文档库 最新最全的文档下载
当前位置:文档库 › 统计学习题第九章统计指数习题答案

统计学习题第九章统计指数习题答案

统计学习题第九章统计指数习题答案
统计学习题第九章统计指数习题答案

第八章指数分析法习题

一、填空题

1、 在编制综合指数时,同度量因素的确定原则为:数量指标指数以

质量指标

为同度量因素;质量指标指数以 数量指标 ____________ 为同度量因素。 2、 利用指数体系,进行 因素分析 是统计指数的最重要作用。

3、 若已知刀p i q i =120,刀p °q i =100,刀p °q °=110,则价格指数为120%

,销售量指数

为% 。

、选择题 单选题:

1 、统计指数按其所反映指数化指标的性质不同,分为(

(1)

个体指数和总指数 (2)定基指数和环比指数

(3) 数量指标指数和质量指标指数 (4) 综合指数和平均数指数

(1) 数学上等式关系的成立

(2) 经济意义上的合理

(3) 质量指标指数,采用报告期的数量指标作为同度量因素 (4) 数量指标指数,采用基期的质量指标作为同度量因素

多选题:

1、指数的作用有(1、3、5

)

① 综合反映现象的变动程度 ② 研究现象的内部结构 ③据以进行因素分析

④反映现象的发展规律

⑤研究现象长时期的综合变动趋势

2、 下列情况中,属于广义指数概念的有(

1、2 )

(1) 不同空间同类指标之比 (2) 同类指标实际与计划之比

(3) 同一总体的部分指标与总量指标之比 (4) 同一总体的部分指标与另一部分指标之比

3、 下列属于质量指标指数的有(3、4

)

(1)产品产量总指数 (2)销售量总指数

(3)

平均成本指数 (4 )劳动生产率指数

(5) 销售额指数

4、 某企业甲产品报告期单位成本为基期的

120%这以指数是(1、2、4

)

(1)个体指数 (2)数量指标指数

(3)质量指标指数

(4)

动态指数 (5 )静态指数

(3) )

2 、职工平均工资增长%固定构成工资指数增长

15%职工人数结构影响指数下降或增

长(

(3)

)

(1) %

(2) 14%

( 3) -10%

3 、某商业企业销售额今年比去年增长了

((4)

) (1) 25%

(2) 2% ( 3) 75%

4 、指数体系中同度量因素选择的首要标准是

(4) %

50%销售量增长了

25%则销售价格增长

(4) 20%

(2)

)

三、简答题

1、 综合指数法与平均数指数法有什么区别与联系

答:联系:两者都是计算总指数的基本方法,在特殊权数下有变形关系。 区别:综合指数法是借助同度量因素将本不能相加的多种现象换算成价值量,

然后综合

对比,即采用“先总和,后对比”的方式来计算总指数。平均指数法是以个体指数为基础, 以价值量指标为权数,采用加权平均的形式,即“先对比,后综合”的方式计算总指数。此 外,由于基本思想不同,两者的计算依据也不同。

2、 简述平均指标指数分析法的基本思想。

答:平均指标指数分析法是通过计算平均指标指数和它的两个因素指数可变构成和变量 影响指数,并形成指数体系,来分析平均指标的变动及其原因的一种指数分析方法。

2、什么是指数体系有什么作用

答:指数体系是指经济上有联系,数量上保持一定的数量对等关系的三个或三个以上的 指数所形成的体系。其作用有: (1)进行指数之间的推算(2)进行因素分析

四、计算题

1 、某企业1998年各种产品的实际和计划产量,以及 1997年的实际产量资料如下:

(1) 1998年产量综合计划完成程度及超额完成的总产值; (2) 1998年比1997年产量的增长程度及增加的总产值。 解:

q 计 p 1990

,、

10080 380 1900 52 440000 20 500000 7 (1)

9600 380 2000 52 400000 20 450000 7

q

实 p 1990

q

P1990 1327200(兀)

q 98 P 1990

1 q

q 97 p 1990

小、10080 380 1900 52 440000 20 500000 7

「,一心

(2)

114.91%

9000 380 1800 52 380000 20 430000 7 增长程度为 114.91%

100% 14.91%

q 98 p 1990

q 97 p 1990

21

05600(兀)

2、已知某厂三种商品销售额报告期比基期增长了 料如

下:

1988年产量综合计划完成程度

q 实 p 1990 25%商品价格及报告期的销售额资

计算:(1)物价总指数

| p 1q

1

4000

4420 5580 14000

132 70%

p

Pg 1 4000 4420 5580 10500

k p

80 50

52 40 60 50

(2)由于物价变动而增减的销售额

- 14000 10500 34500(元) k p

商品销售量总指数

pg

p 1q 1

p °qi p °q ° --

k

p

1

pq

14000 10500 10500 11200

700(元)

1.25

根据以上资料计算:(1)各企业各类工人总平均工资指数; (2)利用平均指标的变

动分析原理,分析各类工人人数及月平均工资变动对总平均工资的影响。 解:

(1)

(4)

1 pq 1 P

I I pq q i p

I q

上5% 94.20%

132.7%

由于销售量变动而增减的销售额

计算结果表明:该企业的总平均工资报告期比基期 %平均每个职工的工资减少了元。

其中由于各类人员工资变化使总平均工资增长了 %使工资绝对额增加了 26元。而由于其人

员构成的变化使总平均工资下降了

%使平均工资绝对额减少元。

4、某邮局下属两个生产科室,

1999年11月、12月份的通信总量、职工人数及劳动生

生产 科室

基期(11月) 报告期(12月) 劳动生 产率指 数(%)

通信总量 (千元)

平均人数 (人)

劳动生产 率 (千元/ 人)

通信总

量 (千元)

平均人 数 (人)

劳动生产 率 (千元/ 人)

40

60

20

25

合计

60

85

该资料最后一栏的实质表明

:两科室劳动生产率和综合劳动生产率都提高了 ,

但增

长幅度不同,试通过计算说明原因。

解:由于总劳动生产率的变化既受个科室劳动生产率的影响,又受各科室人员结构变化的 影响。所以,总劳动生产率的变化与两科室劳动生产率的幅度不可能完全一致。

计算分析如

1050 35 830 150 620 240

I x 冬 100%

X o

f 1 35 150 240

729.53

97 75% X °f ° 1000 25 800 100 600 80

746.34

f 0 25 100 80

729.53 746.34

16.81(元)

X 1 f 1

1050 35 830 150 620

240

I f 1

35 150 240

729.53 1

X °f 1 1000 35 800 150 600

240

703.53

f 1

35 150 240

X 1 f 1

X 0 f 1

729.53 703.53 26(兀)

f 1

f '

结构影响指数:

X 0f 1 1000 35 800 150 600

240

f 1

1

35 150 240

703.53

I 结

X 0 f 0

1000 25 800 100 600

80

746.34

f 0

25 100 80

103.7% 94.26%

703.53 746.34

42.81(元)

X i f i

X 0 f 0

X i X 0

变量影响指数(固定结构指数)

X 1 f 1

X °f 1

下:

总劳动生产率指数:

X 1 f 1

1.4 60 0.64 25

l x 竺

100% -

f 1

60 25

1 18 141.18%

X 0

X 0 f °

1.0 40 0.5 20

0.83

f 0

40 20

X i X 0

X i f i X 0 f °

1.18

0.83 0.35(千元)

f 1

f

计算结果表明:该企业的总劳动生产率报告期比基期 %增加的绝对额3500元。其中由 于各科室劳动生产率变化使总劳动生产率增长了

%增加绝对额3300元。而由于其人员构成

的变化使总劳动生产率增加了 %增加的绝对额为 200元。

劳动生产率指数,并分析全局劳动生产率受各企业劳动生产率变动的影响。 解

X 1 f 1

1.4 60 0.64 25

|

f

1

60 25

1.18

|固

X 0 f 1 1.0 60 0.5 25

0.85

f 1

60 25

X °f 1

1.18 0.85 0.33(千兀)

f 1

f 1

结构影响指数:

宀1

1.0 60 0.5 25

|

f

1

60 25

0.85 1

_

1.0 40 0.5 20

0.83

137.93%

102.35%

40 20

0.85 0.83 0.02(千元)

变量影响指数(固定结构指数)

X o f i X °f °

6

对总成本的影响。

计算:()三种商品销售额总指数

(2)三种商品价格总指数及价格变动增减的销售额

(3)计算销售量总指数及销售量变动增减的销售额

1

pq

q i P i q °P 。

400 600 45 360 500 40

I045 900

ii6.ii%

X i f i 2330 725 3390 740

I X i I00% f i 960 335 I356 330 2.4i 1

X X 。 1 UU /O

X 0 f ° I320 7i0 2I40 730 2.23

f ° 554 370 949 320

X i X 。

X i f i X 0 f °

2.4i 2.23 0.i8(万

元)

f i

f

(2)

各企业劳动生产率变动对总劳动生产率的影响

X i f i

2330 725 3390 740

1

f i

960 335 I356 330

107.87%

I320 7I0 2I40 730 “

960 335 I356 740 554 370 949 320

554 370 949 320

竺 I06.59% 2.26 X i f i X o f i

2.41 2.26 0.i5(万元)

(1)总劳动生产率指数

X 。f i

i

统计学计算题例题

第四章 1. 某企业1982年12月工人工资的资料如下: 要求:(1)计算平均工资;(79元) (2)用简捷法计算平均工资。 2. 某企业劳动生产率1995年比1990年增长7%,超额完成计划2%,试确定劳动生产率计划增长数。7%-2%=5% 3. 某厂按计划规定,第一季度的单位产品成本比去年同期降低8%。实际 执行结果,单位产品成本较去年同期降低4%。问该厂第一季度产品单位成本计划的完成程度如何?104.35%( (1-4%)/(1-8%)*100%=96%/92%*100%=104.35%结果表明:超额完成4.35%( 104.35%-100%)) 4. 某公社农户年收入额的分组资料如下:

要求:试确定其中位数及众数。中位数为774.3(元)众数为755.9(元) 求中位数: 先求比例:(1500-720)/(1770-720)=0.74286 分割中位数组的组距:(800-700)*0.74286=74.286 加下限700+74.286=774.286 求众数: D1=1050-480=570 D2=1050-600=450 求比例:d1/(d1+d2)=570/(570+450)=0.55882 分割众数组的组距:0.55882*(800-700)=55.882 加下限:700+55.882=755.882 5.1996年某月份某企业按工人劳动生产率高底分组的生产班组数和产量资料如下: 64.43(件/人) (55*300+65*200+75*140+85*60)/(300+200+140+60) 6.某地区家庭按人均月收入水平分组资料如下:

根据表中资料计算中位数和众数。中位数为733.33(元) 众数为711.11(元) 求中位数: 先求比例:(50-20)/(65-20)=0.6667 分割中位数组的组距:(800-600)*0.6667=66.67 加下限:600+66.67=666.67 7.某企业产值计划完成103%,比去年增长5%。试问计划规定比去年增长 多少?1.94% (上年实际完成1.03/1.05=0.981 本年实际计划比上年增长 (1-0.981)/0.981=0.019/0.981=1.937%) 8.甲、乙两单位工人的生产资料如下: 试分析:(1)哪个单位工人的生产水平高? (2)哪个单位工人的生产水平整齐? % 3.33V %7.44V /8 .1x /5.1x ====乙甲乙甲人)(件人)(件9.在 计算平均数里,从每个标志变量中减去75个单位,然后将每个差数 缩小10倍,利用这个变形后的标志变量计算加权算术平均数,其中各个变量的权数扩大7倍,结果这个平均数等于0.4个单位。试计算这个平均标志变量的实际平均数,并说明理由。79 10.某地区1998~1999年国内生产总值资料如下表:(单位:亿元)

统计学第五版(贾俊平)第八章课后习题答案

《统计学》第八章课后练习题 8.4 解:由题意知,μ=100,α=0.05,n=9<30,故选用t统计量。经计算得:x =99.9778,s=1.2122, 进行检验的过程为: H0:μ=100 H1:μ≠100 t= s n = 1.21229 =?0.0549 当α= 0.05,自由度n-1= 8,查表得tα2(8)=2.3060,因为t< tα2,样本统计量落在接收域,所以接受原假设H0,即打包机正常工作。 用P值检测,这是双侧检验,故: P=2×1?0.5215=0.957,P值远远大于α,所以不能原假设H0。 8.7 解:由题意知,μ=225,α=0.05,n=16<30,故选用t统计量。 经计算得:x =241.5,s=98.7259, 进行检验的过程为: H0:μ≤225 H1:μ>225 t= s n = 98.725916 =0.6685 当α= 0.05,自由度n-1= 15,查表得tα(15)=2.1314,这是一个右单侧检验,因为t

即元件平均寿命没有显著大于225小时。 用P值检测,这是右单侧检验,故: P=1?0.743=0.257,P值远远大于α,所以不能拒绝原假设H0。 8.9, 解:由题意得 σA2=632,σB2=572,x A=1070,x B=1020,n A=81,n B=64,故选用z统计量。 进行检验的过程为: H0:μA?μB=0 H1: μA?μB≠0 Z=A B A B σA A +σB B = 632+572 =5 当α=0.05时,zα2=1.96,因为Z>zα2,所以拒绝原假设H0,,即A、B两厂生产的材料平均抗压强度不相同。 用P值检测,这是双侧检验,故: P=2×1?0.9999997=0.0000006,P值远远小于α,所以拒绝原假设H0, 8.13 解:建立假设为: H0: π1=π2 H1: π1≠π2 由题意得:

教育统计学课后练习参考答案

教育统计学课后练习参考答案 第一章 1、教育统计学,就是应用数理统计学的一般原理和方法,对教育调查和教育实验等途径所获得的数据资料进行整理、分析,并以此为依据,进行科学推断,从而揭示蕴含在教育现象中的客观规律的一门科学。 教育统计学既是统计科学中的一个分支学科,又是教育科学中的一个分支学科,是两种科学相互结合、相互渗透而形成的一门交叉学科。从学科体系来看,教育统计学属于教育科学体系的一个方法论分支;从学科性质来看,教育统计学又属于统计学的一个应用分支。 2、描述统计主要是通过对数据资料进行整理,计算出简单明白的统计量数来描述庞大的资料,以显示其分布特征的统计方法。 推断统计又叫分析统计,它根据统计学的原理和方法,从我们所研究的全体对象(即总体)中,按照等可能性原则采取随机抽样的方法,抽出总体中具有代表性的部分个体组成样本,在样本所提供的数据的基础上,运用概率理论进行分析、论证,在一定可靠程度上对总体的情况进行科学推断的一种统计方法。 3、在自然界或教育研究中,一种事物常存在几种可能出现的情况或获得几种可能的结果,这类现象称为随机现象。 随机现象具的特点: (1)一次条件完全相同的实验有多种可能的结果(这样的实验称为随机实验); (2)在实验之前不能确切知道哪种结果会发生; (3)在相同的条件下可以重复进行这样的实验。 4、总体,也叫做母体或全域,是指具有某种共同特征的个体的总和。 当所研究的总体数量非常大时,可以从总体中抽取其中一部分个体来观测,由此来推断总体的信息,从总体中抽出的这部分个体就称为样本,它是用以表征总体的个体的集合。 通常将样本中样本个数大于或等于30个的样本称为大样本,小于30个的称为小样本。 5、复置抽样指每次抽出的个体经观测后,仍放回原总体,然后再从总体中抽取下一个个体。 6、反映总体特征的量数叫做总体参数,简称参数。反映样本特征的量数叫做样本统计量,简称统计量。 参数是总体的真正数值,是固定的常量,理论上应该通过计算总体中全部个体的数值而获得,但由于总体中个体的数量通常很大,总体参数往往很难获得,在统计分析中一般通过样本的数值来估计。在进行推断统计时,就是根据样本统计量来推断总体相应的参数。 第二章 1、按照数据的来源,可分为计数数据和度量数据;按照数据的取值情况,可分为间断性数据和连续性数据;按照数据的测量水平,可分为称名数据、顺序数据、等距数据和比率数据。 2、数据整理的基本方法包括对数据进行排序、统计分组、绘制统计图表等。 3、表的结构要简洁明了;表的层次要清晰;主谓分明。 4、连续性数据:(2),(3);间断性数据:(1),(4)。 5、略 6、(1)50;(2)75;(3)34;(4)5;(5)45

统计学计算题例题及计算分析

计算分析题解答参考 1.1.某厂三个车间一季度生产情况如下: 计算一季度三个车间产量平均计划完成百分比和平均单位产品成本。 解:平均计划完成百分比=实际产量/计划产量=733/(198/0.9+315/1.05+220/1.1) =101.81% 平均单位产量成本 X=∑xf/∑f=(15*198+10*315+8*220)/733 =10.75(元/件) 1.2.某企业产品的有关资料如下: 试分别计算该企业产品98年、99年的平均单位产品成本。 解:该企业98年平均单位产品成本 x=∑xf/∑f=(25*1500+28*1020+32*980)/3500 =27.83(元/件) 该企业99年平均单位产品成本x=∑xf /∑(m/x)=101060/(24500/25+28560/28+48000/32) =28.87(元/件) 年某月甲、乙两市场三种商品价格、销售量和销售额资料如下: 1.3.1999 解:三种商品在甲市场上的平均价格x=∑xf/∑f=(105*700+120*900+137*1100)/2700 =123.04(元/件) 三种商品在乙市场上的平均价格x=∑m/∑(m/x)=317900/(126000/105+96000/120+95900/137) =117.74(元/件) 2.1.某车间有甲、乙两个生产小组,甲组平均每个工人的日产量为22件,标准差为 3.5件;乙组工人日产量资料:

试比较甲、乙两生产小组中的哪个组的日产量更有代表性? 解:∵X 甲=22件 σ甲=3.5件 ∴V 甲=σ甲/ X 甲=3.5/22=15.91% 列表计算乙组的数据资料如下: ∵x 乙=∑xf/∑f=(11*10+14*20+17*30+20*40)/100 =17(件) σ乙= √[∑(x-x)2 f]/∑f =√900/100 =3(件) ∴V 乙=σ乙/ x 乙=3/17=17.65% 由于V 甲<V 乙,故甲生产小组的日产量更有代表性。 2.2.有甲、乙两个品种的粮食作物,经播种实验后得知甲品种的平均产量为998斤,标准差为162.7斤;乙品种实验的资料如下: 试研究两个品种的平均亩产量,确定哪一个品种具有较大稳定性,更有推广价值? 解:∵x 甲=998斤 σ甲=162.7斤 ∴V 甲=σ甲/ x 甲=162.7/998=16.30% 列表计算乙品种的数据资料如下:

统计学计算例题及答案

计算题例题及答案: 1、某校社会学专业同学统计课成绩如下表所示。 社会学专业同学统计课成绩表 学号成绩学号成绩学号成绩101023 76 101037 75 101052 70 101024 91 101038 70 101053 88 101025 87 101039 76 101054 93 101026 78 101040 90 101055 62 101027 85 101041 76 101056 95 101028 96 101042 86 101057 95 101029 87 101043 97 101058 66 101030 86 101044 93 101059 82 101031 90 101045 92 101060 79 101032 91 101046 82 101061 76 101033 80 101047 80 101062 76 101034 81 101048 90 101063 68 101035 80 101049 88 101064 94 101036 83 101050 77 101065 83 要求: (1)对考试成绩按由低到高进行排序,求出众数、中位数和平均数。

(2)对考试成绩进行适当分组,编制频数分布表,并计算累计频数和累计频率。答案: (1)考试成绩由低到高排序: 62,66,68,70,70,75,76,76,76,76,76,77,78,79, 80,80,80,81,82,82,83,83,85,86,86,87,87,88, 88,90,90,90,91,91,92,93,93,94,95,95,96,97, 众数:76 中位数:83 平均数: =(62+66+……+96+97)÷42 =3490÷42 =83.095 (2) 按成绩 分组频数频率(%) 向上累积向下累积 频数频率(%) 频数频率(%) 60-69 3 7.143 3 7.143 42 100.000 70-79 11 26.190 14 33.333 39 92.857 80-89 15 35.714 29 69.048 28 66.667

第九章统计学基础课后习题答案

第九章假设检验 一、填空题 1.第一类错误 2.Z统计量、标准正态分布 3.t统计量、t 4.P值 5.TDIST 6.≥30 7.正相关、负相关 二、单选题 1.A 2.D 3.A 4.C 5.C 三、简答题 1.小概率原理:在一个已知假设下,如果某个事件发生的概率非常小,我们通常认为这个假设可能是不成立的。小概率原理包含了两方面的意思:一是认为小概率事件在一次观察中是不会出现的,二是如果在一次观察中出现了小概率事件,那么合理的解释是原有事件具有小概率的说法不成立。 2.建立假设时应注意以下问题: (1)原假设和备择假设是相互对立的,在一项假设检验中,只能有一个假设成立。 (2)原假设必须包含等号。 (3)建立假设时,往往先确立备择假设,然后在确立原假设。 (4)备择假设的形式不同,相应的检验方法也不同。 (5)假设检验的没保底是搜集充分证据来拒绝原假设。 3.在原假设成立的条件下,检验统计量在某样本中至少达到相应值的概率称为P值。4.双侧检验(two-sided test)的备择假设中包含不等号(如m≠m0),实际上包括两种情况:m>m0或mm0或者m

统计学练习题——计算题

统计学练习题——计算题 1、某企业工人按日产量分组如下: 单位:(件) 试计算7、8月份平均每人日产量,并简要说明8月份比7月份平均每人日产量变化的原因。 7月份平均每人日产量为:37360 13320 == = ∑∑f Xf X (件) 8月份平均每人日产量为:44360 15840 == = ∑∑ f Xf X (件) 根据计算结果得知8月份比7月份平均每人日产量多7件。其原因是不同组日产量水平的工人所占比重发生变化所致。7月份工人日产量在40件以上的工人只占全部工人数的40%,而8月份这部分工人所占比重则为66.67%。

2、某纺织厂生产某种棉布,经测定两年中各级产品的产量资料如下: 解: 2009年棉布的平均等级= 250 10 3 40 2 200 1? + ? + ? =1.24(级) 2010年棉布的平均等级= 300 6 3 24 2 270 1? + ? + ? =1.12(级) 可见该厂棉布产品质量2010年比2009年有所提高,其平均等级由1.24级上升为1.12级。质量提高的原因是棉布一级品由80%上升为90%,同时二级品和三级品分别由16%及4%下降为8%及2%。

试比较和分析哪个企业的单位成本高,为什么? 解: 甲企业的平均单位产品成本=1.0×10%+1.1×20%+1.2×70%=1.16(元) 乙企业的平均单位产品成本=1.2×30%+1.1×30%+1.0×40%=1.09(元) 可见甲企业的单位产品成本较高,其原因是甲企业生产的3批产品中,单位成本较高(1.2元)的产品数量占70%,而乙企业只占30%。

统计学计算题答案..

第 1 页/共 12 页 1、下表是某保险公司160名推销员月销售额的分组数据。书p26 按销售额分组(千元) 人数(人) 向上累计频数 向下累计频数 12以下 6 6 160 12—14 13 19 154 14—16 29 48 141 16—18 36 84 112 18—20 25 109 76 20—22 17 126 51 22—24 14 140 34 24—26 9 149 20 26—28 7 156 11 28以上 4 160 4 合计 160 —— —— (1) 计算并填写表格中各行对应的向上累计频数; (2) 计算并填写表格中各行对应的向下累计频数; (3)确定该公司月销售额的中位数。 按上限公式计算:Me=U- =18-0.22=17,78 2、某厂工人按年龄分组资料如下:p41 工人按年龄分组(岁) 工人数(人) 20以下 160 20—25 150 25—30 105 30—35 45 35—40 40 40—45 30 45以上 20 合 计 550 要求:采用简捷法计算标准差。《简捷法》 3、试根据表中的资料计算某旅游胜地2004年平均旅游人数。P50 表:某旅游胜地旅游人数 时间 2004年1月1日 4月1日 7月1日 10月1日 2005年1月1 日 旅游人数(人) 5200 5000 5200 5400 5600 4、某大学2004年在册学生人数资料如表3-6所示,试计算该大学2004年平均在册学生人数. 时间 1月1日 3月1日 7月1日 9月1日 12月31日 在册学生人数(人) 3408 3528 3250 3590 3575

统计学原理第九章(相关与回归)习题答案

第九章相关与回归 一.判断题部分 题目1:负相关指的是因素标志与结果标志的数量变动方向是下降的。() 答案:× 题目2:相关系数为+1时,说明两变量完全相关;相关系数为-1时,说明两个变量不相关。() 答案:√ 题目3:只有当相关系数接近+1时,才能说明两变量之间存在高度相关关系。() 答案:× 题目4:若变量x的值增加时,变量y的值也增加,说明x与y之间存在正相关关系;若变量x的值减少时,y变量的值也减少,说明x与y之间存在负相关关系。() 答案:× 题目5:回归系数和相关系数都可以用来判断现象之间相关的密切程度。() 答案:× 题目6:根据建立的直线回归方程,不能判断出两个变量之间相关的密切程度。() 答案:√ 题目7:回归系数既可以用来判断两个变量相关的方向,也可以用来说明两个变量相关的密切程度。() 答案:×

题目8:在任何相关条件下,都可以用相关系数说明变量之间相关的密切程度。() 答案:× 题目9:产品产量随生产用固定资产价值的减少而减少,说明两个变量之间存在正相关关系。() 答案:√ 题目10:计算相关系数的两个变量,要求一个是随机变量,另一个是可控制的量。() 答案:× 题目11:完全相关即是函数关系,其相关系数为±1。() 答案:√ 题目12:估计标准误是说明回归方程代表性大小的统计分析指标,指标数值越大,说明回归方程的代表性越高。() 答案× 二.单项选择题部分 题目1:当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于()。 A.相关关系 B.函数关系 C.回归关系 D.随机关系 答案:B 题目2:现象之间的相互关系可以归纳为两种类型,即()。 A.相关关系和函数关系 B.相关关系和因果关系

《统计学原理》作业四答案

《统计学原理》作业(四) (第八~第九章) 一、判断题 1、数量指标指数反映总体的总规模水平,质量指标指数反映总体的相对水平或平均水平( × )。 2、平均指数也是编制总指数的一种重要形式,有它的独立应用意义。(√ ) 3、因素分析内容包括相对数和平均数分析。( × ) 4、发展水平就是动态数列中的每一项具体指标数值,它只能表现为绝对数。(× ) 5、若将2000-2005年末国有企业固定资产净值按时间先后顺序排列,此种动态数列称为时点数列。 (√ ) 6、定基发展速度等于相应各个环比发展速度的连乘积.所以定基增长速度也等于相应各个环比增长速度积。( × ) 7、发展速度是以相对数形式表示的速度分析指标,增长量是以绝对数形式表示的速度分析指标。(√ ) 8、数量指标作为同度量因素,时期一般固定在基期(×) 二、单项选择题 1、统计指数划分为个体指数和总指数的依据是 ( A ) 。 A 、反映的对象范围不同 B 、指标性质不同 C 、采用的基期不同 D 、编制指数的方法不同 2、数量指标指数和质量指标指数的划分依据是 ( A )。 A 、指数化指标的性质不同 B 、所反映的对象范围不同 C 、所比较的现象特征不同 D 、编制指数的方法不同 3、编制总指数的两种形式是( B )。 A 、数量指标指数和质量指标指数 B 、综合指数和平均数指数 C 、算术平均数指数和调和平均数指数 D 、定基指数和环比指数 4、销售价格综合指数 ∑∑0 1 11p q p q 表示( C )。 A 、综合反映多种商品销售量变动程度 B 、综合反映多种商品销售额变动程度 C 、报告期销售的商品,其价格综合变动的程度 D 、基期销售的商品,其价格综合变动程度 5、在销售量综合指数 ∑∑0 01p q p q 中, 00 1 p q p q ∑∑-表示 ( B )。 A 、商品价格变动引起销售额变动的绝对额

应用统计学练习题(含答案)

应用统计学练习题 第一章绪论 一、填空题 1.统计工作与统计学的关系是__统计实践____和___统计理论__的关系。 2.总体是由许多具有_共同性质_的个别事物组成的整体;总体单位是__总体_的组成单位。 3.统计单体具有3个基本特征,即__同质性_、__变异性_、和__大量性__。 4.要了解一个企业的产品质量情况,总体是_企业全部产品__,个体是__每一件产品__。 5.样本是从__总体__中抽出来的,作为代表_这一总体_的部分单位组成的集合体。 6.标志是说明单体单位特征的名称,按表现形式不同分为__数量标志_和_品质标志_两种。 7. 8.统计指标按其数值表现形式不同可分为__总量指标__、__相对指标_和__平均指标__。 9.指标与标志的主要区别在于: (1)指标是说明__总体__特征的,而标志则是说明__总体单位__特征的。 (2)标志有不能用__数量__表示的_品质标志_与能用_数量_表示的_数量标志_,而指标都是能用_数量_表示的。 10.一个完整的统计工作过程可以划分为_统计设计_、_统计调查_、_统计整理_和__统计分析__4个阶段。 二、单项选择题 1.统计总体的同质性是指(A)。 A.总体各单位具有某一共同的品质标志或数量标志 B.总体各单位具有某一共同的品质标志属性或数量标志值 C.总体各单位具有若干互不相同的品质标志或数量标志 D.总体各单位具有若干互不相同的品质标志属性或数量标志值 2.设某地区有800家独立核算的工业企业,要研究这些企业的产品生产情况,总体是( D)。

A.全部工业企业 B.800家工业企业 C.每一件产品 D.800家工业企业的全部工业产品 3.有200家公司每位职工的工资资料,如果要调查这200家公司的工资水平情况,则统计总体为(A)。 A.200家公司的全部职工 B.200家公司 C.200家公司职工的全部工资 D.200家公司每个职工的工资 4.一个统计总体( D)。 A.只能有一个标志 B.可以有多个标志 C.只能有一个指标 D.可以有多个指标 5.以产品等级来反映某种产品的质量,则该产品等级是(C)。 A.数量标志 B.数量指标 C.品质标志 D.质量指标 6.某工人月工资为1550元,工资是( B )。 A.品质标志 B.数量标志 C.变量值 D.指标 7.某班4名学生金融考试成绩分别为70分、80分、86分和95分,这4个数字是( D)。 A.标志 B.指标值 C.指标 D.变量值 8.工业企业的职工人数、职工工资是(D)。 A.连续变量 B.离散变量 C.前者是连续变量,后者是离散变量 D.前者是离散变量,后者是连续变量 9.统计工作的成果是(C)。 A.统计学 B.统计工作 C.统计资料 D.统计分析和预测 10.统计学自身的发展,沿着两个不同的方向,形成(C)。 A.描述统计学与理论统计学 B.理论统计学与推断统计学 C.理论统计学与应用统计学 D.描述统计学与推断统计学

统计学期末考试试题(含答案)

西安交大统计学考试试卷 一、单项选择题(每小题2分,共20分) 1.在企业统计中,下列统计标志中属于数量标志的是( C) A、文化程度 B、职业 C、月工资 D、行业 2.下列属于相对数的综合指标有(B ) A、国民收入 B、人均国民收入 C、国内生产净值 D、设备台数 3.有三个企业的年利润额分别是5000万元、8000万元和3900万元,则这句话中有( B)个变量 A、0个 B、两个 C、1个 D、3个 4.下列变量中属于连续型变量的是(A ) A、身高 B、产品件数 C、企业人数 D、产品品种 5.下列各项中,属于时点指标的有(A ) A、库存额 B、总收入 C、平均收入 D、人均收入 6.典型调查是(B )确定调查单位的 A、随机 B、主观 C、随意 D盲目 7.总体标准差未知时总体均值的假设检验要用到( A ): A、Z统计量 B、t统计量 C、统计量 D、X统计量 8. 把样本总体中全部单位数的集合称为(A ) A、样本 B、小总体 C、样本容量 D、总体容量 9.概率的取值范围是p(D ) A、大于1 B、大于-1 C、小于1 D、在0与1之间 10. 算术平均数的离差之和等于(A ) A、零 B、 1 C、-1 D、2 二、多项选择题(每小题2分,共10分。每题全部答对才给分,否则不计分) 1.数据的计量尺度包括( ABCD ): A、定类尺度 B、定序尺度 C、定距尺度 D、定比尺度 E、测量尺度 2.下列属于连续型变量的有( BE ): A、工人人数 B、商品销售额 C、商品库存额 D、商品库存量 E、总产值 3.测量变量离中趋势的指标有( ABE ) A、极差 B、平均差 C、几何平均数 D、众数 E、标准差 4.在工业企业的设备调查中( BDE ) A、工业企业是调查对象 B、工业企业的所有设备是调查对象 C、每台设备是 填报单位 D、每台设备是调查单位 E、每个工业企业是填报单位 5.下列平均数中,容易受数列中极端值影响的平均数有( ABC ) A、算术平均数 B、调和平均数 C、几何平均数 D、中位数 E、众数 三、判断题(在正确答案后写“对”,在错误答案后写“错”。每小题1分,共10分) 1、“性别”是品质标志。(对) 2、方差是离差平方和与相应的自由度之比。(错) 3、标准差系数是标准差与均值之比。(对) 4、算术平均数的离差平方和是一个最大值。(错) 5、区间估计就是直接用样本统计量代表总体参数。(错) 6、在假设检验中,方差已知的正态总体均值的检验要计算Z统计量。(错)

《统计分析与SPSS的应用(第五版)》课后练习答案(第9章)

《统计分析与SPSS的应用(第五版)》(薛薇) 课后练习答案 第9章SPSS的线性回归分析 1、利用第2章第9题的数据,任意选择两门课程成绩作为解释变量和被解释变量,利用SPSS 提供的绘制散点图功能进行一元线性回归分析。请绘制全部样本以及不同性别下两门课程成绩的散点图,并在图上绘制三条回归直线,其中,第一条针对全体样本,第二和第三条分别针对男生样本和女生样本,并对各回归直线的拟和效果进行评价。 选择fore和phy两门成绩体系散点图 步骤:图形→旧对话框→散点图→简单散点图→定义→将fore导入Y轴,将phy导入X轴,将sex导入设置标记→确定。 接下来在SPSS输出查看器中,双击上图,打开图表编辑

→点击子组拟合线→选择线性→应用。

分析:如上图所示,通过散点图,被解释变量y(即:fore)与解释变量phy有一定的线性关系。但回归直线的拟合效果都不是很好。 2、请说明线性回归分析与相关分析的关系是怎样的? 相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续。相关分析需要依靠回归分析来表现变量之间数量相关的具体形式,而回归分析则需要依靠相关分析来表现变量之间数量变化的相关程度。只有当变量之间存在高度相关时,进行回归分析寻求其相关的具体形式才有意义。如果在没有对变量之间是否相关以及相关方向和程度做出正确判断之前,就进行回归分析,很容易造成“虚假回归”。与此同时,相关分析只研究变量之间相关的方向和程度,不能推断变量之间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况,因此,在具体应用过程中,只有把相关分析和回归分析结合起来,才能达到研究和分析的目的。 线性回归分析是相关性回归分析的一种,研究的是一个变量的增加或减少会不会引起另一个变量的增加或减少。 3、请说明为什么需要对线性回归方程进行统计检验?一般需要对哪些方面进行检验? 检验其可信程度并找出哪些变量的影响显著、哪些不显著。 主要包括回归方程的拟合优度检验、显著性检验、回归系数的显著性检验、残差分析等。

统计学计算题例题学习资料

统计学计算题例题

第四章 1. 某企业1982年12月工人工资的资料如下: 要求:(1)计算平均工资;(79元) (2)用简捷法计算平均工资。 2. 某企业劳动生产率1995年比1990年增长7%,超额完成计划2%,试确定劳动生产率计划增长数。 7%-2%=5% 3. 某厂按计划规定,第一季度的单位产品成本比去年同期降低8%。实际 执行结果,单位产品成本较去年同期降低4%。问该厂第一季度产品单位成本计划的完成程度如何?104.35%( (1-4%)/(1-8%)*100%=96%/92%*100%=104.35%结果表明:超额完成4.35%(104.35%-100%)) 4. 某公社农户年收入额的分组资料如下:

要求:试确定其中位数及众数。中位数为774.3(元)众数为755.9(元) 求中位数: 先求比例:(1500-720)/(1770-720)=0.74286 分割中位数组的组距:(800-700)*0.74286=74.286 加下限700+74.286=774.286 求众数: D1=1050-480=570 D2=1050-600=450 求比例:d1/(d1+d2)=570/(570+450)=0.55882 分割众数组的组距:0.55882*(800-700)=55.882 加下限:700+55.882=755.882 5.1996年某月份某企业按工人劳动生产率高底分组的生产班组数和产量资料如 下: 率。64.43(件/人)

(55*300+65*200+75*140+85*60)/(300+200+140+60) 6.某地区家庭按人均月收入水平分组资料如下: 根据表中资料计算中位数和众数。中位数为733.33(元) 众数为711.11(元) 求中位数: 先求比例:(50-20)/(65-20)=0.6667 分割中位数组的组距:(800-600)*0.6667=66.67 加下限:600+66.67=666.67 7.某企业产值计划完成 103%,比去年增长5%。试问计划规定比去年增长 多少?1.94% (上年实际完成1.03/1.05=0.981 本年实际计划比上年增长 (1-0.981)/0.981=0.019/0.981=1.937%) 8.甲、乙两单位工人的生产资料如下:

统计学计算习题

第四章 六、计算题 月工资(元) 甲单位人数(人) 乙单位人数比重(%) 400以下 400~600 600~800 800~1000 1000以上 4 25 84 126 28 2 8 30 42 18 合 计 267 100 工资更具有代表性。 1、(1) 430025500267 x f x f ?+?+ == = ∑∑甲工资总额 总人数 3002%5008%7003%f x x f =? =?+?+?+ ∑∑乙 (2) 计算变异系数比较 ()2 x x f f σ-=∑∑甲甲 甲甲 () 2 x x f f σ-∑∑乙乙 乙乙 V x σσ= 甲 甲 甲 V x σσ= 乙乙乙 根据V σ甲 、V σ乙 大小判断,数值越大,代表性越小。 甲品种 乙品种 田块面积(亩) 产量(公斤) 田块面积(亩) 产量(公斤) 1.2 0.8 1.5 1.3 600 405 725 700 1.0 1.3 0.7 1.5 500 675 375 700 4.8 2430 4.5 2250 假定生产条件相同,试研究这两个品种的收获率,确定那一个品种具有稳定性和推广价值。 2、(1) 收获率(平均亩产) 2430 528.254.8 x = ==甲总产量总面积 2250 5004.5 x = =乙 (2) 稳定性推广价值(求变异指标) 2 2 2 2 600405725700506 1.25060.8506 1.5506 1.31.20.8 1.5 1.34.8 σ???????? -?+-?+-?+-? ? ? ? ?? ???????=甲

2 2 2 2 500675375700500 1.0500 1.35000.7500 1.51.0 1.30.7 1.54.5 σ???????? -?+-?+-?+-? ? ? ? ?? ???????=乙 求V σ甲 、V σ乙 ,据此判断。 8.某地20个商店,1994年第四季度的统计资料如下表4-6。 表4-6 按商品销售计划完成情 况分组(%) 商店 数目 实际商品销售额 (万元) 流通费用率 (%) 80-90 90-100 100-110 110-120 3 4 8 5 45.9 68.4 34.4 94.3 14.8 13.2 12.0 11.0 试计算 (1)该地20个商店平均完成销售计划指标 (2)该地20个商店总的流通费用率 (提示:流通费用率=流通费用/实际销售额) 8、(1) () 101%1 % f f x = = =?∑∑ 20实际销售额计划销售额 实际销售额 计划完成 (2) 据提示计算:2012.7%x = 品 种 价格 (元/公斤) 销售额(万元) 甲市场 乙市场 甲 乙 丙 0.30 0.32 0.36 75.0 40.0 45.0 37.5 80.0 45.0 13、提示:= 销售额 平均价格销售量 企业序号 计划产量(件) 计划完成程度(%) 实际一级品率 (%) 1 2 3 4 5 350 500 450 400 470 102 105 110 97 100 98 96 90 85 91

应用统计学试题及答案

北京工业大学经济与管理学院2007-2008年度 第一学期期末应用统计学 主考教师 专业:学号:姓名:成绩: 1 C 2 B 3 A 4 C 5 B 6 B 7 A 8 A 9 C 10 C 一.单选题(每题2分,共20分) 1.在对工业企业的生产设备进行普查时,调查对象是 A 所有工业企业 B 每一个工业企业 C 工业企业的所有生产设备 D 工业企业的每台生产设 备 2.一组数据的均值为20, 离散系数为, 则该组数据的标准差为 A 50 B 8 C D 4 3.某连续变量数列,其末组为“500以上”。又知其邻组的组中值为480,则末组的组中值为

A 520 B 510 C 530 D 540 4. 已知一个数列的各环比增长速度依次为5%、7%、9%,则最后一期的定基增长速度为 A .5%×7%×9% B. 105%×107%×109% C .(105%×107%×109%)-1 D. 1%109%107%1053- 5.某地区今年同去年相比,用同样多的人民币可多购买5%的商品,则物价增(减)变化的百分比为 A. –5% B. –% C. –% D. % 6.对不同年份的产品成本配合的直线方程为x y 75.1280? -=, 回归系数b= -表示 A. 时间每增加一个单位,产品成本平均增加个单位 B. 时间每增加一个单位,产品成本平均下降个单位 C. 产品成本每变动一个单位,平均需要年时间 D. 时间每减少一个单位,产品成本平均下降个单位 7.某乡播种早稻5000亩,其中20%使用改良品种,亩产为600 公

斤,其余亩产为500 公斤,则该乡全部早稻亩产为 A. 520公斤 B. 530公斤 C. 540公斤 D. 550公斤 8.甲乙两个车间工人日加工零件数的均值和标准差如下: 甲车间:x=70件,σ=件乙车间: x=90件, σ=件哪个车间日加工零件的离散程度较大: A甲车间 B. 乙车间 C.两个车间相同 D. 无法作比较 9. 根据各年的环比增长速度计算年平均增长速度的方法是 A 用各年的环比增长速度连乘然后开方 B 用各年的环比增长速度连加然后除以年数 C 先计算年平均发展速度然后减“1” D 以上三种方法都是错误的 10. 如果相关系数r=0,则表明两个变量之间 A. 相关程度很低 B.不存在任何

统计学(第五版)贾俊平 课后思考题和练习题答案(最终完整版)

统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版) 整理by__kiss-ahuang 第一部分思考题 第一章思考题 1.1什么是统计学 统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。 1.2解释描述统计和推断统计 描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。 推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。 1.3统计学的类型和不同类型的特点 统计数据;按所采用的计量尺度不同分; (定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述; (定性数据)顺序数据:只能归于某一有序类别的非数字型数据。它也是有类别的,但这些类别是有序的。 (定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。 统计数据;按统计数据都收集方法分; 观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。 实验数据:在实验中控制实验对象而收集到的数据。 统计数据;按被描述的现象与实践的关系分; 截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。 时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。 1.4解释分类数据,顺序数据和数值型数据 答案同1.3 1.5举例说明总体,样本,参数,统计量,变量这几个概念 对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。 1.6变量的分类 变量可以分为分类变量,顺序变量,数值型变量。 变量也可以分为随机变量和非随机变量。经验变量和理论变量。 1.7举例说明离散型变量和连续性变量 离散型变量,只能取有限个值,取值以整数位断开,比如“企业数” 连续型变量,取之连续不断,不能一一列举,比如“温度”。 1.8统计应用实例 人口普查,商场的名意调查等。 1.9统计应用的领域 经济分析和政府分析还有物理,生物等等各个领域。

统计学计算题(有答案)

1、甲乙两班同时参加《统计学原理》课程的测试,甲班平均成绩为81分,标准差为9.5分,乙 班的成绩分组资料如下: 按成绩分组学生人数(人) 60以下 4 60~70 10 70~80 25 80~90 14 90~100 2 计算乙班学生的平均成绩,并比较甲乙两班,哪个班的平均成绩更有代表性? 2、某车间有甲乙两个生产组,甲组平均每个人的日产量为36件,标准差为9.6件,乙组工人产 量资料如下: 日产量(件)工人数(人) 15 15 25 38 35 34 45 13 要求:(1)计算乙组平均每个工人的日产量和标准差 (2)比较甲乙两生产小组的日产量更有代表性 3 月份 1 2 3 4 5 6 8 11 12

库存额60 55 48 43 40 50 45 60 68 又知1月1日商品库存额为63万元,试计算上半年,下半年和全年的平均商品库存额。 4 品名单位销售额2002比2001销售量增长(%) 2001 2002 电视台5000 8880 23 自行车辆4500 4200 -7 合计9500 13080 (2)计算由于销售量变动消费者增加或减少的支出金额 5、某商店两种商品的销售额和销售价格的变化情况如下:(万元) 商品单位销售额1996比1995年销售价格提高(%) 1995 1996 甲米120 130 10 乙件40 36 12 要求:(1)计算两件商品销售价格总指标和由于价格变动对销售额的影响绝对值(2)计算销售量总指数,计算由于销售变动消费者增加或减少的支出金额

6、某企业上半年产品量和单位成本资料如下: 要求:(1)计算相关系数, 说明两个变量相关的密切程度 (2)配合回归方程,指出产量每增加1000件时,单位成本平均变动多少? 月份 产量(千克) 单位成本(元) 1 2 73 2 3 72 3 4 71 4 3 73 5 4 69 6 5 68

统计学计算题及答案

1002 1050 1 ■ 1050 1020 汇2 = 1032 (人) 上半年平均人数: 1002 1050 1 1050 1020 2 1020 1008 3 二 1023 计算题 1 .某公司某年9月末有职工250人,10月上旬的人数变动情况是:10月4日新招 聘12名大学生上岗,6日有4名老职工退休离岗,8日有3名青年工人应征入伍, 同日又有3名职 工辞职离 岗,9日招聘7名营销人员上岗。试计算该公司 10月上旬的平均在岗人数。 af 250 3 262 2 258 2 252 1 259 2 答案1 . a 256 送 f 3+2+2+1+2 要求:⑴具体说明这个时间序列属于哪一种时间序列。 (2)分别计算该银行2001年第一季度、第二季度和上半年的平均现金库存额。 1)这是个等间隔的时点序列 (答案: 3° - a , - a 2,a 3 亠,亠 a n 」-3n 2 - 2 n 第一季度的平均现金库存额: 500 520 + 480 +450 + 2 2 3 第二季度的平均现金库存额: 二480 (万元) 500 580 550 600 2 2 3 上半年的平均现金库存额: = 566 .67(万元) 500 580 + 480 + …+550 +600 + 2 -------------------------------------------- J 二 52 3 .33,或 = 480 566.67 = 523.33 6 答:该银行2001年第一季度平均现金库存额为 480万元,第二季度平均现金库存额为 566.67 万元,上半年的平均现金库存额为 523.33万元. 3某单位上半年职工人数统计资料如下: 要求计算:①第一季度平均人数;②上半年平均人数 答案:第一季度平均人数 2 12 3

相关文档
相关文档 最新文档