文档库 最新最全的文档下载
当前位置:文档库 › 西财高等代数期中模拟题

西财高等代数期中模拟题

西财高等代数期中模拟题
西财高等代数期中模拟题

光华园 https://www.wendangku.net/doc/5b17511894.html,/

光华园学习网 https://www.wendangku.net/doc/5b17511894.html,/study09/

学 号________________ 评定成绩________________(分) 学生姓名________________ 担任教师_线性代数课程组__

(下述一 ~ 四题全作100分, 两小时完卷)

试 题 全 文

一.填空题 (将正确答案填在题中括号内。每小题2分,共10分) 1.已知4阶行列式D 的第三行元素分别为;4,2,0,1-第四行元素对应的余子式依次是.4,,10,5a 则=a ( ).

2.设方程01

11

)(1

1

2

1

1

1

1

2

1

112==

------n n n n n n a a a a a a x

x

x x f

其中)1,,2,1(-=n i a i 为互不相等的实常数,则方程的全部解是( ). 3.设四阶矩阵[][],,,,,,,,432432γγγβγγγα==B A 其中432,,,,γγγβα均为14?列矩阵,且巳已知行列式,1,4==B A 则行列式=+B A ( ). 4.若向量组s ααα,,,21 的秩为r ,则r ( ).s

5.已知n 阶矩阵滿足关系式,0322=-+I A A 则=+-1)4(I A ( ).

二.单项选择题 (每小题仅有一个正确答案, 将正确答案的番号填入下表内. 每小题2分, 共20分)

题号 1 2 3 4 5 6 7 8 9 10 答案番 号

1.设A 为方阵,则0=A 的必要条件是( )

)(A 両行(列)元素对应成比例; )(B 任一列为其它列的线性组合; )(C 必有一列为其它列的线性组合; )(D A 中至少有一列元素全为零. 2.设A 为m 阶方阵,B 为n 阶方阵,,??

?

?

??=O B

A O

C 则=C ( );

)(A ;B A )(B ;B A -

)(C ;)1(B A n m +- )(D .)1(B A mn -

3. 行列式=600

300

301

395200199

204

100103

( ). )(A 1000; )(B -10000; )(C 2000; )(D -2000.

4. 设B A ,为n 阶方阵, 则下列结论成立的是( ) )(A 00≠?≠A AB 且;0≠B )(B ;0O A A =?= )(C 00=?=A AB 或;0=B (D) .1=?=A I A

5. 设A 为n 阶可逆矩阵,则( ) )(A A 总可以只经过初等行变換变为;I

)(B 对分块矩阵A ( )I 施行若干次初等变换,当子块变为I 时,相应地I 变为;1-A

)(C 由.BA AX =得;A X = )(D 以上三个结论都不正确.

6. 设A 是n m ?矩阵,其秩为,r C 是n 阶可逆阵,且B AC =的秩为,1r 则( ) 正确.

)(A r ﹥;1r (B) r ﹤;1r

)(C ;1r r = (D) r 与1r 的关系依C 而定. 7. 设B A ,为同阶可逆方阵,则( )成立. (A) ;BA AB =

(B) 存在可逆阵,P 使;1B AP P =- (C) 存在可逆阵,C 使;B AC C T = (D) 存在可逆阵,,Q P 使.B PAQ =

8. 设B A ,为n 阶非零矩阵,且,O AB =则A 和B 的秩( ). )(A 必有一个等于零; )(B 都小于;n )(C 一个小于,n 一个等于;n )(D 都等于.n

9. 如果向量β可由向量组s ααα,,,21 线性表出,则( ). )(A 存在一组数,,,,21s k k k 使等式s s k k k αααβ+++= 2211成立; )(B 存在一组不全为零的,,,,21s k k k 使等式s s k k k αααβ+++= 2211成立;

)(C 存在一组全为零的,,,,21s k k k 使等式s s k k k αααβ+++= 2211成立; )(D 对β的线性表达式唯一.

10. 设s ααα,,,21 和t βββ,,,21 为两个n 维向量组, 且秩(s ααα,,,21 )=秩(t βββ,,,21 ),r =则( ). )(A 两向量组等价,也即可相互线性表示; )(B 秩(s ααα,,,21 ,t βββ,,,21 )r =;

)(C 当s ααα,,,21 被向量组t βββ,,,21 线性表示时,两向量组等价; )(D 当t s =时,两向量组等价.

三、计算题 (每小题9分, 共54分)

1. 计算下列行列式:

1998

0000199700200

01000

2. 计算下列n 阶行列式的值:

β

αβ

αβαβ

αβ

αβαβ

αβα+++++=

00000000000n D

3. 设矩阵,1

1

1

1111

11

111?????

????

???=k k k k A 且,3)(=A R 则k 为什么?

4. 考虑向量组

?????

???????-=????????????=????????????-=????????????=????????????=141

2,2615,1012,31407,023154321ααααα

(1) 求向量组的秩;

(2) 求此向量组的一个极大线性无关组,并把其余向量分别用该极大线性无关组表示.

5. 已知矩阵,PQ A =其中[]2,

1,2,121-=???

?

??????=Q P ,求矩阵.,,1002A A A

6. 设矩阵A 的伴随矩阵,80

3

01010

0100001*

?????

????

???-=A 且,31

1

I BA

ABA +=--其中I 为4阶

单位矩阵,求矩阵.B

四﹑证明题 (每小题8分, 共16分)

1. 设B A ,是n 阶正交矩阵,且,1-=B A 证明.0=+B A

2. 设A 为n 阶非奇异矩阵,α为n 元列,b 为常数,记分块矩阵 ,,*

??

?

???=??????

-=b A

Q A A

O I

P T T α

αα (1) 计算并化简;PQ

(2) 证明:矩阵Q 可逆的充分必要条件是.1b A T ≠-αα

《高等代数》期末试卷B

教育科学系14级小学教育(科学与数学)专业2014—2015学年度春学期 期末考试《高等代数Ⅱ》试卷(B ) 试卷说明:1.本试卷共2页,4个大题,满分100分,120分钟完卷; 2.试题解答全部书写在本试卷上。 班号: 学号 姓名 一、选择题:(每题3分,共15分) 1.当λ=( )时,方程组1231 231 222x x x x x x λ++=??++=?,有无穷多解。 A 1 B 2 C 3 D 4 2.若向量组中含有零向量,则此向量组( )。 A 线性相关 B 线性无关 C 线性相关或线性无关 D 不一定 3.设α是n 阶可逆矩阵A 的属于特征值λ的特征向量,在下列矩阵中,α不是( ) 的特征向量。 A 2()A E + B -3A C *A D T A 4.若A 为n 阶实对称矩阵,P 为n 阶正交阵,则1P A P -为( )。 A 实对称阵 B 正交阵 C 非奇异阵 D 奇异阵 5.设矩阵 A , B , C 均为n 阶矩阵,则矩阵A B 的充分条件是( )。 A A 与 B 有相同的特征值 B A 与B 有相同的特征向量 C A 与B 与同一矩阵相似 D A 一定有n 个不同的特征值 1.已知向量组)4,3,2,1(1=α,)5,4,3,2(2=α,)6,5,4,3(3=α,)7,6,5,4(4=α,则向量=+-+4321αααα 。 2.若120s ααα++ +=,则向量组12,, ,s ααα必线性 。 3.设向量空间1212{(,, )|0,}n n i V x x x x x x x R =++ +=∈,则V 是 维 空间。 4.A ,B 均为3阶方阵,A 的特征值为1,2,3,1B =-,则*A B B += 。 5.设矩阵A 满足条件2560A A E -+=,则矩阵A 的特征值 是 。 6.二次型yz xz xy z y x z y x f 222),,(222---++=的矩阵是____________。 二、填空题:(每题3分,共27分)

高等代数05期中试题(含答案)

《高等代数》05-06年度第一学期期中试题 一、单项选择题 1.对任意n 阶方阵A 、B 总有[ ] A. AB = BA B. | AB | = | BA | C. (AB)T =A T B T D. (AB)2=A 2B 2 2. 在下列矩阵中,可逆的是[ ] A. 000010001?? ? ? ??? B. 110220001?? ? ? ??? C. 110011121?? ? ? ??? D. 100111101?? ? ? ??? 3. 设A 是3阶方阵,且|A| = 2-,则| A -1 |等于[ ]. A. 2- B. 1 2 - C. 12 D. 2 4. 设A 是m n ?矩阵,则齐次线性方程组Ax = 0仅有零解的充分必要条件是[ ]. A. A 的行向量线性无关 B. A 的行向量线性相关 C. A 的列向量线性无关 D. A 的列向量线性相关 5.设有m 维向量组12():,,...,n I ααα,则[ ]. A. 当m < n 时,()I 一定线性相关 B. 当m > n 时,()I 一定线性相关 C. 当m < n 时,()I 一定线性无关 D. 当m > n 时,()I 一定线性无关 6.已知1β、2β是非齐次线性方程组Ax b =的两个不同的解,1α、2α是其导出组0Ax =的一个基础解系,1k 、2k 为任意常数,则方程组Ax b =的通解可表成[ ]. A. 12 11212()2 k k ββαββ-+++ B. 12 11212()2 k k ββαββ++++ C. 12 11222 k k ββαα-++ D. 12 11222 k k ββαα+++ 7. 向量组12():,,...,n I ααα,(n>1) 线性无关等价于[ ]. A. 存在一组不全为0的数n k k k ,,,21 ,使其线性组合∑=n k i i k 1 α 不等于0 B. 其中任意两个向量线性无关 C. 任何一个向量均不能用其它向量线性表出 D. 存在一个向量不能用其它向量线性表出 8. 设矩阵11 112 1231A λ?? ? = ? ?+?? 的秩为2,则λ=[ ].

高等代数试卷及答案1

高等代数 一、填空题 (共10题,每题2分,共20 分) 1.只于自身合同的矩阵是 矩阵。 2.二次型()()11212237,116x f x x x x x ?? ??= ? ????? 的矩阵为__________________。 3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。 4.正交变换在标准正交基下的矩阵为_______________________________。 5.标准正交基下的度量矩阵为_________________________。 6.线性变换可对角化的充要条件为__________________________________。 7.在22P ?中定义线性变换σ为:()a b X X c d σ?? = ??? ,写出σ在基11122122,,,E E E E 下的矩阵_______________________________。 8.设1V 、2V 都是线性空间V 的子空间,且12V V ?,若12dim dim V V =,则_____________________。 9.叙述维数公式_________________________________________________________________________。 10.向量α在基12,,,n ααα???(1)与基12,,,n βββ???(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。 二、判断题 (共10 题,每题1分,共10分) 1.线性变换在不同基下的矩阵是合同的。( ) 2.设σ为n 维线性空间V 上的线性变换,则()1 0V V σσ -+=。 ( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实 数域上的线性空间。( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++???+=与12n x x x ==???=的解空间,则 12n V V P ⊕= ( ) 5.2 2 11n n i i i i n x x ==??- ??? ∑∑为正定二次型。( ) 6.数域上任意一个矩阵都合同于一对角矩阵。( ) 7.把复数域C 看作复数域上的线性空间,C ξ?∈,令σξξ=,则σ是线性变换。( ) 8.若σ是正交变换,那么σ的不变子空间的真正交补也是σ的不变子空间。( ) 9.欧氏空间中不同基的度量矩阵是相似的。( ) 10.若σ为[]n P x (1n >)中的微分变换,则σ不可对角化。( )

2016《高等代数(一)》期中考试试题

湖南师范大学XXXX学院 2016-2017学年第一学期数学信统专业2016年级《高等代数(一)》课程期中考试试题课程代码:07031004考核方式:闭卷考试时量:120 分钟试卷类型:D 一、理解题(每小题20分,共20分) 1.陈述一般数域P上的多项式因式分解及唯一性定理,并重点解释你对唯一性 的理解。而后在实数域上再次叙述该定理,并解释此时的不可约多项式有哪些?

二、简答题(下面两题:要求先回答‘对’或‘错’;如果回答‘错’,请给出反举例,如果回答‘对’ 则简单给出理由。每小题10分,共20分) 1. 有人说:对于有理数域上的两个多项式()f x 和()g x ,它们在有理数域上的最大公因式与它们在实数域上的最大公因式是相等的。这种说法对吗?为什么? 解: 2. 有人说:3级行列式 3 3 3 111a b c a b c 为零的充分必要条件是,,a b c 这3个数中至少有两个相等。这种说法对吗?为什么? 解:

1. 在有理数域上将多项式 ()(5)(4)(3)(2)1f x x x x x =+++++ 分解为不可约多项式的乘积。 解: 2. 设b c ≠,计算下面n 级行列式 a b b b c a b b c c a b c c c a 解:

1. 设整数,,a b c 两两不同,以及整系数多项式()f x ,证明: ()1() (()())a b f a f b --;()2如果()f a b =,()f b c =,一定有()f c a ≠。 证: 2. 设两个n 级行列式 432323 523 5 235n a = ,423 061 561 5615n b -= 证明:当4n ≥时,有n n a b =。 证:

高等代数(下)期终考试题及答案(B卷)

高等代数(下)期末考试试卷及答案(B 卷) 一.填空题(每小题3分,共21分) 1. 223[]-2-31,(-1),(-1)P x x x x x 在中,在基下的坐标为 2. 设n 阶矩阵A 的全体特征值为12,, ,n λλλ,()f x 为任一多项式, 则()f A 的全体特征值为 . 3.'=n 在数域P 上的线性空间P[x]中,定义线性变换:(,则的值域())()A A f x f x A ()-n P[x]= ,的核(0)= 1A A A 4.已知3阶λ-矩阵A (λ)的标准形为21 0 00 00 0λλλ?? ? ? ?+?? ,则A (λ)的不变 因子________________________; 3阶行列式因子 D 3 =_______________. 5. 若4阶方阵A 的初等因子是(λ-1)2,(λ-2),(λ-3),则A 的若当标准形 J= 6.在n 维欧氏空间V 中,向量ξ在标准正交基12,,,n ηηη下的坐标是 12(,,,)n x x x ,那么(,)i ξη= 7. 两个有限维欧氏空间同构的充要条件是 . 二. 选择题( 每小题2分,共10 分) 1.( ) 已知{(,),,,}V a bi c di a b c d R =++∈为R 上的线性空间, 则dim(V)为 (A) 1; (B) 2; (C) 3; (D) 4 2. ( ) 下列哪个条件不是n 阶复系数矩阵A 可对角化的充要条件 (A) A 有n 个线性无关的特征向量; (B) A 的初等因子全是1次的; (C) A 的不变因子都没有重根; (D) A 有n 个不同的特征根; 3.( ) 设三阶方阵A 的特征多项式为322)(23+--=λλλλf ,则=||A

高等代数试题附答案

科目名称:《高等代数》 姓名: 班级: 考试时间:120分钟 考试形式:闭卷 ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌ ≌≌≌≌ 一、填空题(每小题5分,共25分) 1、在[]X P 中,向量21x x ++关于基23,1,12+--x x x 的坐标为 。 2、向 量 组 ()()()()()8,3,5,2,1,1,3,0,3,2,4,2,1,2,154321-=-==-=-=ααααα的秩 为 ,一个最大无关组为 .。 3、(维数公式)如果21,V V 是线性空间V 的两个子空间,那么 。 4、假设??? ? ? ??-----=175131023A 的特征根是 ,特征向量分别 为 。 5、实二次型()323121321224,,x x x x x x x x x f ++-= 的秩为 二、是非题(每小题2分,共20分) 1、如果r a a a ,,,21 线性无关,那么其中每一个向量都不是其余向量的线性组合。( ) 2、在][x P 中,定义变换)()(0x f x Af =,其中P x ∈0,是一固定的数,那么变换A 是线性变换。( ) 3、设21,W W 是向量空间V 的两个子空间,那么它们的并 21W W 也是V 的一个子空间。( ) 4、两个欧氏空间同构的充分且必要条件是它们有相同的维数。( )

5、令),,,(4321x x x x =ξ是4R 的任意向量,那么δ是4R 到自身的线性变 换。其中),,,()(24232221x x x x =ξδ。( ) 6、矩阵A 的特征向量的线性组合仍是A 的特征向量。( ) 7、若矩阵A 与B 相似,那么A 与B 等价。( ) 8、n 阶实对称矩阵A 有n 个线性无关的特征向量。( ) 9、在)(2R M 中,若W 由所有满足迹等于零的矩阵组成,那么W 是 )(2R M 的 子空间。( ) 10、齐次线性方程组0)(=-X A E λ的非零解向量是A 的属于λ的特征向量。( ) 三、明证题(每小题××分,共31分) 1、设n εεε,,,21 是线性空间V 的一组基,A 是V 上的线性变换,证明:A 可逆当且仅当n A A A εεε,,,21 线性无关。 (10) 2、设δ是n 维欧氏空间V 的一个线性变幻,证明:如果δ是对称变幻, 2δ=l 是单位变幻,那么δ是正交变换。(11) 3、设V 是一个n 维欧氏空间,证明:如果21,W W 都是V 得子空间,那么() ⊥⊥⊥ =+2121W W W W 。(10) 四、计算题(每小题8分,共24分) 1、求矩阵??? ? ? ??---=466353331A 的特征根与特征向量,并求满秩矩阵P 使 得AP P 1-为对角形矩阵。 2、求一个正交矩阵U ,使得AU U '使对角形式,其中

高等代数期末卷及答案

沈阳农业大学理学院第一学期期末考试 《高等代数》试卷(1) 1 ?设 f (x) = x 4 +x ? +4x - 9 ,贝H f (一3) = 69 .. 2?当 t = _2,-2 . 时,f(x)=x 3 —3x+t 有重因式。 3.令f(x),g(x)是两个多项式,且f(x 3) xg(x 3)被x 2 x 1整除,则 f(1)=_0_^ g(1)= 0 . 0 6 2 =23 。 1 1 — -2 0 1 x , 2x 2 2x 3 x 4 二 0 7. 2x 1 x 2 -2x 3 -2x 4 二 0 的一般解为 x( ~'X 2 _'4x 3 ~3x 4 = 0 题号 -一- -二二 -三 四 五 六 七 总分 得分 、填空(共35分,每题5 分) 得分 4.行列式 1 -3 5. ■’4 10" 1 0 3 -1、 -1 1 3 '9 -2 -1 2 1 0 2」 2 0 1 < 9 9 11 <1 3 4 丿 6. z 5 0 0 1 -1 <0 2 1; 0-2 3 矩阵的积

c 亠5 刘=2x3 X4 4 x3, x4任意取值。X2 二-2x^ --x4

、(10分)令f(x),g(x)是两个多项式。求证 当且仅当(f(x) g(x), f(x)g(x))=1。 证:必要性.设(f(x) g(x), f (x)g(x)) =1。(1% 令 p(x)为 f (x) g (x), f (x)g(x)的不可约公因式,(1% 则由 p(x) | f (x)g (x)知 p(x)| f (x)或 p(x) |g(x) o (1%) 不妨设 p(x) | f (x),再由 p(x)|(f(x) g (x))得 p(x) | g(x)。故 p(x) |1 矛盾。(2%) 充分性.由(f (x) g(x), f (x)g(x)^1知存在多项式u(x), v(x)使 u(x)(f(x) g(x)) v(x)f(x)g(x)=1,(2%) 从而 u(x)f(x) g(x)(u(x) v(x) f(x)) =1,(2%) 故(f (x), g(x)) =1 o (1%) ax 「bx 2 2x 3 =1 ax 1 (2 b -1)x 2 3x 3 =1 ax 1 bx 2 - (b 3)X 3 = 2b _1 有唯一解、没有解、有无穷解?在有解情况下求其解。 解: a b 2 1 a b 2 1 a 2b -1 3 1 T 0 b —1 1 0 b J* b+3 2b-1 , b+1 2b-2 ‘ (5%) a 2 - b 0 1 0 b -1 1 0 L 0 0 b+1 2b —2 当b =1时,有无穷解:X 3 = 0, X 2 = 1 - a%,人任意取值; 当a =0,b =5时,有无穷解:x 1 = k,x^ --3,x^ 4 ,k 任意取值;(3%) 当b = T 或a =0且b =二1且b = 5时,无解。(4%) 三、(16分)a,b 取何值时,线性方程组 当a(b 2 T) = 0时,有唯一解: 5-b a(b 1) X 2 2 b+1 x3 = 2b -2 b 1 ;4%) (f(x),g(x)) =1

厦门大学《高等代数》期末试题及答案(数学系)

10-11学年第一学期厦门大学《高等代数》期末试卷 厦门大学《高等代数》课程试卷 数学科学学院 各 系 2010 年级 各 专业 主考教师:杜妮、林鹭 试卷类型:(A 卷) 2011.1.13 一、 单选题(32 分. 共 8 题, 每题 4 分) 1) 设b 为 3 维行向量, 123123 V {(,,)|(,,)} x x x x x x b == ,则____。C A)对任意的b ,V 均是线性空间;B)对任意的b ,V 均不是线性空间;C)只有当 0 b = 时,V 是线性空间;D)只有当 0 b 1 时,V 是线性空间。 2)已知向量组 I : 12 ,,..., s a a a 可以由向量组 II : 12 ,,..., t b b b 线性表示,则下列叙述正确的是____。 A A)若向量组 I 线性无关,则s t £ ;B)若向量组 I 线性相关,则s t > ; C)若向量组 II 线性无关,则s t £ ;D)若向量组 II 线性相关,则s t > 。 3)设非齐次线性方程组AX b = 中未定元个数为 n ,方程个数为m ,系数矩阵 A 的秩为 r ,则____。 D A)当r n < 时,方程组AX b = 有无穷多解; B) 当r n = 时,方程组AX b = 有唯一解;C)当r m < 时,方程组AX b = 有解;D)当r m = 时,方程组AX b = 有解。 4) 设 A 是m n ′ 阶矩阵,B 是n m ′ 阶矩阵,且AB I = ,则____。A A)(),() r A m r B m == ;B)(),() r A m r B n == ;C)(),() r A n r B m == ; D)(),() r A n r B n == 。 5) 设 K 上 3 维线性空间 V 上的线性变换j 在基 123 ,, x x x 下的表示矩阵是 111 101 111 ?? ?÷ ?÷ ?÷ è? ,则j 在基 123 ,2, x x x 下的表示矩阵是____。C A) 121 202 121 ?? ?÷ ?÷ ?÷ è? ; B) 1 2 11 22 1 2 11 0 11 ?? ?÷ ?÷ ?÷ è? ; C)11 22 121 0 121 ?? ?÷ ? ÷ ?÷ è? ;D) 1 2 1 2 11 202 11 ?? ?÷ ?÷ ?÷ è? 。 6) 设j 是 V 到 U 的线性映射,dim V ,dim U n m == 。若m n < ,则j ____。B A)必是单射; B)必非单射; C)必是满射;D)必非满射。

高等代数试题及答案

中国海洋大学2007-2008学年第2学期期末考试试卷

授课教师命题教师或 命题负责人签字年月日院系负责人签 字年月日 共 2 页第 2 页

中国海洋大学 XXXX-XXXX 学年 第X 学期 期末考试试卷 五(10分)证明:设A 为n 级矩阵,()g x 是矩阵A 的最小多项式,则多项式()f x 以A 为根的充要条件是()g x |()f x . 六(10分)设V 是数域P 上的n 维线性空间,A B ,是V 上的线性变换,且=AB BA .证明:B 的值域与核都是A 的不变子空间. 七(10分)设2n 阶矩阵a b a b A b a b a ??????? ? =? ?? ??????? O N N O ,a b ≠,求A 的最小多项式. 八(10分)设f 是数域P 上线性空间V 上的线性变换,多项式()(),p x q x 互素,且满足 ()()0p f q f =(零变换) 求证:()()()(),ker ,ker V W S W p f S q f =⊕==

中国海洋大学 2007-2008学年 第2学期 期末考试 数学科学 学院 《高等代数》试题(A 卷)答案 一.判断题 1.× 2.× 3.× 4.√ 5.√ 二.解:A =???? ????????1111111111111111, 3|(4)E A λλλ-=-|,所以特征值为0,4(3重). 将特征值代入,求解线性方程组()0E A x λ-=,得4个线性无关的特征向量(答案可以不唯一),再正交单位化,得4个单位正交向量: 11111 ,,,)'2222α=( ,2α=, 3α= ,4'α=. 所以正交阵1 212 102610 2 T ?????? ?=??- ?? ???????? 而40'00T AT ??????=??????. 三.证:(1) ,.A B M ?∈ 验证,A B kA M +∈即可. (2) 令1101 010011 0n E D E -???? ? ??? ??== ????? ?????? O O O ,D 为循环阵, 00n k k k E D E -?? = ??? ,(k E 为k 阶单位阵) 则2 1 ,,,,n n D D D D E -=L 在P 上线性无关.

北京大学高等代数_I+2016+期中考试题+-+答案

北京大学数学学院期中试题 一.(16分) (1)叙述向量组线性相关, 线性无关, 向量组极大无关组的定义 ; (2)已知向量组α1 , ... , α s 能线性表出β1 , ... , β r , 且α1 , ... , α s 的秩 等于β1 , ... , β r 的秩 . 证明: β1 , ... , β r 也能线性表出α1 , ... , αs . 二.(16分)计算n 级行列式 D = n n 2n 1n n 2221 2n 1211 1b a n b a n b a n b a b a b a b a b a b a +++++++++ 222111. 解:n = 1时,D = 1+ a 1b 1 ;n = 2时,D =(2a 1–a 2 )(b 1–b 2 ); n>2时,D = n 1n 21n 11n n 122121 12n 1211 1b a n a b a n a b a n a b a a b a a b a a b a b a b a )()()()2()2()2(111------+++ = 0 . 三.(24分)设矩阵 A 的列向量依次为α1 , ... , α5 . 已知齐次方程组 A X = 0解空间的一组基为 [ 3 1 1 0 0 ] T , [ 5 6 1 2 -1 ] T . 1) 求A 的简化阶梯型矩阵J ; 2) 求A 列向量组的一个极大无关组, 并用此极大无关组表出A 的 每个列向量; 3) 求 A 行空间的一组基, 并判断当a 取何值时, β = [ 1 a 0 3 2a –1 ] 落在A 的行空间里, 写出此时β在 基底下的坐标; 4) 将A 写成BC 的形式,B 是列满秩的矩阵,C 是行满秩的矩阵.

高等代数(II)期末考试试卷及答案(A卷)

高等代数(II )期末考试试卷及答案(A 卷) 一、 填空题(每小题3分,共15分) 1、线性空间[]P x 的两个子空间的交()()11L x L x -+= 2、设12,,...,n εεε与12,,...,n εεε'''是n 维线性空间 V 的两个基, 由12,,...,n εεε到12,,...,n εεε'''的过渡矩阵是C ,列向量X 是V 中向量ξ在基12,,...,n εεε下的坐标,则ξ在基12,,...,n εεε'''下 的坐标是 3、设A 、B 是n 维线性空间V 的某一线性变换在不同基下的矩阵, 则A 与B 的关系是 4、设3阶方阵A 的3个行列式因子分别为:()2 1,,1,λλ λ+ 则其特征矩阵E A λ-的标准形是 5、线性方程组AX B =的最小二乘解所满足的线性方程组是: 二、 单项选择题(每小题3分,共15分) 1、 ( )复数域C 作为实数域R 上的线性空间可与下列哪一个 线性空间同构: (A )数域P 上所有二级对角矩阵作成的线性空间; (B )数域P 上所有二级对称矩阵作成的线性空间;

(C )数域P 上所有二级反对称矩阵作成的线性空间; (D )复数域C 作为复数域C 上的线性空间。 2、( )设是非零线性空间 V 的线性变换,则下列命题正确的是: (A ) 的核是零子空间的充要条件是 是满射; (B )的核是V 的充要条件是是满射; (C ) 的值域是零子空间的充要条件是 是满射; (D )的值域是V 的充要条件是是满射。 3、( )λ-矩阵()A λ可逆的充要条件是: ()()()()0; A A B A λλ≠是一个非零常数; ()()C A λ是满秩的;()()D A λ是方阵。 4、( )设实二次型 f X AX '=(A 为对称阵)经正交变换后化为: 222 1122...n n y y y λλλ+++, 则其中的12,,...n λλλ是: ()()1;A B ±全是正数;()C 是A 的所有特征值;()D 不确定。 5、( )设3阶实对称矩阵A 有三重特征根“2-”,则A 的若当 标准形是: ()()()200200200020;120;120;002002012A B C ---?? ?? ?? ? ? ? --- ? ? ? ? ? ?---?????? ()D 以上各情形皆有可能。 三、 是非题(每小题2分,共10分) (请在你认为对的小题对应的括号内打“√”,否则打“ ”)

高等代数试卷及答案--(二)

一、填空题 (共10题,每题2分,共20 分) 1.只于自身合同的矩阵是 矩阵。 2.二次型()()11212237,116x f x x x x x ?? ??= ? ????? 的矩阵为__________________。 3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。 4.正交变换在标准正交基下的矩阵为_______________________________。 5.标准正交基下的度量矩阵为_________________________。 6.线性变换可对角化的充要条件为__________________________________。 7.在22P ?中定义线性变换σ为:()a b X X c d σ?? = ??? ,写出σ在基11122122,,,E E E E 下的 矩阵_______________________________。 8.设1V 、2V 都是线性空间V 的子空间,且12V V ?,若12dim dim V V =,则_____________________。 9.叙述维数公式_________________________________________________________________________。 10.向量α在基12,,,n ααα???(1)与基12,,,n βββ???(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。 二、判断题 (共10 题,每题1分,共10分) 1.线性变换在不同基下的矩阵是合同的。( ) 2.设σ为n 维线性空间V 上的线性变换,则()1 0V V σσ -+=。 ( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实数域上的线性空间。( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++???+=与12n x x x ==???=的解空间,则 12n V V P ⊕= ( ) 5.2 2 11n n i i i i n x x ==??- ??? ∑∑为正定二次型。( ) 6.数域上任意一个矩阵都合同于一对角矩阵。( ) 7.把复数域C 看作复数域上的线性空间,C ξ?∈,令σξξ=,则σ是线性变换。( ) 8.若σ是正交变换,那么σ的不变子空间的真正交补也是σ的不变子空间。( ) 9.欧氏空间中不同基的度量矩阵是相似的。( ) 10.若σ为[]n P x (1n >)中的微分变换,则σ不可对角化。( ) 三、计算题 (共3题,每题10分,共30分)

高等代数期中模拟题三

一、填空题 (将正确答案填在题中横线上。每小题2分,共10分) 1.若23,x b x ax ++则a ,b 满足条件 . 2.当 t 满足 时, ????? ??=0111α, ????? ??-=1312α, ???? ? ??=t 353α 线性相关。 3.设3阶方阵A 满足21,3)A A E O A E -+-=+=则( 。 4.设123212374D -?? ?=- ? ??? 163154131-=D , A 2j (j = 1, 2, 3)为元素a 2j 的代数余子式,则 3A 21 + 7A 22 + 4A 23 = . 115. 11, ()211a A a R A a a ?? ?== ? ??? 设3阶矩阵若,则= . 二、单项选择题 (每小题仅有一个正确答案, 将正确答案番号填入题干的括号。每小题2分,共20分) 1. =-0 0000000 000 01 21 n n a a a a ( ) (A) n n n n a a a a 1212) 1()1(--- (B) n n a a a a 121-- (C) n n a a a a 121- (D) 0 123122********* 1223123 123123123 2,,(),()2,23 (C) ,2 (D) ,2322,355A B ααααααααααααααααααααααααααααααα---+++++++++-++-.已知为齐次线性方程组的基础解系,则下列( )仍是该方程组的基础解系. , ,3,3. 设A 为三阶方阵,A *为A 的伴随矩阵,1,2 A =则 12A A -*+=( ). (A) 6 (B) 16 (C) 2 (D) 12

高数模拟试题

高等数学模拟试题 一、单项选择题(每小题1分,共40分)在每小题列出的四个选项中只有一个选项是符合题目 要求的,请将正确选项前的字母填在题干后的括号内。 1.函数y=x 1-+arccos 2 1 x +的定义域是( ) A. x<1 B.-3≤x ≤1 C. (-3,1) D.{x|x<1}∩{x|-3≤x ≤1} 2.下列函数中为奇函数的是( ) A.y=cos 3x B.y=x 2+sinx C.y=ln(x 2+x 4 ) D.y=1 e 1e x x +- 3.设f(x+2)=x 2 -2x+3,则f[f(2)]=( ) A.3 B.0 C.1 D.2 4.y= 的反函数是x x 323+( ) A.y=233x x +-- B.y=x x 3 32+ C.y=log 3x 1x 2- D.y=log 3x 2x 1- 5.设n x u lim ∞ →=a,则当n →∞时,u n 与a 的差是( ) A .无穷小量 B.任意小的正数 C .常量 D.给定的正数 6.设f(x)=??? ????<>0 x ,x 1sin x 0x ,x 1 sin ,则)x (f lim 0x +→=( ) A .-1 B.0 C.1 D.不存在 7.当0x →时,x cos x sin 2 1 是x 的( ) A.同阶无穷小量 B.高阶无穷小量 C.低阶无穷小量 D.较低阶的无穷小量 8.x 21 sin x 3lim x ?∞→=( ) A.∞ B.0 C.23 D.32 9.设函数???≤<-≤<-=3x 1,x 21 x 0,1x )x (f 在x=1处间断是因为( ) A.f(x)在x=1处无定义 B.)x (f lim 1 x - →不存在 C. )x (f lim 1 x + →不存在 D. )x (f lim 1 x →不存在 10.设f(x)=? ??≥+<0x )x 1ln(0x ,x ,则f(x)在x=0处( ) A.可导 B.连续,但不可导 C.不连续 D.无定义 11.设y=2cosx ,则y '=( ) A.2cosx ln2 B.-2cosx sinx C.-2cosx (ln2)sinx D.-2cosx-1sinx

《高等代数》(上)期末试卷(A)

《高等代数》(上)期末试卷(A ) 一、填空题(每空3分,共15分) 1.设方阵1112223 3 3b x c A b x c b x c ????=??????,1 112 223 3 3b y c B b y c b y c ?? ??=? ????? ,且2,3A B =-=, 则行列式2A B += . 2.已知A 是一个34?矩阵,且秩()2A =,而102020103B ????=?????? ,则秩()BA = . 3. 多项式2005 20042 322006()(54)31(8112)f x x x x x x ??=--+-+?? 的所有系数之和 = ,常数项= . 4. ()f x 为多项式,用1x -除时余式为3,用3x -除时余式为5,则用(1)(3)x x --除时余式为 . 二、选择题(每题3分,共12分) 1.设n 维向量组12345,,,,ααααα的秩为3,且满足135230,ααα+-= 242,αα=则向量组的一个极大无关组为( ) A . 125,,ααα; B . 124,,ααα; C. 245,,ααα; D. 135,,ααα. 2. A 是m n ?矩阵,B 是n m ?矩阵,则( ) A . 当m n >时,必有行列式0A B ≠; B . 当m n >时,必有行列式0AB =; C . 当n m >时,必有行列式0AB ≠; D . 当n m >时,必有行列式0AB =. 3.设,A B 都是可逆矩阵,则矩阵0A C B ??????的逆矩阵为( ) A . 1 1 10A C B ---?? ????; B . 1110B C A ---?????? ;

高等代数下期模拟题四

一、填空(每小题2分,共10分) 1.设向量空间1212{(,,)|0,}n n i V x x x x x x x R =+++=∈ ,则V 是 维空间。 2.A ,B 均为3阶方阵,A 的特征值为1,2,3,1B =-,则* A B B += 3.设二次型2221231231223(,,)22f x x x x x x x x tx x =++++正定,则t 满足______。 4.设矩阵A 满足条件2 560A A E -+=,则矩阵A 的特征值是 5.三维线性空间V 的秩为2,则零度为 。 二、单项选择(每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号 内。每小题2分,共20分) 1.设α是n 阶可逆矩阵A 的属于特征值λ的特征向量,在下列矩阵中,α不是( ) 的特征向量 (A )2()A E + (B )-3A (C )* A (D )T A 2.已知A , B 为同阶正交矩阵,则下列( )是正交阵。 (A )A B + (B )A-B (C )AB (D )kA 3, 设A 为n 阶方阵,则下列结论不成立的是( ) (A )若A 可逆,则矩阵A 的属于特征值λ的特征向量也是矩阵1 A -的属于特征值1 λ 的特 征向量 (B )若矩阵A 存在属于特征值λ的n 个线性无关的特征向量,则A E λ= (C )矩阵A 的属于特征值λ的全部特征向量为齐次线性方程组()0E A X λ-=的全部解 (D )A 与T A 有相同的特征值 4.若A 为n 阶实对称矩阵,P 为n 阶正交阵,则1 P A P -为( )。 (A )实对称阵 (B )正交阵 (C )非奇异阵 (D )奇异阵 5.设A ,B 都是正定阵,则( ) (A )AB ,A+B 一定都是正定阵

高等代数真题答案

第六章习题册 1. 检验下述集合关于所规定的运算是否构成实数域R 上的线性空间? (a) 集合{()[]deg()}f x R x f n ∈|=关于多项式的加法和数乘. (b) 集合{()}T n A M R A A ∈|=关于矩阵的加法和数乘. (c) 集合0{{}}n n n x x R ∞=|∈关于数列的加法和数乘. 2. 设V 是数域F 上的线性空间, 证明(αβ)αβk k k ?=?, 这里αβV k F ,∈,∈.

3. 下述集合是否是()n M R 的子空间 (a) { ()}T n V A M R A A =∈|=? (b) {()()[]}V f A f x R x =|∈, 这里()n A M R ∈是一个固定方阵. 4. 叙述并证明线性空间V 的子空间1W 与2W 的并12W W ∪仍为V 的子空间的充分必要条件. 5. 设1S 与2S 是线性空间V 的两个非空子集, 证明: (a) 当12S S ?时, 12()()Span S Span S ?. (b) 1212()()()Span S S Span S Span S =+∪. (c) 1212()()()Span S S Span S Span S ?∩∩.

6. 如果123f f f ,,是实数域上一元多项式全体所成的线性空间[]R x 中三个互素的多项式, 但其中任意两个都不互素, 那么它们线性无关.试证之. 7. 设S 是数域F 上线性空间V 的一个线性无关子集, α是V 中一个向量, αS ?, 则{α}S ∪线性相关充分必要条件α()Span S ∈. 8. (a) 证明{|()}ij ji E E i j +≤是()n M F 中全体对称矩阵组成的子空间的一个基. (b). 求3()M F 的子空间{()()[]}f A f x F x |∈ 的一个基和维数, 这里010001000A ???? =?????? 9. 在4 R 中, 求向量ξ在基1234(εεεε),,,下的坐标, 其中 12341210111112εεεεξ0301311014??????????????????????????????=,=,=,=,=????????????????????????????????????????

高等代数期末卷 及答案

沈阳农业大学理学院第一学期期末考试 《高等代数》试卷(1) 一、 填空(共35分,每题5分) 1.设4 2 ()49f x x x x =++-, 则(3)f -= 69_ .. 2.当t = _2,-2 .时, 3()3f x x x t =-+有重因式。 3. 令 ()f x ,()g x 是两个多项式, 且33()()f x xg x +被21x x ++整除, 则 (1)f = 0_ , (1)g = _0 . 4. 行列式 31 0210 62 101132 1 -=-- 23 。 5. 矩阵的积41010311 1321022 011 34?? ? --?? ?= ? ??? ??? 9219911--?? ???。 6. 1 500031021-?? ?= ? ??? 1 05011023?? ? ?- ? ? - ??? 7. 1234123412342202220430 x x x x x x x x x x x x +++=?? +--=??---=?的一般解为 134234523423x x x x x x ? =+??? ?=--?? , 34,x x 任意取值。 二、(10分)令()f x ,()g x 是两个多项式。求证((),())1f x g x =当且仅当

(()(),()())1f x g x f x g x +=。 证:必要性. 设(()(),()())1f x g x f x g x +≠。(1%) 令()p x 为()(),()()f x g x f x g x +的不可约公因式,(1%)则由()|()()p x f x g x 知 ()|()p x f x 或()|()p x g x 。(1%) 不妨设()|()p x f x ,再由()|(()())p x f x g x +得()|()p x g x 。故()|1p x 矛盾。(2%) 充分性. 由(()(),()())1f x g x f x g x +=知存在多项式(),()u x v x 使 ()(()())()()()1u x f x g x v x f x g x ++=,(2%) 从而()()()(()()())1u x f x g x u x v x f x ++=,(2%) 故((),())1f x g x =。(1%) 三、(16分),a b 取何值时,线性方程组 有唯一解、没有解、有无穷解?在有解情况下求其解。 解: 21212131011032100122201011000122a b a b a b b a b b b b b a b b b b ???? ? ?-→- ? ? ? ?+-+-????-?? ?→- ? ?+-?? (5%) 当2 (1)0a b -≠时,有唯一解:1235222 , (1)+11 b b x x x a b b b ---= ==++,; (4%) 当1b =时,有无穷解:3210,1,x x ax ==-1x 任意取值; 当a 0,5b ==时,有无穷解:14 12333,,,x k x x k ==-=任意取值;(3%) 当1b =-或0 1 5a b b =≠±≠且且时,无解。(4%) 四、(10分)设12,,...,n a a a 都是非零实数,证明 证: 对n 用数学归纳法。当n=1时 , 1111 1 1(1)D a a a =+=+, 结论成立(2%); 假设n-1时成立。则n 时

高等代数试卷及答案一

一、填空题(共 10题,每题2分,共20分)。 1.多项式可整除任意多项式。 2.艾森施坦因判别法是判断多项式在有理数域上不可约的一个条件。 3.在n 阶行列式D 中,0的个数多于个是0D =。 4.若A 是n 阶方阵,且秩1A n =-,则秩A * =。 5.实数域上不可约多项式的类型有种。 6.若不可约多项式()p x 是()f x 的k 重因式,则()p x 是(1) ()k f x -的重因式。 7.写出行列式展开定理及推论公式。 8.当排列12n i i i L 是奇排列时,则12n i i i L 可经过数次对换变成12n L 。 9.方程组12312322232 121x x x ax bx cx d a x b x c x d ++=?? ++=??++=?,当满足条件时,有唯一解,唯一解为。 10.若2 4 2 (1)1x ax bx -∣ ++,则a =,b =。 二、判断题(共10题,每题1分,共10分)。 1.任何两个多项式的最大公因式不因数域的扩大而改变。() 2.两个多项式互素当且仅当它们无公共根。() 3.设12n αααL 是n P 中n 个向量,若n P β?∈,有12,n αααβL 线性相关,则12n αααL 线性 相关。() 4.设α是某一方程组的解向量,k 为某一常数,则k α也为该方程组的解向量。()5.若一整系数多项式()f x 有有理根,则()f x 在有理数域上可约。() 6秩()A B +=秩 A ,当且仅当秩0 B =。() 7.向量α线性相关?它是任一向量组的线性组合。() 8.若(),()[]f x g x P x ∈,且((),())1f x g x =,则(()(),()())1f x g x f x g x +=。() 9.(),()[]f x g x Z x ∈,且()g x 为本原多项式,若()()()f x g x h x =则()[]h x Z x ∈。() 10.若,,,n n A B C D P ?∈,则 A B AD BC C D =-。() 三、选择题(共5题,每题2分,共10分)。 1.A 为方阵,则 3A =()

相关文档
相关文档 最新文档