文档库 最新最全的文档下载
当前位置:文档库 › 5-3金属的介电常数

5-3金属的介电常数

5-3金属的介电常数
5-3金属的介电常数

PCB介电常数知识

1、我们常用的PCB介质是FR4材料的,相对空气的介电常数是4.2-4.7。这个介电常数是会随温度变化的,在0-7 0度的温度范围内,其最大变化范围可以达到20%。介电常数的变化会导致线路延时10%的变化,温度越高,延时越大。介电常数还会随信号频率变化,频率越高介电常数越小。100M以下可以用4.5计算板间电容以及延时。 2、一般的FR4材料的PCB板中内层信号的传输速度为180ps/inch(1inch=1000mil=2.54cm)。表层一般要视情况而定,一般介于140与170之间。 3、实际的电容可以简单等效为L、R、C串联,电容有一个谐振点,在高频时(超过这个谐振点)会呈现感性,电容的容值和工艺不同则这个谐振点不同,而且不同厂家生产的也会有很大差异。这个谐振点主要取决于等效串联电感。现在的比如一个100nF的贴片电容等效串联电感大概在0.5nH左右,ESR(等效串联电阻)值为0.1欧,那么在24M 左右时滤波效果最好,对交流阻抗为0.1欧。而一个1nF的贴片电容等效电感也为0.5nH(不同容值差异不太大),E SR为0.01欧,会在200M左右有最好的滤波效果。为达好较好的滤波效果,我们使用不同容值的电容搭配组合。但是,由于等效串联电感与电容的作用,会在24M与200M之间有一个谐振点,在这个谐振点上有最大阻抗,比单个电容的阻抗还要大。这是我们不希望得到的结果。(在24M到200M这一段,小电容呈容性,大电容已经呈感性。两个电容并联已经相当于LC并联。两个电容的ESR值之和为这个LC回路的串阻。LC并联的话如果串阻为0,那么在谐振点上会有一个无穷大的阻抗,在这个点上有最差的滤波效果。这个串阻反倒会抑制这种并联谐振现象,从而降低LC谐振器在谐振点的阻抗)。为减轻这个影响,可以酌情使用ESR大些的电容。ESR相当于谐振网络里的串阻,可以降低Q值,从而使频率特性平坦一些。增大ESR会使整体阻抗趋于一致。低于24M的频段和高于200M的频段上,阻抗会增加,而在24M与200M频段内,阻抗会降低。所以也要综合考虑板子开关噪声的频带。国外的一些设计有的板子在大小电容并联的时候在小电容(680pF)上串几欧的电阻,很可能是出于这种考虑。(从上面的参数看,1nF的电容Q值是100nF电容Q值的10倍。由于手头没有来自厂商的具体等效串感和ESR的值,所以上面例子的参数是根据以往看到的资料推测的。但是偏差应该不会太大。以往多处看到的资料都是1nF和100nF的瓷片电容的谐振频率分别为100M和10M,考虑贴片电容的L要小得多,而又没有找到可靠的值,为讲着方便就按0.5nH计算。如果大家有具体可靠的值的话,还希望能发上来^_^) 介电常数(Dk, ε,Er)决定了电信号在该介质中传播的速度。电信号传播的速度与介电常数平方根成反比。介电常数越低,信号传送速度越快。我们作个形象的比喻,就好想你在海滩上跑步,水深淹没了你的脚踝,水的粘度就是介电常数,水越粘,代表介电常数越高,你跑的也越慢。 介电常数并不是非常容易测量或定义,它不仅与介质的本身特性有关,还与测试方法,测试频率,测试前以及测试中的材料状态有关。介电常数也会随温度的变化而变化,有些特别的材料在开发中就考虑到温度的因素.湿度也是影响介电常数的一个重要因素,因为水的介电常数是70,很少的水分,会引起显著的变化. 以下是一些典型材料的介电常数(在1Mhz下):

静电场中的电介质

3.1 填空题 3.1.1 电介质的极化分为( )和( )。 3.1.2 分子的正负电荷中心重合的电介质叫做( )电介质;在外电场作用下,分子的正负电荷中心发生相对位移形成( )。 3.1.3 如果电介质中各点的( )相同,这种介质为均匀电介质;满足( )关系的电介质称为各向同性电介质。 3.1.4 平行板电容器两极板间相距为0.2 mm ,其间充满了相对介电常数r ε=5.0的玻璃片,当 两极间电压为400 V 时,玻璃面上的束缚电荷面密度为( )。 3.1.5 一平行板电容器充电后断开电源,这时储存的能量为0w ,然后在两极板间充满相对介电常数为r ε的电介质,则电容器内储存的能量变为( )。 3.1.6 一平行板电容器,充电后与电源保持连接,然后使两极板间充满相对介电常数为r ε的 各向同性均匀电介质,这时两极板上的电量是原来的( )倍;电场强度是原来的( )倍;电场能量是原来的( )倍。 3.1.7 两个电容器1和2,串联以后接上电动势恒定的电源充电。在电源保持联接的情况下,若把电介质充入电容器2中,则电容器1上的电势差( ),电容器1极板上的电量( )(填增大、减小、不变)。 3.1.8 一平行板电容器两板充满各向同性均匀电介质,已知相对介电常数为r ε,若极板上的自由电荷面密度为σ,则介质中电位移的大小D =( ),电场强度的大小E =( )。 3.2 选择题 3.2.1 两个相距很近而且等值异号的点电荷组成一个( )。 A :重心模型; B :电偶极子; C :等效偶极子; D :束缚电荷。 3.2.2 可以认为电中性分子中所有正电荷和所有负电荷分别集中于两个几何点上,这称为分 子的( ) A :电介质; B :电偶极子; C :重心模型; D :束缚电荷。 3.2.3 电偶极子的电偶极矩定义为( ) A :E p M ?=; B :l q p =; C :l q p ?=; D :l q p ?= 3.2.4 在电场E 的作用下,无极分子中正负电荷的重心向相反方向作微小位移, 使得分子偶 极矩的方向与场强E 一致,这种变化叫做( ) A :磁化; B :取向极化; C :位移极化; D :电磁感应。 3.2.5 在真空平行板电容器的中间平行插一片介质,当给电容器充电后,电容器内的场强为( ) A :介质内的电场强度为零; B :介质内与介质外的电场强度相等; C :介质内的场强比介质外的场强小; D :介质内的场强比介质外的场强大。 3.2.6 一平行板真空电容器,充电到一定电压后与电源切断,把相对介质常数为r ε的均匀电介质充满电容器。则下列说法中不正确的是( ) A :介质中的场强为真空中场强的r ε1 倍;

介电常数

一些溶剂的介电常数

介电常数(Dielectric constants) 表1列出常见气体在20℃,101 325 Pa条件下的介电常识(ε)。 数据中的有效数字表示测试精度,其中Ar,H2,He,N2,O2,CO2等被推荐为参比数据,其精度为百万分之一或更高。 1 气体的介电常数(Dielectric constants of gases) 表1 气体的介电常数 Table 1 Dielectric constants of gases

2 饱和水蒸气的介电常数(Dielectric constants of saturated water vapor) 表2给出不同温度下的液态水成平衡的水蒸气的介电常数。 表2 饱和水蒸气的介电常数 Table 2 Dielectric constants of saturated water vapor 3 液体的介电常数(Dielectric constants of liquid) 表3给出常见液体在指定温度下的介电常数(ε),测试压力为101325Pa。 加*表示测试压力为液体的饱和蒸气压(该温度下其饱和蒸气压大于101325Pa)。 表3 液体的介电常数 Table3 Dielectric constants of liquid

3 He 氦-269 1.408 I2 碘118 11.1 NH3 氨-77 25 N2氮-195 1.433 N2H4 肼20 52.9 N2O 一氧化二氮0 1.61

CH2Br2 二溴甲烷10 7.77 CH2Cl2二氯甲烷20 9.08 CH2I2二碘甲烷25 5.32 CH2O2甲酸16 58.5 CH3Br 溴甲烷0 9.82 CH3Cl 氯甲烷-20 *12.6 CH3I 碘甲烷20 7.00

介电常数

脆化温度brittle temperature 塑料低温力学行为的一种量度。以具有一定能量的冲锤冲击试样时,当试样开裂几率达到50%时的温度称脆化温度。 屈服点(yield point) 钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。 设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2, (MPa=10^6(10的6次方)Pa,Pa: 帕斯卡=N/m2)2.屈服强度(σ0.2)有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规

定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。 什么是介电常数,介电损耗,介电强度?[科学电力 ] 收藏转发至天涯微博 悬赏点数 10 6个回答 屋里有灯不黑啊2009-05-12 10:15:37 什么是介电常数,介电损耗,介电强度? 回答 换一张 码:

登录并发表取消 回答 heyerijue2009-05-12 10:15:55 介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为介电常数(permeablity),又称诱电率. 介电强度(dielectric strength)是指单位厚度的绝缘材料在击穿之前能够承受的最高电压,即电场强度最大值,单位是 kV/mm。包括塑料 010********-05-12 10:16:02

介电常数, 用于衡量绝缘体储存电能的性能. 它是两块金属板之间以绝缘材料为介质时的电

矿物的介电常数及电阻

书山有路勤为径,学海无涯苦作舟 矿物的介电常数及电阻 各类矿物的介电常数及电阻,包括重晶石,石英,金刚石,锡石等矿物 西安天道矿产品研究院专注于选矿技术研究与服务,专业攻坚克难,深入矿山解决具体问题,有效将试验过程和生产成本、投资、可操作性、环保等进行综合研究,为矿山提供经济效益最好、切实可行的工艺流程,实现了成果与生产实践的成功对接,形成了特有的服务优势。 矿虫说矿之一 在选矿界,经验重视程度普遍大于试验!毫无疑问,一个经验丰富的人,可以让一座矿山起死回生!值得肯定! 但经验甚至技术基本都是前几十年的积累,无可争辩的是,以前的矿石性质普遍要优于现今! 目前矿石性质主要为:贫,杂,害,细! 但国家政策要求为:节能,环保,回收! 单纯靠经验的时代一去不复返,个人经验与团队研发优势差异愈加明显! 然而遗憾的是,大多数中,小矿业投资人的依然停留在数十年前的思维!人多力量大,靠关系,靠经验,靠运气,一个人决定矿山命运等这些思维模式! 经验能救矿于一时,却不能救矿于时时!唯有重视选矿技术,改变传统思维观念,做到重经验,靠试验,创技术,真正落实技术强于人数科学观念!这是现代矿业发展的必由之路! 科学开矿,人人有责!矿虫将致力于提高全民技术选矿意识而奋斗! 矿虫说矿之二 我坚信之所以好多矿友走了弯路,是因为对矿的不了解,不熟悉,不清楚什么步骤做什么?还有长期对人们普遍对地质,勘探,采矿等的重视,因为之前的好多年里,只要能找到矿藏,挖出矿藏,大多就相当于得到了最后的产品!长此下去,对于选矿这个环节有太多忽视!然而,现在不仅要问哪里有矿?更要问能回收多?能不能搞出来产品?人们开始意识到这一点了!但是,依然有好多矿友

导电系数及介电常数

导电系数就是电阻率。 铜---1.72×10-8Ω·m。 铝---2.8×10-8Ω·m 是测出来的 电阻率 (1)定义或解释 电阻率是用来表示各种物质电阻特性的物理量。某种材料制成的长1米、横截面积是1平方毫米的导线的电阻,叫做这种材料的电阻率。 (2)单位 国际单位制中,电阻率的单位是欧姆·米,常用单位是欧姆·平方毫米/米。 (3)说明 ①电阻率ρ不仅和导体的材料有关,还和导体的温度有关。在温度变化不大的范围内,:几乎所有金属的电阻率随温度作线性变化,即ρ=ρo(1+at)。式中t是摄氏温度,ρo是O℃时的电阻率,a 是电阻率温度系数。 ②由于电阻率随温度改变而改变,所以对于某些电器的电阻,必须说明它们所处的物理状态。如一个220 V 1OO W电灯灯丝的电阻,通电时是484欧姆,未通电时只有40欧姆左右。 ③电阻率和电阻是两个不同的概念。电阻率是反映物质对电流阻碍作用的属性,电阻是反映物体对电流阻碍作用的属性 【介电常数】又称为“电容率”或“相对电容率”。在同一电容器中用某一物质作为电介质时的电容与其中为真空时电容的比值称为该物质的“介电常数”。介电常数通常随温度和介质中传播的电磁波的频率而变。电容器用的电介质要求具有较大的介电常数,以便减小电容器的体积和重量。 导电系数就是电阻率.电阻率是用来表示各种物质电阻特性的物理量。某种材料制成的长1米、横截面积是1平方毫米的导线的电阻,叫做这种材料的电阻率。 导体的导电性能 跟密度无关,导电性能只取决于电阻R大小,而R=电阻率*导体长度/导体横截面积,电阻率取决于材料,每种材料电阻率是一定的,而你看到的导电行和密度成正相关关系只是片面的结论,银密度比金小导电性却比金好就是反例 我楼上这位兄台说的很好,不过我可以再补冲的更详细些:每种导体的导电性能一定的跟本原因取决于,它的原子核外的电子层数跟最外自由层自由电子数,层数越多,自由电子数越多导电性能越好 特定物质的电阻大小由其材料的导电系娄,长度和截面积决定. 导休之所以能导电在于其存在可自由移动的电荷. 对于溶液型导体,通常为电解质溶解于溶剂中而形成,显然其中存在大量的正负离子与可移动电荷. 而金属导体,其晶体结构中原子核是紧密排布的,但是它的外层电子通常处于游离态,容易作定向的流动,故而容易导电. 而绝缘体通常为分子晶体或者原子晶体,分子晶体以有机材料物体居多的.它们形成晶体主要依靠分子间相互吸引的范德华力,不存在可移动的电子.而原子晶体则以原子间紧密排布形成,也不存在大量可移动电荷. 但是值得注意的是石墨,它是电的良导体,其实它并不是纯粹的原子晶体而是一复杂的混合型晶体.

Dielectric Constant(介电常数表)超全

ABS RESIN, LUMP 丙烯晴-丁二烯-苯乙烯树脂块 2.4-4.1 ABS RESIN, PELLET丙烯晴-丁二烯-苯乙烯树脂球 1.5-2.5 ACENAPHTHENE二氢苊21 3.0 ACETAL聚甲醛21 3.6 ACETAL BROMIDE溴代乙缩醛二乙醇16.5 ACETAL DOXIME乙二醛肟20 3.4 ACETALDEHYDE乙醛521.8 ACETAMIDE乙酰胺2041 ACETAMIDE乙酰胺8259 ACETANILIDE乙醛22 2.9 ACETIC ACID乙酸20 6.2 ACETIC ACID乙酸2 4.1 ACETIC ANHYDRIDE乙酸酐1921.0 ACETONE丙酮2520.7 ACETONE丙酮5317.7 ACETONE丙酮0 1.0159 ACETONITRILE乙睛 2137.5 ACETOPHENONE苯乙酮2417.3 ACETOXIME丙酮肟-43 ACETYL ACETONE乙酰丙酮2023.1 ACETYL BROMIDE乙酰溴2016.5 ACETYL CHLORIDE乙酰氯2015.8 ACETYLE ACETONE乙酰丙酮2025 ACETYLENE乙炔0 1.0217 ACETYLMETHYL HEXYL KETONE己基甲酮1927.9 ACRYLIC RESIN丙烯酸树脂 2.7 - 4.5 ACTEAL乙醛21.0-3.6 AIR空气1 AIR (DRY)空气(干燥)20 1.000536 ALCOHOL, INDUSTRIAL工业酒精16-31 ALKYD RESIN醇酸树脂 3.5-5 ALLYL ALCOHOL丙烯醇1422 ALLYL BROMIDE溴丙烯197.0 ALLYL CHLORIDE烯丙基氯208.2 ALLYL IODIDE碘丙烯19 6.1 ALLYL ISOTHIOCYANATE异硫氰酸丙烯酯1817.2 ALLYL RESIN (CAST)烯丙基脂(CAST) 3.6 - 4.5 ALUMINA氧化铝9.3-11.5 ALUMINA氧化铝 4.5 ALUMINA CHINA氧化铝瓷 3.1-3.9 ALUMINUM BROMIDE溴化铝100 3.4 ALUMINUM FLUORIDE氟化铝 2.2 ALUMINUM HYDROXIDE氢氧化铝 2.2 ALUMINUM OLEATE油酸铝20 2.4 ALUMINUM PHOSPHATE硷式磷酸铝-14 ALUMINUM POWDER铝粉 1.6-1.8 AMBER琥珀 2.8-2.9 AMINOALKYD RESIN酸硬化树脂 3.9-4.2 AMMONIA血氨-5925

介电常数

介电常数 一、介电常数的基本简介 介质在外加电场时会产生感应电荷而削弱电场,在相同的原电场中真空中的电场与某一介质中的电场的比值即为相对介电常数(permittivity),又称相对电容率,以εr表示。如果有高介电常数的材料放在电场中,场的强度会在电介质内有可观的下降。介电常数(又称电容率),以ε表示,ε=εr*ε0,ε0为真空绝对介电常数,ε0=8.85*e-12,F/m。 一个电容板中充入介电常数为ε的物质后电容变大ε倍。电介质有使空间比起实际尺寸变得更大或更小的属性。例如,当一个电介质材料放在两个电荷之间,它会减少作用在它们之间的力,就像它们被移远了一样。 当电磁波穿过电介质,波的速度被减小,有更短的波长。 二、介电常熟的解释 “介电常数”在工具书中的解释 1.又称电容率或相对电容率,表征电介质或绝缘材料电性能的一个重要数据,常用ε表示。它是指在同一电容器中用同一物质为电介质和真空时的电容的比值,表示电介质在电场中贮存静电能的相对能力。相对介电常数愈小绝缘性愈好。空气和CS2的ε值分别为1.0006和2.6左右,而水的ε值特别大,10℃时为 83.83,与温度有关。 2.介电常数是物质相对于真空来说增加电容器电容能力的度量。介电常数随分子偶极矩和可极化性的增大而增大。在化学中,介电常数是溶剂的一个重要性质,它表征溶剂对溶质分子溶剂化以及隔开离子的能力。介电常数大的溶剂,有较大隔开离子的能力,同时也具有较强的溶剂化能力。介电常数用ε表示。 “介电常数”在学术文献中的解释 1.介电常数是指物质保持电荷的能力,损耗因数是指由于物质的分散程度使能量损失的大小。理想的物质的两项参数值较小。k 2.介质常数具有复数形式,实数部分称为介电常数,虚数部分称为损耗因子.通常用损耗正切值(损耗因子与介电常数之比)来表示材料与微波的耦合能力,损耗正切值越大,材料与微波的耦合能力就越强 3.介电常数是指在同一电容器中用某一物质为电介质与该物质在真空中的电容的比值.在高频线路中信号传播速度的公式如下:V=K 4.通常将相对介电常数均称为介电常数.反射脉冲信号的强度,与界面的波反射系数和透射波的衰减系数有关,主要取决于周围介质与反射体的电导率和介电常数。

常见介电常数

Material物质名* 温度(°C) 介电常数 ABS RESIN, LUMP 丙烯晴-丁二烯-苯乙烯树脂块2.4-4.1 ABS RESIN, PELLET 丙烯晴-丁二烯-苯乙烯树脂球1.5-2.5 ACENAPHTHENE 二氢苊21 3.0 ACETAL 聚甲醛21 3.6 ACETAL BROMIDE 溴代乙缩醛二乙醇16.5 ACETAL DOXIME 乙二醛肟20 3.4 ACETALDEHYDE 乙醛5 21.8 ACETAMIDE 乙酰胺20 41 ACETAMIDE 乙酰胺82 59 ACETANILIDE 乙醛22 2.9 ACETIC ACID 乙酸20 6.2 ACETIC ACID 乙酸2 4.1 ACETIC ANHYDRIDE 乙酸酐19 21.0 ACETONE 丙酮25 20.7 ACETONE 丙酮53 17.7 ACETONE 丙酮0 1.0159 ACETONITRILE 乙睛21 37.5 ACETOPHENONE 苯乙酮24 17.3 ACETOXIME 丙酮肟-4 3 ACETYL ACETONE 乙酰丙酮20 23.1 ACETYL BROMIDE 乙酰溴20 16.5 ACETYL CHLORIDE 乙酰氯20 15.8 ACETYLE ACETONE 乙酰丙酮20 25 ACETYLENE 乙炔0 1.0217 ACETYLMETHYL HEXYL KETONE 己基甲酮19 27.9 ACRYLIC RESIN 丙烯酸树脂2.7 - 4.5 ACTEAL 乙醛21.0-3.6 AIR 空气1 AIR (DRY) 空气(干燥)20 1.000536 ALCOHOL, INDUSTRIAL 工业酒精16-31 ALKYD RESIN 醇酸树脂3.5-5 ALLYL ALCOHOL 丙烯醇14 22 ALLYL BROMIDE 溴丙烯19 7.0 ALLYL CHLORIDE 烯丙基氯20 8.2 ALLYL IODIDE 碘丙烯19 6.1 ALLYL ISOTHIOCYANATE 异硫氰酸丙烯酯18 17.2 ALLYL RESIN (CAST) 烯丙基脂(CAST) 3.6 - 4.5 ALUMINA 氧化铝9.3-11.5 ALUMINA 氧化铝4.5 ALUMINA CHINA 氧化铝瓷3.1-3.9 ALUMINUM BROMIDE 溴化铝100 3.4 ALUMINUM FLUORIDE 氟化铝2.2 ALUMINUM HYDROXIDE 氢氧化铝2.2 ALUMINUM OLEATE 油酸铝20 2.4 ALUMINUM PHOSPHATE 硷式磷酸铝-14 ALUMINUM POWDER 铝粉1.6-1.8 AMBER 琥珀2.8-2.9 AMINOALKYD RESIN 酸硬化树脂3.9-4.2 AMMONIA 血氨-59 25 DIELECTRIC CONSTANT REFERENCE GUIDE介电常数参考表Material 物质名* 温度(°C) 介电常数DIELECTRIC CONSTANT REFERENCE GUIDE介电常数参考表AMMONIA 血氨-34 22 AMMONIA 血氨4 18.9 AMMONIA 血氨21 16.5 AMMONIA (GAS? ) 血氨(气体)0 72 AMMONIUM BROMIDE 溴化铵7.2 AMMONIUM CHLORIDE 氯化铵7 AMYL ACETATE 醋酸戊酯20 5 AMYL ALCOHOL 戊醇-118 35.5 AMYL ALCOHOL 戊醇20 15.8 AMYL ALCOHOL 戊醇60 11.2 AMYL BENZOATE 苯甲酸戊酯20 5.1 AMYL BROMIDE 溴化环戊烷10 6.3 AMYL CHLORIDE 戊基氯11 6.6 AMYL ETHER 戊基醚16 3.1 AMYL FORMATE 甲酸戊基19 5.7 AMYL IODIDE 碘化戊基17 6.9 AMYL NITRATE 硝酸戊基17 9.1 AMYL THIOCYANATE 硫氰酸盐戊基20 17.4 AMYLAMINE 戊胺22 4.6 AMYLENE 戊烯21 2 AMYLENE BROMIDE 溴戊烯14 5.6 AMYLENETETRARARBOXYLATE 19 4.4 AMYLMERCAPTAN 戊基硫醇20 4.7 ANILINE 苯胺0 7.8 ANILINE 苯胺20 7.3 ANILINE 苯胺100 5.5 ANILINE FORMALDEHYDE RESIN 苯氨-甲醛树脂3.5 - 3.6 ANILINE RESIN 苯胺树脂3.4-3.8 ANISALDEHYDE 茴香醛20 15.8 ANISALDOXINE 茴香肟63 9.2 ANISOLE 苯甲醚20 4.3 ANITMONY TRICHLORIDE 三氯化锑5.3 ANTIMONY PENTACHLORIDE 五氯化锑20 3.2 ANTIMONY TRIBROMIDE 三溴化锑100 20.9 ANTIMONY TRICHLORIDE 三氯化锑5.3 ANTIMONY TRICHLORIDE 三溴化锑74 33 ANTIMONY TRICODIDE 三碘化锑175 13.9 APATITE 磷灰石7.4 ARGON 氩-227 1.5 ARGON 氩20 1.000513 ARSENIC TRIBROMIDE 三溴化砷37 9 ARSENIC TRICHLORIDE 三氯化砷66 7 ARSENIC TRICHLORIDE 三氯化砷21 12.4 ARSENIC TRIIODIDE 三碘化砷150 7 ARSINE 胂-100 2.5

折射率与介电常数之间的关系

折射率与介电常数之间的关系 1 可见光和金属间的相互作用 可见光入射金属时,其能是可被金属表层吸收,而激发自由电子,使之具有较高的能态。当电子由高能态回到较低能态时,发射光子。金属是不透光的,故吸收现象只发生在金属的厚约 100nm 的表层内,也即金属片在 100nm 以下时,才是“ 透明” 的。只有短波长的X -射线和γ -射线等能穿过一定厚度的金属。所以,金属和可见光间的作用主要是反射,从而产生金属的光泽。 2 可见光和非金属间的作用 1) 折射 当光线以一定角度入射透光材料时,发生弯折的现象就是折射 ( Refraction ),折射指数n 的定义是: 光从真空进入较致密的材料时,其速度降低。光在真空和材料中的速度之比即为材料的折射率。 如果光从材料 1 ,通过界面进入材料 2 时,与界面法向所形成的入射角、折射角与材料的折射率、有下述关系:

介质的折射率是永远大于 1 的正数。如空气的 n= ,固体氧化物 n= ~,硅酸盐玻璃 n= ~。不同组成、不同结构的介质,其折射率不同。 影响 n 值的因素有下列四方面: a) 构成材料元素的离子半径 根据 Maxwell 电磁波理论,光在介质中的传播速度应为: μ 为介质的导磁率, c 为真空中的光速,ε 为介质的介电常数,由此可得: 在无机材料这样的电介质中,μ = 1 ,故有 说明介质的折射率随其介电常数的增大而增大。而介电常数则与介质极化有关。由于电磁辐射和原子的电子体系的相互作用,光波被减速了。

当离子半径增大时,其介电常数也增大,因而 n 也随之增大。因此,可以用大离子得到高折射率的材料,如 PbS 的 n= ,用小离子得到低折射率的材料,如 SiCl 4 的 n= 。 b) 材料的结构、晶型和非晶态 折射率还和离子的排列密切相关,各向同性的材料,如非晶态(无定型体)和立方晶体时,只有一个折射率 (n 0 ) 。而光进入非均质介质时,一般都要分为振动方向相互垂直、传播速度不等的两个波,它们分别有两条折射光线,构成所谓的双折射。这两条折射光线,平行于入射面的光线的折射率,称为常光折射率 (n 0 ) ,不论入射光的入射角如何变化,它始终为一常数,服从折射定律。另一条垂直于入射面的光线所构成的折射率,随入射光的方向而变化,称为非常光折射率 (n e ) ,它不遵守折射定律。当光沿晶体光轴方向入射时,只有 n 0 存在,与光轴方向垂直入射时, n e 达最大值,此值为材料的特性。 规律:沿着晶体密堆积程度较大的方向 n e 较大。 c) 材料所受的内应力 有内应力的透明材料,垂直于受拉主应力方向的 n 大,平行于受拉主应力方向的 n 小(提问:为什么)。 规律:材料中粒子越致密,折射率越大。 d) 同质异构体

常见物质介电常数汇总

Sir-20说明书普通材料的介电值和术语集 1

常见物质的相对介电常数值和电磁波传播速度(RIS-K2说明书)

------------------《探地雷达方法与应用》(李大心)

2007第二期勘察科学与技术

电磁波在部分常见介质中的传播参数 (The propagation parameters of the electromagnetic wave in the medium) 地球表面大部分无水的物质(如干燥的土壤和岩石等)的介电常数,实部一般介于1.7-6之间,水的介电常数一般为81,虚部很小,一般可以忽略不计。岩石和土壤的介电常数与其含水量几乎呈线形关系增长,且与水的介电常数特性相同。所以天然材料的电学特性的变化,一般都是由于含水量的变化所致。对于岩石和土壤含水量和介电常数的关系国内外进行了详细研究(P.Hoekstra, 1974; J.E.Hipp,1 974;J .L.Davis,1 976;G A.Poe,1 971;J .R.Wang,1 977;E .G.巧okue tal ,1 977)。在实验室内大量测量了不同粒度的土壤一水混合物介电常数,考虑到束缚水和游离水,提出了经验土壤介电常数混合模型(J.R.Wang, 1985)。实验室内用开路探头技术和自由空间天线技术测量干燥岩石的介电常数(F.TUlaby, 1990)。国内肖金凯等人(1984, 1988)测量了大量的岩石和土壤的介电常数,王湘云、郭华东(1999)研究了三大岩类中所含的矿物对其介电常数的影响。研究表明,土壤中

含水量的变化影响介电常数的实部,水溶液中含盐量的变化影响土壤的导电性,即介电常数的虚部。水与某些铁锰化合物具有高的介电常数,绝大多数矿物的介电常数较低,约为4--12个相对单位,由于主要造岩矿物与水的相对介电常数存在较大差异,所以,具有较大孔隙度岩石的介电常数主要取决于它的含水量,泥岩由于含有大量的弱束缚水,所以其相对介电常数可高达50--60,岩石含泥质较多时,它们的介电常数与泥质含量有明显的关系,很多火成岩的孔隙度只有千分之几,其相对介电常数主要取决于造岩矿物,一般变化范围为6--12,水的介电常数与其矿化度的关系较弱,与此相应,岩石孔隙中所含水的矿化度同样对其介电常数不应有大的影响,水的矿化度的增大只导致岩石介电常数的少许增加。 表1 常见介质的电性参数值 媒质电导率 / (S/m) 介电常 数(相对 值) 电磁波速度/ (m/ns) 空气0 1 0.3 水10-4~3х10-281 0.033 花岗岩(干)10-8 5 0.15 灰岩(干)10-97 0.11 灰岩(湿) 2.5х10-28~10 0.11~0.095 粘土(湿)10-1~1 8~12 0.11~0.087 混凝土10-9~10-86~15 0.12~0.077 钢筋∞∞

板材介电常数一览表

Dk@10GHz Supplier Name Type D.F.CTE X CTE Y CTE Z MIL REF IPC 2.08 +/ 0.02Nelco NY9208P,W0.00062535260-- 2.1Polyflon CuFlon P0.0004512.912.912.9-- 2.17 2.20 +/ 0.02Arlon CuClad 217LX P,W,CP0.00092928246GY May-03 2.17 2.20 +/ 0.02 Arlon DiClad 880P,W0.00092534252GY May-03 2.17+/ 0.04Arlon IsoClad 917P,R0.00134647236GP,GR Mar-03 2.17 +/ 0.02 Arlon Intermod/- 165dbc P,W0.00092534252-125/05 2.17 +/ 0.02Nelco NY9217P,W0.00082535260-- 2.17Taconic TLY-5A P,W0.00092020280GY125/05 2.20 +/ 0.02Nelco NY9220P,W0.00092535260-- 2.20 +/ 0.02 Rogers RT/Duroid 5880 P,R0.00093148237GP,GR125/04 2.2Taconic TLY-5P,W0.00092020280GY125/05 2.32 +/ 0.005Polyflon Polyguide P,W0.0002108108108-- 2.33 +/ 0.02Arlon CuClad 233LX P,W,CP0.00132324194GY May-03 2.33 +/ 0.02 Arlon DiClad 870P,W0.00131729217GY May-03 2.33 +/ 0.04 Arlon IsoClad 933P,R0.00163135203GP,GR Mar-03 2.33 +/ 0.02Nelco NY9233P,W0.00112535260-- 2.33 +/ 0.02Rogers RT/Duroid 5870 P,R0.00122228173GP,GR125/04 2.33 Taconic TLY-3P,W0.00122020280GY125/05 2.4 2.6 +/ 0.02 Arlon CuClad 250GT P,W,CP0.0011819177GT Jan-03 2.4 2.6 +/ 0.02Arlon CuClad 250GX P,W,CP0.00221819177GX Feb-03 2.4 2.6 +/ 0.02Arlon DiClad 522P,W0.00181421173GT Jan-03 2.4 2.6 +/ 0.02 Arlon DiClad 527P,W0.00181421173GX Feb-03 2.4 2.6 +/ 0.04 Rogers Ultralam 2000 P,W0.00191515200GX125/02 2.40 +/ 0.04Nelco NX9240P,W0.00161218150-- 2.45 +/ 0.04Nelco NX9245P,W0.00161218150-- 2.45 Taconic TLX-0P,W0.0019912140GX125/02 2.5 Arlon AD250P,W0.0018121595-804662 2.50 +/ 0.04Nelco NX9250P,W0.00171218150GX125/02 2.5Taconic TLX-9P,W0.0019912140GX125/02 2.55 Arlon AD255P,W0.0018121595-804662 2.55 Polyflon NorClad P,W .0007@1M hz 535353-125/02 2.55 +/ 0.04Nelco NX9255P,W0.00181218150GX125/02

介电常数

介电常数 介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为介电常数(permittivity),又称诱电率,与频率相关。如果有高介电常数的材料放在电场中,场的强度会在电介质内有可观的下降。电介质经常是绝缘体。其例子包括瓷器(陶器),云母,玻璃,塑料,和各种金属氧化物。有些液体和气体可以作为好的电介质材料。干空气是良好的电介质,并被用在可变电容器以及某些类型的传输线。蒸馏水如果保持没有杂质的话是好的电介质,其相对介电常数约为80。 介电常数是相对介电常数与真空中绝对介电常数乘积。如果有高介电常数的材料放在电场中,电场的强度会在电介质内有可观的下降,理想导体内部由于静电屏蔽场强总为零,故其介电常数为无穷。 一个电容板中充入介电常数为ε的物质后电容变大ε倍。 电介质有使空间比起实际尺寸变得更大或更小的属性。例如,当一个电介质材料放在两个电荷之间,它会减少作用在它们之间的力,就像它们被移远了一样。当电磁波穿过电介质,波的速度被减小,有更短的波长。 相对介电常数εr可以用静电场用如下方式测量:首先在其两块极板之间为空气的时候测试电容器的电容C0。然后,用同样的电容极板间距离但在极板间加入电介质后侧得电容Cx。然后相对介电常数可以用下式计算εr=Cx/C0。 真空介电常数:ε0=8.854187817×10-12F/m。ε0和真空磁导率μ0以及电磁波在真空传播速率c之间的关系为。真空平行板电容器的电容为,若取S为 单位面积,d为单位距离,则C=ε0,真空电容率的名称即源于此。 介电常数又叫介质常数,介电系数或电容率,它是表示绝缘能力特性的一个系数,以字母ε表示,单位为法/米。需要强调的是,一种材料的介电常数值与测试的频率密切相关。 介电常数愈小,说明此介质产生的感应电荷削弱原外加电场的能力愈小(有可能此介质在外加电场时产生的感应电荷少),即原外加电场减少的愈少,原外加电场与削弱后的原外加电场的比值愈小,此介质的绝缘性愈好,导电性愈弱。 电容率,是在电磁学里,介电质响应外电场的施加而电极化的衡量,称为电容率。在非真空中由于介电质被电极化,在物质内部的总电场会减小;电容率关系到介电质传输(或容许)电场的能力。电容率衡量电场怎样影响介电质,怎样被介电质影响。电容率又称为“绝对电 容率”,或称为“介电常数”。 绝对电容率: 绝对电容率,描述电介质极化性能的物理量。其与电场强度之乘积等于电位移,即εE=D。 电介质的电容率ε与真空电容率ε0之比称为该电介质的相对电容率εr ,εr=ε/ε0是无量纲的纯数,εr与电极化率χe的关系为εr=1+χe。

偶极矩介电常数汇总

溶液法测定极性分子的偶极矩 一、实验目的 了解电介质极化与分子极化的概念,以及偶极矩与分子极化性质的关系。掌握溶液法测定极性分子永久偶极矩的理论模型和实验技术,用溶液法测定乙酸乙酯的偶极矩。 二、实验原理 德拜(Peter Joseph William Debye )指出,所谓极性物质的分子尽管是电中性的,但仍然拥有未曾消失的电偶极矩,即使在没有外加电磁场时也是如此。分子偶极矩的大小可以从介电常数的数据中获得,而对分子偶极矩的测量和研究一直是表征分子特性重要步骤。 1、偶极矩、极化强度、电极化率和相对电容率(相对介电常数) 首先定义一个电介质的偶极矩(dipole moment )。考虑一簇聚集在一起的电荷,总的净电荷为零,这样一堆电荷的偶极矩p 是一个矢量,其各个分量可以定义为 ∑∑∑===i i i z i i i y i i i x z q p y q p x q p 式中电荷i q 的坐标为),,(i i i z y x 。偶极矩的SI 制单位是:m C ?。 将物质置于电场之中通常会产生两种效应:导电和极化。导电是在一个相对较长的(与分子尺度相比)距离上输运带电粒子。极化是指在一个相对较短的(小于等于分子直径)距离上使电荷发生相对位移,这些电荷被束缚在一个基本稳定的、非刚性的带电粒子集合体中(比如一个中性的分子)。 一个物质的极化状态可以用矢量P 表示,称为极化强度(polarization )。矢量P 的大小 定义为电介质内的电偶极矩密度,也就是单位体积的平均电偶极矩,又称为电极化密度,或 电极化矢量。这定义所指的电偶极矩包括永久电偶极矩和感应电偶极矩。P 的国际单位制 度量单位是2 -?m C 。为P 取平均的单位体积当然很小,但一定包含有足够多的分子。在一个微小的区域内,P 的值依赖于该区域内的电场强度E 。 在这里,有必要澄清一下物质内部的电场强度的概念。在真空中任意一点的电场强度E 的定义为:在该点放置一个电荷为dq 的无限微小的“试验电荷”,则该“试验电荷”所受

介电—频率特性

实验介电—频率特性 一、实验目的 本实验通过测定室温时高频陶瓷介电常数ε及损耗角正切值tanδ,了解掌握常用的Q表的基本原理及正确使用Q表测量高频陶瓷介质的ε及tanδ的方法,通过室温下测试ε及tan δ随频率变化的情况,分析陶瓷介质的极化原理。 介质材料的介电常数和介电损耗随频率发生变化。了解介质材料的介电—温度特性,以便正确的认识、改进与使用这些材料。 1. 通过测定室温时高频陶瓷介电常数ε及损耗角正切值tanδ,了解掌握1910测量仪的基本原理。 2. 正确使用1910测量仪测量高频陶瓷介质的ε及tanδ的方法。 3. 通过室温下测试ε及tanδ随频率变化的情况,分析陶瓷介质的极化原理。 三、实验原理 介电系数是表征介质储存电荷能力的,是介质的特性参。 介电系数是衡量介质极化行为,或该电介质储存电荷能力的重要参数,通常又叫介电常数或电容率。ε=1.44Ch/D2 对于电子陶瓷来说是一个非常重要的参数,根据用途的不同,对瓷料的介电系数要求不同.如装置瓷、电阻瓷、电真空瓷要求介电系数为 2~12这一范围内,如介电系数值较大则会造成线路的分布电容太大,以至影响线路的参数。 陶瓷介质材料在电场作用下能储存电荷,但同时总是或多或少把一部分电能转变成热能,即瓷体要发热而消耗能量。电介质在电场作用下,单位时间内因发热而消耗的电能叫做介质损耗,用P来代表。 在直流电场作用下介质损耗仅由电导引起,此时介质中电场能量的损耗(损耗功率)为P=U2/R=GU2设介质两极板重合的面积为S(cm2),介质厚度为h(cm),则单位体积中的介质损耗称为介质损耗率。 介质损耗率的单位为(w/cm2),在一定的直流电插强度下,介质损耗率取决于电导率或电阻率的大小。 在交变电场下,除了电导(漏导)损耗外,还有周期性变化的极化过程存在,这种极化过程需要克服阻力而引起损耗,因此介质损耗还与介质内的极化过程有关。 交流下介质损耗可利用有损耗介质电容器的等效电路来分析研究,即用一个理想电容器(不产生损耗的电容器)和一个理想的电阻来等效描述介质在交流电压下的损耗情况。 无损耗电容器的电流和电压的相位差为900,而有损耗电容器的电流与电压的相位差则小于900,减小的角δ称为损耗角。tagδ=Pa/Pc 无线电陶瓷的损耗角一般都很小,小于10。 二、实验设备 一、仪器用途: 用于电介质(无机、有机)材料介电常数ε、介电损耗tgδ、交流电阻R、电感L、品质因数Q值的测量。金属及磁性材料电感l的测量。铁电压电材料等效阻抗Z及导纳G的测量。可以测量介电常数和损耗随频率的变化等。

常见物质介电常数汇总

Sir-20说明书普通材料的介电值和术语集材料介电值速度毫米/纳秒空气 1 300 水淡81 33 水咸81 33 极地雪 1.4 - 3 194 - 252 极地冰 3 - 3.15 168 温带冰 3.2 167 纯冰 3.2 167 淡水湖冰 4 150 海冰 2.5 - 8 78 - 157 永冻土 1 - 8 106 - 300 沿岸砂干燥10 95 砂干燥 3 - 6 120 - 170 砂湿的25 - 30 55 - 60 粉沙湿的10 95 粘土湿8 - 15 86 - 110 粘土土壤干 3 173 沼泽12 86 农业耕地15 77 畜牧土地13 83 土壤平均16 75 花岗岩 5 - 8 106 - 120 石灰岩7 - 9 100 - 113 白云岩 6.8 - 8 106 - 115 玄武岩湿8 106 泥岩湿7 113 砂岩湿 6 112 煤 4 - 5 134 - 150 石英 4.3 145 混凝土 6 - 8 55 - 112 沥青 3 - 5 134 - 173 聚氯乙烯pvc 3 173

常见物质的相对介电常数值和电磁波传播速度(RIS-K2说明书)

------------------《探地雷达方法与应用》(李大心)

2007第二期勘察科学与技术

电磁波在部分常见介质中的传播参数 (The propagation parameters of the electromagnetic wave in the medium) 地球表面大部分无水的物质(如干燥的土壤和岩石等)的介电常数,实部一般介于1.7-6之间,水的介电常数一般为81,虚部很小,一般可以忽略不计。岩石和土壤的介电常数与其含水量几乎呈线形关系增长,且与水的介电常数特性相同。所以天然材料的电学特性的变化,一般都是由于含水量的变化所致。对于岩石和土壤含水量和介电常数的关系国内外进行了详细研究(P.Hoekstra, 1974; J.E.Hipp,1 974;J .L.Davis,1 976;G A.Poe,1 971;J .R.Wang,1 977;E .G.巧okue tal ,1 977)。在实验室内大量测量了不同粒度的土壤一水混合物介电常数,考虑到束缚水和游离水,提出了经验土壤介电常数混合模型(J.R.Wang, 1985)。实验室内用开路探头技术和自由空间天线技术测量干燥岩石的介电常数(F.TUlaby, 1990)。国内肖金凯等人(1984, 1988)测量了大量的岩石和土壤的介电常数,王湘云、郭华东(1999)研究了三大岩类中所含的矿物对其介电常数的影响。研究表明,土壤中

相关文档
相关文档 最新文档