文档库 最新最全的文档下载
当前位置:文档库 › 2.函数图象上点的存在性问题中的全等、相似与角度(下)

2.函数图象上点的存在性问题中的全等、相似与角度(下)

2.函数图象上点的存在性问题中的全等、相似与角度(下)
2.函数图象上点的存在性问题中的全等、相似与角度(下)

【例1】(2009崇文一模)

如图,抛物线y =ax 2+bx -3与x 轴交于A ,B 两点,与y 轴交于C 点,且OB =OC =3OA 。 ⑴求抛物线的解析式;

⑵探究坐标轴上是否存在点P ,使得以点P ,A ,C 为顶点的三角形为直角三角形?若存在,求出P 点坐标,若不存在,请说明理由;

⑶直线y =13

x +1交轴于D 点,E 为抛物线顶点。若∠DBC =α,∠CBE =β,求α-β的值。

【例2】

抛物线y =

12x 2-32

x +1过点A (1,0),B (x 2,0),交y 轴正半轴于点C ,在抛物线上(在B 点的右侧)是否存在一点P ,使得∠PCB <∠CBA -∠ACB ?若存在,求出点P 的坐标;若不存在,请说明理由。

函数图象上点的存在性问题

中的全等、相似与角度(下)

【例3】

(2008年北京中考)在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(3,0),将直线y=kx沿y轴向上平移3个单位长度后恰好经过B,C两点。

⑴求直线BC及抛物线的解析式;

⑵设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;

⑶连结CD,求∠OCA与∠OCD两角和的度数。

《函数对称性的解题方法归纳》

函数对称性的解题方法归纳 讲函数的对称性主要是讲奇偶函数图像的对称性,函数与反函数图像的对称性。前者是函数自身的性质,而后者是函数的变换问题。下文中我们均简称为函数的变换性。函数的对称性在近几年高考中屡见不鲜,对于解决其它问题也很有帮助,同时也是数学美的很好体现。现通过函数自身的对称性和不同函数之间的对称变换这两个方面来探讨函数对称性有关的性质。 1. 函数自身的对称性探究 设函数 )2()2(),()(x f x f x f +=-∞+-∞上满足在,)7()7(x f x f +=-,且在闭区间[0,7]上只有0)3()1(==f f (1)试判断函数)(x f y =的奇偶性; (2)试求方程0)(=x f 在闭区间[-2005,2005]上根的个数并证明你的结论。 分析:由)7()7(),2()2(x f x f x f x f +=-+=-可得:函数图象既关于x =2对称,又关于x =7对称,进而可得到周期性,然后再继续求解,而本题关键是要首先明确函数的对称性,因此,熟悉函数对称性是解决本题的第一步。 定理1 函数)(x f y =的图像关于直线x =a 对称的充要条件是)()(x a f x a f -=+即)2()(x a f x f -= 证明(略) 推论 函数)(x f y =的图像关于y 轴对称的充要条件是)()(x f x f -= 定理2 函数)(x f y =的图像关于点A (a ,b )对称的充要条件是 b x a f x f 2)2()(=-+ 证明(略) 推论 函数)(x f y =的图像关于原点O 对称的充要条件是0)()(=-+x f x f 偶函数、奇函数分别是定理1,定理2的特例。 定理3 ①若函数)(x f y =的图像同时关于点A (a ,c )和点B (b ,c )成中心对称(b a ≠),则)(x f y =是周期函数,且b a -2是其一个周期。

函数的对称性

函数的对称性 知识梳理 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数;②一次函数;③二次函数;④反比例函数;⑤指数函数;⑥对数函数;⑦幂函数;⑧正弦函数; ⑨正弦型函数sin()y A x ω?=+既是轴对称又是中心对称;⑩余弦函数;⑾正切函数;⑿耐克函数; ⒁绝对值函数:这里主要说的是(||)y f x =和|()|y f x =两类。前者显然是偶函数,它会关于y 轴对称;后者是把x 轴下方的图像对称到x 轴的上方,是否仍然具备对称性,这也没有一定的结论,例如|ln |y x =就没有对称性,而|sin |y x =却仍然是轴对称。 ⒂形如(0,)ax b y c ad bc cx d +=≠≠+的图像是双曲线,其两渐近线分别直线d x c =- (由分母为零确定)和直线a y c =(由分子、分母中x 的系数确定),对称中心是点(,)d a c c -。 二、抽象函数的对称性 【此类问题涉及到了函数图象的两种对称性,一种是同一函数自身的对称性,我们称其为自对称;另一种是两个函数之间的对称性 ,我们称其为互对称。】 1、函数)(x f y =图象本身的对称性(自对称问题) (1)轴对称 ①)(x f y =的图象关于直线a x =对称 ?)()(x a f x a f -=+ ?)2()(x a f x f -= ?)2()(x a f x f +=-

相似三角形的存在性(讲义及答案).

相似三角形的存在性(讲义) 知识点睛 1.存在性问题的处理思路 ①分析不变特征 分析背景图形中的定点,定线,定角等不变特征. ②分类、画图 结合图形形成因素(判定,定义等)考虑分类,画出符合题意的图形. 通常先尝试画出其中一种情形,分析解决后,再类比解决其他情形. ③求解、验证 围绕不变特征、画图依据来设计方案进行求解;验证时,要回归点的运动范围,画图或推理,判断是否符合题意. 注:复杂背景下的存在性问题往往需要研究背景图形,几何背景往往研究点,线,角;函数背景研究点坐标,表达式等.2.相似三角形的存在性不变特征及特征下操作要点举例: 一般先从角(不变特征)入手,分析对应关系后,作出符合题意图形,再借助不变特征和对应边成比例列方程求 解.常见特征如一组角对应相等,这一组相等角顶点为确定对应点,结合对应关系分类后,作出符合题意图形,一般利用对应边成比例列方程求解.

精讲精练 1.如图,将长为8cm,宽为5cm的矩形纸片ABCD折叠,使 点B落在CD边的点E处,压平后得到折痕MN,点A的对称点为点F,CE=4cm.若点G是矩形边上任意一点,则当△ABG与△CEN相似时,线段AG的长为. 2.如图,抛物线y=-1x2+10x-8经过A,B,C三点,BC⊥OB, 33 AB=BC,过点C作CD⊥x轴于点D.点M是直线AB上方的抛物线上一动点,作MN⊥x轴于点N,若△AMN与△ACD 相似,则点M的坐标为.

3.如图,已知抛物线y=3x2+bx+c与坐标轴交于A,B,C三 4 点,点A的坐标为(-1,0),过点C的直线y=3 4t x-3与x轴 交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB 于点H.若PB=5t,且0<t<1. (1)点C的坐标是,b=,c=.(2)求线段QH的长(用含t的代数式表示). (3)依点P的变化,是否存在t的值,使以P,H,Q为顶点的三角形与△COQ相似?若存在,求出所有符合条件的t 值;若不存在,说明理由.

北京--正弦函数图象的对称性(檀晋轩)CASIO

课题:正弦函数、余弦函数的图象和性质(五)——正弦函数图象的对称性 教材:人教版全日制普通高级中学数学教科书(必修)第一册(下) 【教学目标】 1.使学生掌握正弦函数图象的对称性及其代数表示形式,理解诱导公式 x x sin )sin(=-π(∈x R )与x x sin )2sin(-=-π(∈x R )的几何意义,体会正 弦函数的对称性. 2.在探究过程中渗透由具体到抽象,由特殊到一般以及数形结合的思想方法,提高学生观察、分析、抽象概括的能力. 3.通过具体的探究活动,培养学生主动利用信息技术研究并解决数学问题的能力,增强学生之间合作与交流的意识. 【教学重点】 正弦函数图象的对称性及其代数表示形式. 【教学难点】 用等式表示正弦函数图象关于直线2 π =x 对称和关于点)0,(π对称. 【教学方法】 教师启发引导与学生自主探究相结合. 【教学手段】 计算机、图形计算器(学生人手一台). 【教学过程】 一、复习引入 1.展示生活实例 对称在自然界中有着丰富多彩的显现,各种对称图案、对称符号也都十分普遍(见下图). 2.复习对称概念

初中我们已经学习过轴对称图形和中心对称图形的有关概念: 轴对称图形——将图形沿一条直线折叠,直线两侧的部分能够互相重合; 中心对称图形——将图形绕一个点旋转180°,所得图形与原图形重合. 3.作图观察 请同学们用图形计算器画出正弦函数的图象(见右图),仔细观察正弦曲线是否是对称图形?是轴对称图形还是中心对称图形? 4.猜想图形性质 经过简单交流后,能够发现正弦曲线既是轴对称图形也是中心对称图形,并能够猜想出一部分对称轴和对称中心.(教师点评并板书) 如何检验猜想是否正确? 我们知道, 诱导公式x x sin )sin(-=-(∈x R ),刻画了正弦曲线关于原点对称,而x x cos )cos(=-(∈x R ),刻画了余弦曲线关于y 轴对称. 从这两个特殊的例子中我们得到一些启发,如果我们能够用代数式表示所发现的对称性,就可以从代数上进行严格证明. 今天我们利用图形计算器来研究正弦函数图象的对称性.(板书课题) 二、探究新知 分为两个阶段,第一阶段师生共同探讨正弦曲线的轴对称性质,第二阶段学生自主探索正弦曲线的中心对称性质. (一)对于正弦曲线轴对称性的研究 第一阶段,实例分析——对正弦曲线关于直线2 π =x 对称的研究. 1.直观探索——利用图形计算器的绘图功能进行探索 请同学们在同一坐标系中画出正弦曲线和直线 2 π = x 的图象,选择恰当窗口并充分利用画图功能对问 题进行探索研究(见右图),在直线2 π =x 两侧正弦函 数值有什么变化规律? 给学生一定的时间操作、观察、归纳、交流,最后得出猜想:当自变量在2 π =x 左右对称取值时,正 弦函数值相等.

相似三角形存在性探究精品

文档收集于互联网,已重新整理排版.word 版本可编辑,有帮助欢迎下载支持. 1文档来源为:从网络收集整理.word 版本可编辑. 【关键字】条件、速度、方向 相似三角形存在性探究 如图,点D 在△ABC 的边上. (1)要判断△ADB 与△ (2)要判断△ADB 与△(3)通过(1)(2)例1如图,在△ABC 的边AB 上有一点E ,AB =4cm AE =1cm AC =3cm 。在AC 边上是否存 在点F ,使得△AEF 和△ABC 相似?若存在,求出AF 的长。 变式 如图, 点E 在AB 边上从点A 向点B 运动,速度为2cm/s , 点F 同时从点C 向点A 运动,速度为1cm/s,设运动时间为t 秒,问是否存在t 的值,使得 △AEF 和△ABC 相似?若存在,试求出t 的值,若不存在,请说明理由。 例2如图,在平面点直角坐标系xoy 中,A (1,0)、B (3,0)、C (0,-3)、P (2,1)请问在x 轴上是 否存在点Q,使以P ,B,Q 为顶点的三角形与△ABC 相似?若存在,求出点Q 的坐标,若不存 在,请说明理由。 变式 如图,在平面点直角坐标系xoy 中,A (1,0)、B (3,0)、C (0,-3)、P (2,1) (1)求过A 、B 、C 三点的抛物线解析式 (2)请问在x 轴下方的抛物线上是否存在点M ,过M 作M N ⊥x 轴于点N,使以A,M,N 为顶点的 三角形与△BCP 相似?若存在,求出点M 的坐标,若不存在,请说明理由。 做一做 如图,抛物线 与x 轴交于A ,B 两点(A 点在B 点左侧)与y 轴交于点C ,动直线EF (EF //x 轴)从点C 出发,以每秒1个单位长度的速度沿y 轴负 方向平移,且分别交y 轴、线段BC 于E 、F 两点,动点P 同时从点B 出发,在线段OB 上 以每秒2个单位长度的速度向原点O 运动,是否存在t 的值,使△BPF 与△ABC 相似?若 存在试求出t 的值,若不存在,请说明理由。 B 42 3812+-=x x y O

正弦函数图象的对称轴与对称中心

正弦函数图象的对称轴与对称中心 Revised on November 25, 2020

函数 )sin(?ω+=x A y 图象的对称轴与对称中心 新疆民丰县一中 亚库普江·奥斯曼 摘要: 新课标高中数学教材上函数的性质就着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏的会出现函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴、反此例函数的对称性、三角函数的对称性,因而考查的频率一直比较高。以我的经验看,这方面一直是教学的难点,尤其是轴象函数的对称性判断。所以这里我对高中阶段所涉及的函数)sin(?ω+=x A y 的对称性知识提出自己的观点。 关键词:对称轴,对称中心,正弦型函数 函数轴对称:如果一个函数的图象沿一条直线对折,直线两则的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 中心对称:如果一个函数的图像沿一个点折旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 正弦函数x y sin =的图像既是轴对称又是中心对称,它的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形; x y sin =的图象的对称轴是经过其 图象的“峰顶点”或“谷底点”,且平行于y 轴的无数条直线;它的图象关于x 轴 的交点分别成中心对称图形。 ∴正弦函数x y sin =的对称轴方程为2 π π+ =k y ,对称中心点为 (0,πk ),其中 Z k ∈。 正弦型函数 )sin(?ω+=x A y 是由正弦函数x y sin =演变而成。

相似三角形的存在性问题解题策略

中考数学压轴题解题策略(2) 相似三角形的存在性问题解题策略 《挑战压轴题·中考数学》的作者 上海 马学斌 专题攻略 相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等. 判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验,如例题1、2、3、4. 应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等,如例题6. 应用判定定理3解题不多见,如例题5,根据三边对应成比例列连比式解方程(组). 例题解析 例? 如图1-1,抛物线213482 y x x =-+与x 轴交于A 、B 两点(A 点在B 点左侧),与y 轴交于点C .动直线EF (EF //x 轴)从点C 开始,以每秒1个单位的速度沿y 轴负方向平移,且分别交y 轴、线段BC 于E 、F 两点,动点P 同时从点B 出发,在线段OB 上以每秒2个单位的速度向原点O 运动.是否存在t ,使得△BPF 与△ABC 相似.若存在,试求出t 的值;若不存在,请说明理由. 图1-1 【解析】△BPF 与△ABC 有公共角∠B ,那么我们梳理两个三角形中夹∠B 的两条边. △ABC 是确定的.由213482 y x x = -+,可得A (4, 0)、B (8, 0)、C (0, 4). 于是得到BA =4,BC =12CE CO EF OB ==. △BPF 中,BP =2t ,那么BF 的长用含t 的式子表示出来,问题就解决了. 在Rt △EFC 中,CE =t ,EF =2t ,所以CF . 因此)BF t ==-. 于是根据两边对应成比例,分两种情况列方程: ①当BA BP BC BF ==.解得43t =(如图1-2).

(完整word)高考专题函数对称性

函数对称性 一知识点精讲: I 函数)(x f y =图象本身的对称性(自身对称) 1、)()(x b f x a f -=+?)(x f y =图象关于直线2 2)()(b a x b x a x +=-++=对称 证明:函数)(x f y =图象上的任一点00(,)P x y (满足00()f x y =)关于直线a b x +=的对称点为 (Q a b +∴点Q 推论1推论2推论32、f ((Q a b +∴点Q 推论1推论2推论3II 1、y 2、y 345.函数证明:函数()y f a x =+图象上的任一点00(,)P x y (满足00()f a x y +=)关于直线2b a x -= 的对称点为00(,)Q b a x y --,Q 000[()]()f b b a x f a x y ---=+= ∴点Q 在函数()y f b x =-的图象上;反之函数()y f b x =-的图象上任一点关于直线2 b a x -= 的对称点也在函数()y f a x =+图象上.从而函数()y f a x =+与()y f b x =-的图象关于直线2 b a x -=对称. 推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称 推论2:函数)(x f y =与)2(x a f y -=图象关于直线a x =对称 推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称

6若函数)(x f y =的定义域为R ,则函数()y f a x =+与()y f b x =--的图象关于点( ,0)2 b a -对称. 证明:函数()y f a x =+图象上的任一点00(,)P x y (满足00()f a x y +=)关于点(,0)2 b a -的对称点为00(,)Q b a x y ---,Q 000[()]()f b b a x f a x y ----=-+=- ∴点Q 在函数()y f b x =--的图象上;反之函数()y f b x =--的图象上任一点关于点(,0)2 b a -的对称点也在函数()y f a x =+图象上.从而函数()y f a x =+与()y f b x =--的图象关于点(,0)2b a -对称. 二典例解析: 11x (log 2f 解析:)(x f -(log f 234 5 解析:的,故6、设y )2(x f =解析:)2(x f 是由2 1=x ,=x 7个实根之和为解析:)(x f y =的图象关于直线3=x 对称,故五个实根,有两对关于直线3=x 对称,它们的和为12,还有一个根就是3。故这5个实根之和为15,正确答案为15 8、设函数)(x f y =的定义域为R ,则下列命题中, ①若)(x f y =是偶函数,则)2(+=x f y 图象关于y 轴对称; ②若)2(+=x f y 是偶函数,则)(x f y =图象关于直线2=x 对称; ③若)2()2(x f x f -=-,则函数)(x f y =图象关于直线2=x 对称; ④)2(-=x f y 与)2(x f y -=图象关于直线2=x 对称, 其中正确命题序号为_______。 解析:①错)2(+=x f y 关于直线2-=x 对称,②对③错若)2()2(x f x f -=-,则函数)(x f y =图象关于直线0=x 对称;④对正确答案为②④

函数的对称性完美

函数的对称性 一、教学目标 函数图象的对称性是一类函数的特性,是函数性质的重要方面,它包括自身对称和两个函数图象之间的对称,理解掌握函数对称性,对数学问题的解决有很大的帮助,对也是数形结合思想的重要体现。 1.自身对称函数,函数图象本身具有对称轴或是对称中心,该函数的图象是轴对称图形或是中心对称图形,奇函数与偶函数是最典型的两类函数,其它自身对称的函数都可以由奇偶函数平移得到; 2.两个函数图象的对称,是指两个图形之间的关系,它们之间存在某种关联,即它们关于某一点对称或是关于某一条直线对称,研究其中一个函数的性质就可知另一个函数的特点(互为反函数的两个函数图象)。 二、举例分析 例1. 设()f x 是定义在R 上的函数, (1)若对任意x R ∈,都有()()f a x f b x -=+成立,则函数()f x 的图象关于直线2 a b x +=对称; (2)若对任意x R ∈,都有()()22f x f a x b +-=,则函数()f x 的图象关于点(),a b 成中心对称。 选题目的:通过此题的学习,让学生明白一个道理,函数()f x 的图象是轴对称或是中心对称,函数解析式()f x 应满足一关系式是什么,并能通过奇偶函数的平移获得理解这种关系式的钥匙。 思路分析: (1)要证明()f x 图象上任意一点()00,P x y 关于直线2 a b x +=对称的点()00,Q a b x y +-也在()f x 的图象上。 事实上,()()()()00000y f x f a a x f b a x f a b x ==--=+-=+-????????,即得点()00,Q a b x y +-也在()f x 的图象上。 特别地,当,a b 都为0时,就是偶函数的特征了。

正弦函数图象的对称轴与对称中心

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 函数)sin(?ω+=x A y 图象的对称轴与对称中心 新疆民丰县一中 亚库普江·奥斯曼 摘要: 新课标高中数学教材上函数的性质就着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏的会出现函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴、反此例函数的对称性、三角函数的对称性,因而考查的频率一直比较高。以我的经验看,这方面一直是教学的难点,尤其是轴象函数的对称性判断。所以这里我对高中阶段所涉及的函数)sin(?ω+=x A y 的对称性知识提出自己的观点。 关键词:对称轴,对称中心,正弦型函数

函数轴对称:如果一个函数的图象沿一条直线对折,直线两则的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 中心对称:如果一个函数的图像沿一个点折旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 正弦函数x y sin =的图像既是轴对称又是中心对称,它的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形; x y sin =的图象的对称轴是经过其图象的“峰顶点”或“谷底点”,且平行于y 轴的无数条直线;它的图象关于x 轴的交点分别成中心对称图形。 ∴正弦函数x y sin =的对称轴方程为 2 π π+ =k y ,对称中心点为(0,πk ),其中 Z k ∈。 正弦型函数)sin(?ω+=x A y 是由正弦函数 x y sin =演变而成。 一般只要知道正弦函数x y sin =图象的对称轴与对称中心就可以快速准确的求出正弦型函数

相似三角形存在性问题

因动点产生得相似三角形问题 例1 2015年上海市宝山区嘉定区中考模拟第24题 如图1,在平面直角坐标系中,双曲线(k≠0)与直线y=x+2都经过点A(2, m). (1)求k与m得值; (2)此双曲线又经过点B(n, 2),过点B得直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC得面积; (3)在(2)得条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成得三角形与△ACD相似,且相似比不为1,求点E得坐标、 图1 动感体验 请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到, △ACE与△ACD相似,存在两种情况。 思路点拨 1、直线AD//BC,与坐标轴得夹角为45°. 2.求△ABC得面积,一般用割补法. 3。讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程. 满分解答 (1)将点A(2, m)代入y=x+2,得m=4.所以点A得坐标为(2,4). 将点A(2, 4)代入,得k=8。 (2)将点B(n, 2),代入,得n=4。 所以点B得坐标为(4, 2)、 设直线BC为y=x+b,代入点B(4, 2),得b=—2. 所以点C得坐标为(0,—2). 由A(2, 4) 、B(4, 2) 、C(0,-2),可知A、B两点间得水平距离 与竖直距离都就是2,B、C两点间得水平距离与竖直距离都就是4. 所以AB=,BC=,∠ABC=90°.

图2 所以S△ABC===8、 (3)由A(2, 4)、D(0, 2) 、C(0,—2),得AD=,AC=、 由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE。 所以△ACE与△ACD相似,分两种情况: ①如图3,当时,CE=AD=. 此时△ACD≌△CAE,相似比为1. ②如图4,当时,、解得CE=.此时C、E两点间得水平距离与竖直距离都就是10,所以E(10, 8)、 图3 图4 考点伸展 第(2)题我们在计算△ABC得面积时,恰好△ABC就是直角三角形、 一般情况下,在坐标平面内计算图形得面积,用割补法、 如图5,作△ABC得外接矩形HCNM,MN//y轴. 由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8. 图5 例22014年武汉市中考第24题 如图1,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm得速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm得速度向点B匀速运动,运动时间为t秒(0

正弦函数图象的对称轴与对称中心

正弦函数图象的对称轴 与对称中心 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

函数 )sin(?ω+=x A y 图象的对称轴与对称中心 新疆民丰县一中 亚库普江·奥斯曼 摘要: 新课标高中数学教材上函数的性质就着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏的会出现函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴、反此例函数的对称性、三角函数的对称性,因而考查的频率一直比较高。以我的经验看,这方面一直是教学的难点,尤其是轴象函数的对称性判断。所以这里我对高中阶段所涉及的函数)sin(?ω+=x A y 的对称性知识提出自己的观点。 关键词:对称轴,对称中心,正弦型函数 函数轴对称:如果一个函数的图象沿一条直线对折,直线两则的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 中心对称:如果一个函数的图像沿一个点折旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 正弦函数x y sin =的图像既是轴对称又是中心对称,它的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形; x y sin =的图象的对称轴是经过其 图象的“峰顶点”或“谷底点”,且平行于y 轴的无数条直线;它的图象关于x 轴 的交点分别成中心对称图形。 ∴正弦函数x y sin =的对称轴方程为2 π π+ =k y ,对称中心点为 (0,πk ),其中 Z k ∈。 正弦型函数 )sin(?ω+=x A y 是由正弦函数x y sin =演变而成。

初中数学相似三角形的存在性问题(word版+详解答案)

相似三角形的存在性问题 【考题研究】 相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快. 【解题攻略】 相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等. 判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验。 应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等. 应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组). 【解题类型及其思路】 相似三角形存在性问题需要注意的问题: 1、若题目中问题为△ABC ∽△DEF ,则对应线段已经确定。 2、若题目中为△ABC 与 △DEF 相似,则没有确定对应线段,此时有三种情况:①△ABC ∽△DEF , ②△ABC ∽△FDE 、 ③△ABC ∽△EFD 、 3、若题目中为△ABC 与 △DEF 并且有 ∠A 、 ∠D (或为90°),则确定了一条对应的线段,此时有二种情况:①、△ABC ∽△DEF ,②、△ABC ∽△DFE 需要分类讨论上述的各种情况。 【典例指引】 类型一 【确定符合相似三角形的点的坐标】 典例指引1.(2019·贵州中考真题)如图,抛物线212 y x bx c = ++与直线1 32y x =+分别相交于A ,B 两 点,且此抛物线与x 轴的一个交点为C ,连接AC ,BC .已知(0,3)A ,(3,0)C -.

三角函数图象的对称性

三角函数图象的对称性质及其应用 观察三角函数的图象,不难发现它们都具有对称性 ,虽然历届高考中关于三角函数图象的对称性问题屡有涉及,但教材中却是一个盲点。为此,本文谈谈三角函数图象的对称性质及其应用。 一、正弦曲线和余弦曲线都是轴对称图形 性质1、函数)sin(?ω+=x A y 和)cos(?ω+=x A y 的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形; )sin(?ω+=x A y 对称轴方程的求法是:令1)sin(±=+?ωx ,得 2ππ?ω+=+k x )(Z k ∈,则ω ?π22)12(-+= k x ,所以函数)sin(?ω+=x A y 的图象的对称轴方程为ω?π22)12(-+=k x ; )cos(?ω+=x A y 对称轴方程的求法是:令1)cos(±=+?ωx ,得π?ωk x =+)(Z k ∈,则ω?π-= k x ,所以函数)cos(?ω+=x A y 的图象的对称轴方程为ω?π-=k x 。 例1、函数)62sin(3π+ =x y 图象的一条对称轴方程是( ) (A )0=x (B )32π=x (C )6π-=x (D )3π=x 解:由性质1知,令1)62sin(3±=+ πx 得262πππ+=+k x )(Z k ∈,即62ππ+=k x )(Z k ∈,取1=k 时,3 2π=x ,故选(B )。 例2、函数)3 3cos(21)(π+=x x f 的图象的对称轴方程是 解:由性质1知, 令1)33cos(±=+ πx 得ππk x =+33)(Z k ∈,即93ππ-=k x )(Z k ∈,所以)3 3cos()(π+=x x f 的图象的对称轴方程是9 3ππ-=k x )(Z k ∈。 二、正弦曲线和余弦曲线都是中心对称图形 性质2、函数)sin(?ω+=x A y 和)cos(?ω+=x A y 的图象关于其与x 轴的交点分别成中心对称图形; )sin(?ω+=x A y 的对称中心求法是:令0)sin(=+?ωx ,得

正弦函数的图像和性质

1 定义编辑数学术语 正弦函数是三角函数的一种. 定义与定理 定义:对于任意一个实数x 都对应着唯一的角(弧度制中等于这个实数) ,而这个角又对应 着唯一确定的正弦值Sin X ,这样,对于任意一个实数X都有唯一确定的值Sin X与它对应, 按照这个对应法则所建立的函数,表示为f(x)=sin X ,叫做正弦函数。 正弦函数的定理:在一个三角形中,各边和它所对角的正弦的比相等,即a/Sin A=b/Sin B=c/Sin C 在直角三角形ABC中,/ C=90 ,y为一条直角边,r为斜边,X为另一条直角边(在坐标 系中,以此为底),贝U Sin A=y∕r,r= √( x^2+y^2) 2 性质 编辑图像 图像是波形图像(由单位圆投影到坐标系得出) ,叫做正弦曲线(Sine curve) 正弦函数X∈& 定义域 实数集R 值域 [-1,1] (正弦函数有界性的体现) 最值和零点 ①最大值:当X=2k ∏+ ( ∏/2) , k ∈Z 时,y(max)=1 ②最小值:当X=2k ∏+ (3∏/2), k∈Z 时,y(min)=-1 零值点:( kπ ,0) ,k∈Z 对称性 既是轴对称图形,又是中心对称图形。 1) 对称轴:关于直线X= ( π /2) +kπ , k∈Z 对称 2) 中心对称:关于点(k ∏ , 0), k∈Z对称 周期性最小正周期:y=SinX T=2 π 奇偶性 奇函数(其图象关于原点对称) 单调性 在[-∏∕2+2k ∏ , ∏∕2+2k ∏], k∈Z 上是单调递增. 在[∏∕2+2k ∏ , 3∏∕2+2k ∏], k ∈Z 上是单调递减. 3 正弦型函数及其性质 编辑 正弦型函数解析式:y=Asin (ω x+ φ )+h

函数对称性

函数对称性 一 知识点 I 函数图象本身的对称性(自身对称) 若,则具有周期性;若,则具有对称性:“内同表示周期性,内反表示对称性”。 1、图象关于直线对称 推论1:的图象关于直线对称 推论2、的图象关于直线对称 推论3、的图象关于直线对称 2、的图象关于点对称 推论1、的图象关于点对称 推论2、的图象关于点对称 推论3、的图象关于点对称 II 两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、与图象关于Y轴对称 2、与图象关于原点对称函数 3、函数与图象关于X轴对称 4、函数与其反函数图象关于直线对称 5.函数与图象关于直线对称 推论1:函数与图象关于直线对称 推论2:函数与图象关于直线对称 推论3:函数与图象关于直线对称 二典例解析: 1、定义在实数集上的奇函数恒满足,且时, ,则________。 2、已知函数满足,则图象关于__________对称。 3、函数与函数的图象关于关于__________对称。 4、设函数的定义域为R,且满足,则的图象关于__________对称。 5、设函数的定义域为R,且满足,则的图象关于__________对称。 6、设的定义域为R,且对任意,有,则关于__________对称,图象关于

__________对称,。 7、已知函数对一切实数x满足,且方程有5个实根,则这5个实根之和为() A、5 B、10 C、15 D、18 8、设函数的定义域为R,则下列命题中,①若是偶函数,则图象关于y 轴对称;②若是偶函数,则图象关于直线对称;③若,则函数图象关于直线对称;④与图象关于直线对称,其中正确命题序号为_______。

关于函数图像对称性问题

关于函数图像对称性的问题 胡春林 指导老师:刘荣玄 【摘要】函数图象的对称性反映了函数的特性,是研究函数性质的一个重要方面,函数图象的对称性包括一个函数图象自身的对称性与两个函数图象之间的对称性。 【关键词】函数图像对称性轴对称中心对称 一、函数自身的对称性的问题 函数是中学数学教学的主线,是中学数学的核心内容,也是一个高中数学的基础。函数的性质是高考的重点与热点,函数的对称性是函数的一个基本性质,也是难点,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质的一些思考。 例题1. 函数y = f (x)的图像关于点A (a ,b)对称的充要条件是 f (x) + f (2a-x) = 2b 证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P ‘(2a-x,2b-y)也在y = f (x)图像上,∴2b-y = f (2a-x) 即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。 (充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0) ∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。 故点P‘(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P‘关于点A (a ,b)对称,充分性得征。例题2 ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对 (a≠b),则y = f (x)是周期函数,且2| a-b|是其一个周期。 ②若函数y = f (x) 图像同时关于直线x = a 和直线x = b成轴对称(a≠b),则y = f (x)是周期函数, 且2| a-b|是其一个周期。 ③若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b成轴对称(a≠b),则y = f (x)是周期函数,且4| a-b|是其一个周期。 ①②的证明留给读者,以下给出③的证明:

初中数学专题03相似三角形的存在性问题(原卷版)

专题三 相似三角形的存在性问题 【考题研究】 相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快. 【解题攻略】 相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等. 判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验。 应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等. 应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组). 【解题类型及其思路】 相似三角形存在性问题需要注意的问题: 1、若题目中问题为△ABC ∽△DEF ,则对应线段已经确定。 2、若题目中为△ABC 与 △DEF 相似,则没有确定对应线段,此时有三种情况:①△ABC ∽△DEF , ②△ABC ∽△FDE 、 ③△ABC ∽△EFD 、 3、若题目中为△ABC 与 △DEF 并且有 ∠A 、 ∠D (或为90°),则确定了一条对应的线段,此时有二种情况:①、△ABC ∽△DEF ,②、△ABC ∽△DFE 需要分类讨论上述的各种情况。 【典例指引】 类型一 【确定符合相似三角形的点的坐标】 典例指引1.(2019·贵州中考真题)如图,抛物线212 y x bx c = ++与直线1 32y x =+分别相交于A ,B 两 点,且此抛物线与x 轴的一个交点为C ,连接AC ,BC .已知(0,3)A ,(3,0)C -.

高一数学函数的对称性知识点总结

高一数学《函数的对称性》知识点总结 高一数学《函数的对称性》知识点总结 一、函数自身的对称性探究 定理1.函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是 f (x) + f (2a-x) = 2b 证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P'(2a-x,2b-y)也在y = f (x)图像上,∴ 2b-y = f (2a-x) 即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。(充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0) ∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。 故点P'(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P'关于点A (a ,b)对称,充分性得征。 推论:函数 y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0 定理2. 函数 y = f (x)的图像关于直线x = a对称的充要条件是 f (a +x) = f (a-x) 即f (x) = f (2a-x) (证明留给读者) 推论:函数 y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x) 定理3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(a≠b),则y = f (x)是周期函数,且2 a-b是其一个周期。 ②若函数y = f (x) 图像同时关于直线x = a 和直线x = b成轴对称(a≠b),则y = f (x)是周期函数,且2 a-b是其一个周期。 ③若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b成轴对称(a≠b),则y = f (x)是周期函数,且4 a-b是其一个周期。 ①②的证明留给读者,以下给出③的证明: ∵函数y = f (x)图像既关于点A (a ,c) 成中心对称, ∴f (x) + f (2a-x) =2c,用2b-x代x得:

相似三角形存在性探究

相似三角形存在性探究 如图,点D 在△ABC 的边上. (1)要判断△ADB 与△ABC 相似, 添加一个条件是 (2)要判断△ADB 与△ABC 相似,AB =4、AD =2. 则AC = (3)通过(1)(2)的解答,你能说出相似三角形哪些知识? 例1如图,在△ABC 的边AB 上有一点E ,AB =4cm AE =1cm AC =3cm 。在AC 边上是否存在点F ,使得△AEF 和△ABC 相似?若存在,求出AF 的长。 变式 如图, 点E 在AB 边上从点A 向点B 运动,速度为2cm/s , 点F 同时从点C 向点A 运动,速度为1cm/s,设运动时间为t 秒,问是否存在t 的值,使得△AEF 和△ABC 相似?若存在,试求出t 的值,若不存在,请说明理由。 C A D B C E F B E F

例2如图,在平面点直角坐标系xoy中,A(1,0)、B(3,0)、C(0,-3)、P(2,1)请问在x轴上是 否存在点Q,使以P,B,Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标,若不存在,请说明理由。 变式如图,在平面点直角坐标系xoy中,A(1,0)、B(3,0)、C(0,-3)、P(2,1) (1)求过A、B、C三点的抛物线解析式 (2)请问在x轴下方的抛物线上是否存在点M,过M作 M N⊥x轴于点N,使以A,M,N为顶点的 三角形与△BCP相似?若存在,求出点M的坐标,若不存在,请说明理由。

做一做 如图,抛物线 与x 轴交于A ,B 两点(A 点在B 点左侧)与y 轴交于点C ,动直线EF (EF //x 轴)从点C 出发,以每秒1个单位长度的速度沿y 轴负方向平移,且分别交y 轴、线段BC 于E 、F 两点,动点P 同时从点B 出发,在线段OB 上以每秒2个单位长度的速度向原点O 运动,是否存在t 的值,使△BPF 与△ABC 相似?若存在试求出t 的值,若不存在,请说明理由。 42 3812+-=x x y

相似三角形的存在性问题

相似三角形的存在性问题 【真题典藏】 1.(2008年上海市第25题)(本题满分14分,第(1)小题满分5分,第(2)小题满分4分,第(3)小题满分5分)已知AB=2,AD=4,∠DAB=90°,AD//BC(如图13).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点. (1)设BE=x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域; (2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长; (3)联结BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,求线段BE的长. 图1 备用图 2.(2009年闸北区第25题)如图2,△ABC中,AB=5,AC=3,c os A= 3 10 .D为射线BA上的点(点 D不与点B重合),作DE//BC交射线CA于点E.. (1) 若CE=x,BD=y,求y与x的函数关系式,并写出函数的定义域; (2) 当分别以线段BD,CE为直径的两圆相切时,求DE的长度; (3) 当点D在AB边上时,BC边上是否存在点F,使△ABC与△DEF相似?若存在,请求出线段BF的长;若不存在,请说明理由. 图2 备用图备用图 【满分攻略】 我们先来解读第1题(2008年上海市第25题)的第(3)题,学习相似三角形的存在性问题:

第一步,把两个三角形涂上颜色或者画上阴影(如图6),寻找分类标准与分类方法. 一般来讲,不论用相似三角形的判定定理1,还是判定定理2,至少有一组角是相等的. 我们可以看到,∠ADN 的大小是确定不动的,∠AND 是钝角,∠ADN =∠DBE >∠MBE ,因此按照与∠AND 相等,分两种情况①∠ADN =∠BME ;②∠ADN =∠BEM . 第二步,拿起三角尺,按照分类情况反复比划,画两个比较准确的示意图(如图7,图8),把相等的角都标记出来. 第三步,具体情况具体分析. ① 如图7,当∠ADN =∠BME 时, 经过等量代换,∠DBE =∠BME ,这时△DBE 与△BME 就是我们熟悉的相似三角形的典型图“A 字形”,那么2 21 2 EB EM ED ED =?=,这样问题就转化为如何用含有x 的式子表示ED 的长. 已知直角梯形的两底和直腰,你说怎样求斜腰ED 呢? ②如图8,当∠ADN =∠BEM 时,经过等量代换,∠DBE =∠BEM ,这时△DBE 是等腰三角形,BC =2AD =8. 图6 图7 图8 还需要提醒的是,备用图暗示要分类讨论,合理利用试卷和答题纸上的备用图,不要急于乱画,先分好类,再反复比划,后落笔.图7不可能画准确,但是要接近,这样好观察图形间的关系. 示范一下书写,注意用标志性的语句引领书写的层次性和阅卷老师的眼球. (2)①当∠ADN =∠BME 时,∠DBE =∠BME ,这时△DBE ∽△BME . ∴2 212EB EM ED ED =?= . ∴222 12(4)2 x x ??=+-??. ∴122,10x x ==-(舍去负值). ②当∠ADN =∠BEM 时,∠DBE =∠BEM ,这时△DBE 是等腰三角形,BC =2AD =8. 综上所述,当△ADN 与△BME 相似时,BE 的长为2或8. 我们再来解读第2题(2009年闸北区第25题)的第(3)题, 求等腰三角形DEF 的存在性. 由第(1)、(3)题知,在△BDG 中,645,,cos 55 BD x DG x BDG =-=∠=. 第一步,寻找分类标准与分类方法.

相关文档
相关文档 最新文档