塔的工艺条件及有关物性数据的计算; 4) 精馏塔的塔体工艺尺寸计算; 5) 塔板主要工艺尺寸的计算; 6) 塔板的流体力学验算; 7) 塔板负荷性能图; 8) 精馏塔接管尺寸计算; 9) 对设计过程的评述和有关问题的讨论。 2、设计图纸要求: 1) 绘制生产工艺流程图(A2号图纸); 2) 绘制精馏塔设计条件图(A2号图纸)。 3.4 浮阀精馏塔设计实例 3.4.1 化工原理课程设计任务书 1 设计题目:分离乙醇-水混合液的浮阀精馏塔设计 2 原始数据及条件 生产能力:年处理乙醇-水混合液14.0万吨(开工率300天/年)原料:乙醇含量为20%(质量百分比,下同)的常温液体 分离要求:塔顶乙醇含量不低于95%

吸收塔化工原理课程设计

化工原理课程设计 -------水吸收二氧化硫过程填料吸收塔设计说明书 学院: 班级: 姓名: 学号: 指导教师: 设计时间:

化工原理课程设计任务书(2) 一、设计题目 水吸收二氧化硫过程填料吸收塔设计 二、设计任务及操作条件 1、设计任务 ①生产能力(入塔炉气流量) 2500 m3/h ②二氧化硫吸收率 96% ③入塔炉气组成(含二氧化硫) (摩尔分率) 2、操作条件 ①入塔炉气温度25℃ ②洗涤除去二氧化硫的清水温度20℃ ③操作压强常压 ④吸收温度基本不变,可近似取为清水的温度 3、填料类型阶梯环填料,填料规格自选 4、厂址齐齐哈尔地区 三、设计内容 1、设计方案的选择及流程说明 2、吸收塔的物料衡算 3、吸收塔工艺尺寸计算 4、填料层压降的计算 5、液体分布器简要设计 6、填料吸收塔装配图(1号图纸) 7、设计评述 8、参考资料

目录 1 绪论 (1) 吸收技术概况 (1) 吸收设备的发展 (1) 2 设计方案的确定 (2) 方案的确定 (2) 流程的确定 (2) 3 填料选择 (2) 4 吸收塔的工艺计算 (2) 基础物性数据 (2) 4.1.1 液相物性数据 (2) 4.1.2 气相物性数据 (2) 4.1.3 气液相平衡数据 (3)

物料衡算 (3) 填料塔的工艺尺寸计算 (4) 4.3.1塔径的计算 (4) 4.3.2传质单元高设计 (7) 4.3.3传质单元数的计算 (7) 4.3.4填料层高度 (9) 填料层压降 (10) 5 填料塔的附属结构 (11) 液体分布器简要置 (11) 液体再分配置 (11) 填料支撑结构 (12) 5.3.1填料支撑结构应满足三个基本条件 (12) 5.3.2较常用的支撑结构 (12)

2 精馏塔的工艺计算

2 精馏塔的工艺计算 2.1精馏塔的物料衡算 2.1.1基础数据 (一)生产能力: 10万吨/年,工作日330天,每天按24小时计时。 (二)进料组成: 乙苯212.6868Kmol/h ;苯3.5448 Kmol/h ;甲苯10.6343Kmol/h 。 (三)分离要求: 馏出液中乙苯量不大于0.01,釜液中甲苯量不大于0.005。 2.1.2物料衡算(清晰分割) 以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。 01.0=D HK x , 005.0=W LK x , 表2.1 进料和各组分条件 由《分离工程》P65式3-23得: ,1 ,,1LK i LK W i HK D LK W z x D F x x =-=--∑ (式2. 1) 2434.13005 .001.01005 .0046875.0015625.08659.226=---+? =D Kmol/h W=F-D=226.8659-13.2434=213.6225Kmol/h 0681.1005.06225.21322=?==W X W ,ωKmol/h 编号 组分 i f /kmol/h i f /% 1 苯 3.5448 1.5625 2 甲苯 10.6343 4.6875 3 乙苯 212.6868 93.7500 总计 226.8659 100

5662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=?==D X D d ,Kmol/h 5544.212132434.06868.212333=-=-=d f ωKmol/h 表2-2 物料衡算表 2.2精馏塔工艺计算 2.2.1操作条件的确定 一、塔顶温度 纯物质饱和蒸气压关联式(化工热力学 P199): C C S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=- 表2-3 物性参数 注:压力单位0.1Mpa ,温度单位K 编号 组分 i f /kmol/h 馏出液i d 釜液i ω 1 苯 3.5448 3.5448 0 2 甲苯 10.6343 9.5662 1.0681 3 乙苯 212.6868 0.1324 212.5544 总计 226.8659 13.2434 213.6225 组份 相对分子质量 临界温度C T 临界压力C P 苯 78 562.2 48.9 甲苯 92 591.8 41.0 乙苯 106 617.2 36.0 名称 A B C D

精馏塔的物料衡算.doc

滨州学院 课程设计任务书 一、设计题目: 分离苯——甲苯混合液的筛板板式精馏塔工艺设计 二、设计条件: (1)设计规模:苯——甲苯混合液4万t/a。 (2)生产制度:年开工300天,每天三班8小时连续生产。 (3)原料组成:苯含量35%(质量百分率,下同). (4)进料热状况:含苯35%(质量百分比,下同)的苯——甲苯混合液,25℃. (5)分离要求:塔顶苯含量不低于98%,塔底苯含量不大于0.8%。 (6)建厂地址:大气压为760mmHg,自来水年平均温度为20℃的滨州市 三、设计内容 1、设计方案的选定 2、精馏塔的物料衡算 3、塔板数的确定 4、精馏塔的工艺条件及有关物性数据的计算(加热物料进出口温度、密度、粘度、比热、导热系数) 5、精馏塔塔体工艺尺寸的计算 6、塔板主要工艺尺寸的计算 7、塔板的流体力学验算 8、塔板负荷性能图(精馏段) 9、换热器设计 10、馏塔接管尺寸计算 11、制生产工艺流程图(带控制点、机绘,A2图纸) 12、绘制板式精馏塔的总装置图(包括部分构件)(手绘,A1图纸) 13、撰写课程设计说明书一份 设计说明书的基本内容 ⑴课程设计任务书 ⑵课程设计成绩评定表 ⑶中英文摘要 ⑷目录 ⑸设计计算与说明 ⑹设计结果汇总 ⑺小结 ⑻参考文献 14、有关物性数据可查相关手册 15、注意事项 ⑴写出详细计算步骤,并注明选用数据的来源 ⑵每项设计结束后列出计算结果明细表 ⑶设计最终需装订成册上交 四、进度计划(列出完成项目设计内容、绘图等具体起始日期) 1、设计动员,下达设计任务书0.5天 2、收集资料,阅读教材,拟定设计进度1-2天 3、初步确定设计方案及设计计算内容5-6天 4、绘制总装置图2-3天 5、整理设计资料,撰写设计说明书2天 6、设计小结及答辩1天

精馏塔的工艺计算

2 精馏塔的工艺计算 2、1精馏塔的物料衡算 2、1、1基础数据 (一)生产能力: 10万吨/年,工作日330天,每天按24小时计时。 (二)进料组成: 乙苯212、6868Kmol/h;苯3、5448 Kmol/h;甲苯10、6343Kmol/h 。 (三)分离要求: 馏出液中乙苯量不大于0、01,釜液中甲苯量不大于0、005。 2、1、2物料衡算(清晰分割) 以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。 01.0=D HK x ,005.0=W LK x , 表2、1 进料与各组分条件 由《分离工程》P65式3-23得: ,1 ,,1LK i LK W i HK D LK W z x D F x x =-=--∑ (式2、 1) 2434.13005 .001.01005 .0046875.0015625.08659.226=---+? =D Kmol/h W=F-D=226、8659-13、2434=213、6225Kmol/h 0681.1005.06225.21322=?==W X W ,ωKmol/h 编号 组分 i f /kmol/h i f /% 1 苯 3、5448 1、5625 2 甲苯 10、6343 4、6875 3 乙苯 212、6868 93、7500 总计 226、8659 100

5662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=?==D X D d ,Kmol/h 5544.212132434.06868.212333=-=-=d f ωKmol/h 表2-2 物料衡算表 2、2精馏塔工艺计算 2、2、1操作条件的确定 一、塔顶温度 纯物质饱与蒸气压关联式(化工热力学 P199): C C S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=- 表2-3 物性参数 注:压力单位0、1Mpa,温度单位K 编号 组分 i f /kmol/h 馏出液i d 釜液i ω 1 苯 3、5448 3、5448 0 2 甲苯 10、6343 9、5662 1、0681 3 乙苯 212、6868 0、1324 212、5544 总计 226、8659 13、2434 213、6225 组份 相对分子质量 临界温度C T 临界压力C P 苯 78 562、2 48、9 甲苯 92 591、8 41、0 乙苯 106 617、2 36、0 名称 A B C D

浮阀精馏塔设计 -讲解

课程设计题目 浮阀精馏塔连续回收乙醇与水混合物中的乙醇设计 姓名:黄同月 学号:3212003902(30号) 班级:121103班 指导老师:罗儒显 完成时间:2014年9月18日

目录 一.板式精馏塔工艺设计内容及任务 (3) 1.1设计背景 (3) 1.2设计目的 (4) 1.3设计题目 (4) 1.4设计的要求 (4) 1.5设计条件及操作条件 (4) 1.6 浮阀塔及筛板塔的特性 (5) 1.6.1 浮阀塔的特性 1.6.2筛板塔的特性 二. 精馏塔工艺的设计 (6) 2.1精馏塔全塔物料衡算 (6) 2.2 理论塔板的计算 (7) 2.2.1最小回流比及操作回流比 2.2.2精馏段操作曲线 2.2.3提馏段操作曲线 2.2.4作直角阶梯图求理论塔板 2.3实际塔板数计算 (9) 2.4常用数据一览表 (9) 三.精馏塔尺寸计算 (9) 3.1塔径的初步设计 (10) 3.1.1塔径 3.1.2总塔高 3.2塔板主要工艺尺寸 (13) 3.2.1溢流装置 3.2.2降液管宽度W d 与降液管面积A f 3.2.3降液管底隙高度h 3.2.4筛板的布置 3.2.5开孔区面积 3.3浮阀数目及排列 (16) 3.3.1浮阀数目N 3.3.2阀孔排列 3.4各接管尺寸的确定 (17) 3.4.1进料管 3.4.2塔釜残夜出料管 3.4.3回流管 3.4.4塔顶上升蒸汽管

3.4.5水蒸气进口管 3.5精馏塔主要附属设备 (19) 3.5.1冷凝器 3.5.2再沸器 3.5.3除沫器 3.5.4法兰 3.5.5视镜 3.5.6塔体壁厚 3.5.7筒体与封头 四.流体力学验算 (21) 4.1气体通过浮阀塔版的压力降(单板压降) (21) 4.1.1干板阻力h c 4.1.2板上充气液阻力h 1 4.1.3由表面张力引起的阻力 4.2漏液验算 (21) 4.3液泛验算 (21) 4.4雾沫夹带验算 (22) 五.操作性能负荷图 (22) 5.1气相负荷下限线(又称漏液线),记为线1 (24) 5.2过量雾沫夹带线(又称为气相负荷上限线),记为线2 (24) 5.3液相负荷下限线,记为线3 (24) 5.4液相负荷上限线,记为线4 (25) 5.5液泛线,记为线5 (25) 六.浮阀塔板工艺设计结果一览表 (26) 七.参考文献 (27) 八.设计心得 (28) 一.板式精馏塔工艺设计内容及任务 1.1设计背景 随着世界石油资源的减少,作为生物燃料的无水乙醇在今后的动力燃料中可能占一席之地,而无水乙醇与汽油混合(俗称汽油醇) 可作为内燃机的燃料就成为

精馏塔的工艺计算

2 精馏塔的工艺计算 精馏塔的物料衡算 基础数据 (一)生产能力: 10万吨/年,工作日330天,每天按24小时计时。 (二)进料组成: 乙苯h ;苯 Kmol/h ;甲苯h 。 (三)分离要求: 馏出液中乙苯量不大于,釜液中甲苯量不大于。 物料衡算(清晰分割) 以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。 01.0=D HK x ,005.0=W LK x , 表 进料和各组分条件 由《分离工程》P65式3-23得: ,1 ,,1LK i LK W i HK D LK W z x D F x x =-=--∑ (式2. 1) 2434.13005 .001.01005 .0046875.0015625.08659.226=---+?=D Kmol/h W=F-D= 0681 .1005.06225.21322=?==W X W ,ω编号 组分 i f /kmol/h i f /% 1 苯 2 甲苯 3 乙苯 总计 100

5662.90681.16343.10222=-=-=ωf d 132434 .001.02434.1333=?==D X D d ,5544.212132434.06868.212333=-=-=d f ω 表2-2 物料衡算表 精馏塔工艺计算 操作条件的确定 一、塔顶温度 纯物质饱和蒸气压关联式(化工热力学 P199): C C S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=- 表2-3 物性参数 注:压力单位,温度单位K 编号 组分 i f /kmol/h 馏出液i d 釜液i ω 1 苯 0 2 甲苯 3 乙苯 总计 组份 相对分子质量 临界温度C T 临界压力C P 苯 78 甲苯 92 乙苯 106 名称 A B C D

相关文档