文档库 最新最全的文档下载
当前位置:文档库 › 脂肪酸甲酯乙氧基化物FMEE性能测试报告

脂肪酸甲酯乙氧基化物FMEE性能测试报告

脂肪酸甲酯乙氧基化物FMEE性能测试报告
脂肪酸甲酯乙氧基化物FMEE性能测试报告

浙江大学学报,第33卷,第7期,2011年7月

Journal of Zhejiang University

Vol.33,No.7,Jul 2011

文章编号:1988-7821(2011)07-0219-06

脂肪酸甲酯乙氧基化物FMEE

性能测试报告

李雅菲,钟明辉,管敏鑫

浙江大学化学工程与生物工程学院,浙江杭州310027

摘要:探索和研究新型的表面活性剂一直是人们感兴趣的话题,本文重点探讨了一种新型的表面活性剂-脂肪酸甲酯乙氧基化物FMEE及其衍生物磺酸盐FMES的相关应用性能,包括渗透性、耐碱性、低温流动性等性质,也探索了其在造纸、硬表面清洗、纺织印染等领域相关应用。

关键词:FMEE;FMES;性能测试;造纸;工业清洗;纺织印染

脂肪酸甲酯乙氧基化物FMEE是近几年新开发的一种表面活性剂,虽然在国外市场已有广泛的使用,但是在国内仍然刚刚起步,其很多性能仍处于探索,甚至不清楚很模糊的现状,有些中文的相关资料对FMEE 的描述甚至失真、不准确,对于该产品的很多应用性能只能查阅国外的文章、专利。

本文按照科学严谨的态度,对FMEE及其衍生物FMES各种性能设计相关的测试实验,并以第一手实验数据为准,对FMEE和FMES的各种性能做详细介绍,同时也指出和更正了很多中文文献的错误数据和观点。

样品准备:

FMEE 70% 含量某外资石化公司提供

FMES 70% 含量某外资石化公司提供

AEO-9 98% 含量浙江三江化学

OP-10 98% 含量美国陶氏化学

十二烷基苯磺酸钠LAS 98%含量南京金桐石化

脂肪醇醚硫酸钠AES 70%含量浙江赞宇股份有限公司

仲烷基磺酸钠SAS-60 65%含量德国科莱恩化工

片碱、皂片、机油等均为市场采购。

1,FMEE与FMES外观与pH值

FMEE 为浅黄色液体 FMES 为深黄色液体

FMEE pH 为6 FMES pH 为6

2,FMEE 与FMES 质谱分析图 仪器:液相色谱串联质谱仪 型号:API4000 产地:美国

3,耐碱性能(GB 5556-2003 表面活性剂耐碱测试标准)

测试方法,配制不同浓度梯度的片碱溶液,在不同的片碱浓度下观察表面活性剂的稳定性,并得出耐碱的

结论。

评价标准:分别以碱溶液是否澄清、是否浑浊和漂油,是否出现絮状物评价表面活性剂的耐碱性能。

经过我们的实验数据分析,在室温条件下(30℃),FMEE的耐碱20g/L,FMES的耐碱为95g/L,而国内的

很多文章将FMES的耐碱标注为120g/L,显然是不符合实际实验情况,也就是说FMES并没有一些国内文献

提到很优秀的耐碱性能。

4,渗透性能测试:

表面活性剂5g/L,室温条件,记录帆布片沉降时间。

最终,通过实验可知,在5g/L的浓度下,FMEE的渗透性在10s以内,而FMES的渗透性则较差,在35s左右。在同等浓度(5g/L的浓度下),如SAS-60、LAS等几乎在3s之内迅速沉降。由此可知,FMEE与FMES的渗透性一般,尤其是FMES,其渗透性能在几种常见表面活性剂中,属于渗透速度较慢的产品。

5,低温流动性测试

设备:家用冰箱

测试方法:温度调至零下2℃,待测表面活性剂冷冻24h,观察流动性。

普通家用冰箱:

在冰箱放置24h,取出样品,观察流动性,如下:

在零下2度的储存条件下,FMEE与FMES均有流动性,说明其倾点低于零度,而OP-10、AEO-9则完全失去流动性,并且凝固结块较硬。AES、LAS、SAS在该温度条件下,特别粘稠,几乎没有流动性。

6,乳化能力测试

准确称取20g表面活性剂用自来水配成1L溶液,准确称取10g矿物油剂。用移液管准确移取50m待测液,置于100mL具塞量筒中,塞紧量筒塞,一起上下剧烈振荡10次,然后静置5min,观察混合油剂的乳化情况。将上层浑浊液体取出,并称量,重量越大,说明乳化力越强。

萃取并称量的结果如下图所示:

OP-10萃取物25g FMEE萃取物20.44g AEO-9萃取物20.22g

FMES萃取物14.14g AES萃取物10.91g LAS萃取物7.70g

SAS萃取物5.85g

通过实验可知,在非离子表面活性剂中,FMEE的乳化性能并没有OP-10出色,乳化性能明显差于OP-10,跟AEO-9差不多。但是在阴离子表面活性剂中,FMES的乳化性能在阴离子表面活性剂中却是最好的,远高于LAS、AES和SAS等。

7,除油测试

自制油污布:取少量矿物油剂与相对质量分数0.1%的蓝色酞菁染料完全混合均匀,溶解完全后用吸管取相同体积的油剂滴于尼龙/莱卡经编布中心,80℃烘干,待用

试验工艺:

待测样品2g/L

NaOH 2g/L

浴比1:20,始温40℃,2℃/min升温至95℃,保温40min→60℃热洗10min→冷水洗→室温晾干

设备:水浴振荡器

结果评定:目测对比洗涤后的油污斑点颜色深浅来评定洗涤效果

水浴振荡器:

实验结果:

在本节实验中,除油的结果基本与第五部分乳化力的测试结果相吻合,即乳化能力好的除油效果较好,在非离子表面活性剂中,OP-10的除油效果好于FMEE,而在阴离子表面活性剂中,FMES则是最优秀的。

由此可知,FMEE的乳化除油效果并不如OP-10优秀,而一些中文文章所描述的FMEE在除油方面远好于OP-10,也是不准确的。为此,我们查阅了一些原始外文资料,并得知,FMEE的特点在于分散力出众,是一种乳化力与分散力均衡的表面活性剂。FMEE的乳化力明显差于OP-10,但其出众的分散力是OP等表面活性剂不具备和远不可及的。因此,在浸泡清洗的工艺中,FMEE所独具的分散性能,无疑要比其它表面活性剂有更优秀的除油和除蜡的能力。国内很多文章简单的认为FMEE在任何条件下都比OP系列除油效果好,显然是不准确的。

8,净洗力测试

按照GB/T 13174-2008 (洗涤剂去污力及抗再沉积能力测试)

污布准备:

用针筒吸取同等重量30ml的机油和色拉油,分别涂抹于白布表面,并用烘箱80℃烘干,备用。

测试:

水温恒定40℃,洗衣机标准洗涤,每分钟30转,正反各15转,浴比按照1:20,洗涤5分钟,快速脱水并烘干。

水洗后的污垢残余状况:

OP-10 AEO-9 FMEE

FMES LAS AES SAS

由实验可以得知,在非离子表面活性剂中,FMEE洗得最干净,净洗力高于OP系列,这也验证了FMEE 乳化力不及OP,但是分散力好于OP,最终,FMEE的体现出来的防沾污净洗效果好于OP和AEO系列。在阴离子之中,FMES净洗力最好。在净洗力方面,一些国内文献描述基本与实验结果吻合。

9,泡沫测试

按照GB/T 7462-94 Ross-Miles

配制5g/L待测表面活性剂的溶液,鼓泡180秒,并静置3分钟,比较记录泡沫高度。

OP-10 泡高47cm AEO-9 泡高43cm FMEE 泡高25cm

FMES 泡高35cm AES 泡高52cm LAS 泡高56cm SAS泡高51cm

由此可知,FMEE与FMES的泡沫均低于其它表面活性剂,符合国内相关文献的描述。但是仍然不属于无泡的产品,只能称作低泡表面活性剂。

为了更好的探索FMEE与FMES在工业清洗、废纸脱墨、纺织印染等领域实际应用效果,鉴于我们实验室并没有相关专业测试设备,我们来到附近相关工厂,并在工厂专业工程师的指导和帮助下,完成相关测试实验。在此,我们对余姚纸业集团的徐显明高工、刘涛主任,湖州大港纺织印染的徐惠良总经理、孙开明师傅一并表示感谢。

纺织品应用测试

FMEE和FMES在国外最成功的应用无非就是纺织品清洗领域,我们团队首先做了纺织领域的应用试验。看是否达到文献所描述的优异的效果。

纺织品的相关测试共分为两部分,分别为针织布的浸渍前处理和梭织布的连续式前处理。

1,纺织品针织物工艺毛效测试

纯棉针织汗布(21S 双纱190g/M2),表面活性剂1g/L,片碱1.5g/L,98℃下处理45min,热水洗两次,冷水洗净,自然晾干

2,纺织品梭织物工艺毛效测试

实验布为棉坯布(47″,10/2 ×10/2,43×32),帆布,在表面活性剂5g/l,碱浓度20g/l,100℃下处理45min,热水洗两次,冷水洗净,自然晾干

毛效测试

配制1g/l的3bS染料溶液,把棉布剪成宽5cm,长20cm的布条,使布条下垂入染料溶液中,开始计时,30min后,观察染料上升的高度。

针织物毛效测试:

在针织物前处理中,FMEE的毛效最高。结合前面的乳化与净洗结论,乳化和除油效果最好的OP却没有最好的毛效。通过与纺织领域专家沟通,我们认为纺织品表面的油和蜡相对较少,在针织物的前处理过程中,分散性比乳化性更加重要。所以FMEE的毛效好于OP等其它表面活性剂。

梭织物毛效:

在梭织物的强碱前处理工艺中,FMES的毛效是最高的,远高于其它表面活性剂。令人疑惑的是渗透性最差的FMES的却获得了最佳的毛效。随即,大港染厂的工程师给我们作了解释:梭织物在实际生产过程中,坯布在浸轧工作液之前往往先用热水浸轧,以湿布状态浸轧工作液,即所谓的湿进布,即使FMES渗透性较差,坯布仍然有较高的带液率。同时,FMES优异的分散力也会有较高的退浆效果。

硬表面清洗

紧固件清洗测试,拉伸油、切削油去除测试。

表面活性剂用量2.5%,纯碱用量2g/L,50℃浸泡清洗10分钟

OP-10 处理后FMEE处理后

AEO-9处理后FMES处理后

AES处理后LAS处理后

SAS处理后

通过实验可知,在金属清洗领域,FMEE和FMES的除油效果并没有OP-10优秀。究其原因,金属表面的油脂较多,远高于纺织品表面的油和蜡含量。因此,在金属清洗过程中,对乳化力要求高于对分散力的要求,乳化力更好的OP系列效果好于FMEE。也有国外文献的提及OP与FMEE拼混使用可获得极佳的清洗效果,这也验证了FMEE弥补OP系列分散力不足的理论。

造纸领域

纸浆脱墨测试:

全封闭浮选脱墨机、废旧新闻纸纸浆,按照常规工厂现用工艺脱墨,收集脱墨残液,通过残液比较表面活性剂脱墨效果。

OP-10 残液最深,说明在纸浆脱墨领域,OP-10效果好于其它表面活性剂,FMEE和FMES并不具备优异的脱墨性能,且FMEE和FMES泡沫较低,也不适用于纸浆鼓泡浮选脱墨。

结论:通过对FMEE和FMES一系列实验测试,我们通过第一手、真实准确的实验数据,探索了两种新型表面活性剂的各种性能,找出了国内一些文献对该类表面活性剂不正确的描述。

脂肪酸甲酯类表面活性剂是一种新型的表面活性剂,也具有比较优秀的使用性能,但是很多特点和性能仍然需要进一步的摸索。尤其是FMEE或FMES如何与常规的表面活性剂复配和协同增效方面,仍需要很多系统、详细的实验工作要做。

参考文献:

[1] KOGEL-KNABNER I, KAI U T, BEND R. Desorption of polycyclic aromatic hydrocarbons from soil in the presence of dissolved organic

matter: effect of solution compositon and aging[J]. Journal of Environmental Quality, 2000, 29(3): 906-916.

[2] RABER B, KOGEL-KNABNER I. Influence of FMEE and properties of dissolved organic matter on the partion on PAH[J]. European

Journal of Soil Science, 1997, 48: 443-455.

[3] 宋玉芳, 孙铁珩, 许华夏. 纺织品前处理工艺介绍[J]. 纺织学报, 1999, 10(2): 230-232.

[4] 巩育军, 薛元英. 浮选脱墨在纸浆脱墨领域发展趋势[J]. 华南理工大学学报, 2000, 30(1): 28-31.

[5] 朱利中, 冯少良. 表面活性剂在工业清洗中的应用[J]. 环境科学学报, 2002, 22(6): 774-778.

[6] AN Y, MARK A. Solubilization of polycyclic aromatic hydrocarbons by perfluorinated surfactant micelles[J]. Water Research, 2002, 36:

300-308.

[7] EDWARDS D A, RICHARD G L, LIU. Z. Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions[J].

Environmental Science Technology, 1991, 25: 127-133.

[8] HILL A J, GHOSHAL S. Micellar solubilization of naphthalene and phenanthrene from nonaqueous-phase liquids[J]. Environmental

Science Technology, 2002, 36: 3901-3907.

[9] LASA S, LUTHY R G. Effect of non-ionic surfactants on the solubilization and mineralization of phenanthrene in soil water systems[J].

Biotechnology and Bioengineering, 1992, 40: 1367-1380.

[10] ZHU L, CHIOU C T. Water solubility enhancements of pyrene by single and mixed surfactant solution[J]. Journal of Environmental

Science, 2001, 13: 491-496.

[11] ZHU L, FENG S. Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed anionic-nonionic surfactants[J].

Chemosphere, 2003, 53(5): 459-467.

[12] HYUN-HEE CHOI, JAEYOUNG CHOI, MARK N G, et al. Combined effect of natural organic matter and surfactants on the apparent

solubility of polycyclic aromatic hydrocarbons[J]. Journal of Envrionmental Quality, 2002, 31: 275-280.

喜赫化工脂肪酸甲酯乙氧基化物FMEE的生产及应用

喜赫化工脂肪酸甲酯乙氧基化物FMEE的生产与应用 (XX喜赫精细化工XXXX金山化学工业区) 摘要:脂肪酸甲酯乙氧基化物FMEE是一种低泡沫的非离子表面活性剂,本文探讨了FMEE 的生产工艺与相关应用性能,包括耐硬水、净洗性能、低温流动性、生态环保等性质,也探索了其在造纸、煤碳浮选、硬表面清洗、纺织印染等领域相关应用。 关键词:FMEE;除油;除蜡;造纸;工业清洗;印染 Production and application ofNonionic surfactant-Fatty Methyl EsterEthoxys Abstract: Fatty acid methyl ester ethoxyes (FMEE) is a low foam non-ionic surfactant, this paper discusses the FMEE’s production and related application performance, including resistance to hard water, cleaning property, low-temperature fluidity, ecological environmental protection and other properties.On the other hand ,Paper-making, floatation, hard surface cleaning, textile dyeing and finishing, and other fields related applications were also explored in this paper. Key words: FMEE; oil-removing; wax-removing; paper-making;industrial cleaning;dyeing and finishing 脂肪酸甲酯乙氧基化物(FMEE)是一种低泡沫的非离子表面活性剂,具有优异的净洗性能,特别是分散力出众,在净洗过程中能够有效的防止污垢的反沾污,适用于油脂和蜡质的清洗【1】。本文介绍了该类产品的生产现状和化学性能,以及在工业清洗、日化、煤田选矿、农业、纺织印染等领域的应用研究。 1 FMEE生产路线【2】 FMEE的生产工艺路线有3种。一种是脂肪酸首先与环氧乙烷加成乙氧基化得到脂肪酸聚氧乙烯醚,再与甲醇酯化得到;第二种工艺是甲醇首先乙氧基化得到甲基乙二醇聚醚,再与脂肪酸发生酯化反应得到。以上两种路线均为两步法,合成路线繁琐,工业化生产成本高,属于最早期的合成工艺,而且产品中有效物含量低,含有大量的副产物,如聚乙二醇、乙酸乙酯等;最后一种工艺是脂肪酸甲酯直接与环氧乙烷在催化剂与高温的条件下进行加成,工艺路线短,成本低,使得该产品的大规模产业化生产成为现实。 1.1 生产FMEE使用的催化剂 采用脂肪酸甲酯直接乙氧基化物生产FMEE,最大的难点就是脂肪酸甲酯由于分子中不存在活泼氢,不像脂肪醇很容易的发生加成反应,无法用碱催化剂如NaOH,NaOCH3完成乙氧基化反应,否则不仅反应速度慢,而且转化率也不超过30%,因此,如何选择更适合脂肪酸甲酯乙氧基化反应的催化剂成为该工艺的关键,关系着该产品能否实现低成本、规模化

氢氧燃料电池性能测试实验报告

氢氧燃料电池性能测试 实验报告 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

氢氧燃料电池性能测 试实验报告 学号: 姓名:冯铖炼 指导老师:索艳格 一、实验目的 1.了解燃料电池工作原理 2.通过记录电池的放电特性,熟悉燃料电池极化特性 3.研究燃料电池功率和放电电流、燃料浓度的关系 4.熟悉电子负载、直流电源的操作 二、工作原理 氢氧燃料电池以氢气作燃料为还原剂,氧气作氧化剂氢氧燃料电池,通过燃料的燃烧反应,将化学能转变为电能的电池,与原电池的工作原理相同。 氢氧燃料电池工作时,向氢电极供应氢气,同时向氧电极供应氧气。氢、氧气在电极上的催化剂作用下,通过电解质生成水。这时在氢电极上有多余的电子而带负电,在氧电极上由于缺少电子而带正电。接通电路后,这一类似于燃烧的反应过程就能连续进行。

工作时向负极供给燃料(氢),向正极供给氧化剂(氧气)。氢在负极上的催化剂的作用下分解成正离子H+和电子e-。氢离子进入电解液中,而电子则沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,氧气同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。 氢氧燃料电池不需要将还原剂和氧化剂全部储藏在电池内的装置氢氧燃料电池的反应物都在电池外部它只是提供一个反应的容器 氢气和氧气都可以由电池外提供燃料电池是一种化学电池,它利用物质发生化学反应时释出的能量,直接将其变换为电能。从这一点看,它和其他化学电池如锌锰干电池、铅蓄电池等是类似的。但是,它工作时需要连续地向其供给反应物质——燃料和氧化剂,这又和其他普通化学电池不大一样。由于它是把燃料通过化学反应释出的能量变为电能输出,所以被称为燃料电池。 具体地说,燃料电池是利用水的电解的逆反应的"发电机"。它由正极、负极和夹在正负极中间的电解质板所组成。最初,电解质板是利用电解质渗入多孔的板而形成,2013年正发展为直接使用固体的电解质。 工作时向负极供给燃料(氢),向正极供给氧化剂(空气,起作用的成分为氧气)。氢在负极分解成正离子H+和电子e-。当氢离子进入电解液中,而电子就沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,空气中的氧同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。此过程水可以得到重复利用,发电原理与可夜间使用的太阳能电池有异曲同工之妙。 燃料电池的电极材料一般为惰性电极,具有很强的催化活性,如铂电极、活性碳电极等。 利用这个原理,燃料电池便可在工作时源源不断地向外部输电,所以也可称它为一种"发电机"。 一般来讲,书写燃料电池的化学反应方程式,需要高度注意电解质的酸碱性。在正、负极上发生的电极反应不是孤立的,它往往与电解质溶液紧密联系。如氢—氧燃料电池有酸式和碱式两种: 若电解质溶液是碱、盐溶液则

我国脂肪酸生产及应用情况

我国脂肪酸生产及应用情况您好,欢迎来到阿里巴巴 商人博客 产品产品公司生意经批发直达求购信息资讯论坛商友 我国脂肪酸生产及应用情况(2011/01/04 16:20)我国脂肪酸生产及应用情况 1脂肪酸的来源 脂肪酸主要是从天然油脂、石蜡氧化或从松木造纸废液中回收妥尔油经精馏制得。石蜡氧化制脂肪酸可以得到天然油脂中不具有的单碳数脂肪。 随着世界各国对生态环境和环境保护的重视,对天然林的保护和禁伐,使得妥尔油资源产量、质量逐年下降。 目前从天然动植物油脂经水解、精馏生产的脂肪酸占脂肪酸总量的4/5以上,是世界脂肪酸的主要来源。 2脂肪酸的分类 一类是饱和脂肪酸,主要应用于乳液聚合和作为橡胶添加剂;在塑料工业中用作稳定剂、增塑剂和润滑剂;其酯类用于食品工业作乳化剂;其含氮衍生物是优良的表面活性剂,广泛应用于纺织、交通、日用化工和塑料等行业。这类脂肪酸主要包括椰油酸、肉豆蔻酸、棕榈酸、硬脂酸等。 另一类是不饱和脂肪酸(包括妥尔油酸),主要用于制取矿石浮选剂、油田化学品和生产涂料用的二聚酸、三聚酸。如油酸、亚油酸、芥酸等。 3脂肪酸原料情况

东南亚地区拥有丰富的棕榈油和椰子油。棕榈仁油和椰子油是提供生产 C8-14脂肪酸的原料,它们主要用于生产表面活性剂。棕榈油是提供生产C16- 18脂肪酸的原料,主要用于生产硬脂酸及盐和酯类、阳离子表面活性剂和塑料 加工助剂等。 我国脂肪酸的生产目前以棕榈油、棉籽油、棉籽油脚和菜籽油为主要原料,所得产品主要为硬脂酸、不饱和酸(以油酸为主)和芥酸等。棕榈油中不饱和酸 含量为42%,棉籽油为64%。菜籽油主要含C16-22脂肪酸,其中芥酸含量很高。 4脂肪酸的品种和用途 油脂中的脂肪酸是脂肪酸同系物的混合物,其组成随油种而变化。混合脂 肪酸经过分离提纯后可以得到各种组成比较单一的脂肪酸,一般有纯度95%、98%和99%如辛酸、癸酸、癸二酸、月桂酸、肉豆寇酸、棕榈酸、硬脂酸、油酸、亚油酸、亚麻油酸、山嵛酸、芥酸等产品。 脂肪酸是重要的有机化工和精细化工的原料,以脂肪酸为原料生产的下游 衍生物,广泛应用于纺织印染、食品、医药、日用化工、石油化工、橡塑加工、采矿、交通运输、铸造、金属加工、油墨、涂料和颜料等各种行业。 5脂肪酸目前应用市场 大约50%左右的脂肪酸用于制皂及直接使用,其中硬脂酸大量用于作橡胶 加工; 大约20%用于生产含氮衍生物,主要是脂肪胺和脂肪酰胺; 约10%用于制成脂肪酸酯类; 其余用于合成油墨、油漆用树脂、二聚酸,以及塑料加工用的润滑剂和稳 定剂、重金属盐等。 6脂肪酸生产工艺

性能测试工具LoadRunner实验报告

性能测试工具LoadRunner实验报告 一、概要介绍 1.1 软件性能介绍 1.1.1 软件性能的理解 性能是一种指标,表明软件系统或构件对于其及时性要求的符合程度;同时也是产品的特性,可以用时间来进行度量。 表现为:对用户操作的响应时间;系统可扩展性;并发能力;持续稳定运行等。1.1.2 软件性能的主要技术指标 响应时间:响应时间=呈现时间+系统响应时间 吞吐量:单位时间内系统处理的客户请求数量。(请求数/秒,页面数/秒,访问人数/秒) 并发用户数:业务并发用户数; [注意]系统用户数:系统的用户总数;同时在线用户人数:使用系统过程中同时在线人数达到的最高峰值。 1.2 LoadRunner介绍 LoadRunner是Mercury Interactive的一款性能测试工具,也是目前应用最为广泛的性能测试工具之一。该工具通过模拟上千万用户实施并发负载,实时性能监控的系统行为和性能方式来确认和查找问题。 1.2.1 LoadRunner工具组成 虚拟用户脚本生成器:捕获最终用户业务流程和创建自动性能测试脚本,即我们在以后说的产生测试脚本; 压力产生器:通过运行虚拟用户产生实际的负载; 用户代理:协调不同负载机上虚拟用户,产生步调一致的虚拟用户; 压力调度:根据用户对场景的设置,设置不同脚本的虚拟用户数量;

监视系统:监控主要的性能计数器; 压力结果分析工具:本身不能代替分析人员,但是可以辅助测试结果的分析。 1.2.2 LoadRunner工具原理 代理(Proxy)是客户端和服务器端之间的中介人,LoadRunner就是通过代理方式截获客户端和服务器之间交互的数据流。 1)虚拟用户脚本生成器通过代理方式接收客户端发送的数据包,记录并将其转发给服务器端;接收到从服务器端返回的数据流,记录并返回给客户端。 这样服务器端和客户端都以为在一个真实运行环境中,虚拟脚本生成器能通过这种方式截获数据流;虚拟用户脚本生成器在截获数据流后对其进行了协议层上的处理,最终用脚本函数将数据流交互过程体现为我们容易看懂的脚本语句。 2)压力生成器则是根据脚本内容,产生实际的负载,扮演产生负载的角色。 3)用户代理是运行在负载机上的进程,该进程与产生负载压力的进程或是线程协作,接受调度系统的命令,调度产生负载压力的进程或线程。 4)压力调度是根据用户的场景要求,设置各种不同脚本的虚拟用户数量,设置同步点等。 5)监控系统则可以对数据库、应用服务器、服务器的主要性能计数器进行监控。 6)压力结果分析工具是辅助测试结果分析。 二、LoadRunner测试过程 2.1 计划测试 定义性能测试要求,例如并发用户的数量、典型业务流程和所需响应时间等。 2.2 创建Vuser脚本 将最终用户活动捕获(录制、编写)到脚本中,并对脚本进行修改,调试等。协议类型:取决于服务器端和客户端之间的通信协议;

Linux 性能测试与分析报告

Linux 性能测试与分析 Linux 性能测试与分析 Revision History 1 性能测试简介 l 性能测试的过程就是找到系统瓶颈的过程。 l 性能测试(包括分析和调优)的过程就是在操作系统的各个子系统之间取得平衡的过程。l 操作系统的各个子系统包括: ?CPU

?Memory ?IO ?Network 他们之间高度依赖,互相影响。比如: 1. 频繁的磁盘读写会增加对存的使用 2. 大量的网络吞吐,一定意味着非常可观的CPU利用率 3. 可用存的减少可能增加大量的swapping,从而使系统负载上升甚至崩溃 2 应用程序类型 性能测试之前,你首先需要判断你的应用程序是属于那种类型的,这可以帮助你判断哪个子系统可能会成为瓶颈。 通常可分为如下两种: CPU bound –这类程序,cpu往往会处于很高的负载,当系统压力上升时,相对于磁盘和存,往往CPU首先到达瓶颈。Web server,mail server以及大部分服务类程序都属于这一类。 I/O bound –这类程序,往往会频繁的访问磁盘,从而发送大量的IO请求。IO类应用程序往往利用cpu发送IO请求之后,便进入sleep状态,从而造成很高的IOWAIT。数据库类程序,cache服务器往往属于这种类型。 3 CPU

3.1 性能瓶颈 3.1.1 运算性能瓶颈 作为计算机的计算单元,其运算能力方面,可能出现如下瓶颈: 1. 用户态进程CPU占用率很高 2. 系统态(核态)CPU占用率很高 测试CPU的运算性能,通常是通过计算圆周率来测试CPU的浮点运算能力和稳定性。据说Pentium CPU的一个运算bug就是通过计算圆周率来发现的。圆周率的计算方法,通常是计算小数点后104万位,通过比较运算时间来评测CPU的运算能力。 常用工具: 1. SUPER PI(π) 2. Wprime 与SuperPI不同的是,可以支持多核CPU的运算速度测试 3. FritzChess 一款国际象棋测试软件,测试每秒钟可运算的步数 突破CPU的运算瓶颈,一般只能靠花钱。比如提高时钟频率,提高L1,L2 cache容量或不断追求新一代的CPU架构: Core -> Nehalem(E55x,如r710,dsc1100) -> Westmere –> Sandy Bridge 3.1.2 调度性能瓶颈 CPU除了负责计算之外,另一个非常重要的功能就是调度。在调度方面,CPU可能会出现如下性能瓶颈: 1. Load平均值超过了系统可承受的程度 2. IOWait占比过高,导致Load上升或是引入新的磁盘瓶颈 3. Context Switch过高,导致CPU就像个搬运工一样,频繁在寄存器(CPU Register)和运行队列(run queue)之间奔波 4. 硬中断CPU占比接近于100% 5. 软中断CPU占比接近于100% 超线程 超线程芯片可以使得当前线程在访问存的间隙,处理器可以使用它的机器周期去执行另外一个线程。一个超线程的物理CPU可以被kernel看作是两个独立的CPU。 3.2 典型监控参数 图1:top

脂肪酸甲酯乙氧基化物

脂肪酸甲酯乙氧基化物 脂肪酸甲酯乙氧基化物(FMEE)是一种低泡沫的非离子表面活性剂,具有优异的净洗性能,特别是分散力出众,在净洗过程中能够有效的防止污垢的反沾污,适用于油脂和蜡质的清洗。该类产品在工业清洗、日化、煤田选矿、农业、纺织印染等领域的应用广泛. 一、性质 1、表面活性。表面活性剂的表面张力与其润湿性能或者净洗能力有很大联系。表面活性剂的洗涤作用是通过降低水洗工作液的表面张力,使污垢结构中的亲油基(憎水基)平铺并吸附于水分子表面,最终脱离被洗物体,完成洗净的过程。由此可知,只有具有较低表面张力的表面活性剂才能具有较强洗涤性能。FMEE的表面张力较小,为12.5mN/m(溶液浓度1×10-3mol/L),其临界胶束浓度为0.979×10-4mol/L,属于低张力类表面活性剂,因此FMEE具有较强的润湿、乳化和去污力。 2、抗硬水性。水中的钙镁离子对任何一种表面活性剂均会有不良的影响。表面活性剂在硬水中的洗涤能力,或者对钙镁离子的承受度,也是考察表面活性剂净洗能力的重要指标。钙镁离子对表面活性剂的性能影响机理, 3、分散力。表面活性剂的分散力是影响净洗性能的重要指标。一方面表面活性剂与水中的钙、硅离子形成钙垢、硅垢等,会附着于被洗物体和设备的表面,不仅影响洗涤效果,而且影响洗涤设备的使用寿命。另

一方面,在洗涤过程中,清洗下来的油脂污垢等也会反沾污于被洗物体的表面,形成二次沾污,影响洗涤效果。表面活性剂的分散性能越好,越能有效阻止各种杂质的反沾污,在降低表面活性剂用量同时,提高净洗效率。表面活性剂的分散力取决于自身的结构。分子量大,分子式中具有支链结构的往往分散性能较好,FMEE分子结构中具有18个碳的长分子碳链,同时具有两个乙氧基团,分子结构比AEO、TX等非离子产品更复杂,分子量更大,因此相对也具有更佳的分散性能。 二、应用领域 1、日化领域 脂肪酸甲酯乙氧基化物FMEE具有类似油脂和蜡质结构,具有较强的除油脱脂能力,防止二次沾污能力明显好于其他类型表面活性剂,具有洗涤能力出众、泡沫低、易于漂洗等特点,适用于日化洗涤剂的生产,特别是液体洗衣剂产品。为了追求中性pH值条件下的洗涤效果,使用去污力较强的FMES替代传统的阴离子型表面活性剂提高洗涤力[10]。 2、餐具洗涤剂 餐具洗涤剂中是以LAS/AEO 或AES为主体成分,配以食盐等增稠剂,产品多以10%左右的含固量出售,为了降低成本,LAS或AES比例较高。餐具洗涤剂主要针对的洗涤对象为食用油、色拉油等油脂,因此要求其原料有很好的除油脱脂性能。阴离子原料LAS与AES虽能降低产

脂肪酸甲酯化方法

一、主题内容与适用范围 本标准适用于所有的动植物油脂和脂肪酸。 二、目的 油脂及脂肪酸(特别是12碳以上的长碳链脂肪酸)一般不直接进行气相色谱分析,其原因是脂肪酸脂肪酸及油脂的沸点高,高温下不稳定,易裂解,分析中易造成损失。因此,对脂肪酸及油脂的脂肪酸组分分析时,先将脂肪酸或油脂与甲醇反映,制备脂肪酸甲酯,降低沸点,提高稳定性,然后进行气相色谱分析。 三、BF3甲酯化法 1、仪器 (1)50ml及100ml磨口圆底烧瓶 (2)回流冷凝器(长度20~30cm,有磨口连接,与烧瓶配套) (3)250ml分液漏斗 (4)滴管 (5)带磨口玻璃塞的试管 (6)10ml移液管 (7)沸石 2、试剂 (1)正庚烷,色谱纯 (2)轻汽油(沸程40~60℃) (3)无水硫酸钠,分析纯 (4)0.5M的氢氧化钠甲醇溶液(不用标定),配制如下: 称取2g NaOH溶于100ml甲醇中(甲醇的含水量不得超过0.5%),该溶液放置一段时间后会出现白色沉淀,这不影响脂肪酸甲酯化制备。 (5)12~25%(m/m)BF3的甲酯溶液; (6)饱和的NaCl水溶液 (7)甲基红指示剂:用60%的乙醇配置0.1%的甲基红溶液 (8)氮气:含氧量低于5mg/kg 3、操作方法, (1)取大约350mg油样加入50ml烧杯中,移取6ml 0.5M的NaOH于油样中,并加入几粒沸石,连接回流装置,开始加热回流,回流过程中要不断摇动烧瓶。(2)当烧瓶内的油珠消失,溶液变得透明时(大约需要5~10分钟),从冷凝器上端加7ml BF3甲醇溶液于烧杯内(用移液管移取),然后继续回流1分钟。(3)然后从冷凝管上端加入2~5ml正庚烷后,再回流1分钟。 (4)撤离火源,取出烧瓶,向烧瓶中加入一定量的饱和NaCl溶液,轻轻上下颠倒数次后,静置分层。 (5)从烧杯内的上层溶液中取出约1ml转移到磨口试管中,并加入适量的无水硫酸钠,以去除痕量的水分,得到的此甲酯化样品以备气相色谱分析用。 4、注解; (1)BF3有毒,因此该试验应在通风厨中进行,同时,用后的所有玻璃仪器应立即清洗; (2)如果待测脂肪酸或构成油脂的脂肪酸含有2个以上的双键,建议反应的烧杯中先充氮处理; (3)若样品为纯脂肪酸,则试验可省去皂化,直接取一定量的脂肪酸,加入适

PC性能评测实验报告

计算机体系结构课程实验报告 PC性能测试实验报告 学号: 姓名:张俊阳 班级:计科1302 题目1:PC性能测试软件 请在网上搜索并下载一个PC机性能评测软件(比如:可在百度上输入“PC 性能benchmark”,进行搜索并下载,安装),并对你自己的电脑和机房电脑的性能进行测试。并加以比较。 实验过程及结果: 我的电脑:

机房电脑:

综上分析:分析pcbenchmark所得数据为电脑的current performance与其potential performance的比值,值大表明计算机目前运行良好,性能好,由测试结果数据可得比较出机房的电脑当前运行的性能更好。分析鲁大师性能测试结果:我的电脑得分148588机房电脑得分71298,通过分析我们可以得出CPU占总得分的比重最大,表明了其对计算机性能的影响是最大的,其次显卡性能和内存性能也很关键,另外机房的电脑显卡性能较弱,所以拉低了整体得分,我的电脑各项得分均超过机房电脑,可以得出我的电脑性能更好的结论。 题目2:toy benchmark的编写并测试 可用C语言编写一个程序(10-100行语句),该程序包括两个部分,一个部分主要执行整数操作,另一个部分主要执行浮点操作,两个部分执行的频率(频率整数,频率浮点)可调整。请在你的计算机或者在机房计算机上,以(,),(,),(,)的频率运行你编写的程序,并算出三种情况下的加权平均运行时间。 实验过程及结果: #include<> #include<> int main() {

int x, y, a; double b; clock_t start, end; printf("请输入整数运算与浮点数运算次数(单位亿次)\n"); scanf("%d%d", &x, &y); /*控制运行频率*/ start = clock(); for (int i = 0; i

甘油脂肪酸酯的危害有哪些

甘油脂肪酸酯的危害有哪些 所谓的甘油脂肪酸酯其实就是我们平常所说的油脂,在生活中有很多的食用中就会加入这种东西,如果人体长期的对其进行食用,就很容易导致出现三高疾病,而且还会让血液中的油脂得到增加,从而就会导致心脑血管疾病的出现,下面让我们来详细的看看甘油脂肪酸酯的危害有哪些吧? 第一,甘油脂肪酸酯的危害有哪些? 单不饱和脂肪酸: 熔点低,在室温下常为液态。主要存在于植物中,如大豆、花生、菜籽、芝麻、玉米、鳄梨、坚果、葵花子、橄榄、花生油等,特点是不溶于水而溶于有机溶剂。摄入植物脂肪后,其所含的不饱和脂肪酸能刺激肝脏产生较多的高密度脂蛋白,它可把附着在血管壁上的多余胆固醇及时清除到体外,防止因其过高而罹患疾病。但常期偏食植物油类,血液中不饱和脂肪酸含量过高,极易患结肠癌和乳腺癌。植物油类中不饱和脂肪酸虽不是致癌物质但它有助于癌细胞的生长。此外不饱和脂肪酸摄取过多也会引起肥胖等

症。 第二,多不饱和脂肪酸:熔点低,在室温下为液态,和单不饱和脂肪酸一样,对身体有益。含量较高的食品有杏仁、棉籽油、人造黄油、粟米油、鱼、蛋黄酱、红花油、核桃油、豆油等。由于其最不稳定,因此在油炸、油炒或油煎的高温下,最容易被氧化变成对身体不利的“毒”油。多不饱和脂肪酸是人体细胞膜的重要原料之一,在细胞膜内也会被氧化,被氧化后,细胞膜会丧失正常机能而使人生病。多不饱和脂肪酸中的欧米茄-3脂肪酸同维生素、矿物质一样是人体所必需的,具有清理血管中垃圾的功能,俗称“血管清道夫”。摄入不足时容易导致心脏和大脑等重要器官障碍。DHA也是其中的种多不饱和脂肪酸,具有软化血管、健脑益智、改善视力的功效,俗称“脑黄金”。 甘油脂肪酸酯的危害有哪些?从预防疾病和营养保健两方面来讲国人饮食中脂肪热量应占的比例在25%以内,其中动物性脂肪不应超过10%,而动植物脂肪和植物油类应以混合或交替使用才是最科学的。美国医学营养研究中心认为:应以植物脂肪为主,

流量计性能测定实验报告doc

流量计性能测定实验报告 篇一:孔板流量计性能测定实验数据记录及处理篇二:实验3 流量计性能测定实验 实验3 流量计性能测定实验 一、实验目的 ⒈了解几种常用流量计的构造、工作原理和主要特点。 ⒉掌握流量计的标定方法(例如标准流量计法)。 ⒊了解节流式流量计流量系数C随雷诺数Re的变化规律,流量系数C的确定方法。 ⒋学习合理选择坐标系的方法。 二、实验内容 ⒈通过实验室实物和图像,了解孔板、1/4园喷嘴、文丘里及涡轮流量计的构造及工作原理。 ⒉测定节流式流量计(孔板或1/4园喷嘴或文丘里)的流量标定曲线。 ⒊测定节流式流量计的雷诺数Re和流量系数C的关系。 三、实验原理 流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量的关系为: 式中: 被测流体(水)的体积流量,m3/s; 流量系数,无因次;

流量计节流孔截面积,m2; 流量计上、下游两取压口之间的压强差,Pa ; 被测流体(水)的密度,kg/m3 。 用涡轮流量计和转子流量计作为标准流量计来测量流量VS。每一 个流量在压差计上都有一对应的读数,将压差计读数△P和流量Vs绘制成一条曲线,即流量标定曲线。同时用上式整理数据可进一步得到C—Re关系曲线。 四、实验装置 该实验与流体阻力测定实验、离心泵性能测定实验共用图1所示的实验装置流程图。 ⒈本实验共有六套装置,流程为:A→B(C→D)→E→F→G→I 。 ⒉以精度0.5级的涡轮流量计作为标准流量计,测取被测流量计流量(小于2m3/h流量时,用转子流量计测取)。 ⒊压差测量:用第一路差压变送器直接读取。 图1 流动过程综合实验流程图 ⑴—离心泵;⑵—大流量调节阀;⑶—小流量调节阀; ⑷—被标定流量计;⑸—转子流量计;⑹—倒U管;⑺⑻⑽—数显仪表;⑼—涡轮流量计;⑾—真空表;⑿—流量计平衡阀;⒁—光滑管平衡阀;⒃—粗糙管平衡阀;⒀—回流阀;⒂—压力表;⒄—水箱;⒅—排水阀;⒆—闸阀;⒇—

项目性能测试报告

XXX项目or府门户网站性能测试报告

目录 第一章概述 (4) 第二章测试活动 (4) 2.1测试用具 (4) 2.2测试范围 (4) 2.3测试目标 (5) 2.4测试方法 (5) 2.4.1基准测试 (5) 2.4.2并发测试 (6) 2.4.3稳定性测试 (6) 2.5性能指标 (6) 2.6性能测试流程 (6) 2.7测试术语 (7) 第三章性能测试环境 (8) 3.1服务器环境 (8) 3.2客户端环境 (9) 3.3网络结构 (9) 第四章测试方案 (10) 4.1基准测试 (11) 4.2并发测试 (13) 4.3稳定性测试 (15) 第五章测试结果描述和分析 (16) 6.1基准测试性能分析 (16) 6.2并发测试性能分析 (21) 6.3稳定性性能测试分析 (28) 第六章测试结论 (29)

摘要 本文档主要描述XXXX网站检索和页面浏览性能测试中的测试内容、测试方法、测试策略等。 修改历史 注释:评审号为评审记录表的编号。更改请求号为文档更改控制工具自动生成的编号。

第一章概述 由于当前对系统要接受业务量的冲击,面临的系统稳定、成熟性方面的压力。系统的性能问题必将成为焦点问题,海量数据量的“冲击”,系统能稳定在什么样的性能水平,面临业务增加时,系统抗压如何等这些问题需要通过一个较为真实的性能模拟测试来给出答案,通过测试和分析为系统性能的提升提供一些重要参考数据,以供后期系统在软硬件方面的改善和完善。 本《性能测试报告》即是基于上述考虑,参考当前的一些性能测试方法而编写的,用以指导即将进行的该系统性能测试。 第二章测试活动 2.1测试用具 本次性能测试主要采用HP公司的Loadrunner11作为性能测试工具。Load runner主要提供了3个性能测试组件:Virtual User Generator, Controller,Analysis。 ●使用Virtual User Generator修改和优化脚本。 ●使用Controller进行管理,控制并发的模拟并发数,记录测试结果。 ●使用Analysis进行统计和分析结果。 2.2测试范围 此次性能测试实施是对吴忠市门户网站系统性能进行测试评估的过程,我们将依据系统将来的实际运行现状,结合系统的设计目标和业务特点,遵循着发生频率高、对系统或数据库性能影响大、关键和核心业务等原则选取需要进行测试的业务,模拟最终用户的操作行为,构建一个与生产环境相近的压力场景,对系统实施压力测试,以此评判系统的实际性能表现。 根据与相关设计,开发人员的沟通和交流,本次测试主要就是针对大量用户在使用吴忠市门户网站进行信息查询,而选取的典型事务就是用户使用检索进行关键字搜索以及界面浏览和反馈回搜索结果,这是用户使用最频繁,反应最多的地方,也是本系统当前以及以后业务的一个重要压力点所在。所以本次测试只选取检索业务的性能情况和界面浏览进行记录和

脂肪酸甲酯及其它增塑剂的区别

脂肪酸甲酯与其它增塑剂的区别 脂肪酸甲酯为黄色澄清透明液体(精馏后为无色),具有一种温和的、特有的气味,结构稳定,没有腐蚀性。脂肪酸甲酯是用途广泛的表面活性剂(SAA)的原料。从脂肪酸甲酯出发可生产两大类,一类是通过中和生产脂肪酸甲酯磺酸盐(MES),另一类是通过加氢生产脂肪醇。 简介 全世界脂肪醇的57%是由脂肪酸甲酯生产的,43%由脂肪酸生产。脂肪醇经乙氧基化生产醇醚(AE)、AE经中和生产醇醚硫酸盐(AES)。也可将脂肪醇经磺化、中和生产伯烷基硫酸盐(PAS)。因此,脂肪酸甲酯是MES、AE、AES和PAS等SAA的原料和中间体。油脂、、脂肪酸甲酯等原料的供应决定了上述生产SAA的效率。 脂肪酸甲酯按照碳链的饱和程度可分为含有的不饱和脂肪酸甲酯和不含双键、三键的饱和脂肪酸甲酯。饱和脂肪酸甲酯的主要用途是前述的生产。不饱和脂肪酸甲酯出来可用于前述表面活性剂的生产外,还可以用于生产。后者是一种重要的增塑剂,广泛用于聚氯乙烯等树脂的增塑,可部分代替邻苯二甲酸盐类增塑剂。 这里的脂肪酸甲酯,其脂肪酸的碳链一般在12-22之间,主要是12-18的饱和脂肪酸甲酯和不饱和脂肪酸甲酯,可以有侧链,碳链上也可以有羟基等其他基团。脂肪酸甲酯是油脂用甲醇酯交换的产物,也可以是来自油脂的脂肪酸用甲醇的酯化产物。这里的油脂可以是动

物性油脂,比如猪油、牛油,也可以是植物性油脂,比如、棕榈油、椰子油、蓖麻油等。美国宝洁(P&G)化工马来西亚工厂生产高碳链脂肪酸甲酯CE-1875A,低碳链CE-810等。 历史 我国脂肪酸甲酯工业经历了一个飞跃性的发展。 由于价格不断高涨,寻求柴油替代品的努力不断被实践。我国存在大量,比如油脂,这些油脂在生产过程中会产生大量副产物,其中包括以酯类形式存在的,也包括游离的脂肪酸。这里的脂肪酸的为长链脂肪酸,当脂肪酸的碳链为12-18时,其甲酯就是生物柴油的基本成分。因此,06年后我国投资生产生物柴油的企业数量迅猛增加。 但是与石化柴油相比,在性能和性价比方面难以与石化柴油抗衡,除了勉强用于船用柴油外,作为燃料很难在更多领域应用。因此,大量的生物柴油企业面临转型的困境。 但是生物柴油已经应用到了柴油调和的领域提供现有石化柴油的不环保性等各项指标,并且国家也制定出台了B5生物柴油油的国家标准。所以前景很好,只加大推广力度。 由于脂肪酸甲酯可以进一步加工成,而后者在增塑剂领域的应用得到了有效地推广,成为可在某种程度上替代邻苯二甲酸盐增塑剂的一种绿色环保型的增塑剂,生物柴油企业纷纷转型为增塑剂企业。用

喜赫化工年产2万吨脂肪酸甲酯乙氧基化物FMEE生产线项目环境影响报告书

喜赫化工年产2万吨脂肪酸甲酯乙氧基化物FMEE生 产线项目环境影响报告书 喜赫化工有限公司年产2万吨表面活性剂生产线项目环境影 响报告书,根据《中华人民共和国环境保护法》、《中华人民共和国行政许可法》、《中华人民共和国环境影响评价法》、《建设项目环境保护管理条例》等法律法规规定,经研究,批复如下: 一、该《报告书》内容符合建设项目环境管理规定,评价结论可信。我局批准该《报告书》,原则同意你公司按照《报告书》所列项目的性质、规模、地点、采用的原料、生产工艺和环境保护对策措施进行项目建设。项目一期投资1600万元,建设年产2万吨表面活性剂生产线项目。主要产品为脂肪酸甲酯乙氧基化物FMEE 及其磺酸盐FMES。 二、你单位应向社会公众主动公开已经批准的《报告书》,并接受相关方的咨询。 三、你单位应全面落实《报告书》提出的各项环保对策措施及环保设施投资概算,确保各项环境保护设施与主体工程同时设计、同时施工、同时投入使用,确保各项污染物达标排放。 (一)向设计单位提供《报告书》和本批复文件,确保项目设计按照环境保护设计规范要求,落实防治环境污染和生态破坏的措施以及环保设施投资概算。 (二)依据《报告书》和本批复文件,对项目建设过程中产生的废水、废气、固体废物、噪声等污染,采取相应的防治措施。

(三)项目运行时,外排污染物应满足以下要求: 1、废水:按照“雨污分流、清污分流、分质处理、分质利用”的原则设计建设全厂给排水和废水处理回用系统。 纯水制备系统排水全部回用于车间地面冲洗和洗桶用水。 磺化尾气碱洗废水、真空泵废水、磺化装置冲洗废水、干燥设备冲洗废水、干燥尾气洗涤塔废水、洗桶废水、地面冲洗废水和生活污水统一进入污水处理站处理(调节池+絮凝初沉+气浮+厌氧+ 接触氧化+二沉池+过滤器+消毒池),处理后废水和循环冷却系统排水共同经总排口进入管网。外排废水水质须满足《化工行业水污染物间接排放标准》(DB41/1135-2016)标准要求和污水处理厂收水标准的要求。 2、废气:燃气锅炉配备低氮燃烧器,锅炉废气15米高烟囱排放。排放要求:颗粒物5mg/m 3、二氧化硫10mg/m3、氮氧化物30mg/m3。 磺化反应尾气采用静电除雾器+碱洗塔处理(碱洗塔采用钠钙双碱法脱硫),处理后的尾气通过16米高排气筒排放,大气污染物排放须满足《大气污染物综合排放标准》(GB16297-1996)二级标准要求。 热风炉燃气废气与喷粉塔废气采用一级旋风除尘+二级水力除尘处理,包装废气采用袋式除尘器处理,上述处理后尾气通过一根44米高排气筒排放,排放要求:颗粒物30mg/m3、二氧化硫200mg/m3、氮氧化物300mg/m3。

性能测试报告范例

测试目的: 考虑到各地区的用户数量和单据量的增加会给服务器造成的压力不可估计,为确保TMS系统顺利在各地区推广上线,决定对TMS系统进行性能测试,重点为监控服务器在并发操作是的资源使用情况和请求响应时间。 测试内容 测试工具 主要测试工具为:LoadRunner11 辅助软件:截图工具、Word

测试结果及分析 5个用户同时生成派车单的测试结果如下: Transaction Summary(事务摘要) 从上面的结果我们可以看到该脚本运行47秒,当5个用户同时点击生成派车单时,系统的响应时间为41.45秒,因为没有设置持续运行时间,所以这里我们取的响应时间为90percent –time,且运行的事物已经全部通过

事务概论图,该图表示本次场景共5个事务(每个用户点击一次生成派车单为1个事务),且5个事务均已pass,绿色表色pass,如出现红色则表示产生error

从上图可以看到服务器的CPU平均值为14.419% ,离最大参考值90%相差甚远;且趋势基本成一直线状,表示服务器响应较为稳定,5个用户操作5个900托运单的单据对服务器并没有产生过大的压力。

“Hits per Second(每秒点击数)”反映了客户端每秒钟向服务器端提交的请求数量,这里服务器每秒响应9,771次请求;如果客户端发出的请求数量越多,与之相对的“Average Throughput (吞吐量)”也应该越大。图中可以看出,两种图形的曲线都正常并且几乎重合,说明服务器能及时的接受客户端的请求,并能够返回结果。 按照上述策略,我们得出的最终测试结果为: 生成派车单: 1个用户,300个托运单点击生成派车单,响应时间7.34秒 5个用户,900个托运单点击生成派车单,响应时间41.45秒 单据匹配: 单用户1000箱,20000个商品,上传匹配时间8秒 五个用户2500箱,40000个商品,同时上传匹配耗时2分25秒 自由派车: 单条线路917个托运单下载,响应时间1分40秒 上述结果是在公司内网,测试环境上进行的测试,可能与实际会有偏差

脂肪酸甲酯分析色谱柱的选择

作者 Frank David Research Institute for Chromatography President Kennedy Park 20B-8500 Kortrijk, Belgium Pat Sandra University of Gent Krijgslaan 281 S4,B-9000 Gent Belgium Allen K. Vickers Agilent Technologies, Inc.91 Blue Ravine Road Folsom, CA 95630-4714USA 摘要 食品中的脂肪酸甲酯(FAME )的分析对食品的表征过程是十分重要的,正常情况下脂肪酸甲酯的分析使用涂渍极性固定相色谱柱,例如聚乙二醇或氰丙基聚硅氧烷固定相,这种固定相可以按脂肪酸的碳数、不饱和度、顺反构象以及双键的位置对它们进行分离。 脂肪酸甲酯分析色谱柱的选择应用报告 本应用报告比较三种不同固定相对脂肪酸甲酯的分离的情况。聚乙二醇柱对不太复杂的样品可以得到很好的分离;但不能分离顺-反异构体的样品。而中等极性的氰丙基聚硅氧烷柱(DB23)对复杂的FAME 混合物可以得到很好的分离,对一些顺反异构体也可以得到分离; 要使顺反异构体分离的更好,就要使用更高极性的HP-88 氰丙基色谱柱。 前言 FAME 的分析用于食品中脂类部分含量的表征,也是食品分析中极为重要的一项内容,脂类主要包括甘油酸酯,它们是一个甘油分子和三个脂肪酸分子的酯,绝大多数食用脂肪和油主要含有的脂肪酸是从月桂酸(十二碳酸)到花生酸(二十碳酸),除直链饱和脂肪酸外,也有支链脂肪酸、单不饱和脂肪酸、双不饱和脂肪酸以及多不饱和脂肪酸。表1 是最重要的脂肪酸 及其的缩写。 食品分析

软件测试实验报告LoadRunner的使用

南昌大学软件学院 实验报告 实验名称 LoadRunner的使用 实验地点 实验日期 指导教师 学生班级 学生姓名 学生学号 提交日期 LoadRunner简介: LoadRunner 是一种适用于各种体系架构的自动负载测试工具,它能预测系统行为并优化系统性能。LoadRunner 的测试对象是整个企业的系统,它通过模拟实际用户的操作行为和实行实时性能监测,来帮助您更快的查找和发现问题。此外,LoadRunner 能支持广范的协议和技术,为您的特殊环境提供特殊的解决方案。LoadRunner是目前应用最为广泛的性能测试工具之一。 一、实验目的

1. 熟练LoadRunner的工具组成和工具原理。 2. 熟练使用LoadRunner进行Web系统测试和压力负载测试。 3. 掌握LoadRunner测试流程。 二、实验设备 PC机:清华同方电脑 操作系统:windows 7 实用工具:WPS Office,LoadRunner8.0工具,IE9 三、实验内容 (1)、熟悉LoadRunner的工具组成和工具原理 1.LoadRunner工具组成 虚拟用户脚本生成器:捕获最终用户业务流程和创建自动性能测试脚本,即我们在以后说的产生测试脚本; 压力产生器:通过运行虚拟用户产生实际的负载; 用户代理:协调不同负载机上虚拟用户,产生步调一致的虚拟用户;压力调度:根据用户对场景的设置,设置不同脚本的虚拟用户数量;监视系统:监控主要的性能计数器; 压力结果分析工具:本身不能代替分析人员,但是可以辅助测试结果的分析。 2.LoadRunner工具原理 代理(Proxy)是客户端和服务器端之间的中介人,LoadRunner 就是通过代理方式截获客户端和服务器之间交互的数据流。 ①虚拟用户脚本生成器通过代理方式接收客户端发送的数据包,

软件系统性能测试总结报告

性能测试总结报告

目录 1基本信息 (4) 1.1背景 (4) 1.2参考资料 (4) 1.3名词解释 (4) 1.4测试目标 (4) 2测试工具及环境 (4) 2.1测试环境架构 (4) 2.2系统配置 (4) 2.3测试工具 (4) 3测试相关定义 (4) 4测试记录和分析 (5) 4.1测试设计 (5) 4.2测试执行日志 (5) 4.3测试结果汇总 (5) 4.4测试结果分析 (6) 5交付物 (6) 6.测试结论和建议 (7) 6.1测试结论 (7) 6.2建议 (7) 7批准 (7)

使用说明 在正式使用时,本节及蓝色字体部分请全部删除。本节与蓝色字体部分为说明文字,用以表明该部分的内容或者注意事项。 1基本信息 1.1背景 <简要描述项目背景> 1.2参考资料 <比如:测试计划、测试流程、测试用例执行记录、SOW、合同等> 1.3名词解释 1.4测试目标 <说明测试目标,例如在线用户数、并发用户数、主要业务相应时间等> 2测试工具及环境 2.1测试环境架构 2.2系统配置 硬件配置 软件配置 2.3测试工具 3测试相关定义 <以下为示例,请根据项目实际情况填写完整>

4测试记录和分析 4.1测试设计 <说明测试的方案和方法> 4.2测试执行日志 <以下为示例,项目组按实际情况修改或填写> 4.3测试结果汇总 <以下为示例,项目组按实际情况修改或填写>

4.4测试结果分析 <分析各服务器在测试过程中的资源消耗情况> 1.数据库服务器 2.应用服务器 3.客户端性能分析 4.网络传输性能分析 5.综合分析 5交付物 <指明本测试完成后交付的测试文档、测试代码及测试工具等测试工作产品,以及指明配置管理位置和物理媒介等,一般包括但不限于如下工作产品: 1.测试计划 2.测试策略 3.测试方案 4.测试用例 5.测试报告

测试一种新型的表面活性剂脂肪酸甲酯乙氧基化物FMEE

测试一种新型表面活性剂脂肪酸 甲酯乙氧基化物FMEE 李雅菲*,管敏鑫 浙江大学化学工程与生物工程学院,浙江杭州310027 摘要:探索和研究新型的表面活性剂一直是人们感兴趣的话题,本文重点探讨了一种新型的表面活性剂-脂肪酸甲酯乙氧基化物FMEE及其衍生物磺酸盐FMES的相关应用性能,包括渗透性、耐碱性、低温流动性等性质,也探索了其在造纸、硬表面清洗、纺织印染等领域相关应用。 关键词:FMEE;FMES;性能测试;造纸;工业清洗;纺织印染 脂肪酸甲酯乙氧基化物FMEE是近几年新开发的一种表面活性剂,虽然在国外市场已有广泛的使用,但是在国内仍然刚刚起步,其很多性能仍处于探索,甚至不清楚很模糊的现状,有些中文的相关资料对FMEE 的描述甚至失真、不准确,对于该产品的很多应用性能只能查阅国外的文章、专利。 本文按照科学严谨的态度,对FMEE及其衍生物FMES各种性能设计相关的测试实验,并以第一手实验数据为准,对FMEE和FMES的各种性能做详细介绍,同时也指出和更正了很多中文文献的错误数据和观点。 样品准备: FMEE 70% 含量某外资石化公司提供 FMES 70% 含量某外资石化公司提供 AEO-9 98% 含量浙江三江化学 OP-10 98% 含量美国陶氏化学 十二烷基苯磺酸钠LAS 98%含量南京金桐石化 脂肪醇醚硫酸钠AES 70%含量浙江赞宇股份有限公司 仲烷基磺酸钠SAS-60 65%含量德国科莱恩化工 片碱、皂片、机油等均为市场采购。 1,FMEE与FMES外观与pH值 FMEE为浅黄色液体FMES为深黄色液体

FMEE pH为6 FMES pH为6 2,FMEE与FMES质谱分析图 仪器:液相色谱串联质谱仪 型号:API4000 产地:美国 3,耐碱性能(GB 5556-2003 表面活性剂耐碱测试标准) 测试方法,配制不同浓度梯度的片碱溶液,在不同的片碱浓度下观察表面活性剂的稳定性,并得出耐碱的结论。

相关文档
相关文档 最新文档