文档库 最新最全的文档下载
当前位置:文档库 › 野生型p53基因对胃癌细胞生长及端粒酶活性的影响

野生型p53基因对胃癌细胞生长及端粒酶活性的影响

野生型p53基因对胃癌细胞生长及端粒酶活性的影响
野生型p53基因对胃癌细胞生长及端粒酶活性的影响

P53基因在鼻咽癌治疗中的研究进展

P53基因在鼻咽癌治疗中的研究进展 转录因子P53作为一种抑癌基因,可诱导细胞生长阻滞,细胞凋亡,细胞分化以及DNA 修复。但P53 突变体可能会使野生型P53 基因的抑癌功能失活,甚至发挥癌基因的功能。随着分子生物技术的发展,人们对P53基因结构及功能、与肿瘤发生的关系、肿瘤治疗尤其在鼻咽癌应用方面有很多新认识,因此就P53基因结构及功能、与肿瘤发生的关系、肿瘤治疗及在鼻咽癌应用方面的新进展进行综述。 标签:P53基因;肿瘤;鼻咽癌 鼻咽癌(NPC)是我国高发肿瘤之一,在头颈部恶性肿瘤中占首位。据统计:我国南方某些地区NPC的发病率高达33/10万(男),15.60/10万(女)[4]。鼻咽癌98%属低分化鳞癌,首选放射治疗,治疗失败的主要原因是局部复发和远处转移[8]。本文就近年来P53基因在鼻咽癌治疗中的研究进展做一综述,以利于更好的解决鼻咽癌这一临床顽症。 1 P53基因的结构及功能 P53基因(AB118156)系属肿瘤抑制基因家族,是与人类肿瘤相关性最高,也是当前研究的热点基因之一。其位于染色体17p13.1,全长16~20 kb,含有11个外显子和10个内含子。P53蛋白N-端为酸性区,C-端为碱性区[11]。Toledo 等研究表明P53 基因蛋白还含有四聚体结构域,介导活化后P53 四聚体的形成[1]。 P53基因编码一种分子量为53000的磷酸化蛋白质,所以称为P53基因。P53基因突变可增加正常细胞对突变剂的敏感性,结果导致正常细胞癌变概率增加,使肿瘤的发病率增加。P53基因结构和功能改变与多种肿瘤的发生发展关系密切[4]。P53基因分为突变型和野生型两类。野生型P53是肿瘤抑制基因,可诱导细胞凋亡、抑制细胞增殖。突变型P53基因可抑制细胞凋亡,使肿瘤细胞增殖,对野生型P53基因有拮抗作用[11]。 2 P53与肿瘤发生 研究表明:绝大多数的肿瘤当中都发生了P53信号通路的失活,在所有恶性肿瘤中,P53 基因的突变率超过50%[10],而且突变位点多位于DNA 结合区。 最新的研究发现某些突变形式的P53 蛋白能够在肿瘤细胞的核内积累,形成更稳定的四聚体。研究发现,MDM2 作为P53 最主要的负调控因子,它的转录表达处于P53 的控制之下。突变P53 不能有效激活MDM2 表达,使P53 失去了MDM2 的负调控,从而导致了突变P53在肿瘤细胞的核内积累[13]。

p53基因的30年

p53基因的30年 在人类基因组所包含的数万条基因中,它是研究的最为透彻的一个。在已经进入临床试验的抗肿瘤基因治疗药物中,超过40个都选择了以它为靶点。在美国国立生物医学信息中心的生物医学文献数据库(pubmed)中,有关它的研究文献已经超过了50000篇,而且这一数字仍在稳定的增长。没错,它就是p53基因,时至今日,对这一基因的研究已经走过了30年的坎坷历程。 十年蹉跎两茫茫 1979年,英国癌症研究基金会、美国普林斯顿大学的研究者Lionel Crawford,David P. Lane等人首次追踪到了p53基因的踪迹。这些研究者或许没有料到,他们的发现开启了现代肿瘤研究与治疗的新时代。 不久以后,俄罗斯科学家 Peter Chumakov从小鼠体内克隆到了这个基因你的完整版本。因为这一基因在细胞中翻译后产生的蛋白质(protein)的分子量为53千道尔顿,故而被命名为p53。 不过,在发现伊始,p53基因并未受到重视,甚至在最初的10年中,p53一直被视为能够诱发肿瘤产生的癌基因。导致这样南辕北辙认识的症结在于科学家在研究时并未找对p53基因的正确版本。众所周知,一条基因由一系列脱氧核糖核酸按照相应的顺序彼此串联而成,如果其中的某个或某些核苷酸发生改变就意味着这条基因发生了突变,而起初研究者拿到的基因就是p53的突变版本,按照这一版本翻译成的蛋白质自然就无法行使正常p53基因的功能。 蹉跎十年之后,美国约翰霍普金斯医学院的分子生物学家Bert Vogelstein最终找到了正确的p53基因,即野生型p53。不但如此,科学家的发现还为这一基因摘掉了癌基因的恶名:与此前认识恰恰相反的是,p53是一个在人体内发挥广泛作用的强有力的抑癌基因。 新桃换旧符 藉由p53真正功能的重新认识,科学家发现了一系列与肿瘤相关的基因。对这些基因的深入挖掘不但让人们对癌症的本质有了更新的了解,而且还为肿瘤的基因治疗奠定了基础。现在科学家已经公认,癌症发生的肇因是由于细胞增殖与凋亡、细胞的分化与抑制、免疫与逃避免疫、血管的生成与抑制以及转移与抑制转移之间的精细平衡被打破的缘故。这些平衡归根结底是癌基因与抑癌基因间的平衡。 然而,平衡的打破并非一蹴而就,因此癌症的发生发展是一个持续时间很长的过程。根据现有的统计数据,大约在50%以上的癌症中都发现有p53基因的突变,如果将癌症的发作比作一列倾倒中的多米诺骨牌,那么p53基因很有可能位居这列骨牌的前列。 在人体这个迄今为止最为复杂的系统中,倘若一个细胞想要改变其现有状态(如从静止到生长分化状态的改变),必须接收到一系列相关指令后,这一过程才能进行。在这其中,p53就扮演了“分子警察”的作用——通过对细胞周期的调控来控制细胞的增殖生长。

抑癌基因P53与肺癌诊治的研究进展

抑癌基因P53与肺癌诊治的研究进展 发表时间:2012-10-18T08:59:12.797Z 来源:《医药前沿》2012年第16期供稿作者:熊益孙圣华[导读] 肺癌,是世界最常见的恶性肿瘤之一,并是癌症病人最主要死因。 熊益孙圣华(中南大学湘雅三医院湖南长沙410013)【摘要】肺癌是严重危害人类健康的主要疾病之一。肺癌中约占50%存在P53突变,是肺癌发生、增殖、恶化进展的分子学原因。本文着重综述P53的分子学特性及抑癌、致癌机理,并对其在肺癌的诊断、治疗的相关研究进行综述,希望对深化该领域的研究有所帮助。【关键词】抑癌基因肺癌诊治【中图分类号】R73-3 【文献标识码】A 【文章编号】2095-1752(2012)16-0032-02 肺癌,是世界最常见的恶性肿瘤之一,并是癌症病人最主要死因。尽管在临床上对于癌症的治疗手段日新月异飞速发展,但是对肺癌的治疗还是不尽如人意,肺癌患者预后非常差,整体存活率只有15%。肺癌的发展涉及到多种基因的变异,引起支气管上皮细胞的恶性转化,进而导致淋巴结及远端的转移。在这些变异的基因中,抑癌基因P53是最常见的基因,突变型的P53基因在肺上皮细胞癌变过程中起到重要作用,在肺癌诊治中有重大意义。 一、抑癌基因P53概述 P53作为“分子警察”,它的突变、失活、缺失在包括肺癌内的众多恶性肿瘤的发生、增殖、恶化进展中具有重要作用,是近年来研究的热点基因,在肺癌的诊断和治疗中有着重大意义。P53最先发现于1979年,Linzer等利用DNA病毒SV40转染的哺乳动物细胞中发现一种与SV40抗原结合的分子量为53KD蛋白,即命名为P53。此后又有几项研究发现P53在细胞转化中的作用。直到1989年,Finalay等证实野生型的P53在细胞的生长、增殖中有负性调节作用,而突变型P53则可促进细胞转化[1]。 P53基因全长20kb,由11个外显子和10个内含子组成,在人类染色体17p13或17q14,编码的蛋白质由393个氨基酸构成,分子量53kD。P53基因存在于人体正常细胞,在体内控制着与肿瘤生成和生长相关的多种不同基因的表达,并受Mdm2和p19-Arf等的调节控制[2]。野生型与突变型P53具有高度的同源性和保守性,在5编码区内90%以上序列有同源性,其中保守区是P53的生物活性的关键部位。突变的p53基因不但丧失了正常p53基因的功能,而且自身获得了癌基因的功能,使得衰老细胞、异常细胞不能按正常程序死亡而不断地增殖,导致肿瘤的发生。 二、P53在肺癌诊断中的作用近年来关于P53对肿瘤的早期诊断有着大量研究,以聚合酶链反应方法检测P53的水平可以对肿瘤做出有效的诊断。苏胜发等[3]证实野生型P53基因阴性的情况下,非小细胞肺癌组织iASPP高表达。陈宇平等研究[4]证实肺癌组织中突变型P53表达与肺癌组织中浸润树突状细胞的成熟状态密切相关,在肺癌的免疫逃逸和疾病进展过程中起着重要作用。柯立等[5]研究证实P53 蛋白在有淋巴结转移、TMN分期高的肺癌组织中表达显著增加,在不同分化程度的肺非小细胞癌中表达有差异,分化程度越低的肿瘤p53蛋白表达越高。郑颂国等研究发现[6]P53蛋白在肺鳞癌表达率明显高于腺癌,伴有淋巴结转移的明显高于无淋巴结转移的。上述研究表明,P53在肺癌患者病人肿瘤组织中存在过度表达,这可能是由于P53基因突变在细胞核聚集造成的,P53蛋白阳性的患者肿瘤多已侵及周围粘膜,分期较晚。正常人体细胞的P53基因的蛋白产物水平极低,难以检测;在生长较为旺盛的细胞中其含量增加约4倍以上;肿瘤细胞中其含量科增加100倍,且容易在肿瘤细胞中堆积。在体液中检测P53水平也有益于对肺癌的早期诊断。张东明等[7]研究发现肺癌患者血清P53抗体水平显著高于肺疾病及健康者,血清P53抗体诊断肺癌的敏感性和特异性分别为29.27%及100%。张向群[8]等的对57名肺癌的患者检测P53抗体,结果表明阳性率为43.19%,血清p53抗体水平与肺癌的一般临床特征,如性别、吸烟指数无关,而与肺癌的病理类型、分期、分化和淋巴结转移有关,因此血清P53抗体的检测对肺癌的早期发现和早期诊断具有重要的意义。 三、P53在肺癌治疗中的价值目前主要根据P53在肺癌发病中的重要性,较多地对肺癌基因治疗的研究。即阻止异常P53基因的表达,或以正常的野生型基因去取代突变型的基因。常用的方法是异常基因的反义DNA及RNA治疗,替代缺陷抑癌基因等。将外源野生型P53基因导入P53基因失活的肺癌细胞,能抑制其恶性增殖,逆转其恶性表型,不仅可对丧失了P53功能的肿瘤细胞进行遗传修饰,而且可利用野生型P53蛋白在正常细胞中的表达保护正常细胞,从而提高抗肿瘤效果[9]。Sak等在研究中证实利用反义脱氧寡核苷酸阻断p53基因突变途径后,放疗诱导的细胞凋亡增加,停留在G2期的NSCLC细胞减少。杨立群等[10]研究发现Ad-P53能可以抑制含突变型P53基因及含野生型P53基因的人肺腺癌细胞株的生长,促进其凋亡,作用效应不受内源性P53状况的影响。临床前研究显示,P53基因替换策略能够有效的提高化疗和放疗的治疗效果。同时,在肺癌患者体内也进行了P53基因治疗临床试验,临床结果显示,P53基因治疗能够提高药物化疗和放射治疗的疗效[11]。对P53基因肿瘤抑制途径的重建,如将P53基因注射入肿瘤细胞,是一个很有前景的肿瘤治疗方案。在临床试验中,结合P53基因治疗的28例非小细胞肺癌患者的治疗效果显著好于只用普通疗法的患者。最近,已经在用自行设计或是化合物文库筛选等方法,寻找鉴定靶向TP53的小分子。RITA是由美国国家癌症研究所(NCI)筛选出来用于通过野生型TP53的依赖性途径抑制细胞增殖的药物。RITA与TP53基因结合后,通过破坏TP53与HDM-2的作用来活化TP53进而引起凋亡通过破坏。赵等研究表明,RITA引起的反应是依赖于突变型TP53基因的存在,它是由细胞凋亡机制的再活化来维持的。因此,他们认为,RITA是一个有发展前途的抗癌药物,它可以再度激活肿瘤细胞中的TP53的肿瘤抑制功能[12]。PRIMA-1是一种低分子量化合物,它可以选择性的抑制突变型TP53基因表达的肿瘤细胞的生长,修复突变型TP53的核心部位,诱导人类肿瘤细胞的凋亡。此外,PRIMA-1MET/APR-246是从化合物文库中筛选出来的一种PRIMA-1的甲基化结构模拟化合物,它能够与顺铂或是其他临床上使用的抗肿瘤药物协同作用,诱导肿瘤细胞凋亡并抑制小鼠体内的人类SCID移植肿瘤的生长。p53基因的基因疗法,以及靶向P53的一些小分子物质,如PRIMA-1和PRIMA-1MET,它可以恢复突变型TP53的转录功能,或是恢复RITA的表达以干扰MDM2诱导的TP53降解。这些方法都在临床前试验中得到验证,并且有些药物已经开始应用于临床。 四、展望

P53基因

P53基因 人體抑癌基因。該基因編碼一種分子量為53kDa的蛋白質,命名為P53。p53基因的失活對腫瘤形成起重要作用。但是事物必然有它的兩個方面,p53是一個重要的抗癌基因使癌細胞自殺,防止癌變;還具有幫助細胞基因修復缺陷的功能。 這種功能對於受化療藥物作用而受傷的癌細胞,則起修復作用,而不是使癌細胞自殺。造成被修復的癌細胞在治療後成為新的腫瘤。 編碼53kDa的蛋白質 類型人體抑癌基因 功能防止癌變,修復缺陷 基因種類腫瘤抑制 1簡介編輯 p53是一種腫瘤抑制基因(tumor suppressor gene)。在所有惡性腫瘤中,50%以上會出現該基因的突變。由這種基因編碼的蛋白質(protein)是一種轉錄因數(transcriptional factor),其控制著細胞週期的啟動。許多有關細胞健康的信號向p53蛋白發送。關於是否開始細胞分裂就由這個蛋白決定。如果這個細胞受損,又不能得到修復,則p53蛋白將參與啟動過程,使這個細胞在細胞凋亡(apoptosis)中死去。有p53缺陷的細胞沒有這種控制,甚至在不利條件下繼續分裂。像所有其它腫瘤抑制因數一樣,p53基因在正常情況下對細胞分裂起著減慢或監視的作用。細胞中抑制癌變的基因“p53”會判斷DNA變異的程度,如果變異較小,這種基因就促使細胞自我修復,若DNA變異較大,“p53”就誘導細胞凋亡。 p53是重要的腫瘤抑制基因,自從該基因在1979年被首次報導以來,有關研究論文在Medline上可查到20000餘篇。人們最初認為p53基因是一種癌基因,但隨著近十年研究的深入,p53作為抑癌基因的功能逐漸被揭示出來。在人類50%以上的腫瘤組織中均發現了p53基因的突變,這是腫瘤中最常見的遺傳學改變,說明該基因的改變很可能是人類腫瘤產生的主要發病因素。 p53基因突變後,由於其空間構象發生改變,失去了對細胞生長、凋亡和DNA 修復的調控作用,p53基因由抑癌基因轉變為癌基因。 p53介導的細胞信號轉導途徑在調節細胞正常生命活動中起重要作用,它與細胞內其它信號轉導通路間的聯繫十分複雜,其中p53參與調控的基因已超過160種,因此,Levine 等學者提出了p53基因網路的概念: 他們認為不能孤立地觀察各個基因的生物學功能,而應該將它們組合起來看待。 p53蛋白主要分佈於細胞核漿,能與DNA特異結合,其活性受磷酸化、乙醯化、甲基化、泛素化等翻譯後修飾調控。正常p53的生物功能好似“基因組衛士(guardian of the genome)”,在G1期檢查DNA損傷點,監視基因組的完整性。如有損傷,p53蛋白阻止DNA複製,以提供足夠的時間使損傷DNA修復;

P53基因概述

P53基因概述及应用实例 姓名;赵飞 1.P53基因概述 1.1 P53基因的发现 1979年,在大家都在研究SV40病毒的癌蛋白时,好几个科研小组都无意中分别独立发现了P53蛋白。当时在伦敦癌症研究所(London Research Institute)工作的David Lane和Lionel Crawford发现,用感染了SV40病毒的动物血清与SV40大T抗原发生免疫沉淀反应时能共沉淀下来一个分子量约为53kDa的宿主细胞蛋白。另外三个科研小组也都在1979年同时发表文章报道了同样的结论,他们分别是法国的Pierre May科研小组、美国纽约的Robert Carroll科研小组和英国的Alan Smith科研小组。 1.2P53基因的命名 在这个基因在发现之初,每一个发现它的实验室分别给这种分子量为53 kDa的蛋白质取了各自的名字,并且使用这些名字发表了很多论文,这样就造成极大的混乱。它的真正命名是在1983年在英国牛津举办的第一届国际P53蛋白研讨会上,来自各国的代表专门就这个蛋白的命名进行了讨论。经过一番激烈争论之后,大家一致认为,P53这个名字最为合适,自此被保留下来一直沿用至今。其实P53这个名字根本就不是一个名字,只是因为这个蛋白在SDS聚丙烯酰胺凝胶电泳试验中表现出的分子量大约为53 kDa才因此而得名。后来大家才发现,这个表观分子量其实也只是一个大概的估计,因为该蛋白富含脯氨酸,所以在SDS聚丙烯酰胺凝胶电泳试验中的迁移率偏慢,表现出来的分子量要比它实际的分子量大。该蛋白的实际分子量只有43.7 kDa,而小鼠体内P53蛋白的分子量会更小。 1.3P53 基因的功能 P53基因是因编码一种分子质量为53 kDa 的蛋白质而得名,是一种抗癌基因。其表达产物为基因调节蛋白( P53 蛋白) ,当DNA 受到损伤时表达产物急剧增加,可抑制细胞周期进一步运转。一旦P53 基因发生突变,P53 蛋白失活,细胞分裂失去节制,发生癌变,人类癌症中约有一半是由于该基因发生突变失活。因此说这个基因具有两面性。 1.4 P53基因三十年的发展史 最初10年里,P53一直被视为能够诱发肿瘤产生的癌基因。1979年,英国癌症研究基金会、美国普林斯顿大学的研究者Lionel·Crawford,David·P.·Lane等人首次追踪到了P53基因的踪迹,不久以后,俄罗斯科学家Petet·Chumakov从小鼠体内克隆到了这个基因的完整版本。但此时P53基因并未受到重视,甚至在最初的几年中,一直被视为能够诱发肿瘤产生的癌基因。导致这样南辕北辙认识的症结在于科学家在研究时并未找对P53基因的正确版本。十年之后,美国约翰霍普金斯医学院的分子生物学Bert·Vogelstein最终找到了正确的P53基因,即野生型P53。不但如此,科学家的发现还为这一基因摘掉了癌基因的恶名:与此前认识恰恰相反的是,P53是一个在人体内发挥广泛作用的强有力的抑癌基因。 第二个10年里,科学家发现P53蛋白实际上是一种转录因子,可以胁迫诱导。基于P53真正功能的重新认识,科学家发现了一系列与肿瘤相关的基因。对这些基因的深入挖掘不但

基因多态性

基因多态性 多态性(polymorphism)是指在一个生物群体中,同时和经常存在两种或多种不连续的变异型或基因型(genotype)或等位基因(allele),亦称遗传多态性(genetic polymorphism)或基因多态性。从本质上来讲,多态性的产生在于基因水平上的变异,一般发生在基因序列中不编码蛋白的区域和没有重要调节功能的区域。对于一个体而言,基因多态性碱基顺序终生不变,并按孟德尔规律世代相传。 基因多态性分类生物群体基因多态性现象十分普遍,其中,人类基因的结构、表达和功能,研究比较深入。人类基因多态性既来源于基因组中重复序列拷贝数的不同,也来源于单拷贝序列的变异,以及双等位基因的转换或替换。按引起关注和研究的先后,通常分为3大类:DNA片段长度多态性、DNA重复序列多态性、单核苷酸多态性。 DNA片段长度多态性DNA片段长度多态性(FLP),即由于单个碱基的缺失、重复和插入所引起限制性内切酶位点的变化,而导致DNA片段长度的变化。又称限制性片段长度多态性,这是一类比较普遍的多态性。 DNA重复序列多态性DNA重复序列的多态性(RSP),特别是短串联重复序列,如小卫星DNA和微卫星DNA,主要表现于重复序列拷贝数的变异。小卫星(minisatellite)DNA由15~65bp的基本单位串联而成,总长通常不超过20kb,重复次数在人群中是高度变异的。这种可变数目串联重复序列(VNTR)决定了小卫星DNA长度的多态性。微卫星(microsatellite)DNA 的基本序列只有1~8bp,而且通常只重复10~60次。 单核苷酸多态性单核苷酸多态性(SNP),即散在的单个碱基的不同,包括单个碱基的缺失和插入,但更多的是单个碱基的置换,在CG序列上频繁出现。这是目前倍受关注的一类多态性。 SNP通常是一种双等位基因的(biallelic),或二态的变异。SNP大多数为转换,作为一种碱基的替换,在基因组中数量巨大,分布频密,而且其检测易于自动化和批量化,因而被认为是新一代的遗传标记。 遗传背景知识遗传和变异各种生物都能通过生殖产生子代,子代和亲代之间,不论在形态构造或生理功能的特点上都很相似,这种现象称为遗传(heredity)。但是,亲代和子代之间,子代的各个体之间不会完全相同,总会有所差异,这种现象叫变异(variation)。遗传和变异是生命的特征。遗传和变异的现象是多样而复杂的,正因为如此,才导致生物界的多种多样性。

p53的前世今生

细胞生物学课程作业 聚焦P53基因,30年回顾前世今生P53基因的研究探索历程 学院: 姓名: 专业: 学号:

聚焦P53基因,30年回顾前世今生 ——P53基因的研究探索历程 P53基因是一种肿瘤抑制基因,又称人体抑癌基因。由于该基因编码一种分子量为53kDa的蛋白质,故命名为P53基因。由这种基因编码的蛋白质是一种转录因子控制着细胞周期的启动,许多有关细胞健康的信号向p53蛋白发送,因此p53基因的失活对肿瘤形成起重要作用。如果细胞受损,又不能得到修复,则p53蛋白将参与启动过程,使这个细胞在细胞凋亡中死去。有p53缺陷的细胞没有这种控制,甚至在不利条件下继续分裂。像所有其它肿瘤抑制因子一样,p53基因在正常情况下对细胞分裂起着减慢或监视的作用。细胞中抑制癌变的基因p53会判断DNA变异的程度,如果变异较小,这种基因就促使细胞自我修复,若DNA变异较大,p53就诱导细胞凋亡。 p53基因是迄今为止发现与人类肿瘤相关性最高的基因,在短短的三十多年里,人们对p53基因的认识经历了癌蛋白抗原,癌基因到抑癌基因的三个认识转变,时至今日,人们认识到p53蛋白是p53基因突变的产物,是一种肿瘤促进因子,并探究对其进行临床应用。本文将就P53基因的研究探索历程进行简单综述。 一、p53基因与癌蛋白抗原——10年发现历程 p53蛋白正式记载被发现于1979年。在上世纪70年代,大部分肿瘤研究工作者的注意力都集中在致癌病毒研究领域。联想到DNA病毒也会通过同样的方式(即从宿主细胞中“窃取”癌基因或者自己编码癌基因)致使人或动物患上肿瘤。研究者随即发现DNA致癌病毒也携带有癌基因,不过这些癌基因并不是宿主细胞来源的癌基因,并提出这些由病毒编码的病毒癌基因可以间接导致宿主细胞癌基因过表达,从而导致癌症发生。正是基于这种理论,p53蛋白才第一次被发现。但发现之初研究人员认为它是猴肾病毒40大T抗原的细胞伴侣,即p53蛋白为猴肾病毒的癌蛋白。在发现了p53蛋白后的最初10年里,大家把主要精力都放在了克隆p53基因上。随后,人们又发现其实p53蛋白并非癌蛋白,而是抑癌蛋白,只是在癌症患者体内的p53基因经常会发生突变而已。 二、p53基因与癌基因——10年探究历程 在对p53蛋白开展研究的第二个10年里,研究人员发现了p53蛋白的真正功能。如巴尔的摩发现肿瘤病毒与细胞遗传物质的相互作用,用新的分子生物学理论说明了肿

p53基因的功能和研究进展

P53基因功能及前沿研究现状

一.P53基因的功能 p53 基因是迄今发现与人类肿瘤相关性最高的基因之一,是当前肿瘤分子生物学研究的热点。自1979年Lane等[1] 发现p53 基因以来,人们对它的认识经历肿瘤抗原、癌基因、抑癌基因三个阶段。近年的深入研究表明p53作为一种抑癌基因发挥着越来越重要的作用。人类50%以上p53都发生了突变,导致了肿瘤的发生。[2]P53基因定位于染色体17p13.1,长20kb,含有11个外显子,编码393个氨基酸组成的相对分子量为53*103的蛋白质。P53蛋白是一个转录因子,参与细胞周期调控、DNA修复、细胞分化、细胞凋亡等。主要执行DNA 损伤“检查点”功能,若DNA受损,p53蛋白水平迅速升高并激活其下游的p21/WAF1/CIP1基因表达,这是一组周期素依赖蛋白激酶的抑制剂,使细胞停滞于G1期,执行DNA修复。若修复失败,p53则通过激活BAX基因通路诱导凋亡。约50%的人类肿瘤与p53基因的等位失活或突变有关。 突变型P53则具有癌基因的作用,促进细胞恶性转化。P53基因的突变常发生在结肠癌、乳腺癌、肝癌、肺癌等多种肿瘤。 P53基因功能失活机制有以下几种:1、P53基因自身突变,导致P53蛋白丧失与DNA结合的能力,这是P53基因失活的重要机制。2、MDM2癌基因的负调节。MDM2是P53蛋白的靶基因,P53蛋白刺激MDM2基因的表达,而MDM2蛋白可与P53蛋白结合,一直P53蛋白接到的反式激活、增殖抑制和诱导凋亡的功能,同时MDM2蛋白可以催化p53蛋白的降解,从而形成一个反馈调节环,负调节p53蛋白的活性。3、

P53基因的功能

P53基因的功能 1 阻滞细胞周期 在细胞周期中,P53的调节功能主要体现在G1和G2/M期校正点的监测,与转录激活作用密切相关。P53下游基因P21编码蛋白是一个依赖Cyclin(细胞周期蛋白)的蛋白激酶抑制剂,一方面P21可与一系列Cyclin-cdk (细胞周期蛋白依赖性激酶)复合物结合,抑制相应的蛋白激酶活性,导致低磷酸化Rb 蛋白(视网膜母细胞瘤蛋白)堆积,后者使E2F转录因子(参与细胞周期调控的细胞因子)不能活化,引起G1期阻滞;另外P53的另外3个下游基因Cyclin B1,CADD45 和14-3-3σ则参与G2/M期阻滞。 2 促进细胞调亡 Bcl-2(调控线粒体外膜通透性的基因家族)可阻止凋亡形成因子如细胞色素C等从线粒体释放出来,具有抗凋亡作用,而Bax (促凋亡基因)可与线粒体上的电压依赖性离子通道相互作用,介导细胞色素c的释放,具有凋亡作用,p53可以上调Bax的表达水平,以及下调Bcl-2的表达共同完成促进细胞凋亡作用。P53还可通过死亡信号受体蛋白途径诱导凋亡,T NF受体(在真核细胞表达具有生物活性的可溶性肿瘤坏死因子)和Fas蛋白(一种细胞膜抗原,主要功能是介导细胞凋亡)。 3 维持基因组稳定

DNA受损后,由于错配修复的累积,导致基因组不稳定,遗传信息发生改变。P53可参与DNA的修复过程,其DNA结合结构域本身具有核酸内切酶的活性,可切除错配核苷酸,结合并调节核苷酸内切修复因子XPB和XPD的活性,影响其DNA重组和修复功能。 4 抑制肿瘤血管生成 肿瘤生长到一定程度后,可以通过自分泌途径形成促血管生成因子,刺激营养血管在瘤体实质内增生。P53蛋白能刺激抑制血管生成基因Smad4等表达,抑制肿瘤血管形成。在肿瘤进展阶段,P53基因突变导致新生血管生成,有利于肿瘤的快速生长,这常常是肿瘤进入晚期的表现。ASDDA p53既可阻滞细胞周期,也可诱导细胞凋亡。两种作用方式都是为了维护基因组的稳定,但二者的性质截然不同。前者是为DNA的修复或某种应激状态的改善创造时机。即便不能完全修复DNA的损伤,只要还能容忍,细胞依旧可以存活,但可能会留下基因组不稳定的后患;后者则是从根本上去除造成基因组不稳定的因素,以绝后患。显然,p53的这两种作用方式不能同时并存,二者之间有选择。 究竟p53在被激活后选择何种作用方式,要由活性p53的数量与应激细胞的损伤程度两方面来决定。当通过暂时转染方式让p53在肿瘤细胞内高水平表达时,即可诱导凋亡;而采用温度敏感突变或可诱导系统让p53低水平表达时,则只能导致细胞周期阻滞。但从根本上讲,应激细胞的DNA损伤程度等因素才是决定p53选择何种

P53信号通路译文

P53 信号通路 P53是一个肿瘤抑制蛋白,调节各种各样基因的表达,包括细胞凋亡,生长抑制,抑制细胞周期进程,分化和加速DNA修复,基因毒性和细胞应激后的衰老。作为一个转录因子,p53是N端激活域、DNA中央特定结合域和C-端四聚体化域的组成部分,而且其调控域富含碱性氨基酸。p53半衰期很短,在26S蛋白酶体作用下,通过持续的泛素化和后期降解,p53在无刺激的哺乳类动物细胞中维持较低的含量。 去磷酸化的p53在MDM2(鼠双微体基因-2)泛素连接酶作用下被泛素化。MDM2结合p53使其无活性是通过两种途径: 第一,MDM2结合p53的转录激活域,阻止转录元件的相互作用。 第二,介导p53共价结合泛素蛋白,泛素化的p53被蛋白水解酶降解。 通过使p53的失活,MDM2扮演着p53抑癌基因的主要监视者。当细胞面临着DNA损伤、缺氧、细胞因子、代谢改变、病毒感染或者致癌基因等刺激时,导致p53泛素化被抑制和p53在细胞核内积累,通过多个共价修饰包括磷酸化和乙酰化,p53被激活并稳定存在。 p53的磷酸化大多数出现在N-末端激活域的Ser6,Ser9,Ser15,Thr18,Ser20,Ser33,Ser37,Ser46,Thr55和Thr81残基上,另外还有一些p53磷酸化出现在C-末端连接处和碱性区域的Ser315, Ser371, Ser376, Ser378, 和Ser392残基上。大多数位点上的磷酸化是由DNA损伤诱发的,还有一些例如Thr55 and Ser376在基因毒性应激下被压抑。P53磷酸化是由几个细胞激酶所介导,包括Chks,CSNK1-Delta,CSNK2,PKA,CDK7,DNA-PK,HIPK2,CAK, p38和JNK。显然,由ATM/ATR作用在Ser15上磷酸化,直接作用或者通过Chk1/Chk2,在Chk1/Chk2作用下的Ser20磷酸化已经证实能够减缓抑制或减慢降解p53,导致p53稳定并活化。磷酸化诱导的p53稳定和活化是通过多种机制介导以及很多细胞环境或微环境的改变所致。HIF-1Alpha参与p53的稳定,HIF-1Alpha调节p53介导作用的详细机制依然是一个未知数。最近,p53和HIF-1Alpha之间的作用已被报道能够引起HIF-1Alpha的降解。PIAS 蛋白家族也被发现能与p53发生相互作用。PIAS1 和PIAS-Gamma作用可作为p53的SUMO 连接酶。另外,PIAS1的环指域结合p53抑癌基因的C-末端催化其类泛素化(sumoylation),这个修饰,能抑制报告质粒p53的活性,包含共同序列p53DNA的结合位点。PLM通过吸收p53到多蛋白复合体(称为PLM核体)来激活p53。PLM是一个肿瘤抑制蛋白,也是曾发生变异称为Kremer bodies蛋白核配合物(ND10, PODs and PML-NBs)的主要组成成分。PLM直接和p53结合并进入PLM-NBs。补充到PLM-NBs激活p53,通过把它引进到与CBP/p300极为贴近。BRCA1和p53发生联合,在体内和体外是相同的肿瘤抑制途径。BRCA1对于生化调节p53作用的能力暗示着在肿瘤抑制过程,这个可能是BRCA1一个基本的角色。 P53另一个重要的修饰是乙酰化作用。在Lys370,Lys372, Lys373, Lys381, and Lys382 by p300/CBP and at Lys320残基上通过PCAF,p53发生特殊的乙酰化。已证明,乙酰化可以增强p53DNA的结合、通过更新辅激活因子刺激p53介导的下游靶基因转录激活。乙酰化可以通过MDM2抑制p53的泛素化来调节p53的稳定性。在机体内,发生Lys320, Lys373, and Lys382残基上的乙酰化是通过许多基因毒性介质所诱导的,包括紫外线、电离辐射、缺氧、氧化应激,甚至耗尽的核苷酸池。P53同样也可以被HDAC1和SIRT1去乙酰化。人类的SIRT1是一种酶,属于去乙酰化p53肿瘤抑制蛋白,能够被显示调节p53依赖作用,包括DNA诱导损伤的细胞死亡。P53去乙酰化能够被应用到下调Bax and p21WAF1等基因的活性。磷酸化和乙酰化是相互依赖的。的确,p53N-末端的磷酸化被证实能够增强与乙酰化酶p300/CBP的相互作用和加强p53乙酰化。激活p53功能实际上是一个转录因子和诱导一些基因的转录。DNA靶基因p53是一个有十个5'-PuPuPu-C(A/T)(T/A)GPyPyPy-3'重复出现的共有序列。它也可以结合到一个含有四到五个重复出现碱基对的相同序列的回文位点。完整

p53基因第72位密码子基因多态性

p53基因第72位密码子基因多态性 目的探讨湖北地区汉族女性人群中p53基因第72位密码子基因多态性与HPV16相关宫颈癌发生的关系。方法随机选取经PCR检测证实HPV16阳性的宫颈病变病例228例,其中病理证实为宫颈浸润癌的156例作为宫颈癌组,宫颈上皮内瘤变或宫颈炎72例为对照组。用直接PCR法检测新鲜组织标本中p53基因第72位密码子的基因型在宫颈癌组与对照组的分布情况,分析p53 codon72基因多态性与HPV16阳性宫颈癌之间的相关性。结果所有样本均成功检测出p53 codon72基因型。Pro/Pro、Arg/Pro、Arg/Arg在HPV阳性宫颈癌样本中所占比例分别为22.2%、47.2%、30.6%;在对照组中的比例分别为32.7%、53.2%、14.1%。两组总构成比差异有统计学意义(P = 0.010)。与其他两种基因型相比,p53 codon72Arg/Arg基因型在HPV16阳性宫颈癌样本检出率明显高于在HPV16阳性宫颈上皮内瘤变及宫颈炎组中的检出率(P = 0.004,OR = 2.680)。结论p53 codon72Arg/Arg基因型是湖北地区汉族女性发生HPV16相关宫颈癌的遗传易感因素。 标签:宫颈癌;p53基因;基因多态性;人乳头状瘤病毒16型(HPV16) 人乳头状瘤病毒(human papillomavirus,HPV)16型感染是发生宫颈上皮内瘤变(cervical intraepithelial neoplasia,CIN)和宫颈癌的最主要病因。HPV16E6基因所表达的E6蛋白是重要原癌蛋白之一,高危型HPV16E6蛋白对p53蛋白的降解、灭活与宫颈癌发生有关的观点已被广泛接受。p53 codon72Arg/Arg基因型对于HPV16E6蛋白所介导的P53蛋白的降解更敏感,p53 codon72Arg/Arg基因型妇女较携带Arg/Pro基因型妇女患HPV相关宫颈癌的危险性更高,而p53 codon72Pro/Pro基因型与HPV相关宫颈癌发生的危险性无关[1]。国内外诸多学者就此进行了大量的研究,但结果不尽一致[2]。湖北省是宫颈癌的高发地区之一,研究发现,HPV16是该地区宫颈癌患者主要感染亚型(81.25%)[3]。p53基因第72位密码子多态性与HPV16感染宫颈癌相关性对与宫颈癌基因水平的筛查有重大意义。本研究运用直接PCR法检测p53基因3种基因型在HPV16阳性宫颈癌组及宫颈上皮内瘤变-宫颈炎组中的分布情况,探讨湖北地区汉族人群中p53基因多态性与HPV16相关宫颈癌的联系。 1 资料与方法 1.1 一般资料 选取2007年5月~2009年7月因宫颈病变在武汉大学中南医院妇瘤科行宫颈活检或手术的病例228例,包括156例宫颈癌,72例宫颈上皮内瘤变或宫颈炎,所有样本均经病理诊断确诊(鳞癌149例、腺癌7例、CINⅡ~Ⅲ54例、宫颈炎-CINⅠ18例),患者知情同意,术后新鲜组织标本保存于-70℃低温冰箱中;所有病例经PCR检测证实HPV16感染。患者均为长期居留于湖北地区的汉族女性。宫颈上皮内瘤变或宫颈炎者作为对照组,年龄25~48岁,平均41岁,宫颈癌组年龄28~64岁,平均43岁,各组样本年龄分布差异无统计学意义(P = 0.27)。

p53亚型

p53亚型?133p53β促进肿瘤干细胞潜能 摘要 肿瘤干细胞(CSC )是负责形成化疗耐药性和癌细胞转移的细胞。在这里,我们介绍了?133p53β,它是一种TP53基因的剪接变异体,在MCF-7乳腺癌细胞消耗减少的时候,?133p53β能增强MCF-7乳腺癌细胞中的干性。?133p53β刺激关键多能性因子SOX2、OCT3/ 4和NANOG 的表达。同时,在其他具有高转移性的乳腺癌细胞中,侵袭性与肿瘤干细胞潜能增强和TP53剪接体表达增加相关,并且在这些细胞中,SOX2,OCT3/4和NANOG 的表达也受到TP53剪接体的正向调控。利用抗肿瘤药物etoposide 处理MCF-7细胞能够促进肿瘤干细胞形成以及TP53剪接体依赖性的SOX2,OCT3/4和NANOG 表达增强,增加了癌症复发的潜在风险。这项研究表明TP53的一种剪接体能够促进肿瘤干细胞潜能,之前一直认为TP53主要作为肿瘤抑制因子发挥作用,而这项研究提示我们通过这种剪接体的作用,TP53也可以扮演癌基因的角色。 p53通过信号转导途径突变/摄动使得它在肿瘤细胞中的功能的改变以及p53活性的损失是癌症发展的前提。突变型p53被认为在促进入侵中发挥了举足轻重的作用,有利于癌细胞从肿瘤原发部位传播,并最终导致癌细胞转移。最近有报道指出p53在干细胞稳态和多能性的作用。野生型(WT )p53阻止体细胞重编程。而突变型p53能刺激诱导多能干细胞(iPS )的形成。P53的枯竭会显著提高细胞重编程的功效,并促进iPS 细胞的产生。因此,p53基因可能被视为基因组的守护者,对重编程也起到一样的作用。 所有这些功能都与全长p53基因(即,TAp53α亚型)相关。然而,TP53基因通过几个机制编码至少12个不同的生理亚型(TAp53[α,β和γ],?40p53[α,β和γ],?133p53[α,β和γ]和?160p53[α,β和γ]),这几种机制是:替代启动子(TA 和?133亚型)、替代 内含子剪接(内含子2:?40同种型和内含子9: γβα和,亚型)以及替代翻译起始位点(?40和?160亚型)。tap53α亚型是最好的描述并在经典文献中所提到p53一样。基本上,p53的同种型可被分为以下两组:(1)包含激活域的长同种型(TA 和?40);(2)没有激活域的短同种型(?133和?160)。此外,β和γ亚型不包含典型的C-末端寡聚化结构域,但具有未知功能的附加域。 p53同种型在许多过程中改变p53转录活性,如细胞周期进程,细胞程序性死亡,复制性衰老,细胞分化,病毒的复制,和血管生成。重要的是,P53亚型特别是在人类肿瘤中被解除管制。然而,在癌症干细胞(CSC )中p53同种型功能的动态平衡从未被探索。在这里,我们指出?133p53β亚型的确涉及促进癌细胞的干性。?133p53β在人类乳腺癌细胞系中过表达刺激乳腺球形成和关键多能性和干性调节因子的表达(SOX2、OCT3/ 4、NANOG 和CD24/ CD44),但不包括C-MYC 。此外,使用以MDA-MB-231为基础的细胞系进行试验,我们发现?133p53亚型表达的增加与癌细胞转移潜能的提高和非黏附性乳腺球群细胞(mammospheres )的形成有关。最后,将MCF-7和MDA-MB-231细胞与抗癌药物etoposide 利用?133p53依赖性的方法一起培养同样促进细胞干性。因此我们的结果表明,短p53同种型无论任何p53突变都正调节CSC 潜力。因此,野生型TP53,通常被认为是一种肿瘤抑制基因,也可以作为通过D133p53b 表达的癌基因。 结果 p53亚型表达的改变影响mammosphere 的形成

P53基因与癌症和衰老相关性的概述

P53基因与癌症和衰老相关性的概述 摘要:p53基因抑制肿瘤是众所周知的,但可能也影响与肿瘤抑制无关的衰老过程。p53对各种应激做出反应,诱导细胞凋亡或阻滞细胞周期,以抑制肿瘤的发展。然而,在非癌衰老过程中p53的作用是复杂的。一方面,p53基因能诱导细胞衰老或凋亡来抑制癌症,但其后果就是加快了衰老。另一面,P53可以减缓生长和减少与生长有关的应激使细胞存活,最终延缓衰老。要想阐明其在衰老过程中的作用,并针对P53或P53转录靶点来治疗癌症和改善衰老,就必须更好地了解p53功能的多样化。 关键词:DNA损伤,细胞生长;细胞衰老;细胞凋亡,无氧酵解 引言:p53基因是一种转录因子,其在哺乳动物中抑制肿瘤的发生已经得到了广泛研究(1→3),但越来越多的证据表明,p53基因也影响衰老过程。但是,p53究竟是怎样影响衰老的还不是很清楚。p53调控大量有致癌作用的基因的转录,包括细胞周期阻滞(P21,GADD45,14-3-3s,RPRM),细胞凋亡(Scotin,killer,FAS,BBC3,PERP,53BP1,BAX,LRDD,PMAIP1),抑制有氧糖酵解(GLUT1,TIGAR,己糖激酶,磷酸甘油酸变位酶),促进氧化磷酸化(OXPHOS)(SCO2,AIF),细胞生长(PTEN,AMPK测试,TSC2,IGF-BP3)(4),以及蛋白质的翻译(sestrins)(5)。P53还具有与转录无关的其他作用,包括调节微RNA加工(6),DNA修复(7),线粒体蛋白存活(8)和核糖体合成(9,10)。因此,p53是维持基因组完整性,调节细胞生长和细胞增殖的关键,是抑制肿瘤的核心(11)。同时,p53通过一个非癌症相关

靶向突变p53的小分子药物研究进展

中国药理学通报Chinese Pharmacological Bulletin2018 Mar;34(3) :321?321 ?网络出版时间:2018 - 3 - 8 13 :28 网络出版地址:http://kn. https://www.wendangku.net/doc/5f17579566.html,/kcm./detail/34. 1086. R.20180308. 1132. 012. html 靶向突变p53的小分子药物研究进展 王玉玲,苏永南,暴亚锋,杨志宽,牟汉川,张继虹 (昆明理工大学医学院衰老与肿瘤分子遗传学实验室,云南昆明650500) doi:10. 3969// issn.1001 - 1978. 2018.03.006 文献标志码:A文章编号:1001 -1978(2018)03 -0321 -04 中国图书分类号:R B5; R341; R394.2; R730.5; R977.6; R979. 1 摘要:肿瘤抑制因子p53蛋白可以调节靶基因转录,控制细 胞凋亡、衰老等生 ,容易发生突变,失去抑癌功,促 发生发展。目*53蛋白已成为 的热门靶点之一,该文主要介绍以突变p53为靶点恢复构象活性 的子化合物 作用机制。 关键词:突变p53 ;靶点;构象;药物设计;机制 p53蛋白是一个重要的转录因子,通过调节p21、Bax、PTEN、p48、P A I等下游靶基因,胞周期,胞凋亡与衰老、参与DNA损伤修 抑制血管生成('g 1),阻的发生与发展。突 p53则会缺失 功能,促癌性作用,增强 的迁移运 转移,胞 收稿日期:2〇17-11-10,修回日期:2017-12-27 基金项目:国家自然科学基金资助项目(No 8156130180) 作者简介:王玉玲(1992 -),女,硕士生,研究方向:肿瘤药理学,E-mail: violing2000@ 126. com; 张继虹(1972-),女,博士,教授,硕士生导师,研究方向: 肿瘤药理学,通讯作者,E-mail: zhjihO ng2000@126. com 出现耐药性,说明突变*53是促癌的一个重要因素,所以 p53蛋白可以成为一个 的药物靶点之一。目,主要的治疗策略有阻断p53与MDM2相互作用、降解突变*53 蛋白、抑制突变p53下游通路、R N A干扰突变*53表达、恢复 突变p53构象等[1]。由于*53蛋白空间结构的柔韧性和灵 性,以*53为点已成为一个研究热点[2],本文将重点阐述恢复突变p53的药物研究进展及其在肿瘤治疗 中的作用机制。 Stress signals 跑叫i總。二 p21 Bax PUMANoxa p48 Sestrins PAJ BAI-1TSP1 丄++丄Cell cycle Apoptosis repair Angiogenesis Damage prevention^metastasis Fig1p53 signaling pathway 1 p53蛋白结构 p53蛋白单体由393个氨基酸残基组成,利用化学交联 Advances of studies on effect of drug transporter under hypoxia ZHANG Ming-xia1,2,WANG Rong1,2,LI W e n-bin2,LU Hui2,XIE Hua2,LUO Bing-fe ng1,W A N G C hang2,LIU Jing-jing1,JIA Z h e ng-ping1,2 (1. 7chool og Pharmacy,Larnhoo University,Lanzhoo730000,2.PLA Key Lab og the Plateau og the Environmental Damage Control,Lanhoo General Hospital,Lanhoo Command,Lanhoo730050, Abstract Plateau environment has the characteristic of low ox-ygen and low pressure,which leads to a series of physiological changes and Xfects the process of drug metabolism in the body. Many factors Xfect the pharmacokinetic parameters,including gastric emptying,blood rheology,cardiopulmonary function,hepatorenal function,cytochrome P450 enzyme and so on.The present study focuses on drug metabolic enzymes,since drug transporter is the key factor that mediates drugs in their entrance to the body through the cell membrane,producing the curative effect.In order to provide the reference to further research on the effect of plateau hypoxia on pharmacokinetics and guide the rational use of drugs,we review in this paper the classification of the transporter,mediated drug substrates,the influence of hy-poxia on expression levels of drug transporter substrates and the regulatory mechanism of drug transporter under the condition of hypoxia. K e y words:plateau hypoxia;drug transporter;organization dis-tribution;drug substrate;drug metabolism;regulation mecha-nism

相关文档