文档库 最新最全的文档下载
当前位置:文档库 › 固体无机化学研究进展

固体无机化学研究进展

固体无机化学研究进展
固体无机化学研究进展

我国固体无机化学的研究进展

化学学院……专业……级……

指导教师……

摘要:综合介绍了建国50年来,尤其是近20年来我国固体化学研究领域所取得的进展,阐述了该领域在合成方法上的更新以及不断向信息、能源、环保等应用领域提供的各种新材料。

关键词:固相化学无机合成无机材料应用

Abstract:Developments in the last fifty years, especially in the last two decades on the solid state inorganic chemistry in China have been reviewed,including synthetic method innovations and the new materials supplied to application fields such as information,energy sources and environmental protection.

Key words:Solid state chemistry;Inorganic synthesis;Inorganic materials;Application

当前无机化学的发展趋向主要是新型的无机化合物的合成和应用,以及新的研究领域的开辟和建立。因此21世纪理论与计算方法的运用将大大加强理论和实验更加紧密的结合。同时各学科间的深入发展和学科间的相互渗透,形成许多学科的新的研究领域。例如,生物无机化学就是无机化学与生物学结合的边缘学科;固体无机化学是十分活跃的新兴学科;作为边沿学科的配位化学日益与其它相关学科相互渗透与交叉。

1 无机合成与制备化学研究进展

固体无机化合物材料的制备大多是利用高温固相反应,这些反应难以控制,能耗大,成本高。为此,发展了其它各种合成方法,如前体法、置换法、共沉淀法、熔化法、水热法、微波法、气相输运法、软化学法、自蔓延法、力化学法、

分子固体反应法(包括固相有机反应和固相配位化学反应)等。其中,近年来提出的软化学合成方法最为突出,它力求在中低温或溶液中使起始反应物在分子态尺寸上均匀混合,进行可控的一步步反应, 经过生成前驱物或中间体,最后生成具有指定组成、结构和形貌的材料。

1.1 光学材料的研究

苏勉曾等[1]用均相沉淀法在水溶液中合成了氟氯化钡铕(Ⅱ),经过处理后制得无余辉、发光性能良好的多晶体。用这种多晶体制成的高速增感屏, 其增感因素是钨酸钙中速屏的4~5倍, 已被全国2000所医院使用。1983年,苏勉曾等在系统研究氟卤化物的X-射线发光及紫外发光现象的过程中,发现了BaFX:Eu2+晶体经X-射线辐射后着色的现象,开始注意到晶体中色心生成,并于1984年开始研究晶体的X-射线诱导的光激励发光现象及发光机理,用光激励发光材料制成了图像板,作为X-射线的面探测器。他们还设计制作了一台由光学精密机械和计算机组成的计算X-射线图像仪, 已可以获得清晰的X-射线透视图象和粉末晶体衍射图像。

石春山等[2]研究出一种组成为BaLiF

3

:Eu2+、具有存储X-射线辐射能以及热释发光和光激励发光性质的氟化物晶体,很有希望成为一种性能更加优越的新型

X-射线存储材料。王世华、赵新华等[3]发现EuI

2和CsSmI

3

在高压下皆有相变

化,并已将此研究成果用于电光源材料。

1.2 多孔晶体材料的研究

徐如人、庞文琴等在水热法合成各种类型分子筛的基础上,发展了溶剂热合成法,利用前驱体和模板剂,制备了一系列水热技术无法合成的新型磷酸盐及砷酸盐微孔晶体,所合成的JDF-20是目前世界上孔口最大的微孔磷酸铝[4]庞文琴等[5]还系统研究了介孔分子筛的不同合成途径,首创了湿凝胶加热合成法[6]及干粉前驱体灼烧合成法合成MCM-41。她们还开发了双硅源法并成功合成了丝光沸石大单晶体;在非碱性介质中利用F-离子作矿化剂,成功合成了一系列高硅沸石分子筛大单晶体及一些笼形氧化硅大单晶。

1.3 纳米相功能材料及超微粒的研究

近几年来,我国科学家在纳米管和其它功能纳米材料研究方面,取得了具有重要影响的7项成果,引起国际科技界的很大关注。范守善等首次利用碳纳米管成功地制备出GaN一维纳米棒,并提出了碳纳米管限制反应的概念,该项成果成为1997年Science杂志评选出的十大科学突破之一;他们还与美国斯坦福大学戴宏杰教授合作,在国际上首次实现硅衬底上的碳纳米管阵列的自组装生长,推进了碳纳米管在场发射和纳米器件方面的应用研究。洪广言等应用醇盐法制备

了十几种稀土氢氧化物、氧化物的超微粉;用络合-沉淀法制备了超微Y

2O

3

粉;

运用溶胶-凝胶法制备了CeO

2

纳米晶及多种稀土复合氧化物超微粉;运用共沉淀

法制备了铝酸镧超微粉;采用乙二醇为溶剂和络合剂制备的PbTiO

3

超微粉,比传统固相反应合成温度降低了约230℃[7]。

1.4 无机膜与敏感材料的研究

孟广耀等[8]利用高温熔盐离子交换法获得固体电解质Ag+-β″-Al2O3,设计并发展了全固态SOx传感器;中国科技大学气敏传感器实验室还研制了CO、C2H2、C2H4等多种气敏传感器,有的已达国际先进水平。彭定坤等[9]建立了

先进而有效的溶胶-凝胶工艺,制得了γ-Al

2O

3

超微粉及Y2O3稳定的ZrO2膜;

通过不同溶剂中的溶胶-凝胶过程,研制了有支撑体和无支撑体的TiO

2

膜。彭定坤、孟广耀等发展了化学气相沉积法(CVD)和金属有机化学气相沉积法(MOCVD),

合成了高温超导体YBa

2Cu

3

O

7

-x薄膜和透氢的Pd-Ni、Pd-Y膜。

1.5 电、磁功能材料的研究

苏勉曾、林建华等用软化学方法合成一系列稀土-过渡金属间化合物[10],制得了10余种满足制备稀土永磁粘结磁体要求的金属间化合物。任玉芳等合成了300多种不同组成的稀土与Ti、 V、 Mn、 Fe、 Co、 Ni、 Cu、 Mo、 W、Ir、 In、 Sn的复合氧化物及稀土复合硫化物,稀土复合氟化物,稀土磷化物;研究了它们的结构和性质,光电、热电、气敏、热敏、磁敏等传感性质,快离子导电性质、超导性质及影响电性的规律;并研究开发了这些性质的应用。1987

年,任玉芳等[11]在国际上较早提出临界温度为90.4K的掺银的Y-Ba-Cu-Ag-O 超导材料。

2 室温和低热固相化学反应

从固体无机化学的发展过程来看,固相反应尤其是高温固相反应一直是人们制备新型固体材料的主要手段之一。但长期以来,由于传统的材料主要涉及一些高熔点的无机固体,如硅酸盐、氧化物、金属合金等,通常合成反应多在高温进行,所得的是热力学稳定的产物,而那些介稳中间物或动力学控制的化合物往往只能在较低温度下存在,它们在高温时分解或重组成热力学稳定产物。为了得到介稳态固相反应产物,扩大材料的选择范围,有必要降低固相反应温度。2.1 固相反应机理与合成

忻新泉等[12]近10年来对室温或近室温下的固相配位化学反应进行了系统的研究,探讨了低热温度固-固反应的机理,提出并用实验证实了固相反应的四个阶段,扩散-反应-成核-生长,每步都有可能是反应速率的决定步骤;总结了固相反应遵循的特有的规律;利用固相化学反应原理,合成了几百个新原子簇化合物、新配合物以及固配化合物。

2.2 原子簇与非线性光学材料

非线性光学材料是目前材料科学中的热门课题。近10多年来,人们对三阶非线

以及酞菁类化合物上,性光学材料的研究主要集中在半导体、有机聚合物、C

60

而对金属簇合物的非线性的研究几乎没有。忻新泉等在低热固相反应合成大量簇合物的基础上,开展了探索研究,发现Mo(W,V)-Cu(Ag)-S(Se)簇合物具有比目前已知非线性光学材料更优越的三阶非线性光限制效应,使我国在这一前沿领域的创新工作中占有一席之位。

2.3 合成纳米材料新方法

纳米材料是当前固体物理、材料化学中的又一活跃领域。制备纳米材料的方法

总体上可分为物理方法和化学方法两大类。物理方法包括熔融骤冷、气相沉积、溅射沉积、重离子轰击和机械粉碎等;化学方法主要有热分解法、微乳法、溶胶-凝胶法、LB膜法等。贾殿赠、忻新泉等[13]发现用低热或室温固相反应法可一步合成各种单组分纳米粉体,并进一步开拓了固相反应法制备纳米材料这一崭新领域,取得了令人耳目一新的成绩,如在深入探讨影响固相反应中产物粒子大小的因素的基础上,实现了纳米粒子大小的可调变;利用纳米粒子的原位自组装制备了各种复合纳米粒子。

2.4 绿色化学

绿色化学是一门从源头上减少或消除污染的化学,它解决的实质性问题是减少合成反应的污染或无污染。低热固相化学反应不使用溶剂,对环境的友好及独特的节能、高效、无污染、工艺过程简单等优点,使之成为绿色合成化学值得考虑的手段之一。近年来,我们在这方面做了许多有益的尝试,取得了许多有意义的结果,如尝试在低热温度下用固体FeCl

.6H2O氧化苯偶铟类化合物,成功地合

3

成了相应的苯偶酰类化合物[14];尝试将低热固相反应合成方法用于芳醛、芳胺及过渡金属醋酸盐的原位缩合-配位反应,高产率地合成了相应的Schiff碱配合物[15]。有关固相反应在绿色化学中的应用潜力有待进一步发掘,尤其是在合成工业绿色化方面需要更多的投入。

3 参考文献

参考文献:

[1]苏勉曾, 龚曼玲, 阮慎康. 氟氯化钡铕的合成、发光性能以及在X-射线照像增感屏中的应用. 化学通报,1980, (11): 656~657.

[2]Xia Changtai, Shi Chunshan. BaLiF3(Eu2+): A promising X-ray storage phosphor.

Mater. Res. Bull., 1997, 32(1): 107~112.

[3]王林同, 王世华, 赵新华等. 高压后EuI2, RbEu2I5, RbEuI3和Rb3EuI5性质的研究.

科学通报, 1995, 40(10): 957.

[4]Huo Qisheng, Xu Ruren, Li Shougui et al. Synthesis and characterization of

a novel extra large ring of aluminophosphate JDF-20. J. Chem. Soc., Chem.

Commun., 1992, 875~876.

[5] Sun Yan, Lin Wenyong, Chen Jiesheng et al. New routes for synthesizing

mesoporous materials. Stud. Surf. Sci. Catal., 1997, 105: 77~84.

[6]Lin Wenyong, Chen Jiesheng, Sun yan et al. Bimodal mesopore distribution in

a silica prapared by calcining a wet surfactant-containing silicate gel. J.

Chem. Soc., Chem. Commun., 1995, 2367~2368.

[7]余大书等. 乙二醇法制备PbTiO3超微粉末的研究. 功能材料(增刊),1995:701~703.

[8]Yang Jianhua, Yang Pinghua, Meng Guangyao. A fully solid-state SOx (x=2,3)

gas sensors utilizing Ag+-β″-alumina as solid electrolyte. Sensors and Actuators, 1996, (31): 209.

[9]Xia Changrong, Wu Feng, Meng Zhaojing et al. Boechmite Sol properties and

preparation of two large alumina membrane by a Sol-gel process. J. Membrane

Science, 1996, (116): 9.

[10]Lin J H, Li S F, Chen Q M et al. Preparation of Nd-Fe-B magnetic materials

by soft chemistry and reduction-diffusion process. J. Alloys and Compds., 1997, 249: 237~241.

[11] Ren Yufang, Meng Jian et al. Structure and superconductivity for YBa2Cu3O7-Agx.

Solid State Commun., 1990, 76(9): 1103~1105.

[12]周益明, 忻新泉. 低热固相合成化学. 无机化学学报, 1999, 15(3):273~292.

[13](a) 贾殿赠,俞建群,忻新泉. 一种固相化学反应制备纳米材料的方法. 中国: 98111231.5, 1998.

(b) Ye X R, Jia D Z, Yu J Q et al. One step solid-state reactions at ambient

temperatures — A novel approach to nanocrystal synthesis. Adv. Mater., 1999,

11(11): 941~942.

[13]Zhou Y M, Ye X R, Xin X Q. Solid state synthesis of benzils at low-heating

temperatures. Synth. Commun., 1999, 29(13): 2229~2234.

[14]Zhou Y M, Ye X R, Xin F B et al. Solid state self-assembly synthesis of

cobalt(Ⅱ), nickel(Ⅱ), copper(Ⅱ) and zinc(Ⅱ) complexes with a bis-Schiff base. Transition Met. Chem., 1999, 24(1): 118~120.

中药配位化学研究进展

?综述? 中药配位化学研究进展 李英华,吕秀阳3,刘 霄,柳 叶 (浙江大学制药工程研究所,浙江杭州310027) [摘要] 从中药毒理学和药理学、中药功效成分的改进以及中药功效成分的分离制备和鉴定3个方面论述了 中药配位学说在中药研究领域中的重要意义,并列举了中药配位研究领域常用的技术。指出中药配位热力学和动力学的研究、中药中微量元素的存在状态与药效和毒性关系的研究、利用配位作用开发高效分离吸附剂或者高效分离色谱柱、利用有机成分与某些金属或微量元素生成有色配合物的特性开发高灵敏度的分析方法可能成为中药现代化研究过程中的热点和关键。 [关键词] 配位化学;中药 [中图分类号]R 284.3 [文献标识码]A [文章编号]100125302(2006)1621309205 [收稿日期] 2005210216 [基金项目] 浙江省中医药科研基金研究计划项目(2005C188)[通讯作者] 3吕秀阳,T el :(0571)87952683,E 2mail :luxiuyang @zju 1edu 1cn 配位化合物是指由可给出孤对电子或多个不定域电子的一定数目的离子或分子(统称配位体)和具有接受孤对电子或多个不定域电子空位的原子或离子(统称中心原子)按一定组成和空间构型所形成的化合物。随着生物无机化学的发展和分析手段的提高,越来越多的研究表明配位化合物在生命过程中起着重要作用。如植物中的叶绿素和哺乳动物体内的血红素分别是动植物体内的有机分子与金属元素镁、铁形成的配合物,含铜的天然有机分子蛋白质的配合物在无脊椎动物的血液中执行着输氧的功能。研究配合物,特别是天然有机配合物,提高生命质量是许多化学家、植物化学家和药物化学家追求的目标。随着近年来分离技术的发展,越来越多的研究者们投入到天然药物配合物的研究中来,成果不断出现。作者对配位化学在中药领域的研究进展作一综述,探讨实现中药现代化的研究途径。 1 中药配位学说的提出 许多学者在中药或天然药物有效成分寻找的过程中发现多数中药或者天然药物存在着越提纯疗效越差或者出现毒副作用等问题,而某些剧毒药物在和其他药物配伍后出现降低毒性或者转化为某种疗效等现象。在解释这些问题时,“唯有机成分有效论”和“微量元素对号入座论”慢慢表现出局限性。因此,在总结两者的基础上,依据中药中的多数有机大分子化合物含有羟基、羰基、羧基、氨基、巯基、杂环氮等配位基团可以作为配体,而微量元素大多可作为中心离子与有机分子形成配合物,有机成分、微量元素及其形成的配合 物之间的配位平衡可以使它们之间产生相互的协同、拮抗或产生新的生物学活性的特性,曹治权教授提出中药有效成分的配位学说[1]。中药配位化学学说认为:中药有效成分可以是其中的某种或某几种有机成分,也可以是其中的微量元素,但更多可能是有机成分与微量元素组成的配位化物,天然药物以其中的有机物分子与微量元素间形成的配合物在动植物及人体的生命活动中发挥作用。中药配位学说的提出为中药有效成分的发现、中药药理学和毒理学的快速发展以及天然活性成分的分离制备等方面起着重要的指导作用。 2 中药配位学说中的实验研究方法学 中药配位学说的发展离不开分离、分析及结构表征技术,分离分析技术的飞速发展大大促进了中药配位化学领域的研究。目前应用于从复杂的中药体系中分离出中药配位化合物的现代分离技术有:膜分离法、色谱法和电泳技术等,色谱法又分为高效液相色谱法、柱色谱法、薄层色谱、纸色谱和凝胶色谱等。光谱技术是用来分析表征配合物的主要方法,用来研究天然药物配合物的组成和结构,进行定性和定量分析,包括紫外,红外,荧光,核磁共振,质谱,拉曼光谱,X 衍射等[2]。 张斌等[3](1998)合成了三(32羟基黄酮)合Al 3+配合物并制得其单晶,X 射线衍射结果表明其结构属于三方晶系,分子中每个32羟基黄酮以其独特的酮基和羟基同时与Al 3+配位,3个配体中的6个配位氧原子形成扭曲的配位八面体结构。张淑敏等[4]制备了Fe 3+与槲皮素(Qu )的配合物并探讨了其配位机理,结果槲皮素与Fe 3+生成的配合物在430 nm 处有最大吸收,配合物的组成为Fe 3+∶Qu =1∶2。郭振楚等[5]研究了氨基葡萄糖及羧甲基氨基葡萄糖分别与铁(Ⅱ)、锌(Ⅱ)、钴(Ⅱ)、铜(Ⅱ )形成配合物的UV ,IR 和1H 2NMR 光谱特征。发现配合物发生了明显紫移,在红外光谱和1H 2

高中无机化学知识点归纳

无机化学知识点归纳 一、常见物质的组成和结构 1、常见分子(或物质)的形状及键角 (1)形状:V型:H2O、H2S 直线型:CO2、CS2 、C2H2平面三角型:BF3、SO3 三角锥型:NH3正四面体型:CH4、CCl4、白磷、NH4+ 平面结构:C2H4、C6H6 (2)键角:H2O:104.5°;BF3、C2H4、C6H6、石墨:120°白磷:60° NH3:107°18′CH4、CCl4、NH4+、金刚石:109°28′ CO2、CS2、C2H2:180° 2、常见粒子的饱和结构: ①具有氦结构的粒子(2):H-、He、Li+、Be2+; ②具有氖结构的粒子(2、8):N3-、O2-、F-、Ne、Na+、Mg2+、Al3+; ③具有氩结构的粒子(2、8、8):S2-、Cl-、Ar、K+、Ca2+; ④核外电子总数为10的粒子: 阳离子:Na+、Mg2+、Al3+、NH4+、H3O+; 阴离子:N3-、O2-、F-、OH-、NH2-; 分子:Ne、HF、H2O、NH3、CH4 ⑤核外电子总数为18的粒子: 阳离子:K+、Ca 2+; 阴离子:P3-、S2-、HS-、Cl-; 分子:Ar、HCl、H2S、PH3、SiH4、F2、H2O2、C2H6、CH3OH、N2H4。 3、常见物质的构型: AB2型的化合物(化合价一般为+2、-1或+4、-2):CO2、NO2、SO2、SiO2、CS2、ClO2、CaC2、MgX2、CaX2、BeCl2、BaX2、KO2等 A2B2型的化合物:H2O2、Na2O2、C2H2等 A2B型的化合物:H2O、H2S、Na2O、Na2S、Li2O等 AB型的化合物:CO、NO、HX、NaX、MgO、CaO、MgS、CaS、SiC等 能形成A2B和A2B2型化合物的元素:H、Na与O,其中属于共价化合物(液体)的是H和O[H2O和H2O2];属于离子化合物(固体)的是Na和O[Na2O和Na2O2]。 4、常见分子的极性: 常见的非极性分子:CO2、CS2、BF3、CH4、CCl4、、SF6、C2H4、C2H2、C6H6等 常见的极性分子:双原子化合物分子、H2O、H2S、NH3、H2O2、CH3Cl、CH2Cl2、CHCl3等 5、一些物质的组成特征: (1)不含金属元素的离子化合物:铵盐 (2)含有金属元素的阴离子:MnO4-、AlO2-、Cr2O72-

生物无机化学的认识

生物无机化学的认识 生物无机化学是无机化学、生物化学、医学等多种学科的交叉领域。其研究对象是生物体内的金属(和少数非金属)元素及其化合物,特别是衡量金属元素和生物大分子配体形成的生物配合物,如各种金属酶、金属蛋白等。侧重研究它们的结构-性质-生物活性之间的关系以及在生命环境内参与反应的机理。 生物无机化学虽然听起来有些不实用,其实在生活中,我们经常可以看到一些运用了生物无机化学的地方。比如农业方面,我们熟知的化肥,就运用了生物无机化学的知识,农作物的生长发育,不仅需要常量营养元素,还需要如铁、锰、铜、锌、钼等微量元素,这些微量元素和氮、磷、钾同等重要,不可代替。同样,在我们熟知的一些保健品,像“脑白金”、“黄金搭档”等等,都是补充我们人体内的微量元素的保健食品。以我们最熟悉的钙来说,从小我们的父母就给我们补钙,喝牛奶、吃钙片等等方式,可见钙对于我们的重要性。人体缺钙,就容易腿软、抽筋、蛀牙,但钙多了也不行,人体内的钙过量容易得佝偻病。所以,微量元素虽然重要,但是也不能过多。 生物无机化学无疑正在迅速发展。生物无机化学主要分为两部分:一是研究生物体本身微量元素的作用,二是研究外界微量元素对机体的影响。 含有微量元素的蛋白是生物无机化学中偏向生物领域的研究对象,做此项研究主要依靠生物化学技术。含有微量元素的蛋白是微量元素与蛋白质形成的配合物,与酶的区别在于含有微量元素的蛋白并不表现催化活性,但却有其他的重要功能。现在的研究在于发现新的蛋白,确定其结构、性质。现在热门的蛋白有硒蛋白,因为硒蛋白是硒在体内存在和发挥生物功能的主要形式。硒的作用,主要在癌症、神经退行性疾病和病毒等方面,但结论不统一。现在主要在探索新的硒蛋白作为预防药物开发、癌症治疗和药物筛选靶标。如杜明等通过硫酸铵沉淀等方法,从富硒灵芝中获得了一种新的含硒蛋白,并研究了它的抗氧化活性与其硒含量间的关系。研究发现该蛋白的抗氧化活性与其硒含量具有相关性。 无机药物的发展在生物无机领域中有很重要的地位。顺铂的抗肿瘤作用的发现开辟了无机药物化学的新领域。在抗癌药物应用中,顺铂药物目前仍在临床上使用,主要有四种铂配合物:顺铂、卡铂、顺糖氨铂、奥沙利铂。从1980年发现二烃基锡衍生物具有抗癌活性以来,人们先后合成了具有顺铂结构的二烃基二卤化锡配合物,与卡铂结构类似的有机锡化合物,以及有机锡羧酸衍生物等等。在锗化合物方面,从发现1971年合成的β-羧基乙基锗倍半氧化物具有抗癌活性以来,人们先后合成了许多有机的锗化合物。此外还有茂钛衍生物和稀土配合物。因为癌症是人类健康寿命最主要的杀手,所以在抗癌药物的研究开发方面将有很大

当代无机化学研究前沿与进展研究

化学前沿 【论文摘要】: 无机化学是化学学科里其它各分支学科的基础学科,在近年来取得较突出的进展,主要表现在固体材料化学、配位化学等方面。未来无机化学的发展特点是各学科交叉纵横相互渗透,用以解决工业生产与人民生活的实际问题。文章就当代无机化学研究的前沿与未来发展趋势做了简要阐述。 当前无机化学的发展趋向主要是新型的无机化合物的合成和应用,以及新的研究领域的开辟和建立。因此21世纪理论与计算方法的运用将大大加强理论和实验更加紧密的结合。同时各学科间的深入发展和学科间的相互渗透,形成许多学科的新的研究领域。例如,生物无机化学就是无机化学与生物学结合的边缘学科;固体无机化学是十分活跃的新兴学科;作为边沿学科的配位化学日益与其它相关学科相互渗透与交叉。 根据国际上最新进展和我国的具体情况,文章就“无机合成与制备化学研究进展”和“我国无机化学最新研究进展”两个方面进行阐述: 一、无机合成与制备化学研究进展 无机合成与制备在固体化学和材料化学研究中占有重要的地位, 是化学和材料科学的 基础学科。发展现代无机合成与制备化学, 不断地推出新的合成反应和路线或改进和绿化现有的陈旧合成方法, 不断地创造与开发新的物种, 将为研究材料结构、性能(或功能) 与反应间的关系、揭示新规律与原理提供基础。近年来无机合成与制备化学研究的新进展主要表现为以下几个方面: (一)极端条件合成 在现代合成中愈来愈广泛地应用极端条件下的合成方法与技术来实现通常条件下无法进行的合成, 并在这些极端条件下开拓多种多样的一般条件下无法得到的新化合物、新物相与物态。超临界流体反应之一的超临界水热合成就是无机合成化学的一个重要分支。 (二)软化学合成 与极端条件下的合成化学相对应的是在温和条件下功能无机材料的合成与晶化, 即温 和条件下的合成或软化学合成。由于苛刻条件对实验设备的依赖与技术上的不易控制性, 减弱了材料合成的定向程度。而温和条件下的合成化学——即“软化学合成”,正是具有对实验设备要求简单和化学上的易控性和可操作性特点, 因而在无机材料合成化学的研究领域中 占有一席之地。 (三)缺陷与价态控制 缺陷与特定价态的控制是固体化学和固体物理重要的研究对象, 也是决定和优化材料 性能的主要因素。材料的许多性质如发光、导电、催化等都和缺陷与价态有关。晶体生长行为和材料的反应性与缺陷关系密切, 因此, 缺陷与价态在合成中的控制显然成为重要的科学题。缺陷与特定价态的生成和变化与材料最初生成条件有关, 因此,可通过控制材料生成条件来控制材料中的缺陷和元素的价态。 (四)计算机辅助合成 计算机辅助合成是在对反应机理有了了解的基础上进行的理论模拟过程。国际上一般为建立与完善合成反应与结构的原始数据库, 再在系统研究其合成反应与机理的基础上, 应用神经网络系统并结合基因算法、退火、mon te2carlo 优化计算等建立有关的合成反应数学模型与能量分布模型, 并进一步建立定向合成的专家决策系统。

无机化学合成论文

高分子纳米复合材料的研究进展摘要:阐述了高分子纳米复合材料的发展研究现状及高分子纳米复合材料的制备方法、结构性质和性能,同时介绍了高分子纳米材料的表征技术及应用前景。 关键词:高分子;纳米材料;复合材料;制备;表征;应用 1、引言 纳米材料科学是一门新兴的并正在迅速发展的理、胶体化学、配位化学、化学反应动力学和表面、界面科学等多种学科,在实际应用和理论上都具有极大的研究价值,所以成为近些年来材料科学领域研究的热点之一, 被誉为“21世纪最有前途的材料”[ 1 ,2 ]。高分子纳米复合材料是近年来高分子材料科学的一个发展十分迅速的新领域。一般来说,它是指分散相尺寸至少有一维小于100 纳米的复合材料。这种新型复合材料可以将无机材料的刚性、尺寸稳定性和热稳定性与高分子材料的韧性、可加工性及介电性质完美地结合起来,开辟了复合材料的新时代,制备纳米复合材料。已成为获得高性能复合材料的重要方法之一。 高分子材料科学的涉及非常广泛,其中一个重要方面就是改变单一聚合物的凝聚态,或添加填料来实现高分子材料使用性能的大幅提升。因此纳米粒子的特异性能使其在这一领域的发展过程中顺应了高分子复合材料对高性能填料的需求, 对高分子材料科学突破传统理念发挥重要的作用。纳米材料科学与高分子材料科学的交融互助就产生了高分子纳米复合材料[3]。

2、高分子纳米复合材料的制备 高分子纳米复合材料的涉及面较宽,包括的范围较广,近年来发展建立起来的制备方法也多种多样[4、6 ],可大致归为四大类:纳米单元与高分子直接共混,在高分子基体中原位生成纳米单元;在纳米单元存在下单体分子原位聚合生成高分子及纳米单元和高分子同时生成。 2.1纳米单元的制备 可用于直接共混的纳米单元的制备方法种类繁多[7--10],通常有两种形式的制备:从小到大的构筑式,即由原子、分子等前体出发制备;从大到小的粉碎式,即由常规块材前体出发制备(一般为了更好控制所制备的纳米单元的微观结构性能,常采用构筑式制备法) 。总体上又可分为物理方法、化学方法和物理化学方法三种。总的来说,这类纳米单元与高分子直接共混的方法简单易行,可供选择的纳米单元种类多,其自身几何参数和体积分数等便于控制,但所得复合体系的纳米单元空间分布参数一般难以确定,纳米单元的分布很不均匀,且易于发生团聚,影响材料性能,改进方法是对制得的纳米单元做表面改性,改善其分散性、耐久性,提高其表面活性,还能使表面产生新的物理、化学和机械性能等特性。 2.2纳米单元的表面改性 纳米单元表面改性方法根据表面改性剂和单元间有无化学反应可分为表面物理吸附方法和表面化学改性方法两类吸附包裹聚合改性一般是指两组份之间除了范德华力、氢键或配位键相互作用外,没有主离子键或共价键的结合,采用的方法主要有两种:在溶液或熔体中聚

生物无机化学论文-血液的颜色

血液的颜色

中文摘要 摘要:世界是斑斓多彩的。有七色的彩虹,绚丽的烟花,五颜六色的花卉。如果问你血液是什么颜色?大部分人也许会脱口而出:红色。不错,日常中的哺乳动物和我们人类的血液都是鲜红的。但是科学家会告诉你:血液是多彩的。那么血液都有什么颜色?它们是什么生物?血液颜色的多样化是为什么?本文将会逐一从生物学、化学层面为你解答以上问题。 关键词:血液颜色化学结构生物 英文摘要 Abstract:The world is colorful.There are seven colors of the rainbow, colorful fireworks, colorful flowers.If you ask what color your blood? Most people may blurt out: red.Yes, the blood of mammals and humans are bright red in our daily life.But scientists will tell you: blood is colorful.So what's the color of blood?What are they biological? Why is the diversity of the color of blood? These questions will be answered one by one from a biological, chemical levels for you. Keywords: blood color chemical structure biological

《无机化学》第十章 固体结构之课后习题参考答案

第十章固体结构之课后习题参考答案 7解:最低的为KBr。因为它们均为离子晶体,其离子所带电荷越高,离子半径越小,离子键越强,即晶体熔点就越高。MgO中正负离子均带2个电荷,离子键最强,而1价离子中,KBr的正负离子半径之和最大,则离子键最弱,熔点最低。 8解:(1)熔点:NaF>NaCl>NaBr>NaI。因为阳离子相同时,阴离子从F-→I-离子半径增大,则离子键依次减弱,熔点也依次减弱。 (2)MgO>CaO>SrO>BaO。原因同(1)。 9解:(1):8e-;(2)(9-17)e-:(3)(18+2)e-;(4)18e- 10解:(2)的。因阴离子的极化率大于阳离子的,而体积越大,阴离子的极化率也越大。11解:(4)>(3)>(1)>(2).因阳离子的电荷越高,半径越小,即Z/r值越大,其离子极化作用就越强。 13解:(1)色散力;(2)色散力;(3)取向力,诱导力,色散力,氢键;(4)取向力,诱导力,色散力;(5)色散力;(6)色散力;(7)取向力,诱导力,色散力。 14解:不含氢键的有:(1)和(2)。 15解:(1)两者均为分子晶体,但因HF中存在分子间氢键,增大了分子间作用力,使其沸点反高于HCl。 (2)两者均为典型的离子晶体,而离子晶体当电荷相同时,离子半径越小,其离子键越强,晶体的沸点就越高,所以NaCl的沸点高于CsCl。 (3)因Ti4+离子所带电荷高,离子半径又小,即Z/r值非常大,其极化作用很强,导致Ti-Cl 之间由离子键转化为了共价键,成为分子晶体,所以其沸点大大低于离子晶体LiCl。 (4)两者均为分子晶体,且分子量也相同。但沸点相差较大。这是因为乙醇分子(后者)之间存在分子间氢键,增大了分子间的作用力导致。 16解:因Ag+为18e电子构型的离子,其极化作用和变形性均大,而阴离子的半径从F-到I-依次增大,变形性也依次增加,导致Ag+与X-离子之间的极化作用从AgF到AgI依次增强,化学键从离子键逐步向共价键过渡,所以溶解度依次减小,即AgF易溶,其它难溶,且溶解度依次减小。 17解:(1)NaCl的沸点最高。因其为离子晶体,沸点高。而Na因金属键较弱,沸点较低。(2)CaF2的溶解度最小。因它们全为离子晶体,其离子键越强,打断所需能量高,则溶解度越小。而CaF2的Z/r值最大,离子键最强,所以溶解度最小。 (3)H2O的气化热最大。因它们均存在分子间的作用力,但H2O分子间还有氢键存在,增大了分子间的作用力,使其的气化热最大。 (4)CO2的熔化焓最小。因SiO2为原子晶体,熔点非常高,MgO为离子晶体,熔点也高。H2O和CO2为分子晶体,熔点低。但CO2为非极性分子,分子间只有色散力,所以熔化焓最小。 1

紫外可见光谱在生物无机化学中的应用

紫外可见光谱在生物无机化学中的应用 摘要综述了紫外可见光谱在生物无机化学各方面应用中的最新进展和独特之处,探讨了紫外可见光谱研究金属离子与生物分子相互作用的基本原理及所得主要信息。 关键词紫外可见光谱生物无机化学 生物无机化学是近几十年来发展起来的一门新兴的边缘学科,它是无机化学(特别是配位化学) 、生物化学、医学临床化学、营养化学、环境科学等学科相互渗透、相互融合的产物,是近年来自然科学中十分活跃的一个领域,是在分子水平上研究生物金属与生物配体之间的相互作用,研究分析测定这些生物化合物结构和性能以及它们在活体中作用的一门学科。 生物无机化学发展迅速。除了在金属蛋白和金属酶方面由铁、铜、锌?8943 .等扩大到诸如镍酶、钒酶、锰酶、钼酶、钨酶?8943 .以外,还从金属蛋白扩大到以非金属元素为活性元素的蛋白。研究各种金属与生物配体相互作用的方法有电子吸收光谱、圆二色谱、红外光谱、核磁共振谱、X 射线衍射光谱、荧光光谱等。在生物分子结构的研究中,很重要的目的是了解金属蛋白和金属酶。金属蛋白和金属酶中仅含少量的金属离子,但它们起至关重要的作用,即它们及其配位环境往往就是生物分子的活性中心,因而测定金属离子及其微环境的结构是很有意义的。金属蛋白和金属酶中金属离子的基态及最低激发态往往与它们所处的环境有直接的联系。因此,金属蛋白和金属酶的电子吸收光谱研究是表征金属离子所处环境的主要手段。本文对紫外可见光谱(电子吸收光谱) 在生物无机化学中的应用研究最新进展作了综述。 1 紫外可见光谱的基本原理 所有的光谱都是由于粒子(原子、离子、自由基、分子、晶体等) 与电磁波以某种类型的相互作用产生的。电子吸收光谱是由电子在一系列能级上跃迁产生的。当电磁波的能量接近△E电子的能量时,可引起电子在各能级之间的跃迁并伴随分子的振动能级和转动能级的变化而产生的吸收光谱。由于是电子跃迁所需的能量通常落在光谱的紫外、可见区,因而又称作紫外可见吸收光谱。从本质上说,电子跃迁是原子或分子

当代无机化学研究前沿与进展

当代无机化学研究前沿与进展 【摘要】: 无机化学是化学学科里其它各分支学科的基础学科,在近年来取得较突出的进展,主要表现在固体材料化学、配位化学等方面。未来无机化学的发展特点是各学科交叉纵横相互渗透,用以解决工业生产与人民生活的实际问题。文章就当代无机化学研究的前沿与未来发展趋势做了简要阐述。 【关键词】:无机化学;研究前沿;研究进展 当前无机化学的发展趋向主要是新型的无机化合物的合成和应用,以及新的研究领域的开辟和建立。因此21世纪理论与计算方法的运用将大大加强理论和实验更加紧密的结合。同时各学科间的深入发展和学科间的相互渗透,形成许多学科的新的研究领域。例如,生物无机化学就是无机化学与生物学结合的边缘学科;固体无机化学是十分活跃的新兴学科;作为边沿学科的配位化学日益与其它相关学科相互渗透与交叉。 根据国际上最新进展和我国的具体情况,文章就“无机合成与制备化学研究进展”和“我国无机化学最新研究进展”两个方面进行阐述: 一、无机合成与制备化学研究进展 无机合成与制备在固体化学和材料化学研究中占有重要的地位, 是化学和材料科学的基础学科。发展现代无机合成与制备化学, 不断地推出新的合成反应和路线或改进和绿化现有的陈旧合成方法, 不断地创造与开发新的物种, 将为研究材料结构、性能(或功能) 与反应间的关系、揭示新规律与原理提供基础。近年来无机合成与制备化学研究的新进展主要表现为以下几个方面: (一)极端条件合成 在现代合成中愈来愈广泛地应用极端条件下的合成方法与技术来实现通常条件下无法进行的合成, 并在这些极端条件下开拓多种多样的一般条件下无法得到的新化合物、新物相与物态。超临界流体反应之一的超临界水热合成就是无机合成化学的一个重要分支。 (二)软化学合成 与极端条件下的合成化学相对应的是在温和条件下功能无机材料的合成与晶化, 即温和条件下的合成或软化学合成。由于苛刻条件对实验设备的依赖与技术上的不易控制性, 减弱了材料合成的定向程度。而温和条件下的合成化学——即“软化学合成”, 正是具有对实验设备要求简单和化学上的易控性和可操作性特点, 因而在无机材料合成化学的研究领域中占有一席之地。

生物无机化学研究进展

生物无机化学研究进展 1.生物无机化学发展背景 生物无机化学,又称生物化学或生物配位化学,是无机化学、生物化学、医学等多种学科的交叉领域。其研究对象是生物体内的金属(和少数非金属)元素及其化合物,特别是痕亮金属元素和生物大分子配体形成的生物配合物,如各种金属酶、金属蛋白等。 其研究模式为:发现有用的生物分子→分离出来→测定结构→侧重研究它们的结构、性质、生物活性之间的关系以及在生命环境内参与反应的激励→人工合成。 生物无机化学的蕴生和发展差不多经历了半个世纪,而作为独立学科的简历,却是近30年的事情,通常人们把国际期刊《Journal of Inorganic Biochemistry》的创立作为标志。众所周知,这个学科是在无机化学和生物学的相互交叉、渗透中发展起来的一门边沿学科。 它的基本任务是从现象学上以及从分子、圆子水平上研究金属与生物配体之间的相互作用。而对这种相互作用的阐明有赖于无机化学和生物学两门学科水平的高度发展。 2.我国生物化学的研究状况 生物无机化学在我国较早就有一些不同学科的研究者在如生物矿化等方面开展工作;但是作为一门学科的出现,似应以全国第一次生物无机化学会议(1984年,武汉)的召开为标志。总之,从80年代初,我国从事不同学科的化学家顺应国际上这一新学科的发展,不少人纷纷转到生物无机这块园地进行耕耘。近20年来,这些耕耘者,的确作出了不少有意义的成果,以下分几个方面作概括介绍。 1)金属离子及其配合物与生物大分子的作用 金属离子与生物大分子结合后,常常会发生明显的生物化学效应。计亮年等观察到一些金属(碱和碱土金属)氯化物和葡萄糖酸盐对葡萄糖氧化酶(GOD)的活性有激活和抑制作用。生物大分子结合的金属离子可被不同类型的螯合剂夺取。李荣昌等研究了牛血清白蛋白镉(Ⅱ)的这类反应,提出用竞争参数F来表征螯合剂从生物大分子金属配合物中夺取金属的能力,求得了多种螯合剂相应的F值和稳定常数。 分子识别是近年来国际上一个十分活跃的研究领域。计亮年等合成了一系列钌的平面配体配合物与小牛胸腺DNA的作用。杨频等选用铁(II)、镍(II)为中心;离子,以phen、bipy、dppz等为配体,合成并分离出了手性金属配合物,研究了它们与B-DNA的作用。 应用金属及其配合物对肽键的化学切割,是作为金属水解肽酶的模拟物来加以研究的。朱龙根等发现,简单的Pb(Ⅱ)水配合物能选择性的与含蛋氨酸和甲硫半胱氨酸残基小肽中的硫原子配位,进而快速地切割它们的羧基端的肽键。他们还发现氨基酸和二肽的配合物也能有效地水解肽键,活性配合物为双核配合物。蛋白质的水解机理是利用金属配合物促进特定肽键的水解,以达到选择性断裂肽键的目的。 离子探针是一种研究生物体内无适当光、磁信号金属离子的结合状态的有效手段。杨频研究组应用顺磁离子探针研究了人血清白蛋白与Gd(Ⅲ)的作用。 2)药物中的金属及抗癌活性配合物的作用机理 顺铂的作用机理:60年代末期,顺铂(cis-platin)抗癌作用的发现及其临床应用,开辟了金属配合物抗癌药物研究的新领域。顺铂抗癌作用的化学基础,如顺铂的靶分子、顺铂的跨膜机制等,至今仍是人们致力研究的课题。王夔曾提出金属-细胞相互作用的多靶模型,为后来更多的实验事实所支持。他用实验证实了细胞膜是细胞外金属配合物进攻的前沿,金属离子与膜分子的结合是首先发生的事件。 有机锡配合物的抗癌活性及其与DNA作用的分子机理:自80年代初,Crowe等人发现有机锡配合物有抗癌活性以来,已进行了大量合成和筛选工作。国内胡盛志等发现,由抗癌

无机化学研究热点

无机化学研究热点和研究进展 无机化学是化学学科里其它各分支学科的基础学科,在近年来取得较突出的进展,主要表现在固体材料化学、配位化学等方面。当前无机化学的发展趋向主要是新型的无机化合物的合成和应用,以及新的研究领域的开辟和建立。因此21世纪理论与计算方法的运用将大大加强理论和实验更加紧密的结合。同时各学科间的深入发展和学科间的相互渗透,形成许多学科的新的研究领域。例如,生物无机化学就是无机化学与生物学结合的边缘学科;固体无机化学是十分活跃的新兴学科;作为边沿学科的配位化学日益与其它相关学科相互渗透与交叉。 一.无机化学研究热点 热点一配位化学 配位化学是在无机化学基础上发展起来的一门边沿学科。配位化学在现代化学中占有重要地位。当前配位化学处于无机化学的主流,配位化合物以其花样繁多的价键形式和空间结构在化学理论发展中,以及与其他学科的相互渗透中成为众多学科的交叉点。我国配位化学研究已步人国际先进行列,研究水平大为提高。如:(1)小新型配合物、簇合物、有机金属化合物和生物无机配合物,特别是配位超分子化合物的基础无机合成及其结构研究取得了丰硕 成果,丰富了配合物的内涵;(2)开展了热力学、动力学和反应机理方面的研究,特别在溶液中离子萃取分离和均相催化等应用方面取得了成果;(3)现代溶液结构的谱学研究及其分析方法以及配合物的结构和性质的基础研究水平大为提高;(4)随着高新技术的发展,具有光、电、热、磁特性和生物功能配合物的研究正在取得进展,它的很多成果还包含在其它不同学科的研究和化学教学中。 在配位化学学科发展的同时创造出更为奇妙的新材料,揭示出更多生命科学的奥妙。从超分子之类的新观点研究分子的合成和组装,在我国日益受到重视。化学模板有助于提供物种和创造有序的组装,但是其最大的困难在于克服热力学第二定律所要求的无序。尽管目前我们了解了一些局部的组装规律和方法,但比起自然界长期进化而得到的完满而言,还有很大差距。配位化学包含在超分子化学概念之中。配位化学的原理和规律,无疑将在分子水平上对未来复杂的分子层次以上聚集态体系的研究起着重要的作用,其概念及方法也将超越传统学科的界限。配位化学与化学其它分支学科的结合研究将给配位化学带来新的发展前景。热点二固体化学 固体无机化学是跨越无机化学、固体物理、材料科学等学科的交叉领域,犹如一个以固体无机物的“结构”、“物理性能”、“化学反应性能”、及“材料”为顶点的正四面体,是当前无机化学学科十分活跃的新兴分支学科。 近来该领域不断发现具有特异性能及新结构的化合物。如,高温超导材料、纳米材料、Ce等。固体无机化学主要从固体无机化合物的制备和应用及室温和低热固相化学反应两大方面开展大量的基础性和应用基础性研究工作,取得了一批举世瞩目的研究成果,向信息、能源等各个应用领域提供了各种新材料。例如,在固体无机化合物的制备及应用方面,展 开了对光学材料、多孔晶体材料、纳米相功能材料、无机膜敏感材料、电、磁功

生物无机化学的应用

生物无机化学的应用 化学化工学院12化本3班洪璐2012364353 生物无机化学是建立在生物学与无机化学基础上的一门新兴的边缘学科。其研究对象从广义来讲,是在分子水平上探讨无机元素及其化合物与生物体的相互作用。生物无机化学的任务之一是应用无机化学的理论和实验技术研究生物体系中无机金属离子的行为,从而阐明金属离子和生物大分子形成配合物的结构与功能的关系。另一任务是用比较简单的化学模型对复杂的生物催化现象进行模拟研究,即模型研究。 近10余年来,生物无机化学的研究主要集中在金属离子活化酶的领域及金属蛋白的结构、性质、功能和升华反应机理方面。用最新的升华理论设计某些金属离子的配合物的催化反应模型,以探索生命金属元素在生物体中的存在方式、状态及对生命运动的作用机理,诸如基因转移、氧化还原或水解过程。 1 微量金属离子在医学中的应用 生物无极化学的研究成果表明:人体必需的金属离子主要是以配合物的形式存在于人体内,它是控制体内政策代谢活动的关键因素。但是,人体必需的金属元素在体内的存在量有严格的浓度范围,眼中地缺乏或过量都会引起疾病。 1.1 微量元素铜锌与癌症 研究表明,90%以上的癌症与环境有关。病人癌组织的微量元素谱往往发生变化,其中铜锌与癌症的关系最为重要。对肝癌、胃肠道癌、女性生殖器官肿瘤等多种患者的血清分析都得出一致的结论:恶性肿瘤患者血清Zn/Cu比值明显低于常人,而进行手术摘除恶性组织或药物治疗后,患者血清中Zn/Cu比值回升。因此,有人认为血清中的Zn/Cu可反映肿瘤恶性程度及判别患者愈后状况。 1.2 微量元素与眼科 目前,微量元素与眼科研究主要集中于微量元素在白内障发生、发展中所起的作用。白内障者晶体中Zn、Cu含量较正常晶体含量少,Ca、Se含量增加,血清中锌含量减少,Mg、Ca含量增加。 1.3 微量元素钴和铁 钴是维生素B12分子的一个必要组成部分。维生素B12能促进血红球的增加和肌肉蛋白的合成。根据实验,如果草饲料中缺少钴,将会引起严重的脱毛症,然而,只要在饲料中加

生物无机化学汇总

生物无机化学姓名:崔慧慧 学号:C14201008 专业:无机化学

碳酸钙的仿生合成 摘要:碳酸钙矿物材料广泛分布于大自然,具有环境协调性和相容性。生物矿化过程形成的材料具有特定的生物学功能,因此人们通过不同途径进行仿生合成,尤其是碳酸钙的仿生合成。本文主要介绍了碳酸钙仿生合成的方法,如加入添加剂、双模板法等,制备得到不同形貌和不同晶型的的碳酸钙晶体。通过研究不同方法合成碳酸钙为真正意义上的生物矿化提供一定的理论依据。 关键字:生物矿化碳酸钙仿生合成 Abstract:The materials through Biomineralization have a specific biological function, so people try to synthesis it by finding different ways, especially the biomimetic synthesis of calcium carbonate. In this paper, many methods of biomimetic synthesis of calcium carbonate are mainly introduced, such as adding additives, dual template method and so on, to obtained different morphogenesis and polymorphism of calcium carbonate. We study the different methods of calcium carbonate, in order to provide certain theoretical basis for biomineralization. Key words: biomineralization calcium carbonate 一、生物矿化及仿生合成 生物矿化广泛存在于大自然中,生物体经过长时间进化,会在身体的某些部位生成矿物组织,这些矿物组织在某些方面形成了性能优异的生物材料。生物矿化的种类已超过60种,它们的组成各异,并赋有特定的生物学功能。生物矿化的优点是它的过程是一个天然存在的高度控制过程,受生物机体内在机制调制,可以实现从分子水平到介观水平上对晶体形状、大小、结构、位向和排列的精确控制和组装,从而形成复杂的分级结构。生物矿化的一个重要特点就是自组装的有机聚集体或超分子模板通过材料复制而转变为有序化的无机结构,因此有机基质在生物矿化过程中具有非同寻常的作用,有机基质在水溶液环境中通过自组装过程形成胶束、反胶束、囊泡、微乳液、泡沫、溶致液晶等结构,为生物矿物的形成提供微环境或模板;有机基质也可以作为可溶性添加剂,在晶体生长过程中,能吸附在特定的晶面上或能结合与其电荷相反的游离离子,从而改变晶体的生长速[1]。生物矿化可分为四个阶段,有机大分子预组织。在矿物沉积前构造一个有组织的反应环境,该环境决定无机物成核的位置;界面分子识别。在已形成的有

固体无机化学研究进展

我国固体无机化学的研究进展 化学学院……专业……级…… 指导教师…… 摘要:综合介绍了建国50年来,尤其是近20年来我国固体化学研究领域所取得的进展,阐述了该领域在合成方法上的更新以及不断向信息、能源、环保等应用领域提供的各种新材料。 关键词:固相化学无机合成无机材料应用 Abstract:Developments in the last fifty years, especially in the last two decades on the solid state inorganic chemistry in China have been reviewed,including synthetic method innovations and the new materials supplied to application fields such as information,energy sources and environmental protection. Key words:Solid state chemistry;Inorganic synthesis;Inorganic materials;Application 当前无机化学的发展趋向主要是新型的无机化合物的合成和应用,以及新的研究领域的开辟和建立。因此21世纪理论与计算方法的运用将大大加强理论和实验更加紧密的结合。同时各学科间的深入发展和学科间的相互渗透,形成许多学科的新的研究领域。例如,生物无机化学就是无机化学与生物学结合的边缘学科;固体无机化学是十分活跃的新兴学科;作为边沿学科的配位化学日益与其它相关学科相互渗透与交叉。 1 无机合成与制备化学研究进展 固体无机化合物材料的制备大多是利用高温固相反应,这些反应难以控制,能耗大,成本高。为此,发展了其它各种合成方法,如前体法、置换法、共沉淀法、熔化法、水热法、微波法、气相输运法、软化学法、自蔓延法、力化学法、

化学学科发展前沿.

当代无机化学发展前沿 【论文摘要】: 无机化学是化学学科里其它各分支学科的基础学科,在近年来取得较突出的进展,主要表现在固体材料化学、配位化学等方面。未来无机化学的发展特点是各学科交叉纵横相互渗透,用以解决工业生产与人民生活的实际问题。文章就当代无机化学研究的前沿与未来发展趋势做了简要阐述。 当前无机化学的发展趋向主要是新型的无机化合物的合成和应用,以及新的研究领域的开辟和建立。因此21世纪理论与计算方法的运用将大大加强理论和实验更加紧密的结合。同时各学科间的深入发展和学科间的相互渗透,形成许多学科的新的研究领域。例如,生物无机化学就是无机化学与生物学结合的边缘学科;固体无机化学是十分活跃的新兴学科;作为边沿学科的配位化学日益与其它相关学科相互渗透与交叉。 根据国际上最新进展和我国的具体情况,文章就“无机合成与制备化学研究进展”和“我国无机化学最新研究进展”两个方面进行阐述: 一、无机合成与制备化学研究进展 无机合成与制备在固体化学和材料化学研究中占有重要的地位, 是化学和材料科学的基础学科。发展现代无机合成与制备化学, 不断地推出新的合成反应和路线或改进和绿化现有的陈旧合成方法, 不断地创造与开发新的物种, 将为研究材料结构、性能(或功能) 与反应间的关系、揭示新规律与原理提供基础。近年来无机合成与制备化学研究的新进展主要表现为以下几个方面: (一)极端条件合成 在现代合成中愈来愈广泛地应用极端条件下的合成方法与技术来实现通常条件下无法进行的合成, 并在这些极端条件下开拓多种多样的一般条件下无法得到的新化合物、新物相与物态。超临界流体反应之一的超临界水热合成就是无机合成化学的一个重要分支。 (二)软化学合成 与极端条件下的合成化学相对应的是在温和条件下功能无机材料的合成与晶化, 即温和条件下的合成或软化学合成。由于苛刻条件对实验设备的依赖与技术上的不易控制 性, 减弱了材料合成的定向程度。而温和条件下的合成化学——即“软化学合成”,正是具有对实验设备要求简单和化学上的易控性和可操作性特点, 因而在无机材料合成化学的研究领域中占有一席之地。 (三)缺陷与价态控制 缺陷与特定价态的控制是固体化学和固体物理重要的研究对象, 也是决定和优化材料性能的主要因素。材料的许多性质如发光、导电、催化等都和缺陷与价态有关。晶体生长行为和材料的反应性与缺陷关系密切, 因此, 缺陷与价态在合成中的控制显然成为重要的科学题。缺陷与特定价态的生成和变化与材料最初生成条件有关, 因此,可通过控制材料生成条件来控制材料中的缺陷和元素的价态。 (四)计算机辅助合成 计算机辅助合成是在对反应机理有了了解的基础上进行的理论模拟过程。国际上一般为建立与完善合成反应与结构的原始数据库, 再在系统研究其合成反应与机理的基础上, 应用神经网络系统并结合基因算法、退火、mon te2carlo 优化计算等建立有关的合成反应数

无机化学 第11章固体结构习题全解答-07-12-19

第11章固体结构 1、指出下列物质哪些是金属晶体?哪些是离子晶体?哪些是共价键晶体(又称原子晶体)?哪些是分子晶体? Au (s) AlF3 (s) Ag (s) B2O3 (s) BCl3 (s) CaCl2 (s) H2O (s) BN (s) C (石墨) H2C2O4 (s) Fe (s) SiC (s) CuC2O4 (s) KNO3 (s) Al (s) Si (s) 解:金属晶体:Au(s) Ag(s) Fe(s) Al(s) 离子晶体:AlF3(s) CaCl 2(s) CuC2O4(s) KNO3(s) 共价键晶体:BN(s) C(石墨) SiC(s) Si(s) 分子晶体:B2O3(s) BCl3(s) H2O(s) H2C2O4(s) 2、大多数晶态物质都存在同质多晶现象。即在不同的热力学条件(温度、压力等)下,由于晶体内部粒子(原子、离子或分子)的热运动,它们在三维空间的排列方式将会发生一些变化。例如: α-Fe(体心立方) 906℃γ-Fe (面心立方) α-CsCl (简单立方)445℃β-CsCl (面心立方,NaCl型结构) α-NH4Cl (简单立方) 184℃β-NH4Cl (面心立方,NaCl型结构) 试问,同一种物质的不同类型的晶体,它们的晶面角是否相同或者守恒?晶面角守恒的本质原因是什么? 解:根据晶面角守恒定律,同一种晶体晶面大小和形状会随外界的条件不同而变化,但同一种晶体的相应晶面(或晶棱)间的夹角却不受外界条件的影响,它们保持恒定不变的值。 晶面角守恒决定于晶体内部的周期性结构。 解:I2,正交晶系;H2C2O4,单斜晶系;NaCl,立方晶系;β-TiCl3,正交晶系; α-As,三方晶系;Sn(白锡),四方晶系;CuSO4.5H2O,三斜晶系。 4、试画出金属Na和Mg单质的分子轨道能级图,并据此解释其导电性。 解:根据金属能带理论,金属Na和Mg基态时的电子填充情况如下图所示:

无机化学 电子书 免费下载 中文版

无机化学 第一篇无机化学基本内容、基本理论 第一章绪论 第一节化学发展简史 一、古代化学 二、近代化学 三、现代化学 第二节无机化学简介 一、无机化学的研究内容 二、无机化学与药学 三、无机化学的发展前景 第二章非电解质稀溶液 第一节溶液浓度的表示方法 一、质量摩尔浓度 二、物质的量浓度 三、摩尔分数 四、其他浓度表示方法(自学) 五、各浓度之间的换算(自学) 第二节非电解质稀溶液的依数性 一、溶液的蒸气压下降 二、溶液的沸点升高 三、溶液的凝固点降低 四、溶液的渗透压 五、依数性的应用(阅读) 本章小结 习题 第三章化学平衡 第一节化学反应的可逆性和化学平衡 一、化学反应的可逆性 二、化学平衡 第二节标准平衡常数及其计算 一、标准平衡常数 二、有关化学平衡的计算 第三节化学平衡的移动 一、浓度对化学平衡的影响 二、压力对化学平衡的影响 三、温度对化学平衡的影响 四、选择合理生产条件的一般原则 本章小结 习题 第四章电解质溶液 第一节强电解质溶液理论 一、电解质溶液的依数性 二、离子氛与离子强度三、活度与活度系数

第二节弱电解质的电离平衡 一、水的电离与溶液的pH值(自学) 二、一元弱酸、弱碱的电离平衡 三、多元弱酸的电离 第三节缓冲溶液 一、缓冲作用原理 二、缓冲溶液的pH值计算 三、缓冲容量 四、缓冲溶液的选择和配制 五、血液中的缓冲系和缓冲作用 六、缓冲溶液在控制药物稳定性中的应用第四节盐类水解 一、各类盐的水解 二、影响水解平衡移动的因素 第五节酸碱的质子论与电子论(自学) 一、酸碱质子论 二、酸碱的电子论简介 本章小结 习题 第五章难溶电解质的沉淀-溶解平衡 第一节溶度积和溶解度 一、溶度积常数 二、溶度积和溶解度的关系(课堂讨论) 三、溶度积规则 第二节沉淀-溶解平衡的移动 一、沉淀的生成 二、沉淀的溶解 三、同离子效应与盐效应 第三节沉淀反应的某些应用(阅读) 一、在药物生产上的应用 二、在药物质量控制上的应用 三、沉淀的分离 本章小结 习题 第六章氧化还原反应 第一节基本概念(课堂讨论) 一、氧化还原反应的实质 二、氧化值 第二节氧化还原反应方程式的配平 一、离子-电子法(半反应法) 二、氧化值法(自学) 第三节电极电势 一、原电池和电极电势 二、影响电极电势的因素——能斯特方程式

相关文档