文档库 最新最全的文档下载
当前位置:文档库 › 凹圆弧宏程序

凹圆弧宏程序

凹圆弧宏程序

O8189

Z50.

Z10.

G1Z0.F600.

Y15.

X230.

Y-15.

X-30.

Y0.

X235.

G0Z10.

G0G54G90X-8.5Y-30.M3S2000

Z10.

#1=3.

N10IF[#1EQ-27.]GOTO20

#1=#1-5.

G1Z[#1]F600.

Y23.5

X238.5

Y-23.5

X-8.5 GOTO10

N20G1Y23.45F600.

X238.45

Y-23.45

X-30.

G0Z250.

Y180.

M05

]

M00

M00

G0G90G17G80G55M3S2000

G0X-20.Y0.

Z50.

Z10.

G1Z-4.F600.

X240.

G0Z0.

X-10.

#30=0.

N30IF[#30EQ90.]GOTO40

#30=#30+1.

#24=5.*COS[#30]

#26=5.*SIN[#30]

G1Z-[#26]F600.

Y[#24]

X240.

宏程序在椭圆加工中的应用

宏程序在椭圆加工中的应用 【摘要】:在当今的数控加工过程中,手工编程通常以直线插补和圆弧插补进行加工,如受设备和条件的限制而无法进行计算机编程。,使用宏程序进行椭圆曲线的数控加工编程要比自动编程加工快捷、灵活。本文主要应用宏程序对椭圆加工的手工程序编制进行分析。 关键词:宏程序椭圆方程坐标关系编制程序; 普通的数控车床一般只能作直线插补和圆弧插补。遇到回转轮廓是非圆曲线的零件时,数学处理的任务是用直线段或圆弧段去逼近非圆轮廓,称之为逼近法。常用的是直线逼近(图1)。应用这种方法加工非圆曲线时,只要步距足够小,在零件上所形成的最大误差,就会小于所要求的最小误差,从而加工出标准的非圆曲线。SIEMENS系统可借助R参数,并应用程序跳转等手段来完成非圆曲面的编程,HNC-21T系统可用宏程序编程。下面以HNC-21T系统加工椭圆为例手工编制宏程序。 图1 直线逼近误差图 一、宏程序 将一组命令所构成的功能,像子程序一样事先存入存储器中,用一个命令作为代表,执行时只需写出这个代表命令,就可以执行其功能。这一组命令称为用户宏程序。用户宏程序功能有A、B两种类型,本例主要介绍B类型宏程序。B类型宏程序中最关键是定义自变量(局部变量)以及自变量与应变量(局部变量)的关系(以编制椭圆程序为例)。 二、椭圆方程 标准方程:(a>b>0) 参数方程: 一般地,取[0,2兀] 上式两方程中,a为长半轴,b为短半轴。其中标准方程在编写宏程序时需要确定自变量与应变量的关系。把标准方程转化为y=f(x)→y=b*sqrt[a*a-x*x]/a (sqrt为B类宏程序运算符)。确定标准方程中的X为自变量,y为应变量,分别定义为#1和#2。 三、坐标关系 根据图2分析,我们可以把工件坐标系设置在工件的最右端即X1O1Z(前置刀架),而椭圆的中心在O2位置(与工件坐标系的原点O1相差25mm)。这就存在问题:第一,椭圆中心的直角坐标系(X2O2Y)和工件坐标系不重合。椭圆的加工要从O1点开始,在直角坐标系方面,椭圆轮廓Z变量设置从25开始直至0(定义#1=25以及#1=#1-0.5),在工件坐标系方面,Z为长度方向应从0直至-25(定义为[#1-25])。第二,根据椭圆标准方程所得的#2应变量值得转化为直径值(2*#2)。解决这两个问题就能手工编制椭圆程序了。

B类宏程序,数控车椭圆加工

非圆曲线编程是手工编程中的难点,本文以椭圆加工为例,介绍了循环功能(WHILE语句)在椭圆宏程序编程中的应用。 椭圆是数控车加工中相对较难却又比较典型的非圆曲线,目前数控系统还没有提供完善的非圆曲线插补功能,因此在实际操作中椭圆的编程多采用变量来完成。虽然随着计算机辅助编程的进一步普及,手工编写宏程序越来越少,但作为初学者,根据不同情况,掌握各种非圆曲线,特别是椭圆曲线的编程仍然是必要的。 一、循环功能WHILE语句 椭圆宏程序编制中重要的循环功能语句是WHILE语句,其格式如下: WHILE[条件表达式] DO m(m=1,2,3) ; END m ; 说明:如果指定的条件表达式满足时,则执行DO到END之间的程序。否则,转道END后面的程序段。DO后面的标号和END 后面的标号是指程序执行范围的标号,标号值为1,2,3。 二、椭圆标准方程与参数方程 编制椭圆宏程序要熟悉椭圆标准方程和参数方程,它们均表达出了椭圆上点的坐标及两坐标之间的关系。例如:图1中,椭圆的标准 方程为 (20mm为长半轴的长,14mm为短半轴的长,椭圆的中心即为坐标系的原点),参数方程为X=20cosФ,Y=14sinФ(Ф为角度参数)。 宏程序编制中,编程坐标系是Z 、X 轴,所以在应用椭圆标准

方程或参数方程时,要从X、Y轴相应转换为编程坐标系中的Z 、X 轴。如上例椭圆在X、Z坐标系中的标准方程则为: (图2),参数方程相应转换为X=14sinФ,Z=20cosФ。 变量编程时,注意椭圆上点的坐标在椭圆坐标系和在编程坐标系中的不同表达,两者之间的联系在于椭圆原点在编程坐标系中的值。椭圆坐标系原点在椭圆圆心,编程坐标系及原点是由编程者设定,下文编程坐标系原点均选在工件右端面与中心轴线的交点处。 三、以Ф参数(角度)为初始变量 本帖隐藏的内容 如图3,毛坯为Ф30mm×70mm的棒料,45号钢。编程原点设在右端面与中心轴线的交点上,椭圆原点在编程坐标系(0,-20)处。 分析:三爪卡盘夹住左端,伸出55mm,手动车右端面,选择1号30?外圆车刀加工外轮廓。切削用量的选择:粗加工主轴转速为

法兰克FANUC探头宏程序内外分中程序

法兰克FANUC探头宏程序内外分中程序% O6999(TAN-TO) (programmerO202146) #5201=0 #5202=0 #5203=0 G69G40G49G80G90G17 M01 M06T14 M19 M100 M101 G00G90G55 G43H14Z100. #551=1 (1 wai mian, 0 li miam) #561=74 (X-X) #562= (Y-Y) #563=1 (tan zhen zhi jing D) #564=-2 (tan z xiang XY tiao zheng) #565= (tan z z zhi) #566=-3. (tan xy zhi,z xiang ding wei) #567=30. (an qian gao du) IF[#551EQ0.]GOTO1010 #571=#561/2+#563/2 (X1-X1) #572=#562/2+#563/2 (Y1-Y1) #573=#561/2+#564 (X2-X2-Z) #575= (xy jin ge ju li) #576= (z jin ge ju li) GOTO1011 N1010 #571=#561/2-#563/2 (X1-X1) #572=#562/2-#563/2 (Y1-Y1) #573=#561/2+#564 (X2-X2-Z) #575= (xy jin ge ju li) #576= (z jin ge ju li) N1011 N591 [#572+#575] F8000.

G65P9810Z#566 G65P9811Y[#572] #591=#136 G65P9810Z#567 N581 G65P9810X-#573Y57. G65P9810Z[#565+#576] G65P9811Z[#565] #581=#137 G65P9810Z#567 N592 G65P9810X-[#571+#575]Y57. G65P9810Z#566 G65P9811X-[#571] #592=#135 G65P9810Z#567 N582 G65P9810X-#573Y-57. G65P9810Z[#565+#576] G65P9811Z[#565] #582=#137 G65P9810Z#567 N593 G65P9810X-[#571+#575]Y-57. G65P9810Z#566 G65P9811X-[#571] #593=#135 G65P9810Z#567 N594 [#572+#575] G65P9810Z#566 G65P9811Y-[#572] #594=#136 G65P9810Z#567 N583 G65P9810X#573Y-57. G65P9810Z[#565+#576] G65P9811Z[#565] #583=#137 G65P9810Z#567 N595 G65P9810X[#571+#575]Y-57. G65P9810Z#566 G65P9811X[#571]

法兰克数控编程指令

法兰克数控编程指令 关于M 指令和G 代码 M03 主轴正转 M03 S1000 主轴以每分钟1000的速度正转 M04主轴逆转 M05主轴停止 M10 M14 。M08 主轴切削液开 M11 M15主轴切削液停 M25 托盘上升 M85工件计数器加一个 M19主轴定位 M99 循环所以程式 G 代码 G00快速定位 G01主轴直线切削 G02主轴顺时针圆壶切削 G03主轴逆时针圆壶切削 G04 暂停 G04 X4 主轴暂停4秒 G10 资料预设 G28原点复归 G28 U0W0 ;U轴和W轴复归 G41 刀尖左侧半径补偿 G42 刀尖右侧半径补偿 G40 取消 G97 以转速进给 G98 以时间进给 G73 循环 G80取消循环G10 00 数据设置模态 G11 00 数据设置取消模态 G17 16 XY平面选择模态 G18 16 ZX平面选择模态 G19 16 YZ平面选择模态 G20 06 英制模态 G21 06 米制模态 G22 09 行程检查开关打开模态 G23 09 行程检查开关关闭模态 G25 08 主轴速度波动检查打开模态 G26 08 主轴速度波动检查关闭模态 G27 00 参考点返回检查非模态 G28 00 参考点返回非模态 G31 00 跳步功能非模态 G40 07 刀具半径补偿取消模态 G41 07 刀具半径左补偿模态 G42 07 刀具半径右补偿模态 G43 17 刀具半径正补偿模态 G44 17 刀具半径负补偿模态

G49 17 刀具长度补偿取消模态 G52 00 局部坐标系设置非模态 G53 00 机床坐标系设置非模态 G54 14 第一工件坐标系设置模态 G55 14 第二工件坐标系设置模态 G59 14 第六工件坐标系设置模态 G65 00 宏程序调用模态 G66 12 宏程序调用模态模态 G67 12 宏程序调用取消模态 G73 01 高速深孔钻孔循环非模态 G74 01 左旋攻螺纹循环非模态 G76 01 精镗循环非模态 G80 10 固定循环注销模态 G81 10 钻孔循环模态 G82 10 钻孔循环模态 G83 10 深孔钻孔循环模态 G84 10 攻螺纹循环模态 G85 10 粗镗循环模态 G86 10 镗孔循环模态 G87 10 背镗循环模态 G89 10 镗孔循环模态 G90 01 绝对尺寸模态 G91 01 增量尺寸模态 G92 01 工件坐标原点设置模态 数控车床编程常用指令介绍 1. F功能 F功能指令用于控制切削进给量。在程序中,有两种使用方法。 (1)每转进给量 编程格式 G95 F~ F后面的数字表示的是主轴每转进给量,单位为mm/r。 例:G95 F0.2 表示进给量为0.2 mm/r。 (2)每分钟进给量 编程格式G94 F~ F后面的数字表示的是每分钟进给量,单位为 mm/min。 例:G94 F100 表示进给量为100mm/min。 2. S功能 S功能指令用于控制主轴转速。 编程格式 S~ S后面的数字表示主轴转速,单位为r/min。在具有恒线速功能的机床上,S功能指令还有如下作用。 (1)最高转速限制 编程格式 G50 S~ S后面的数字表示的是最高转速:r/min。 例:G50 S3000 表示最高转速限制为3000r/min。 (2)恒线速控制 编程格式 G96 S~ S后面的数字表示的是恒定的线速度:m/min。 例:G96 S150 表示切削点线速度控制在150 m/min。

数控车椭圆宏程序

车床椭圆编程 例1. 如图,以原点为圆心,分别以a、b()为半径作两个圆,点B是大圆半径OA与小圆的交点,过点A作,垂足为N,过点B作,垂足为M,当半径OA绕点O旋转时求点M的轨迹的参数方程。并说明曲线类型。 解:设点M的坐标为(x,y),是以Ox为始边,OA为终边的正角。 取为参数,那么 即这就是所求点M的轨迹的参数方程。 消去参数后得到,由此可知,点M的轨迹是椭圆。 椭圆z向长轴半径40,X向短轴半径24,右半椭圆直接采用分层切削加工出椭圆。

O0001 G0 X100 Z100 T0101 M03 S450 G0 X49 Z3 G1 Z1 F200 G65 H01 P#201 Q46500 赋值#201=46.5 (把X值的开始切削点向直径外偏移出来) N70 G65 H01 P#200 Q0000 赋值#200=0 (开始的角度) N80 G65 H31 P#204 Q48000 R#200 #204=48*SIN(#200) G65 H02 P#204 Q#204 R#201 把开始切削点向直径外偏移出来 G65 H32 P#205 Q40000 R#200 G65 H03 P#205 Q#205 R39500 把Z值的开始切削点移到Z=0.5处(Z留0.5的加工余量) G1 X#204 Z#205 加工 G65 H02 P#200 Q#200 R5000 #200=#200+5 (增加5度) G65 H84 P80 Q#204 R47990 判断X的值是否到48mm处,没有再回到70句继续加工 G65 H03 P#201 Q#201 R1500 增加X的加工余量。准备再重新加工 G0 X49 Z1 G0 X#201 避免到加工后面时,进刀太慢 G65 H84 P70 Q#200 R85000 判断角度是否到85度,少于时,再重新加工一层。(不加工到90度是让X有精加工的余量) G0 X100 Z100 M05 M00 停车看加工粗加工的情况。 T0101 M3 S1000 G0 X0 Z3 G1 Z0 F100 G65 H01 P#200 Q0000 N80 G65 H31 P#204 Q48000 R#200 G65 H32 P#205 Q40000 R#200 G65 H03 P#205 Q#205 R40000 这里在Z=0处开始加工 G1 X#204 Z#205 G65 H02 P#200 Q#200 R1000 增加1度 G65 H84 P80 Q#200 R90000 这里要加工到90度 G0 X100 Z100 M05 T0100 M30

FANUC用户宏程序学习教程

用户宏程序 宏程序是指含有变量的子程序,在程序中调用用户宏程序的那条指令叫做用户宏指令(这里用G65) 1、变量 用一个可赋值的代号代替具体的坐标值,这个代号称为变量。变量分为系统变量、全局变量和局部变量三类,它们的性质和用途个不相同。(1)系统变量是固定用途的变量,它的值决定了系统的状态。FANUC 中的系统变量为#1000~#1005、#1032、#3000等。 (2)全局变量是指在主程序内和由主程序调用的各用户宏程序内公用的变量。FANUC中的全局变量有60个,它们分两组,一组是#100~#149;另一组是#500~#509。 (3)局部变量是仅局限于在用户宏程序内使用的变量。同一个局部变量在不同的宏程序内的值是不通用的。FANUC中的局部变量有33个,分别为#1~#33。 表1 FANUC系统中局部变量赋值(部分)对照表

2、变量的演算 (1)加减型运算加减型运算包括加、减、逻辑加和排它的逻辑加。分别用以下四个形式表达: #i = #j +#k #i = #j -#k #i = #j OR #k #i = #j XOR #k 式中,i、j、k为变量;+、-、OR、XOR称为为演算子。 (2)乘除型运算乘除型运算包括乘、除和逻辑乘。分别用以下形式表达: #i = #j * #k #i = #j / #k #i = #j AND #k 4.变量的赋值 由于系统变量的赋值情况比较复杂,这里只介绍公共变量和局部变量的赋值。变量的赋值方式可分为直接和间接两种。

(1)直接赋值 例:#1=115(表示将变量115赋值于#1变量) #100=#2(表示将变量#2的即时值赋于变量#100) (2)间接赋值间接赋值就是用演算式赋值,即把演算式内演算的结果赋给某个变量。在演算式中有自变量代号,自变量每得到一个即时值,相应就得到一个演算结果,该结果就赋值给变量,该变量也叫应变量。5.转向语句 转向语句分为无条件转向语句和条件转向语句两种。 (1)无条件转向语句 程序段格式:GOTO N ;其中N后面的数值为程序段号。 例如:GOTO 55;表示无条件转向执行N55程序段,而不论N55程序段在转向语句之前还是之后。 (2)条件转向语句条件转向语句一般由判断条件式和转向目标两部分构成。 程序段格式:IF [a GT b ] GOTO c;表示为“如果a>b,那么转向执行第Nc句程序段”。a和b可以是数值、变量或含有数值及变量的算式,c 是转向目标的程序段。 大于、等于、大于等于、小于等于分别用GT、EQ、GE、LE表示。

FANUC宏程序编程

运算符 运算符由2个字母组成,用于两个值的比较,以决定它们是相等还是一个值小于或大于另一 示例程序下面的程序计算数值1~10的总和 O9500;#1=0;………………………………….存储和的变量初值 #2=1;………………………………….被加数变量的初值 N1 IF[#2GT 10]GOTO 2;…………….当被加数大于10时转移到N2 #1=#1+#2;…………………………….计算和 #2=#2+#1;…………………………….下一个被加数 GOTO 1;………………………………转移到N1 N2 M30;................................................程序结束 算术和逻辑运算

角度单位: SIN、ASIN、COS、ACOS、TAN和A TAN的角度单位是度 ARCSIN #i=ASIN[#j]: ●取值范围如下:当参数(N0.6004¥0)NA T位设为0时,270~90度;当参数(N0.6004¥0)NA T位设为1时,-90~90度。 ●当#j超过-1到1的范围时,发出P/S报警N0.111。 ●常数可替代变量#j。 ARCCOS #i=ACOS[#j]; ●取值范围从180~0度。 ●当#j超过-1到1的范围时,发出P/S报警N0.111。 ●常数可替代变量#j。 ARCTAN #i=A TAN[#j]; ●指定两边的长度,并用斜杠(/)分开 ●取值范围如下:当参数(N0.6004¥0)NA T位设为0时,0~360度[例如:当指定 #i=A TAN[-1]/[-1];时,#1=225度]。当参数(N0.6004¥0)NA T位设为1时,-180~180度[例如:当指定#i=A TAN[-1]/[-1];时,#1=-135度] ●常数可替代变量#j。 自然对数#i=LN[#j]; ●注意,相对误差可能大于10-8。 ●当反对数(#j)为0或小于0时,发出报警N0.111。 ●常数可替代变量#j。 指数函数#i=EXP[#j]: ●注意,相对误差可能大于10-8 ●当运算结果超过3.65×1047(j大约是110)时,出现溢出报警N0.111 ●常数可替代变量#j。 上取整下取整: CNC处理数值运算时,若操作后产生整数绝对值大于原数的绝对值时为上取整;小于为下取整。例如: 假设#1=1.2,#2=-1.2。当执行#3=FUP[#1]时,2.0赋给#3;当执行#3=FIX[#1]时1.0赋给#3;当执行#3=FUP[#2]时,-2.0赋给#3;当执行#3=FIX[#2]时,-1.0赋给#3。 宏程序语句:包含算术或逻辑运算(=)的程序;包含控制语句(例如,用GOTO,DO,END)的程序;包含宏程序调用指令(例如,用G65,G66,G67或其它G代码,M代码调用宏程序)的程序段;除宏程序以外任何程序段都为NC语句。 与NC语句的不同: 即使置于单段程序运行方式,机床也不停止。但是,当参数N0.6000#5SBM设定位、为1时,在单段程序方式中,机床停止。在刀具半径补偿方式中宏程序语句段不做为移动程序段处理 与宏程序语句相同性质的NC语句: 含有子程序调用指令(例如,用M98或其它M代码或用T代码调用子程序)但没有除O,N,P或L地址之外的其它地址指令的NC语句,其性质与宏程序语句相同;不包含除O,N,P或L以外的指令地址的程序段其性质与宏程序语句相同。 无限循环; 当指定DO而没有指定WHILE语句时,产生从DO到END的无限循环。

FANUC系统宏程式详解

宏程序的简单调用格式: 格式: G65 P 程序序号 L 重复次数变量分配 变量对照表 控制命令 1. If [ 条件表达式 ] GOTO n 2. While [ 条件表达式 ] DO m End m 运算符号相等:EQ 不等于: NE 大于:GT 小于:LT 大于等于: GE 小于等于: LE

FANUC系统宏程式 FANUC系统宏程序编程 一变量 普通加工程序直接用数值指定G代码和移动距离;例如,GO1和X100.0 。使用用户宏程序时,数值可以直接指定或 用变量指定。当用变量时,变量值可用程序或用MDI 面板上的操作改变。 #1=#2+100 G01 X#1 F300 说明: 变量的表示计算机允许使用变量名,用户宏程序不行。变量用变量符号(例如:#1 表达式可以用于指定变量号。此时,表达式必须封闭在括号中例如: #[#1+#2-12] 变量的类型变量根据变量号可以分成四种类型变量号变量类型功能 #0空变量该变量总是空, 没有值能赋给该变量. #1-#33局部变量 局部变量只能用在宏程序中存储数据,例如,运算结果.当断电时, 局部变量被初始化为空. 调用宏程序时, 自变量对局部变量赋值, #100-#199 #500-#999公共变量公共变量在不同的宏程序中的意义相同.当断电时,变量#100-#199 初始化为空. 变量#500-#999 的数据保存, 即使断电也不丢失. #1000系统变量 系统变量用于读和写CNC运行时各种数据的变化,例如, 刀具的当前位置和补偿值. 变量值的范围 局部变量和公共变量可以有0 值或下面范围中的值: -1047 到-10-29 或-10-2 到-1047 如果计算结果超出有效范围,则发出 P/S 报警NO.111. 小数点的省略 当在程序中定义变量值时,小数点可以省略。 例:当定义#1=123 ;变量#1 的实际值是123.000 。 变量的引用为在程序中使用变量值,指定后跟变量号的地址。当用表达式指定变量时,要把表达式放在括号中。例如: G01X[#1+#2]F#3; 被引用变量的值根据地址的最小设定单位自动地舍入。 例如: 当G00X#/; 以1/1000mm 的单位执行时,CNC把123456 赋值给变量#1, 实际指令值为G00X12346. 改变引用变量的值的符号,要把负号(-)放在#的前面。 例如:G00X-#1 当引用未定义的变量时,变量及地址都被忽略。 #)和后面的变量号指定

数控车椭圆宏程序编程解析

数控车椭圆宏程序编程解析 相关知识: ●椭圆关于中心、坐标轴都就是对称得,坐标轴就是对称轴,原点就是对称 中心。对称中心叫做椭圆中心。椭圆与X轴有2两个交点,与Y轴有两个交点,这四个交点叫做椭圆顶点. ●椭圆标准方程:x2 / a2 + y2 / b2= 1 ( a为长半轴,b为短半轴, a〉 b 〉0 ) ●椭圆参数方程:x=a*cosMy=b*sinM (a为长半轴,b为短 半轴,a > b >0 ,M就是离心角,就是椭圆上任意一点到椭圆中心连线与X正半轴所成得夹角,顺时针为负,逆时针为正。)

编程思路: 如N090 #101=20 N100 WHILE[#101GE0]DO1 N110#102=26*SQRT[1—[#101*#101]/[20*20]] N120G01 X[#102] Z[#101-20] N130#101=#101-0、1 N140 END1 将椭圆曲线分成200条线段,用直线进行拟合非圆曲线,每段直线在Z轴方向得直线与直线得间距为0、1,如#101=#101-0、1,根据曲线公式,以Z 轴坐标作为自变量,X轴坐标作为应变量,Z轴坐标每次递减0.1MM,计算出对应得X坐标值. 宏程序变量如下: #101为非圆曲线公式中得Z坐标值,初始值为20 #102为非圆曲线公式中得X坐标值(直径值),初始值为0 G01 X[#102]Z[#101—20]建立非圆曲线在工件坐标系中得X Z坐标,系就就是椭圆得中心坐标. 各种椭圆类型宏程序编制: 图纸一: 图纸一分析: 加工本例工件时,试采用B类宏程序编写,先用封闭轮廓复合循环指令进行去除余量加工。精加工时,同样用直线进行拟合,这里以Z坐标作为自变量,X坐标作为应变量,其加工程序如下: O0001

FANUC系统宏程式详解

宏程序的简单调用格式: 格式:G65 P程序序号 L重复次数变量分配 变量对照表 A #1 I #4 T #20 B #2 J #5 U #21 C #3 K #6 V #22 D #7 M #13 W #23 E #8 Q #17 X #24 F #9 R #18 Y #25 H #10 S #19 Z #26 控制命令 1.If [条件表达式] GOTO n 2.While [条件表达式] DO m End m 运算符号 相等:EQ 不等于: NE 大于:GT 小于:LT 大于等于:GE 小于等于:LE

FANUC系统宏程式 FANUC系统宏程序编程 一变量 普通加工程序直接用数值指定G代码和移动距离;例如,GO1和X100.0。使用用户宏程序时,数值可以直接指定或用变量指定。当用变量时,变量值可用程序或用MDI面板上的操作改变。 #1=#2+100 G01 X#1 F300 说明: 变量的表示 计算机允许使用变量名,用户宏程序不行。变量用变量符号(#)和后面的变量号指定。 例如:#1 表达式可以用于指定变量号。此时,表达式必须封闭在括号中。 例如:#[#1+#2-12] 变量的类型 变量根据变量号可以分成四种类型 变量号变量类型功能 #0 空变量该变量总是空,没有值能赋给该变量. #1-#33 局部变量局部变量只能用在宏程序中存储数据,例如,运算结果.当断电时,局部变量被初 始化为空.调用宏程序时,自变量对局部变量赋值, #100-#199 #500-#999 公共变量公共变量在不同的宏程序中的意义相同.当断电时,变量#100-#199初始化为空. 变量#500-#999的数据保存,即使断电也不丢失. #1000 系统变量系统变量用于读和写CNC运行时各种数据的变化,例如,刀具的当前位置和补偿 值. 变量值的范围 局部变量和公共变量可以有0值或下面范围中的值: -1047到-10-29或-10-2到-1047 如果计算结果超出有效范围,则发出P/S报警NO.111. 小数点的省略 当在程序中定义变量值时,小数点可以省略。 例:当定义#1=123;变量#1的实际值是123.000。 变量的引用 为在程序中使用变量值,指定后跟变量号的地址。当用表达式指定变量时,要把表达式放在括号中。 例如:G01X[#1+#2]F#3; 被引用变量的值根据地址的最小设定单位自动地舍入。 例如: 当G00X#/;以1/1000mm的单位执行时,CNC把123456赋值给变量#1,实际指令值为G00X12346. 改变引用变量的值的符号,要把负号(-)放在#的前面。 例如:G00X-#1 当引用未定义的变量时,变量及地址都被忽略。 例如:当变量#1的值是0,并且变量#2的值是空时,G00X#1 Y#2的执行结果为G00X0。 双轨迹(双轨迹控制)的公共变量

数控铣椭圆加工宏程序编写

数控铣椭圆加工宏程序编写 相关知识: ●椭圆关于中心、坐标轴都是对称的,坐标轴是对称轴,原点是对称中心。 对称中心叫做椭圆中心。椭圆和X轴有2两个交点,和Y轴有两个交点,这四个交点叫做椭圆顶点。 ●椭圆标准方程:x2 / a2 + y2 / b2 = 1 ( a为长半轴,b为短半轴,a > b > 0 ) ●椭圆参数方程:x=a*cosM y=b*sinM ( a为长半轴,b为短半轴,a > b > 0 ,M是离心角,是椭圆上任意一点到椭圆中心连线与X正半轴所成 的夹角,顺时针为负,逆时针为正。) 零件图分析: 如图1-1所示,该零件是非圆曲线类中的椭圆,加工材料为45钢,毛坯料尺寸为50X50X15的方料,六面已加工,各位置度以保证。

零件3D图如下: 编程思路: 该零件加工内容为椭圆,它由非圆曲线组成。利用三角函数关系式求出椭圆上各点坐标,并把各个点连接在一起最终形成所需要加工的椭圆,这样从根本上就极大保证了椭圆的几何精度,大大提高了加工精度。 刀具选用: 直径16MM的高速钢平底立铣刀(四刃) O0001 (该程序仅编制精加工程序) G40 G80 G49 G69 G21 G17; 程序初始化 G90 G54 G0 X0 Y0 S800 M03; 建立工件坐标系,开启主轴 G91 G28 Z0; Z轴回参考点 G43 Z100 H1;建立刀具长度补偿 Z5;

X20 Y40 G1 Z-5 F120 M8; 下刀,开启切削液 #1=0; 椭圆起点角度 #2=360; 椭圆终点角度 G41 Y20 D1; 建立刀具半径补偿 N10 #3 = 20 * COS [ #1 ]; 计算出椭圆圆周上X轴的点坐标 #4 = 10 * SIN [ #1 ]; 计算出椭圆圆周上Y轴的点坐标 G1 X#3 Y#4; 进给至椭圆轮廓点的位置 #1=#1+1; 角度步距(角度递增) IF [ #2 LE #1 ] GOTO 10; 条件判断 G40 G1 Y-40 取消刀具半径补偿 G0 Z5 M9; 抬刀,关闭切削液 G49 Z100 M5; 取消刀具长度补偿 G91 G30 Y0; M30;程序结束,并返回程序开头 刀具选用: 直径16MM的镶刀片飞刀(二刃) 主程序 O0001 (该程序适用于高速加工) G40 G80 G49 G69 G21 G17; 程序初始化 G90 G54 G0 X0 Y0 S1300 M03; 建立工件坐标系,开启主轴 G91 G28 Z0; Z轴回参考点 G43 Z100 H1; 建立刀具长度补偿 Z5; N10 #1=0 X20 Y40 M98 P2 调用子程序 #1=#1+0.2 长度步距(长度增量) IF [ #1 LE 5 ] GOTO 10; 条件判断 G0 Z5 M9; 抬刀,关闭切削液 G49 Z100 M5; 取消刀具长度补偿 G91 G30 Y0; M30; 程序结束,并返回程序开头 子程序 O0002 G1 Z - [ #1 ] F320 M8; 下刀,开启切削液 #2=0; 椭圆起点角度 #3=360; 椭圆终点角度 G41 X-20 D1; 建立刀具半径补偿 N20 #4 = 20 * COS [ #2 ]; 计算出椭圆圆周上X轴的点坐标

椭圆加工编程

椭圆是数控车加工中相对较难却又比较典型的非圆曲线,目前数控系统还没有提供完善的非圆曲线插补功能,因此在实际操作中椭圆的编程多采用变量来完成。虽然随着计算机辅助编程的进一步普及,手工编写宏程序越来越少,但作为初学者,根据不同情况,掌握各种非圆曲线,特别是椭圆曲线的编程仍然是必要的。 一、循环功能WHILE语句 椭圆宏程序编制中重要的循环功能语句是WHILE语句,其格式如下: WHILE[条件表达式] DO m(m=1,2,3) ; END m ; 说明:如果指定的条件表达式满足时,则执行DO到END之间的程序。否则,转道END后面的程序段。DO后面的标号和END 后面的标号是指程序执行范围的标号,标号值为1,2,3。 二、椭圆标准方程与参数方程 编制椭圆宏程序要熟悉椭圆标准方程和参数方程,它们均表达出了椭圆上点的坐标及两坐标之间的关系。例如:图1中,椭圆的标准方程为(20mm为长半轴的长, 14mm为短半轴的长,椭圆的中心即为坐标系的原点),参数方程为X=20cosФ,Y=14sinФ(Ф为角度参数)。 宏程序编制中,编程坐标系是Z 、X 轴,所以在应用椭圆标准方程或参数方程时,要从X、Y轴相应转换为编程坐标系中的Z 、X轴。如上例椭圆在X、Z坐标系中的标准方 程则为:(图2),参数方程相应转换为X=14sinФ,Z=20cosФ。 变量编程时,注意椭圆上点的坐标在椭圆坐标系和在编程坐标系中的不同表达,两者之间的联系在于椭圆原点在编程坐标系中的值。椭圆坐标系原点在椭圆圆心,编程坐标系及原点是由编程者设定,下文编程坐标系原点均选在工件右端面与中心轴线的交点处。 三、以Ф参数(角度)为初始变量

FANUC经典曲面宏程序讲解实例

本科生毕业论文(设计)题目:基于FANUC曲面加工研究 专业代码:机械设计制造及其自动化(080301) 作者姓名:孙士彬 学号: 2008300971 单位汽车与交通工程学院 指导教师:王峰波 2010年5月24日

原创性声明 本人郑重声明:所提交的学位论文是本人在导师指导下,独立进行研究取得的成果。除文中已经注明引用的内容外,论文中不含其他人已经发表或撰写过的研究成果,也不包含为获得聊城大学或其他教育机构的学位证书而使用过的材料。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式标明。本人承担本声明的相应责任。 学位论文作者签名:日期 指导教师签名:日期

摘要 自从1952年美国麻省理工学院研制出世界上第一台数控机床以来,数控机床在制造工业,特别是在汽车、航空航天、以及军事工业中被广泛地应用,数控技术无论在硬件和软件方面,都有飞速发展。而作为现代制造技术的灵魂及核心,数控加工技术也得到了广泛的应用,各类CAD/CAM软件的应用日趋普及,特别是在数控三维曲面加工中手工编程几乎已无用武之地,在学习手工编程时只是简单地学习基本的编程指令,对宏程序也是如此。原因是大家对宏程序不熟悉,往往以为宏程序深不可测。在实际工作中,宏程序确实有着广泛的应用空间,并且能够方便编程。 本文主要阐述了数控车床与数控铣床的简介。并着重介绍车削椭圆,抛物线,铣削正弦线,凸棱台及行腔模具等具体实例的加工,来表述手工宏程序在数控车床与数控铣床的应用。 关键词:数控编程、宏程序、数控车床、数控铣床、加工实例 Abstract Since 1952, Massachusetts Institute of Technology developed the world's first CNC machine tools since the CNC machine tools in manufacturing industry, especially in the automotive, aerospace, and military industry has been widely used, numerical control technology both in hardware and software have rapid development. As the soul of modern manufacturing technology and core, CNC machining technology has been widely used, various CAD / CAM software applications become increasingly popular, especially in CNC machining three-dimensional surface is almost no longer useless manual programming, learning programming by hand simply to learn basic programming instructions on the macro as well. This is because the procedures are not familiar to the macro, that macro is often unpredictable. In practice, the macro does have broad application space, and can be easily programmed. .This article focuses on a CNC lathe and CNC milling machine was introd uced. With an emphasis on turning ellipse, parabola, sine milling line, convex bevel and the line-cavity mold and other specific examples of the process, to express the manual macro program CNC lathes and CNC milling machine applications. Keywords:: control programming, program, CNC lathes, CNC milling, processing examples

FANUC宏程序使用举例

FANUC宏程序使用举例 单轴外圆数控磨床,径向采用数控轴(X轴)控制,轴向仍用液压油缸驱动,因此无法使用两轴磨床数控系统提供的磨削循环功能。在实践中,可以使用FANUC系统提供的用户宏程序,编制单轴的磨削循环功能。根据机床的具体结构,又编制了砂轮手动修整、自动补偿及手动测量工件、自动补偿的控制功能。在青海重型机床厂生产的CA8311B轴颈车磨床上,经过一年多的生产使用,证明是实用的。下面分别介绍软件的内容。 1 功能介绍 1.1 外圆磨削循环 由于只有径向控制轴(X轴),无法实现连续进给磨削,只能实现两端进给的轴向磨削循环。因此在左右两端各设1个轴向行程识别开关(如图1所示)。 当砂轮移到工件的左端时,左端行程开关闭合,发出到位信号,程序中用接口输入变量#1005=1表示。控制系统接到该信号后,发出X轴进给移动指令,砂轮前进一个A值;同理,当系统接到右端行程开关发出的到位信号,程序中用接口输入变量#1006=1表示,砂轮前进一个B值。依次循环,直到到达指令的位置。 实现给定磨削量的磨削加工,可以按A、B两值相加为一个循环,将被磨除量均分。砂轮快速移至R点,经n次(A+B)磨削之后,其剩余量为h ?。若砂轮在工件左端,且h?<A时,按h?进给,否则按A值进给。若在工件右端,且h?<B值时,按h?进给,否则按B值进给。软件必须保证只在工件两端进给,中间不得进给。当磨除量变为零时,必须磨到另一端才能退砂轮。整个磨削过程分粗磨、精磨和光磨。在实际使用中,在R点设置一个暂停,操作者可以插入手动磨削,以利于修活使用,也可以再转为自动磨削。磨削初值用现在位置变量#5041取值。

宏程序加工椭圆的编程基础

宏程序加工椭圆的编程基础 【摘要】随着社会的前进,科学技术也在不断的发展,机械领域对产品的质量和产量也提出了越来越高的要求。在船舶、军工、计算机和航天等工业领域中,零件精度要求高、形状复杂、批量小、品种多、加工困难、产量低、劳动强度高、质量难以保证。为解决上述问题,一种灵活通用、高精度高效率的“柔性”自动化生产设备-数控机床应运而生。无论是数控硬件系统,还是数控软件系统,其基本原理是一样的。在些对数控加工中椭圆加工用宏程序的方法如何实现给出建议,并对宏程序的应用进行常规介绍。 【Abstract】It’s put forward higher and higher claim for quality and output of products in mechanical field under the development of social step & science and technology. The quality hard to ensure because of spares higher precision,complicated shape,small batch,multi-variety,toughen process,low output,higher labour intensity in the industry of shipping,war,computer and spaceflight. CNC machine tools as a flexible versatility,high precision & efficiency ‘flexibility’ auto equipment is provided for resolving the above-mentioned issues. Their basic principle is the same for hardware system and software system. It’s offer advise to implement the way of macroprocessor ellipse by CNC,and general intro the use of macroprogram. 【Key words】ellipse;macroprogram;convex ellipse;start angle;terminal angle 在生产和教学实际中,经常会遇到各种各样的椭圆形加工特征。在现今的数控系统中,无论是数控硬件系统,还是数控软件系统,其插补的基本原理是相同的,只是实现插补运算方法有所区别。常见的直线插补(例如指令G01)和圆弧插补(例如指令G02与G03),就是没有椭圆插补,手工常规的编程无法编制出加工程序,常需要用电脑一步一步编程,但就是这样不要受设备和条件的限制。这时可以采用拟合计算,用宏程序方式,手工编程就可实现,简便高效,并且不爱条件的限制。 1. 宏程序的概述宏程序是FANUC数控系统及其同类产品中的特殊编程功能。所谓宏程序就是把一组实现某种功能的指令,以程序的形式事先存储在系统存储器中,通过宏程序调用指令执行这一功能。宏程序是以程序的形式存储并带有变量的程序。 宏程序与普通程序相比,一般程序的程序数值为常量,一个程序只能描述一个几何形状,所以缺乏灵活性和适用性。而宏程序自体中可以使用变量来进行编程,还可以用宏指令对这些变量来进行赋值、运算等处理,从而实现宏程序执行一些有规律变化的动作,如在椭圆球、四棱台、椭圆台、抛物线等等加工中,用户能根据机床状况来确定各种切削要素,而一般程序是不能达到的,在进行自动测量时人或机床要对测量数据进行处理,这些数据存储在变量中,而不般程序是

数控车椭圆宏程序编程解析

数控车椭圆宏程序编程解析 相关知识: ●椭圆关于中心、坐标轴都是对称的,坐标轴是对称轴,原点是对称中心。 对称中心叫做椭圆中心。椭圆和X轴有2两个交点,和Y轴有两个交点,这四个交点叫做椭圆顶点。 ●椭圆标准方程:x2 / a2 + y2 / b2 = 1 ( a为长半轴,b为短半轴,a > b > 0 ) ●椭圆参数方程:x=a*cosM y=b*sinM ( a为长半轴,b为短半轴,a > b > 0 ,M是离心角,是椭圆上任意一点到椭圆中心连线与X正半轴所成 的夹角,顺时针为负,逆时针为正。)

编程思路: 如N090 #101=20 N100 WHILE[#101GE0]DO1 N110 #102=26*SQRT[1-[#101*#101]/[20*20]] N120 G01 X[#102] Z[#101-20] N130 #101=#101-0.1 N140 END1 将椭圆曲线分成200条线段,用直线进行拟合非圆曲线,每段直线在Z轴方向的直线与直线的间距为0.1,如#101=#101-0.1,根据曲线公式,以Z轴坐标作为自变量,X轴坐标作为应变量,Z轴坐标每次递减0.1MM,计算出对应的X坐标值。 宏程序变量如下: #101为非圆曲线公式中的Z坐标值,初始值为20 #102为非圆曲线公式中的X坐标值(直径值),初始值为0 G01 X[#102] Z[#101-20]建立非圆曲线在工件坐标系中的X Z坐标,系就是椭圆的中心坐标。 各种椭圆类型宏程序编制: 图纸一: 图纸一分析: 加工本例工件时,试采用B类宏程序编写,先用封闭轮廓复合循环指令进行去除余量加工。精加工时,同样用直线进行拟合,这里以Z坐标作为自变量,X坐标作为应变量,其加工程序如下:

相关文档