文档库 最新最全的文档下载
当前位置:文档库 › 最新液压缸习题

最新液压缸习题

最新液压缸习题
最新液压缸习题

液压缸

1

2

3.1填空题

3

1.液压缸按结构不同,可分为活塞式、柱塞式和摆动式三大类。

2.双活塞杆缸常用于往复运动速度和负载相同的场合。

4

5

3.单活塞杆缸常用于一个方向速度大,另一个方向速度小设备的液压系统。

6

4.活塞缸差动连接时,比其非差动连接同向运动获得的速度大、推力小。因此,7

在机床的液压系统中常用其实现运动部件的空行程快进。

8

5.增压缸能将输入的低压油转变为高压油供液压系统中某一支路使用。

9

6.伸缩式液压缸活塞伸出顺序是先大后小,伸出的速度是由慢到快;活塞缩回的10

顺序一般是先小后大;活塞缩回的速度是由快到慢。

11

7.铸铁、铸钢和锻钢制造的缸体与端盖多采用法兰式连接;无缝钢管制作的缸筒与12

端盖多采用半环式连接或螺纹式连接;较短的液压缸常用拉杆式连接。

13

8.液压缸中常用的缓冲装置有环状间隙式、可变节流式和可调节流式。

14

3.2选择题

15

1.双活塞杆缸,当活塞固定时,缸与运动部件连接,运动件的运动范围略大于液压16

缸有效行程的

17

B 。

18

A.1倍

B.2倍

C.3倍

2.单活塞杆缸作为差动连接时,若使其往复运动速度相等,其活塞面积应为活塞杆

19

20

面积的 B 倍。

A.1倍

B.2倍

C.2倍

21

3.双叶片式摆动缸的摆动角一般不超过 B 。

22

A.100°

B. 150°

C. 280°

23

4.在高压大流量的液压系统中,活塞与活塞杆的连接须采用 C 。

24

A.锥销连接

B.螺纹连接

C.半环式连接

25

5.液压缸差动连接工作时,缸的(),缸的()。D

26

A.运动速度增加推力增加

B. 运动速度减少推力增加

27

C.运动速度减少推力减少

D. 运动速度增加推力减少

28

6.在某一液压设备中需要一个完成很长工作行程的液压缸,宜采用下述液压缸中的29

(C)。

30

A.单活塞杆缸

B.双活塞杆缸

C.柱塞缸

D.增压缸

31

3.3计算题

32

1.一双活塞杆缸,内径为0.07m,活塞杆直径0.03m,进入液压缸的流量为16L/min,33

求活塞运动的速度多大?答案:v= 0.085m/s

34

2.单活塞杆缸,活塞直径D=8㎝,活塞杆直径d=5㎝,输入液压缸的流量q=3.5L/min。

35

求往复运动速度各为多少?如采用差动连接,运动速度为多少?

36

答案:v

1= 0.0116m/s

37

v

2= 0.019m/s

38

v

3= 0.0297m/s

39

40

液压例题

液压与气压传动-胡竞湘版 第二章 例2.1 如图所示,容器内盛油液。已知油的密度ρ=900kg/m3,活塞上的作用力F=1000N ,活塞的面积A=1×10-3m2,假设活塞的重量忽略不计。问活塞下方深度为h=0.5m 处的压力等于多少? 解: 活塞与液体接触面上的压力均匀分布,有2 623/101011000m N m N A F p F =?== - 根据静压力的基本方程式,深度为h 处的液体压力: 2666/10101.0044 0.58.9900 10m N gh p F ≈?=??+=+ρ 从本例可以看出,液体在受外界压力作用的情况下,液体自重所形成的那部分压力ρgh 相对甚小,在液压系统中常可忽略不计,因而可近似认为整个液体内部的压力是相等的。以后我们在分析液压系统的压力时,一 般都采用这种结论 已:D =100mm,d =20mm, G =5000kg 求: F =? 解: N mg G 49000 8.95000=?== 由 p 1=p 2 4 422D G d F ππ= N G D d F 196049000100202 222=?== 例: 如图2.10所示,已知流量q1=25L/min ,小活塞杆直径d1=20mm ,直径D1=75mm,大活塞杆d2=40mm ,直径D2=125mm 。求:大小活塞的运动速度v1、 v2? 解:根据连续性方程: s m d D q A q v 1 .0/)]02.0075.0(4 [60102544223 212111 11=-??=-==-πππs m s m D v D A q v /037.0/125.0102.0075.04 42 2221 2122=?===ππ

液压课后习题

2-1 已知液压泵的额定压力和额定留量,不计管道压力损失,说明图示各种工况 下液压泵出口处的工作压力值。 解:a)0p = b)0p = c)p p =? d)F p A = e)2m m T p V π= 2-2如图所示,A 为通流截面可变的节流阀,B 为溢流阀。溢流阀的调整压力是 P y ,如不计管道压力损失,试说明,在节流阀通流截面不断增大时,液压泵的出口压力怎样变化? 答:节流阀A 通流截面最大时,液压泵出口压力P=0,溢流阀B 不打开,阀A 通流截面逐渐关小时,液压泵出口压力逐渐升高,当阀A 的通流截面关小到某一值时,P 达到P y ,溢流阀B 打开。以后继续关小阀A 的通流截面,P 不升高,维持P y 值。 2-3试分析影响液压泵容积效率v η的因素。 答:容积效率表征容积容积损失的大小。 由1v t t q q q q η?= =- 可知:泄露量q ?越大,容积效率越小 而泄露量与泵的输出压力成正比,因而有 111v t n k k p q v η= =- 由此看出,泵的输出压力越高,泄露系数越大,泵排量越小,转速越底,那么容积效率就越小。

2-4泵的额定流量为100L/min,额定压力为2.5MPa,当转速为1450r/min时,机械效率为η m =0.9。由实验测得,当泵出口压力为零时,流量为106 L/min,压力为2.5 MPa时,流量为100.7 L/min,试求: ①泵的容积效率; ②如泵的转速下降到500r/min,在额定压力下工作时,计算泵的流量为多少? ③上述两种转速下泵的驱动功率。 解:①通常将零压力下泵的流量作为理想流量,则q t =106 L/min 由实验测得的压力为2.5 MPa时的流量100.7 L/min为实际流量,则 η v =100.7 /106=0.95=95% ②q t =106×500/1450 L/min =36.55 L/min,因压力仍然是额定压力,故此时泵流量为36.55×0.95 L/min=34.72 L/min。 ③当n=1450r/min时, P=pq/(η v η m )=2.5×106×100.7×10-3/(60×0.95×0.9)w=4.91kw 当n=500r/min时, P=pq/(η v η m )=2.5×106×34.7×10-3/(60×0.95×0.9)w=1.69kw 2-5设液压泵转速为950r/min,排量=168L/r,在额定压力29.5MPa和同样转速下,测得的实际流量为150L/min,额定工况下的总功率为0.87,试求: (1)泵的理论流量; (2)泵的容积效率; (3)泵的机械效率; (4)泵在额定工况下,所需电机驱动功率; (5)驱动泵的转矩。 解:① q t =V p n=168×950 L/min =159.6 L/min ②η v =q/q t =150/159.6=94% ③η m =η/ηv =0.87/0.9398=92.5% ④ P=p q/η =29.5×106×150×10-3/(60×0.87)w=84.77kw ⑤因为η=p q/T ω

液压缸计算

液压缸设计计算说明 系统压力为1p =25 MPa 本系统中有顶弯缸、拉伸缸以及压弯缸。以下为这三种液压缸的设计计算。 一、 顶弯缸 1 基本参数的确定 (1)按推力F 计算缸筒内径D 根据公式 3.5710D -=? ① 其中,推力F=120KN 系统压力1p =25 MPa 带入①式,计算得D= 78.2mm ,圆整为D = 80 mm (2)活塞杆直径d 的确定 确定活塞杆直径d 时,通常应先满足液压缸速度或速比的要求,然后再校核其结构强度和稳定性。若速比为?,则 d = ② 取?=1.6,带入②式,计算得d =48.9mm ,圆整为d =50mm 8050 D d ?===1.6 (3)最小导向长度H 的确定 对一般的液压缸,最小导向长度H 应满足 202 L D H ≥+ ③ 其中,L 为液压缸行程,L=500mm

带入③式,计算得H=65mm (4)活塞宽度B 的确定 活塞宽度一般取(0.6~1.0)B D = ④ 得B=48mm~80mm ,取B=60mm (5)导向套滑动面长度A 的确定 在D <80mm 时,取(0.6~1.0)A D = ⑤ D >80mm 时,取(0.6~1.0)A d = ⑥ 根据⑤式,得A=48mm~80mm ,取A=50mm (6)隔套长度C 的确定 根据公式2 A B C H +=- ⑦ 代入数据,解得C=10mm 2 结构强度计算与稳定校核 (1)缸筒外径 缸筒内径确定后,有强度条件确定壁厚δ,然后求出缸筒外径D 1 假设此液压缸为厚壁缸筒,则壁厚1]2D δ= ⑧ 液压缸筒材料选用45号钢。其抗拉强度为σb =600MPa 其中许用应力[]b n σσ=,n 为安全系数,取n=5 将数据带入⑧式,计算得δ=8.76mm 故液压缸筒外径为D 1=D+2δ=97.52mm ,圆整后有 D 1=100mm ,缸筒壁厚δ=10mm (2)液压缸的稳定性和活塞杆强度验算 按速比要求初步确定活塞杆直径后,还必须满足液压缸的稳定性及其

如何确定液压油缸规格型号液压油缸选型参考)

目录 程序 1:初选缸径/杆径 ★条件一 已知设备或装置液压系统控制回路供给液压缸的油压 P、流量 Q 及其工况需要液压缸对负载输力的作用方式(推、拉、既推又拉)和相应力(推力 F1、拉力 F2、推力 F1 和拉力 F2)的大小(应考负载可能存在的额外阻力)。针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下:(输出力的作用方式为推力 F1 的工况: 初定缸径 D:由条件给定的系统油压 P(注意系统的流道压力损失),满足推力 F1 的要求对缸径 进行理论计算,参选标准缸径系列圆整后初定缸径 D; 初定杆径 d:由条件给定的输出力的作用方式为推力 F1 的工况,选择原则要求杆径在速比 1.46(速比:液压缸活塞腔有效作用面积与活塞杆腔有效作用面积之比)之间,具体需结合液压缸回油背压活塞杆的受压稳定性等因素,参照相应的液压缸系列速比标准进行杆径 d 的选择

(2)输出力的作用方式为拉力 F2 的工况: 假定缸径 D,由条件给定的系统油压 P(注意系统的沿程压力损失),满足拉力 F2 的要求对杆径 d 进行理论计算,参选标准杆径系列后初定杆径 d,再对初定杆径 d 进行相关强度校验后确定。(3)输出力的作用方式为推力 F1 和拉力 F2 的工况: 参照以上(1)、(2)两种方式对缸径 D 和杆径 d 进行比较计算,并参照液压缸缸径、杆径标准系列进行选择。 ★条件二 已知设备或装置需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力 F1、拉力 F2、推力 F1 和拉力 F2)大小(应考虑负载可能存在的额外阻力)。但其设备或装置液压系统控制回路供给液压缸的油压 P、流量 Q 等参数未知,针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下: (1)根据本设备或装置的行业规范或特点,确定液压系统的额定压力 P;专用设备或装置液压系统的额定压力由具体工况定,一般建议在中低压或中高压中进行选择。 (2)根据本设备或装置的作业特点,明确液压缸的工作速度要求。 (3)参照“条件一”缸径/杆径的初选方法进行选择。 注:缸径 D、杆径 d 可根据已知的推(拉)力、压力等级等条件由下表进行初步查取。 不同压力等级下各种缸径/杆径对应理论推(拉)力表

液压与气压传动计算题(附答案)

一、填空题:(每空1分,共30分)按大纲选择30空构成填空题。 1、液压与气压传动中工作压力取决于,而与流入的流体多少无关。活塞的运动速度取决于进入液压(气压)缸(马达)的,而与流体压力大小无关。 2、液压与气压传动系统主要由、、、和传动介质等部分组成。 3、对于液压油来说,压力增大时,粘度;温度升高时,粘度。 4、液体的粘度有三种表示方法,即、、。 5、以大气压力为基准所表示的压力是,也称为,真空度等于。 6、以大气压力为基准所表示的压力是,也称为,绝对压力等于。 7、理想液体作定常流动时,液流中任意截面处液体的总比能由、和组成。 8、管路系统的总压力损失等于所有的和之和。 9、液体的流态有、两种,它们可由来判断。 10、液压泵的主要性能参数包括、、三大部分。 11、常用的液压泵按结构形式分、、三大类。 12、液压泵的工作压力取决于大小和排油管路上的,与液压泵的无关。 13、外啮合齿轮泵的、、是影响其性能指标和寿命的三大问题。 14、液压动力元件是将转化为的能量转换装置,而液压执行元件是将 转化为的能量转换装置。 15、液压传动中,液压泵是元件,它将输入的能转化为能。 16、液压传动中,液压缸是元件,它将输入的能转化为能。 17、液压执行元件是将提供的转变为的能量转换装置。 18、液压动力元件是将提供的转变为的能量转换装置。 19、齿轮泵存在三个可能泄漏的部位、、。 20、按用途可将液压控制阀分为、和三大类。 21、限压式变量叶片泵的输出流量由控制,当时输出流量不变,当时输出流量减小。 22、单向阀的作用是,正向时,反向时。 23、液控单向阀液控口在通压力油情况下正向时,反向时。 24、机动换向阀又称,主要用来控制机械运动部件的,其控制精度比行程开关的。 25、电液换向阀是由和组合而成,其中起到先导作用。

各种液压缸工作原理及结构分析(动画演示)

各种液压缸工作原理及结构分析(动画演示) 什么是液压缸液压缸是将液压能转变为机械 能的、做直线往复运动(或摆动运动)的液压执行元件。它结构简单、工作可靠。用它来实现往复运动时,可免去减速装置,并且没有传动间隙,运动平稳,因此在各种机械的液压系统中得到广泛应用。液压缸输出力和活塞有效面积及其两边的压差成正比;液压缸的结构液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。缸体组件缸体组件与活塞组件形成的密封容腔承受油压作用,因此,缸体组件要有足够的强度,较高的表面精度可靠的密封性。(1)法兰式连接,结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉,它是常用的一种连接形式。(2)半环式连接,分为外半环连接和内半环连接两种连接形式,半环连接工艺性好,连接可靠,结构紧凑,但削弱了缸筒强度。半环连接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。(3)螺纹式连接,有

外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。(4)拉杆式连接,结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。只适用于长度不大的中、低压液压缸。(5)焊接式连接,强度高,制造简单,但焊接时易引起缸筒变形。液压缸的基本作用形式:标准双作用:动力行程在两个方向并且用于大多数应用场合: 单作用缸:当仅在一个方向需要推力时,可以采用一个单作用缸;双杆缸:当在活塞两侧需要相等的排量时,或者当把一个负载连接于每端在机械有利时采用,附加端可以用来安装操作行程开关等的凸轮.弹簧回程单作用缸:通常限于用来保持和夹紧的很小的短行程缸。容纳回程弹簧所需要的长度使得它们在需要长行程时很讨厌;柱塞式单作用缸:仅有一个流体腔,这种类型的缸通常竖直安装,负载重置使缸内缩,他们又是被成为“排量缸”,并且对长行程是实用的;多级伸缩缸:最多可带4个套简,收拢长度比标准缸短.有单作用或双作用,它们与标准缸相比是比较贵的,通常用于安装空间较小但需要较大行程的场合, 串联缸:一个串联缸足由两个同轴安装的缸组成的,两个缸的活塞由一个公共活塞杆链接,在两缸之前设置杆密封件以便使每个缸都能双作用,当安装宽度或高度受限制时.串联

液压缸习题

液压缸 3.1填空题 1.液压缸按结构不同,可分为活塞式、柱塞式和摆动式三大类。 2.双活塞杆缸常用于往复运动速度和负载相同的场合。 3.单活塞杆缸常用于一个方向速度大,另一个方向速度小设备的液压系统。 4.活塞缸差动连接时,比其非差动连接同向运动获得的速度大、推力小。因此,在机床的液压系统中常用其实现运动部件的空行程快进。 5.增压缸能将输入的低压油转变为高压油供液压系统中某一支路使用。 6.伸缩式液压缸活塞伸出顺序是先大后小,伸出的速度是由慢到快;活塞缩回的顺序一般是先小后大;活塞缩回的速度是由快到慢。 7.铸铁、铸钢和锻钢制造的缸体与端盖多采用法兰式连接;无缝钢管制作的缸筒与端盖多采用半环式连接或螺纹式连接;较短的液压缸常用拉杆式连接。 8.液压缸中常用的缓冲装置有环状间隙式、可变节流式和可调节流式。 3.2选择题 1.双活塞杆缸,当活塞固定时,缸与运动部件连接,运动件的运动范围略大于液压缸有效行程的 B 。 A.1倍 B.2倍 C.3倍 2.单活塞杆缸作为差动连接时,若使其往复运动速度相等,其活塞面积应为活塞杆面积的 B 倍。 A.1倍 B.2倍 C.2倍 3.双叶片式摆动缸的摆动角一般不超过 B 。 A.100° B. 150° C. 280° 4.在高压大流量的液压系统中,活塞与活塞杆的连接须采用 C 。 A.锥销连接 B.螺纹连接 C.半环式连接 5.液压缸差动连接工作时,缸的(),缸的()。D A.运动速度增加推力增加 B. 运动速度减少推力增加 C.运动速度减少推力减少 D. 运动速度增加推力减少 6.在某一液压设备中需要一个完成很长工作行程的液压缸,宜采用下述液压缸中的(C)。 A.单活塞杆缸 B.双活塞杆缸 C.柱塞缸 D.增压缸 3.3计算题

液压泵液压缸液压马达的型号及参数以及

液压、气动 一、液压传动 1、理解:液压传动是以流体为工作介质进行能量传递的传动方式。 2、组成原件 1、把机械能变换为液体(主要是油)能量(主要是压力能)的液压泵 2 、调节、控制压力能的液压控制阀 3、把压力能转换为机械能的液压执行器(液压马达、液压缸、液压摆动马达) 4 、传递压力能和液体本身调整所必需的液压辅件 液压系统的形式 3、部分元件规格及参数 衡力,磨损严重,泄漏较大。 叶片泵:分为双作用叶片泵和单作用叶片泵。这种泵流量均匀、运转平稳、噪音小、作压力和容积效率比齿轮泵高、结构比齿轮泵复杂。 柱塞泵:容积效率高、泄漏小、可在高压下工作、大多用於大功率液压系统;但结构复杂,材料和加工精度要求高、价格贵、对油的清洁度要求高。 一般在齿轮泵和叶片泵不能满足要求时才用柱塞泵。还有一些其他形式的液压泵,如螺杆泵等,

但应用不如上述3种普遍。 适用工况和应用举例

【KCB/2CY型齿轮油泵】工作原理: 2CY、KCB齿轮式输油泵在泵体中装有一对回转齿轮,一个主动,一个被动,依靠两齿轮的相互啮合,把泵内的整个工作腔分两个独立的部分。A为入吸腔,B为排出腔。泵运转时主动齿轮带动被动齿轮旋转,当齿化从啮合到脱开时在吸入侧(A)就形成局部真空,液体被吸入。被吸入的液体充满齿轮的各个齿谷而带到排出侧(B),齿轮进入啮合时液体被挤出,形成高压液体并经泵的排出口排出泵外。 KCB/2Y型齿轮油泵型号参数和安装尺寸如下: 【KCB/2CY型齿轮油泵】性能参数:

【KCB/2CY型齿轮油泵】安装尺寸图:KCB18.3~83.3与2CY1.1~5安装尺寸图 电动机 KCB200~960与2CY8~150安装尺寸图

液压缸基本结构

液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底1、缸筒6、缸盖10、活塞4、活塞杆7和导向套8等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为了保证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11和防尘圈12。下面对液压缸的结构具体分析。 3.2.1 缸体组件 ?

缸体组件与活塞组件形成的 密封容腔承受油压作用,因此, 缸体组件要有足够的强度,较高 的表面精度可靠的密封性。 3.2.1.1 缸筒与端盖的连接 形式 常见的缸体组件连接形式如图3.10所示。 (1)法兰式连接(见图a),结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉,它是常用 的一种连接形式。 (2)半环式连接(见图b), 分为外半环连接和内半环连 接两种连接形式,半环连接 工艺性好,连接可靠,结构紧凑,但削弱了缸筒强度。半环连接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。 (3)螺纹式连接(见图f、c),有外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,

但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。 ? (4)拉杆式连接(见图d),结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。只适用于长度不大的中、低压液压缸。 (5)焊接式连接(见图e),强度高,制造简单,但焊接时易引起缸筒变形。 3.2.1.2 缸筒、端盖和导向套的基本要求 ?缸筒是液压缸的主体,其内孔一般采用镗削、绞孔、滚压或珩磨等精密加工工艺制造,要

如何确定液压油缸规格型液压油缸选型参考

如何确定液压油缸规格型液压油缸选型参考 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

目录 程序 1:初选缸径/杆径 ★条件一 已知设备或装置液压系统控制回路供给液压缸的油压 P、流量 Q 及其工况需要液压缸对载输出力的作用方式(推、拉、既推又拉)和相应力(推力 F1、拉力 F2、推力 F1 和拉力F2)的大小(应考虑负载可能存在的额外阻力)。针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下:(1)输出力的作用方式为推力 F1 的工况: 初定缸径 D:由条件给定的系统油压 P(注意系统的流道压力损失),满足推力 F1 的要求对缸径 D 进行理论计算,参选标准缸径系列圆整后初定缸径 D; 初定杆径 d:由条件给定的输出力的作用方式为推力 F1 的工况,选择原则要求杆径在速1.46~2 (速比:液压缸活塞腔有效作用面积与活塞杆腔有效作用面积之比)之间,具体需合液压缸回油背压、活塞杆的受压稳定性等因素,参照相应的液压缸系列速比标准进行杆径的选择

(2)输出力的作用方式为拉力 F2 的工况: 假定缸径 D,由条件给定的系统油压 P(注意系统的沿程压力损失),满足拉力 F2 的要求对杆径 d 进行理论计算,参选标准杆径系列后初定杆径 d,再对初定杆径 d 进行相关强度校验后确定。(3)输出力的作用方式为推力 F1 和拉力 F2 的工况: 参照以上(1)、(2)两种方式对缸径 D 和杆径 d 进行比较计算,并参照液压缸缸径、杆径标准系列进行选择。 ★条件二 已知设备或装置需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力 F1、拉力 F2、推力 F1 和拉力 F2)大小(应考虑负载可能存在的额外阻力)。但其设备或装置液压系统控制回路供给液压缸的油压 P、流量 Q 等参数未知,针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下: (1)根据本设备或装置的行业规范或特点,确定液压系统的额定压力 P;专用设备或装置液压系统的额定压力由具体工况定,一般建议在中低压或中高压中进行选择。 (2)根据本设备或装置的作业特点,明确液压缸的工作速度 要求。(3)参照“条件一”缸径/杆径的初选方法进行选 择。 注:缸径 D、杆径 d 可根据已知的推(拉)力、压力等级等条件由下表进行初步查取。 不同压力等级下各种缸径/杆径对应理论推(拉)力表

液压缸习题及答案.doc

第五章 液 压 缸 如图所示,液压直径 D=150mm ,柱塞直径 d=100mm ,缸内充满油液,F=50000N(a , b 中分别包括柱塞或缸的自重 ) 不计油液重量。 试分别求 a) 、 b) 缸中的油压 ( 用 N/m 2 表示 ) 。 F F D d d D a) b) 题图 压力相同 F p 6.4Mpa d 2 4 -3 3 单杆活塞油缸, D=90mm , d=60mm ,进入油缸的流量 q=× 10 m/s ,进油压力 p 1=50× 105Pa ,背压力 p 2=3× 105Pa ,试计算图示各种情况下油缸运动速度的 大小和方向,牵引力大小和方向以及活塞杆受力情况 ( 受拉或受压 ) 。 p 1q p 2 p 2 1 1 p q p q 题图 无杆腔 A 1 D 2 6.3585 10 3 m 2 4 有杆腔 A 2 D 2 d 2 3.5325 10 3 m 2 4 1、 p 1 A 2 17662.5N p 2 A 1 1907.6N

F p1 A2 p2 A1 15754 .9 N v q / A2 0.119m / s 牵引力向左,活塞杆受拉,运动向左 2、p1A1 31792.5N p2 A2 1059.75N F p1 A1 p2 A2 30732.75 N v q / A1 0.066m / s 牵引力向右,活塞杆受压,运动向右 3、F p1 A1p1 A214130 N v q /( A1A2 )0.149m / s 牵引力向右,活塞杆受压,运动向右 三个液压缸串联,活塞直径均为100mm,活塞杆直径为65mm,由 10MPa,× 10 -3 3 F 相同,求 F 和三个活塞的运动速m/s 的油泵供油,如果液压缸上负载 度,如果方向阀切换,活塞反向运动时,求各活塞的运动速度。 F F F p 题图 无杆腔 A1 D 2 0.00785m2 4 有杆腔 A2 D 2 d 2 0.00453m 2 A2 / A1 0.577 4 正向运动: 油缸1 pA1 F p 1 A2

液压缸.

液压缸 1.1. 生产线概念生产线 product line 产品生产过程所经过的路线,即从原料进入生产现场开始,经过加工、运送、装配、检验等一系列生产活动所构成的路线。狭义的生产线是按对象原则组织起来的,完成产品工艺过程的一种生产组织形式,即按产品专业化原则,配备生产某种产品(零、部件)所需要的各种设备和各工种的工人,负责完成某种产品(零、部件)的全部制造工作,对相同的劳动对象进行不同工艺的加工。 1.2. 生产线分类生产线的种类,按范围大小分为产品生产线和零部件生产线,按节奏快慢分为流水生产线和非流水生产线,按自动化程度,分为自动化生产线和非自动化生产线。生产线的主要产品或多数产品的工艺路线和工序劳动量比例,决定了一条生产线上拥有为完成某几种产品的加工任务所必需的机器设备,机器设备的排列和工作地的布置等。生产线具有较大的灵活性,能适应多品种生产的需要;在不能采用流水生产的条件下,组织生产线是一种比较先进的生产组织形式;在产品品种规格较为复杂,零部件数目较多,每种产品产量不多,机器设备不足的企业里,采用生产线能取得良好的经济效益。 1.3. 生产线的发展机械产品的装配是机械制造过程的重要组成部分。提高产品的装配性能对缩短产品的开发周期,降低产品的成本具有重要的意义。面对不可预测、持续发展、快速多变的市场需求,全球制造企业之间的竞争越来越激烈,企业必须在适当的时机以较短的时间和较低的费用迅速实现转产。作为实施企业生产活动的生产线会经常面临设计调整,而设计合理的生产线不仅可以减少系统运行成本和维护费用,提高设备利用率和系统生产效率,而且对系统的快速重组和长期可靠运行均具有十分重要的意义,因此设计快速有效的生产线变得日益重要。生产线的设计需根据主导产品的类型、产量、加工工艺等系统特性选择加工设备、物流设备以及各种辅助设备,结合车间空间的结构特点对这些设备进行空间配置,并充分考虑设备之间在空间位置上的协调性,以确保整个系统的畅通和自动化。 2. 生产线规划设计生产线规划设计是工厂设计的重要环节之一,生产线规划设计即要考虑到一定历史时期的先进性,也妥结合当前企业自身的设资能力和经营状况正确的定位设计水准;即要考虑企业就产品对用户的质量承诺 (产品的社会效益),也要达到企业作为生产经营的主体必须赢利的目的;即要合理的控制初明投入,也要最大限度的降低运行成本。因此,生产线规划设计是工艺投资成败的关键,更关系到企业是否可持续发展。 2.1. 液压缸结构 2.1.1. 立柱的结构组成立柱主要有活柱组件、缸体部件、缸口导向套组件、加长杆组件和中缸底阀等组成。 1.活柱组件由活柱、密封件、导向环、活塞导向环和固定连接件组成。 (1)活柱由柱塞、柱管和柱头焊接而成。柱塞一般选用40Cr钢,柱管大多采用高强度后壁无缝钢管,材料为焊接性好的调质钢。柱头多采用35号等强度高,可焊性好的钢材。组焊后精加工外表面,并要求具有高的光洁度以满足密封性能的要求。柱管工作时经常伸出在外面与采煤工作面的腐蚀性气体、液体接触,有时也会受到某些物件、煤、矸石的砸碰,为适应上述工作环境的要求,柱管表面大都镀乳白铬和硬铬,以增强抗腐蚀、耐摩擦及抗砸碰的能力。柱塞应具有良好的密封性、可焊性、耐磨性及抗冲击和振动的性能。 (2)密封件种类较多,常用的型式有鼓形密封圈、山形密封圈和蕾形密封圈。鼓形密封圈耐压力高,可达60MPa,能双向密封,拆

液压缸主要尺寸的确定 (2)

液压缸主要尺寸的确定?? 液压缸是液压传动的执行元件,它和主机工作机构有直接的联系,对于不同的机种和机构,液压缸具有不同的用途和工作要求。因此,在设计液压缸之前,必须对整个液压系统进行工况分析,编制负载图,选定系统的工作压力(详见第九章),然后根据使用要求选择结构类型,按负载情况、运动要求、最大行程等确定其主要工作尺寸,进行强度、稳定性和缓冲验算,最后再进行结构设计。 ?1.液压缸的设计内容和步骤 ?(1)选择液压缸的类型和各部分结构形式.? (2)确定液压缸的工作参数和结构尺寸。 ?(3)结构强度、刚度的计算和校核。 (4)导向、密封、防尘、排气和缓冲等装置的设计。??(5)绘制装配图、零件图、编写设计说明书。? 2。计算液压缸的结构尺寸液压缸的结构尺寸主下面只着重介绍几项设计工作。?? 要有三个:缸筒内径D、活塞杆外径d和缸筒长度L。 ?(1)缸筒内径D。液压缸的缸筒内径D是根据负载的大小来选定工作压力或往返运动速度比,求得液压缸的有效工作面积,从而得到缸筒内径D,再从GB2348-80标准中选取最近的标准值作为所设计的缸筒内径。 ?根据负载和工作压力的大小确定D: ①以无杆腔作工作腔时???(4—32) ②以有杆腔作工作腔时?? (4—33)? 式中:pI为缸工作腔的工作压力,可根据机床类型或负载的大小来确定;Fmax为最大作用负载。??(2)活塞杆外径d。活塞杆外径d通常先从满足速度或速度比的要求来选择,然后再校核其结构强度和稳定性。若速度比为λv,则该处应有一个带根号的式子:??(4-34)??也可根据活塞杆受力状况来确定,一般为受拉力作用时,d=0.3~0。5D。??受压力作用时:??pI<5 MPa时,d=0.5~0.55D?? 5MPa

液压油缸设计计算公式

液压油缸的主要设计技术参数 一、液压油缸的主要技术参数: 1.油缸直径;油缸缸径,内径尺寸。 2. 进出口直径及螺纹参数 3.活塞杆直径; 4.油缸压力;油缸工作压力,计算的时候经常是用试验压力,低于16MPa乘以1.5,高于16乘以1.25 5.油缸行程; 6.是否有缓冲;根据工况情况定,活塞杆伸出收缩如果冲击大一般都要缓冲的。 7.油缸的安装方式; 达到要求性能的油缸即为好,频繁出现故障的油缸即为坏。应该说是合格与不合格吧?好和合格还是有区别的。 二、液压油缸结构性能参数包括:1.液压缸的直径;2.活塞杆的直径;3.速度及速比;4.工作压力等。 液压缸产品种类很多,衡量一个油缸的性能好坏主要出厂前做的各项试验指标,油缸的工作性能主要表现在以下几个方面: 1.最低启动压力:是指液压缸在无负载状态下的

最低工作压力,它是反映液压缸零件制造和装配 精度以及密封摩擦力大小的综合指标; 2.最低稳定速度:是指液压缸在满负荷运动时没 有爬行现象的最低运动速度,它没有统一指标, 承担不同工作的液压缸,对最低稳定速度要求也 不相同。 3.内部泄漏:液压缸内部泄漏会降低容积效率, 加剧油液的温升,影响液压缸的定位精度,使液 压缸不能准确地、稳定地停在缸的某一位置,也 因此它是液压缸的主要指标之。 液压油缸常用计算公式 液压油缸常用计算公式 项目公式符号意义 液压油缸面积(cm 2 ) A =πD 2 /4 D :液压缸有效活塞直径(cm) 液压油缸速度(m/min) V = Q / A Q :流量(l / min) 液压油缸需要的流量(l/min) Q=V×A/10=A×S/10t V :速度(m/min) S :液压缸行程(m) t :时间(min) 液压油缸出力(kgf) F = p × A F = (p × A) -(p×A) ( 有背压存在时) p :压力(kgf /cm 2 ) 泵或马达流量(l/min) Q = q × n / 1000 q :泵或马达的几何排量(cc/rev) n :转速(rpm ) 泵或马达转速(rpm) n = Q / q ×1000 Q :流量(l / min) 泵或马达扭矩(N.m) T = q × p / 20π 液压所需功率(kw) P = Q × p / 612 管内流速(m/s) v = Q ×21.22 / d 2 d :管内径(mm) 管内压力降(kgf/cm 2 ) △ P=0.000698×USLQ/d 4 U :油的黏度(cst) S :油的比重

液压缸设计

第一章液压系统设计 1.1液压系统分析 1.1.1 液压缸动作过程 3150KN热压成型机液压系统属于中高压液压系统,涉及快慢速切换、多级调压、保压补压等多个典型的液压回路。工作过程为电机启动滑块快速下行滑块慢速下行保压预卸滑块慢速回程滑块快速回程推拉缸推出推拉缸拉回循环结束。按液压机床类型初选液压缸的工作压力为28Mpa,根据快进和快退速度要求,采用单杆活塞液压缸。1.1.2液压系统设计参数 (1)合模力; (2)最大液压压28Mp; (3)主缸行程700㎜; (4)主缸速度υ 快=38㎜/s、 υ 慢=4.85㎜/s。 1.1.2分析负载 (一)外负载压制过程中产生的最大压力,即合模力。 (二)惯性负载 设活塞杆的总质量m=100Kg,取△t=0.25s (三)阻力负载 活塞杆竖直方向的自重 活塞杆质量m≈1000Kg,同时设活塞杆所受的径向力等于重力。 静摩擦阻力 动摩擦阻力 由此得出液压缸在各个工作阶段的负载如表****所示。

表*** 液压缸在各个工作阶段的负载F 工况负载组成负载值F工况负载组成负载值F 启动981保压3150×103加速537补压3150×103快速491快退+G10301按上表绘制负载图如图***所示。 F/N v/mm·s-1 537 491 981 38 4.85 0 l/mm 0 l/mm -491 -981 -38 由已知速度υ 快=38㎜/s、 υ 慢=4.85㎜/s和液压缸行程s=700mm,绘制简略速度图,如 图***所示。 1.2确定执行元件主要参数 1.2.1 液压缸的计算 (一)液压缸承受的合模力为3150KN,最大压力p1=28Mp。 鉴于整个工作过程要完成快进、快退以及慢进、慢退,因此液压缸选用单活塞杆式的。在液压缸活塞往复运动速度有要求的情况下,活塞杆直径d根据液压缸工作压力选取。 由合模力和负载计算液压缸的面积。 将这些直径按GB/T 2348—2001以及液压缸标准圆整成就近标准值,得:

液压缸技术标准

攀钢液压中心 二O一0年一月 目录 1、总则 2、引用标准 3、各部分常用材料及技术要求 3.1、缸筒的材料和技术要求 3.2、活塞的材料和技术要求 3.3、活塞杆的材料和技术要求 3.4、端盖的材料和技术要求 4、液压缸维修工艺流程 5、液压缸的检查 5.1、缸筒内表面 5.2、活塞杆的滑动面 5.3、密封

5.4、活塞杆导向套的内表面 5.5、活塞的表面 5.6、其它 6、液压缸的装配 7、液压缸试验 附表1:检查项目和质量分等(摘录JB/T10205-2000) 附表2:液压缸、气缸铭牌编号 附表3:螺栓和螺母最大紧固力矩(仅供参考) 附表4:螺纹的传动力和拧紧力矩 液压缸维修技术标准 1、总则 1.1 适用范围本维修技术标准规定了液压缸各组成部分的常用材料和技术要求、液压缸的检查、装配以及试验,适用于攀钢液压中心范围内液压缸的维修,维修用户单位按本标准执行。

1.2 密封选择密封件应选择攀钢液压中心指定生产厂家的标准产品,特殊情况需得到攀钢相关技术部门审核同意。 1.3 螺纹防松液压缸的螺纹连接在安装时应采用攀钢液压中心联接螺纹的防松结构型式,不能从结构上采取防松措施的,应涂上攀钢液压中心指定的螺纹紧固胶。 1.4 液压缸防腐修理好的液压缸,若在仓库或现场存放时间超过3个月时间,需采用适当的防腐措施。 1.5 螺栓选择一般采用8.8级、10.9级、1 2.9级的高强度螺栓(钉),应采用国内著名生产厂的产品。 1.6 气缸维修标准参照本标准执行。 1.7 本标准的解释权属攀钢液压中心。 2、引用标准 液压缸的维修应执行下列国家标准,允许采用要求更高的标准。

液压缸主要尺寸地确定

液压缸主要尺寸的确定 液压缸是液压传动的执行元件,它和主机工作机构有直接的联系,对于不同的机种和机构,液压缸具有不同的用途和工作要求。因此,在设计液压缸之前,必须对整个液压系统进行工况分析,编制负载图,选定系统的工作压力(详见第九章),然后根据使用要求选择结构类型,按负载情况、运动要求、最大行程等确定其主要工作尺寸,进行强度、稳定性和缓冲验算,最后再进行结构设计。 1.液压缸的设计内容和步骤 (1)选择液压缸的类型和各部分结构形式。 (2)确定液压缸的工作参数和结构尺寸。 (3)结构强度、刚度的计算和校核。 (4)导向、密封、防尘、排气和缓冲等装置的设计。

(5)绘制装配图、零件图、编写设计说明书。 下面只着重介绍几项设计工作。 2.计算液压缸的结构尺寸液压缸的结构尺寸主要有三个:缸筒内径D、活塞杆外径d和缸筒长度L。 (1)缸筒内径D。液压缸的缸筒内径D是根据负载的大小来选定工作压力或往返运动速度比,求得液压缸的有效工作面积,从而得到缸筒内径D,再从GB2348—80标准中选取最近的标准值作为所设计的缸筒内径。 根据负载和工作压力的大小确定D: ①以无杆腔作工作腔时? (4-32) ②以有杆腔作工作腔时?

(4-33) 式中:pI为缸工作腔的工作压力,可根据机床类型或负载的大小来确定;Fmax 为最大作用负载。 (2)活塞杆外径d。活塞杆外径d通常先从满足速度或速度比的要求来选择,然后再校核其结构强度和稳定性。若速度比为λv,则该处应有一个带根号的式子: (4-34) 也可根据活塞杆受力状况来确定,一般为受拉力作用时,d=0.3~0.5D。 受压力作用时: pI<5MPa时,d=0.5~0.55D 5MPa<pI<7MPa时,d=0.6~0.7D pI>7MPa时,d=0.7D

液压油缸的一般设计步骤手册

液压油缸的一般设计步骤 液压油缸的一般设计步骤 1)掌握原始资料和设计依据,主要包括:主机的用途和工作条件;工作机构的结构特点、负载状况、行程大小和动作要求;液压系统所选定的工作压力和流量;材料、配件和加工工艺的现实状况;有关的国家标准和技术规范等。 2)根据主机的动作要求选择液压缸的类型和结构形式。 3)根据液压缸所承受的外部载荷作用力,如重力、外部机构运动磨擦力、惯性力和工作载荷,确定液压缸在行程各阶段上负载的变化规律以及必须提供的动力数值。 4)根据液压缸的工作负载和选定的油液工作压力,确定活塞和活塞杆的直径。 5)根据液压缸的运动速度、活塞和活塞杆的直径,确定液压泵的流量。 6)选择缸筒材料,计算外径。

7)选择缸盖的结构形式,计算缸盖与缸筒的连接强度。 8)根据工作行程要求,确定液压缸的最大工作长度L,通常L>=D,D为活塞杆直径。由于活塞杆细长,应进行纵向弯曲强度校核和液压缸的稳定性计算。 9)必要时设计缓冲、排气和防尘等装置。 10)绘制液压缸装配图和零件图。 11)整理设计计算书,审定图样及其它技术文件。 液压缸工作时出现爬行现象的原因及排除方法 1)缸内有空气侵入,应增设排气装置或使液压缸以最大行程快速运动,强迫排除空气。 2)液压缸的端盖处密封圈压得太紧或太松,应调整密封圈使之有适当的松紧度,保证活塞杆能用手来回平稳地拉动而无泄漏。 3)活塞与活塞杆同轴度不好,应校正、调整。 4)液压缸安装后与导轨不平行,应进行调整或重新安装。 5)活塞杆弯曲,应校直活塞杆。 6)活塞杆刚性差,加大活塞杆直径。 7)液压缸运动零件之间间隙过大,应减小配合间隙。 8)液压缸的安装位置偏移,应检查液压缸与导轨的平行度,并校正。

液压缸设计规范

液压缸的设计计算规范

目录:一、液压缸的基本参数 1、液压缸内径及活塞杆外径尺寸系列 2、液压缸行程系列(GB2349-1980) 二、液压缸类型及安装方式 1、液压缸类型 2、液压缸安装方式 三、液压缸的主要零件的结构、材料、及技术要求 1、缸体 2、缸盖(导向套) 3、缸体及联接形式 4、活塞头 5、活寒杆 6、活塞杆的密封和防尘 7、缓冲装置 8、排气装置 9、液压缸的安装联接部分(GB/T2878) 四、液压缸的设计计算 1、液压缸的设计计算部骤 2、液压缸性能参数计算 3、液压缸几何尺寸计算 4、液压缸结构参数计算 5、液压缸的联接计算

一、液压缸的基本参数 1.1液压缸内径及活塞杆外径尺寸系列 1.1.1液压缸内径系列(GB/T2348-1993) 8 10 12 16 20 25 32 40 50 63 80 (90) 100 (110) 125 (140) 160 (180) 200 220 (250) (280) 320 (360) 400 450 500 括号内为优先选取尺寸 1.1.2活塞杆外径尺寸系列(GB/T2348-1993) 4 5 6 8 10 12 14 16 18 20 22 25 28 32 36 40 45 50 56 63 70 80 90 100 110 125 140 160 180 200 220 250 280 320 360 活塞杆连接螺纹型式按细牙,规格和长度查有关资料。 1.2液压缸的行程系列(GB2349-1980) 1.2.1第一系列 25 50 80 100 125 160 200 250 320 400 500 630 800 1000 1250 1600 2000 2500 3200 4000 1.2.1第二系列 40 63 90 110 140 180 220 280 360 450 550 700 900 1100 1400 1800 2200 2800 3600

液压例题及答案

一、填空题 1、液压传动就是指在密封容积内,利用液体的压力能来传递动力和运动的一种传动方式。 2、液压油的粘度随液压油的温度和压力而变,当压力增大时,液压油粘度增大;当液压油温度升高时,液压油的粘度下降。 3、根据度量基准的不同,液体的压力分为绝对压力和相对压力两种,大多数表测得的压力是相对压力。 4、液压泵按结构分齿轮泵、叶片泵、柱塞泵三种,它们是利用密封容积的变化来进行工作的,所以称为容积泵。 5、一般的外啮合齿轮泵的进油口大,出油口小,这主要是为了解决外啮合齿轮泵的径向力不平衡问题。 6、常见的密封方法有间隙密封、活塞环密封、密封圈密封三种。 7、斜盘式轴向柱塞泵的缸体、柱塞、斜盘、配油盘中随输入轴一起转动的为缸体、柱塞。 8、在结构上所有液压阀都是由阀体、阀芯和驱动阀芯动作的元部件等组成。 9、所有的液压阀都是通过控制阀体和阀芯的相对运动而实现控制目的的。 10、液压控制阀按其用途来分可分为 ____方向阀___、压力阀、__流量阀__。 11、调速阀是由___节流阀__和__定差式减压阀(差压式减压阀)_构成的一种组合阀。 12、液压油的粘度的表示方法有___绝对粘度___、运动粘度和_____相对粘度___。 13、液压油的牌号是采用在40℃温度时的运动粘度的平均值来标号的。 14、液压缸的结构主要包括缸体组件、活塞组件、密封装置、缓冲装置、排气装置等五部分组成。 15、根据改变流量方式的不同,液压系统的调速方法可以分为三种:节流调速、容积调速、容积节流调速。 二、简答题 1、液压传动系统一般由几部分组成?各部分起什么作用? 答:液压传动系统一般由五部分组成:动力元件、执行元件、控制调节元件、辅助元件、工作介质。 (1) 动力元件:动力元件指液压泵,它是将原动机的机械能转换成为液压能的装置,其作用是为液压系统提供压力油,是液压系统的动力源; (2) 液压执行元件:液压执行元件指液压缸或液压马达,是将液压能转换为机械能的装置,其作用是在压力油的推动下输出力和速度(或转矩和转速),以驱动工作机构; (3) 控制调节元件:它包括各种阀类元件,其作用是用来控制液压系统中油液流动方向、压力和流量,以保证液压执行元件和工作机构完成指定工作; (4) 辅助元件:辅助元件如油箱、油管、滤油器等,它们对保证液压系统正常工作有着重要的作用; (5) 工作介质:工作介质指传动液体,通常被称为液压油。在液压系统中,液压油液用来传递动力和信号,并且起到润滑、冷却和防锈等作用。 2、液压泵正常工作的基本条件是什么?液压泵在液压系统中的工作压力取决于什么?

相关文档