文档库 最新最全的文档下载
当前位置:文档库 › 复数的向量表示

复数的向量表示

复数的向量表示
复数的向量表示

教学目标

(1)掌握向量的有关概念:向量及其表示法、向量的模、向量的相等、零向量;

(2)理解并掌握复数集、复平面内的点的集合、复平面内以原点为起点的向量集合之间的一一对应关系;

(3)掌握复数的模的定义及其几何意义;

(4)通过学习复数的向量表示,培养学生的数形结合的数学思想;

(5)通过本节内容的学习,培养学生的观察能力、分析能力,帮助学生逐步形成科学的思维习惯和方法.

教学建议

一、知识结构

本节内容首先从物理中所遇到的一些矢量出发引出向量的概念,介绍了向量及其表示法、向量的模、向量的相等、零向量的概念,接着介绍了复数集与复平面内以原点为起点的向量集合之间的一一对应关系,指出了复数的模的定义及其计算公式.

二、重点、难点分析

本节的重点是复数与复平面的向量的一一对应关系的理解;难点是复数模的概念.复数可以用向量表示,二者的对应关系为什么只能说复数集与以原点为起点的向量的集合一一对应关系,而不能说与复平面内的向量一一对应,对这一点的理解要加以重视.在复数向量的表示中,从复数集与复平面内的点以及以原点为起点的向量之间的一一对应关系是本节教学的难点.复数模的概念是一个难点,首先要理解复数的绝对值与实数绝对值定义的一致性质,其次要理解它的几何意义是表示向量的长度,也就是复平面上的点到原点的距离.

三、教学建议

1.在学习新课之前一定要复习旧知识,包括实数的绝对值及几何意义,复数的有关概念、现行高中物理课本(https://www.wendangku.net/doc/5318077199.html,)中的有关矢量知识等,特别是对于基础较差的学生,这一环节不可忽视.

2.理解并掌握复数集、复平面内的点集、复平面内以原点为起点的向量集合三者之间的关系

如图所示,建立复平面以后,复数与复平

面内的点形成—一对应关系,而点又与复平

面的向量构成—一对应关系.因此,复数集

与复平面的以为起点,以为终点的向

量集形成—一对应关系.因此,我们常把复数

说成点Z或说成向量.点、向量是复数

的另外两种表示形式,它们都是复数的几何表示.

相等的向量对应的是同一个复数,复平面内与向量相等的向量有无穷多个,所以复数集不能与复平面上所有的向量相成—一对应关系.复数集只能与复平面上以原点为起点的向量集合构成—一对应关系.

2.

这种对应关系的建立,为我们用解析几何方法解决复数问题,或用复数方法解决几何问题创造了条件.

3.向量的模,又叫向量的绝对值,也就是其有向线段的长度.它的计算公式是

,当实部为零时,根据上面复数的模的公式与以前关于实数绝对值及算术平方根的规定一致.这些内容必须使学生在理解的基础上牢固地掌握.

4.讲解教材第182页上例2的第(1)小题建议.在讲解教材第182页上例2的第(1)小题时.如果结合提问的图形,可以帮助学生正确理解教材中的“圆”是指曲线而不是指圆面(曲线所包围的平面部分).对于倒2的第(2)小题的图形,画图时周界(两个同心圆)都应画成虚线.

5.讲解复数的模.讲复数的模的定义和计算公式时,要注意与向量的有关知识联系,结合复数与复平面内以原点为起点,以复数所对应的点为终点的向量之间的一一对应关系,使学生在理解的基础上记忆。向量的模,又叫做向量的绝对值,也就是有向线段OZ的长度.它也叫做复数的模或绝对值.它的计算公式是.

教学设计示例

复数的向量表示

教学目的

1掌握复数的向量表示,复数模的概念及求法,复数模的几何意义.

2 通过数形结合研究复数.

3培养学生辩证唯物主义思想.

重点难点

复数向量的表示及复数模的概念.

教学学具

投影仪

教学过程

1复习提问:向量的概念;模;复平面.

2新课:

一、复数的向量表示:

在复平面内以原点为起点,点Z(a,b)为终点的向量OZ,由点Z(a,b)唯一确定.

因此复平面内的点集与(https://www.wendangku.net/doc/5318077199.html,)复数集C之间存在一一对应关系,而复平面内的点集与以原点为起点的向量一一对应.

常把复数z=a+bi说成点Z(a,b)或说成向量OZ,并规定相等向量表示同一复数.

二、复数的模

向量OZ的模(即有向线段OZ的长度)叫做复数z=a+bi的模(或绝对值)记作|Z|或|a +bi|

|Z|=|a+bi|=a+b

例1 求复数z1=3+4i及z2=-1+2i的模,并比较它们的大小.

解:∵|Z

1|2=32+42=25 |Z

2

|2=(-1)2+22=5

∴|Z

1|>|Z

2

|

练习:1已知z

1=1+3i z

2

=-2i Z

3

=4 Z

4

=-1+2i

⑴在复平面内,描出表示这些向量的点,画出向量.

⑵计算它们的模.

三、复数模的几何意义

复数Z=a+bi,当b=0时z∈R |Z|=|a|即a在实数意义上的绝对值复数模可看作点Z(a,b)到原点的距离.

例2 设Z∈C满足下列条件的点Z的集合是什么图形?

⑴|Z|=4 ⑵2≤|Z|<4

解:(略)

练习:⑴模等于4的虚数在复平面内的点集.

⑵比较复数z

1=-5+12i z

2

=―6―6i的模的大小.

⑶已知:|Z|=|x+yi|=1 求表示复数x+yi的点的轨迹.教学后记:

板书设计:

一、复数的向量表示:三、复数模的几何意义

二、复数的模例2

例1

探究活动

已知要使,还要增加什么条件?

解:要使,即由此可知,点

到两个定点和的距离之和为6,如把看成动点,则它的轨迹是椭圆.

因此,所要增加的条件是:点应满足条件.

说明此题是属于(https://www.wendangku.net/doc/5318077199.html,)缺少条件的探索性问题,解决这类问题的一般做法是从结论出发,并采用逆推的方法得出终结的结论,便理所求的条件.

高中数学讲义 第四章 平面向量与复数(超级详细)

高中数学复习讲义第四章平面向量与复数 【知识图解】 Ⅰ.平面向量知识结构表 Ⅱ.复数的知识结构表 【方法点拨】 由于向量融形、数于一体,具有几何形式与代数形式的“双重身份”,使它成为了中学数学知识的一个重要交汇点,成为联系众多知识内容的媒介。所以,向量成为了“在知识网络交汇处设计试题”的很好载体。从高考新课程卷来看,对向量的考查力度在逐年加大,除了直接考查平面向量外,将向量与解析几何、向量与三角等内容相结合,在知识交汇点处命题,既是当今高考的热点,又是重点。 复习巩固相关的平面向量知识,既要注重回顾和梳理基础知识,又要注意平面向量与其他知识的综合运用,渗透用向量解决问题的思想方法,从而提高分析问题与综合运用知识解决问题的能力,站在新的高度来认识和理解向量。 1.向量是具有大小和和方向的量,具有“数”和“形”的特点,向量是数形结合的桥梁,在处理向量问 题时注意用数形结合思想的应用. 2.平面向量基本定理是处理向量问题的基础,也是平面向量坐标表示的基础,它表明同一平面内任意向 量都可以表示为其他两个不共线向量的线性组合. 3.向量的坐标表示实际上是向量的代数形式,引入坐标表示,可以把几何问题转化为代数问题解决. 4.要了解向量的工具作用,熟悉利用向量只是解决平面几何及解析几何中的简单问题的方法.

第1课 向量的概念及基本运算 【考点导读】 1. 理解平面向量和向量相等的含义,理解向量的几何表示. 2. 掌握向量的加法、减法、数乘的运算,并理解其几何意义. 3. 了解平面向量基本定理及其意义. 【基础练习】 1.出下列命题:①若=a b ,则=a b ;②若A 、B 、C 、D 是不共线的四点,则DC AB =是四边形为平行四边形的充要条件;③若,==a b b c ,则=a c ;④=a b 的充要条件是=a b 且//a b ;⑤若//a b , //b c ,则//a c 。其中,正确命题材的序号是②③ 2. 化简AC -u u u r BD +u u u r CD -u u u r AB u u u r 得0 3.在四边形ABCD 中,=a +2b ,BC =-4a -b ,CD =-5a -3b ,其中a 、b 不共线,则四边形ABCD 为梯形 4.如图,设点P 、Q 是线段AB 的三等分点, 若OA u u u r =a ,OB u u u r =b ,则OP u u u r =21 33 +a b , OQ u u u r =12 33+a b (用a 、b 表示) 【范例导析】 例1 .已知任意四边形ABCD 的边AD 和BC 的中点分别为E 、F , 求证:2AB DC EF +=u u u r u u u r u u u r . 分析:构造三角形,利用向量的三角形法则证明. 证明:如图,连接EB 和EC , 由EA AB EB +=u u u r u u u r u u u r 和EF FB EB +=u u u r u u u r u u u r 可得,EA AB EF FB +=+u u u r u u u r u u u r u u u r (1) 由ED DC EC +=u u u r u u u r u u u r 和EF FC EC +=u u u r u u u r u u u r 可得,ED DC EF FC +=+u u u r u u u r u u u r u u u r (2) (1)+(2)得, 2EA ED AB DC EF FB FC +++=++u u u r u u u r u u u r u u u r u u u r u u u r u u u r (3) ∵E 、F 分别为AD 和BC 的中点,∴0EA ED +=u u u r u u u r r ,0FB FC +=u u u r u u u r r , 代入(3)式得,2AB DC EF +=u u u r u u u r u u u r 点拨:运用向量加减法解决几何问题时,需要发现或构造三角形或平行四边形. 例1

复数的向量表示(一) 教案示例

复数的向量表示(一)·教案示例 目的要求 1.掌握复数的几何表示法,理解复平面、实轴、虚轴等概念的意义. 2.理解共轭复数的概念,了解共轭复数的几个简单性质. 内容分析 1.如图5-1,复数的几何表示就是指用复平面内的点Z(a,b)来表示复数z=a+bi.其中复数z=a+bi中的z,书写时用小写,复平面内的点Z(a,b)中的Z,书写时用大写. 建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴.复平面除了是用来表示复数的平面这一特点之外,其他与直角坐标系是一样的.比如它也有四个象限,在此平面内也可研究曲线方程、曲线性质等. 因为任何一个复数z=a+bi,都是由一个有序实数对(a,b)唯一确定,所以复数集与复平面内所有的点所成的集合是一一对应的.比如点(a,0)与实数a对应,点(0,b) 与纯虚数bi对应,点(a,b)与复数a+bi对应. 2.当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数.共轭复数有许多有用的性质,随着后续学习,我们会逐步体会到应用这些性质来解题的优越性. 由共轭复数的定义,我们可以得到: (4)互为共轭复数的两个复数在复平面内对应的点关于实轴对称. 3.本课补充了三道例题.例1是为巩固共轭复数和复数相等的定义等知识而设计的.例2涉及复数的几何表示及解析几何等有关知识,其难点是解一元二次不等式组.估计部分学生会有些困难,教学中,教师要根据实际情况对学生进行启发和指导.例3涉及共轭复数的性质及解析几何中曲线与方程等有关知识,解题的关键是将问题化归成学生熟悉的问题——解析几何中动点轨迹问题. 教学过程 1.复习提问 (1)虚数单位i的两个规定的内容是什么? (2)填空: 复数z的代数形式是________;当________时,z为实数;当________时,z为虚数;当________时,z为纯虚数;z的实部为________;虚部为________.

复数与向量的关系

重视复平面上复数与向量的联系作用 平面向量与复数是高中数学的重要内容,联系紧密,联系是在复平面进行的。随着知识的发展,相互对应相互促进是联系的主要体现。复数中的概念、运算等在向量中可以作出几何解释;向量的运算,可以对应有关的复数运算.复数与向量的这种联系,只要我们需要,可以将它们组合起来,在计算推理中发挥它们的联系作用,将是一件高效快乐的事情. 一 复数商与内积的联系 复数运算,向量运算之间的许多联系,在现有课本里是可以学习到的,下面我们来看复数商与内积的联系. 例1 复数z 1=a 1+b 1i, z 2=a 2+b 2i ,它们的三角式分别为z 1=|z 1|(cos θ1+isin θ1), z 2=|z 2|(cos θ2+isin θ2),对应的向量分别是1oz =(a 1,b 1)、2oz =(a 2,b 2). 然后复数作商: 代数式作商: 21z z =2221122121||)()(z i b a b a b b a a -++;-------------(1) 三角式作商: 21z z =| || |21z z [cos(θ1-θ2)+isin(θ1-θ2)],------(2) 比较(1)(2)式,可得 ||||21z z [cos(θ1-θ2)]=222121||z b b a a +, ……(3) ||||21z z [sin(θ1-θ2)]=222112| |z b a b a -………(4) 则从中可得下列变式: (1) 复数对应向量间的夹角余弦公式: cos(θ1-θ2| |||212121oz oz ? ,( 我們总可以适当选择θ1、θ2的主值范围,使得|θ 1-θ2 |∈),0[π,所以1oz 与2oz 的夹角就是|θ1-θ2|). (2) 向量内积: 1oz ·2oz =a 1a 2+b 1b 2=|1oz |·|oz 2|cos(θ1-θ2). 若对(4)取绝对值得到:|1oz ×2oz |=|a 1b 2 -a 2b 1|=|1|oz |·2|oz |sin(θ1-θ2)|, 这是空间xoy 平面上向量)0,,(),0,,(2121b b a a ==叉积的绝对值,是以线段oz 1、oz 2为邻边的平行四边形的面积公式. 复数商运算式中,隐含着向量间的夹角公式,向量的内积,平行四边形面积的公式. 若复数代数式i y x z i y x z 222111,-=+=的三角式分别是)sin (cos 1111θθi r z +=,

复数的向量表示

复数的向量表示 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 教学目标 掌握向量的有关概念:向量及其表示法、向量的模、向量的相等、零向量; 理解并掌握复数集、复平面内的点的集合、复平面内以原点为起点的向量集合之间的一一对应关系; 掌握复数的模的定义及其几何意义; 通过学习复数的向量表示,培养学生的数形结合的数学思想; 通过本节内容的学习,培养学生的观察能力、分析能力,帮助学生逐步形成科学的思维习惯和方法. 教学建议 一、知识结构

本节内容首先从物理中所遇到的一些矢量出发引出向量的概念,介绍了向量及其表示法、向量的模、向量的相等、零向量的概念,接着介绍了复数集与复平面内以原点为起点的向量集合之间的一一对应关系,指出了复数的模的定义及其计算公式. 二、重点、难点分析 本节的重点是复数与复平面的向量的一一对应关系的理解;难点是复数模的概念.复数可以用向量表示,二者的对应关系为什么只能说复数集与以原点为起点的向量的集合一一对应关系,而不能说与复平面内的向量一一对应,对这一点的理解要加以重视.在复数向量的表示中,从复数集与复平面内的点以及以原点为起点的向量之间的一一对应关系是本节教学的难点.复数模的概念是一个难点,首先要理解复数的绝对值与实数绝对值定义的一致性质,其次要理解它的几何意义是表示向量的长度,也就是复平面上的点到原点的距离.

三、教学建议 1.在学习新课之前一定要复习旧知识,包括实数的绝对值及几何意义,复数的有关概念、现行高中物理课本中的有关矢量知识等,特别是对于基础较差的学生,这一环节不可忽视. 2.理解并掌握复数集、复平面内的点集、复平面内以原点为起点的向量集合三者之间的关系 如图所示,建立复平面以后,复数与复平面内的点形成—一对应关系,而点又与复平面的向量构成—一对应关系.因此,复数集与复平面的以为起点,以为终点的向量集形成—一对应关系.因此,我们常把复数说成点Z或说成向量.点、向量是复数的另外两种表示形式,它们都是复数的几何表示. 相等的向量对应的是同一个复数,复平面内与向量相等的向量有无穷多个,所以复数集不能与复平面上所有的向量相成—一对应关系.复数集只能与

复数的向量表示数学教案

复数的向量表示数学教案 教学目标 (1)掌握向量的有关概念:向量及其表示法、向量的模、向量的相等、零向量; (2)理解并掌握复数集、复平面内的点的集合、复平面内以原点为起点的向量集合之间的一一对应关系; (3)掌握复数的模的定义及其几何意义; (4)通过学习复数的向量表示,培养学生的数形结合的数学思想; (5)通过本节内容的学习,培养学生的观察能力、分析能力,帮助学生逐步形成科学的思维习惯和方法. 教学建议 一、知识结构 本节内容首先从物理中所遇到的一些矢量出发引出向量的概念,介绍了向量及其表示法、向量的模、向量的相等、零向量的概念,接着介绍了复数集与复平面内以原点为起点的向量集合之间的一一对应关系,指出了复数的模的定义及其计算公式. 二、重点、难点分析 本节的重点是复数与复平面的向量的一一对应关系的理解;难点是复数模的概念.复数可以用向量表示,二者的对应关系为什么只能说复数集与以原点为起点的向量的集合一一对应关系,而不能说与复平面内的向量一一对应,对这一点的理解要加以重视.在复数向量的表示中,从复数集与复平面内的点以及以原点为起点的向量之间的一一对应关系是本节教学的难点.复数模的概念是一个难点,首先要理解复数的绝对值与实数绝对值定义的一致性质,其次要理解它的几何意义是表示向量的长度,也就是复平面上的点到原点的距离. 三、教学建议 1.在学习新课之前一定要复习旧知识,包括实数的绝对值及几何意义,复数的有关概念、现行高中物理课本中的有关矢量知识等,特别是对于基础较差的学生,这一环节不可忽视. 2.理解并掌握复数集、复平面内的点集、复平面内以原点为起点的向量集合三者之间的关系 如图所示,建立复平面以后,复数与复平面内的点形成―一对应关系,而点又与复平面的向量构成―一对应关系.因此,复数集与复平面的以为起点,以为终点的向量集形

复数的各类表达形式

复数的各类表达形式 一、代数形式 表示形式:表示一个复数 复数有多种表示形式,常用形式z=a+bi 叫做代数形式。 二、几何形式 点的表示形式:表示复平满的一个点 在直角坐标系中,以x为实轴,y为虚轴,O为原点形成的坐标系叫做复平面,这样所有复数都可以复平面上的点表示被唯一确定。 复数z=a+bi 用复平面上的点z(a,b )表示。这种形式使复数的问题可以借助图形来研究。也可反过来用复数的理论解决一些几何问题。 三、三角形式 表示形式 复数z=a+bi化为三角形式,z=r(cosθ+sinθi)。式中r=∣z∣=√(a^2+b^2),是复数的模(即绝对值);θ是以x轴为始边,射线OZ为终边的角,叫做复数的辐角,记作argz,即argz=θ=arctan(b/a)。这种形式便于作复数的乘、除、乘方、开方运算。 四、指数形式 表示形式 将复数的三角形式z=r( cosθ+isinθ)中的cosθ+isinθ换为exp(iθ),复数就表为指数形 式z=rexp (iθ) 。

向量 在数学与物理中,既有大小又有方向的量叫做向量(亦称矢量),在数学中与之相对的是数量,在物理中与之相对的是标量。 向量的运算法则 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 OB+OA=OC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y)b=(x',y') 则a-b=(x-x',y-y'). 如图:c=a-b 以b的结束为起点,a的结束为终点。

平面向量与复数

平面向量与复数 [A 组——“12+4”限时提速练] 一、选择题 1.(2016·全国乙卷)设(1+2i)(a +i)的实部与虚部相等,其中a 为实数,则a =( ) A .-3 B .-2 C .2 D .3 解析:选A 由题意知(1+2i)(a +i)=a -2+(1+2a )i ,则a -2=1+2a ,解得a =-3,故选A . 2.(2016·全国丙卷)若z =4+3i ,则z |z | =( ) A .1 B .-1 C .45+35 i D .45-35 i 解析:选D ∵z =4+3i ,∴z =4-3i ,|z |=42+32=5, ∴z |z |=4-3i 5=45-35i. 3.(2016·武汉调研)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内的任意一点,则OA ―→+OB ―→+OC ―→+OD ―→ 等于( ) A .OM ―→ B .2OM ―→ C .3OM ―→ D .4OM ―→ 解析:选D 因为M 是平行四边形ABCD 对角线AC ,BD 的交点,所以OA ―→+OC ―→ =2OM ―→,OB ―→+OD ―→=2OM ―→,所以OA ―→+OB ―→ +OC ―→+OD ―→=4OM ―→ ,故选D . 4.(2016·全国丙卷)已知向量BA ―→=????12,32,BC ― →=????32,12,则∠ABC =( ) A .30° B .45° C .60° D .120° 解析:选A 因为BA ―→=????12,32,BC ― →= ????32,12, 所以BA ―→·BC ―→ =34+34=32 .

复数与平面向量

一.复数小题 (一)命题特点和预测:7年7考,每年1题,主要考查复数的实部、虚部、共轭复数、纯虚数等概念、复数的加减乘除运算、复数的摸、复数相等的充要条件等知识,有时与简易逻辑结合,难度为基础题,18年仍将继续考查复数的有关概念与运算,难度仍为送分题. (二)历年试题比较: :若复数满足,则 :若复数满足,则 :若复数满足,则 :若复数,则. ... )设是实数,则 满足= ) ( C. ..

下面是关于复数 的四个命题: 复数 .-. 【解析与点睛】 (2017年)【解析】令 ,则由得,所以, 故正确; 当时,因为 ,而 知,故不正确; 当时,满足 ,但 ,故 不正确; 对于 ,因为实数的共轭复数是它本身,也属于实数,故 正确,故选B. (2016年)【解析】因为 所以 故选 B.

(三)命题专家押题 已知复数满足: 已知为虚数单位,复数的虚部为,则实数( B. C. D. ,则 已知复数满足是的共轭复数,则 若复数满足则其共轭复数 下面是关于复数的四个命题::;:;: 的共轭复数为的虚部为,其中真命题为( D. , 在复平面内对应的点关于轴对称,且,则复数复数

D. 已知复数(为虚数单位)给出下列命题:① ;② 的虚部为. C. 已知复数满足 为虚数单位),则 __________【详细解析】 1.【答案】C 4.【答案】C 【解析】由题意得,∴,∴ .选C . 5.【答案】A 【解析】∵=1﹣i ,∴z= ,∴,则在复平面内对应的

点的坐标为(),位于第一象限,故选:A. 6.【答案】C 【解析】因为的虚部为,所以是真命题,故选C. 7.【答案】D 【解析】由题意可得,,所以,对应点坐标(0,-1),选D. 8.【答案】C 二.平面向量小题 (一)命题特点和预测:分析近7年的高考题发现,7年7考,每年1题,主要考查平面向量的线性运算、平面向基本定理、平面向量向量数量积及利用数量积处理垂直、夹角和长度问题,多数为基础题,个别年份以三角形、四边形、梯形、圆等平面图形为载体,考查平面向量基本定理与平面向量数量积及其应用,难度为中档难度,18年高考在考查知识点方面、题型、难度方面仍将保持稳定,可能适度创新. (二)历年试题比较:

【高3数学】12-复数的向量表示及复数的三角形式

复数的向量表示及复数的三角形式 基础概念 一、基础知识概述 由于解方程的需要,我们引进了复数和及其四则运算,并建立了复数集C 和复平面内所有的点构成的集合之间的一一对立,我们还学过向量及其运算,在些基础上,我们现在一起来学习复数的向量表示、复数的三角形式及其运算、复数的指数形式、复数的运算的几何意义. 二、重点知识归纳及讲解 1、复数的向量表示: 复数集C 与复平面内的向量集合OZ (O 为原点)一一对应. 说明: (1)零向量表示复数0,相等的向量表示同一个复数; (2)向量OZ 的模r 就是复数bi a Z +=(a 、R b ∈)的模,即2 2||||b a r bi a Z += =+=. 2、复数的三角形式及运算: (1)复数的幅角:设复数bi a Z +=对应向量OZ ,以x 轴的正半轴为始边,向量OZ 所在的射线(起点为O )为终边的角θ,叫做复数Z 的辐角,记作ArgZ ,其中适合πθ20<≤的辐角θ的值,叫做辐角的主值,记作Z arg . 说明: 不等于零的复数Z 的辐角有无限多个值,这些值中的任意两个相差π2的整数倍. (2)复数的三角形式:)sin (cos θθi r +叫做复数bi a Z +=的三角形式,其中02 2 ≥+= b a r ,r a = θcos ,r b = θsin . 说明: 任何一个复数bi a Z +=均可表示成)sin (cos θθi r +的形式.其中r 为Z 的模,θ为Z 的一个辐角. (3)复数的三角形式的运算: 设)sin (cos θθi r Z +=,)sin (cos 1111θθi r Z +=,)sin (cos 2222θθi r Z +=.则 1)乘法:)]sin()[cos(21212121θθθθ+++=?i r r Z Z ;

平面向量与复数汇总

第四章平面向量与复数 【知识图解】 Ⅰ.平面向量知识结构表 Ⅱ.复数的知识结构表 【方法点拨】 由于向量融形、数于一体,具有几何形式与代数形式的“双重身份”,使它成为了中学数学知识的一个重要交汇点,成为联系众多知识内容的媒介。所以,向量成为了“在知识网络交汇处设计试题”的很好载体。从高考新课程卷来看,对向量的考查力度在逐年加大,除了直接考查平面向量外,将向量与解析几何、向量与三角等内容相结合,在知识交汇点处命题,既是当今高考的热点,又是重点。 复习巩固相关的平面向量知识,既要注重回顾和梳理基础知识,又要注意平面向量与其他知识的综合运用,渗透用向量解决问题的思想方法,从而提高分析问题与综合运用知识解决问题的能力,站在新的高度来认识和理解向量。 1.向量是具有大小和和方向的量,具有“数”和“形”的特点,向量是数形结合的桥梁,在处理向量问 题时注意用数形结合思想的应用. 2.平面向量基本定理是处理向量问题的基础,也是平面向量坐标表示的基础,它表明同一平面内任意向 量都可以表示为其他两个不共线向量的线性组合. 3.向量的坐标表示实际上是向量的代数形式,引入坐标表示,可以把几何问题转化为代数问题解决. 4.要了解向量的工具作用,熟悉利用向量只是解决平面几何及解析几何中的简单问题的方法. 第1课向量的概念及基本运算 【考点导读】 1.理解平面向量和向量相等的含义,理解向量的几何表示. 2.掌握向量的加法、减法、数乘的运算,并理解其几何意义.

3. 了解平面向量基本定理及其意义. 【基础练习】 1.出下列命题:①若=a b ,则=a b ;②若A 、B 、C 、D 是不共线的四点,则=是四边形为平行四边形的充要条件;③若,==a b b c ,则=a c ;④=a b 的充要条件是=a b 且//a b ;⑤若//a b , //b c ,则//a c 。其中,正确命题材的序号是②③ 2. 化简AC - BD + CD - AB 得0 3.在四边形ABCD 中,=a +2b ,=-4a -b ,=-5a -3b ,其中a 、b 不共线,则四边形ABCD 为梯形 4.如图,设点P 、Q 是线段AB 的三等分点, 若OA =a ,OB =b ,则OP =21 33 +a b , OQ =12 33+a b (用a 、b 表示) 5.设12,e e 是不共线的向量,已知向量121212AB 2,CB 3,CD 2=+=+=- e ke e e e e ,若A,B,D 三点共线,求k 的值为8k =- 【范例导析】 例1. 如图,ABCD 中,,E F 分别是,BC DC 的中点,G 为交点,若AB =a ,=b ,试以a 、b 为基底表示DE 、BF 、CG 分析:本题可以利用向量的基本运算解决. 解:11 22 =-=+-=+-=- DE AE AD AB BE AD a b b a b 1122 =-=+-=+-=- BF AF AB AD DF AB b a a b a G 是△CBD 的重心,111 ()333 ==-=-+ CG CA AC a b 点拨: 利用一直向量表示未知向量的依据是平面向量基本定理,在解题中,应尽可能地转化到平行四边形 或三角形中,结合向量的加减法、数乘运算解决. 例2.已知任意四边形ABCD 的边AD 和BC 的中点分别为E 、F , 求证:2AB DC EF += . 分析:构造三角形,利用向量的三角形法则证明. 证明:如图,连接EB 和EC , 由EA AB EB += 和EF FB EB += 可得,EA AB EF FB +=+ (1) 例1 例2

平面向量、复数(解析版)

平面向量、复数 【命题趋势】复数及其运算时高考的一个必考点,内容比较简单,主要是考查共轭复数,复平面以及复数之间的一些运算.一般出现在选择题的第一或者是第二题.平面向量也是高考的一个重要考点,主要涉及到向量的代数运算以及线性运算.1+1模式.两者结合的综合性题目也是高考填空第三题的一个重要方向.本专题也是学生必回的知识点.通过选取了高考出现频率较高的复数、向量知识点采用不同的题型加以训练,题型与高考题型相似并猜测一部分题型,希望通过本专题的学习,学生能够彻底掌握复数与平面向量. 【知识点分析以及满分技巧】 复数一般考查共轭复数以及复平面的意义比较多,中间夹杂着复数之间的运算法则,这类题目相对比较简单,属于送分题目.牵涉到知识点也是比较少.主要注重基本运算.特别会求复数类题目可采取答案带入式运算. 平面向量代数运算类题目一般采用基本运算法则,只要简单记住向量的坐标运算以及模长运算即可. 平面向量的线性运算一般采用三角形法则,应掌握一些常识性结论,如三点共线问题,重心问题等,在解决此类题目中记住三角形法则核心即可. 平面向量综合性的题目一般是代数运算与线性运算相结合.此类题目简便解法是采用数形结合的方式去求解. 【考查题型】选择题,填空 【限时检测】(建议用时:45分钟) 1.(2018·河北衡水中学高考模拟(理))已知i是虚数单位,则复数 37i z i + =的实部和 虚部分别为 A.7,3i -B.7-,3C.7-,3i D.7,3-【答案】D 【解析】先化简复数z,再确定复数z的实部和虚部.

【详解】 由题得2373737 731 i i i z i i i +--= ===--,所以复数z 的实部和虚部分别为7和-3. 故答案为:D 【名师点睛】 (1)本题主要考查复数的除法运算和复数的实部虚部的概念,意在考查学生对这些知识的掌握水平和计算推理能力.(2) 注意复数(,)z a bi a b R =+∈的实部是a,虚部是“i”的系数b ,不包含“i”,不能写成bi. 2.(2019·河北衡水中学高考模拟(理))已知i 为虚数单位,若复数11ti z i -=+在复平面内对应的点在第四象限,则t 的取值范围为( ) A .[1,1]- B .(1,1)- C .(,1)-∞- D .(1,)+∞ 【答案】B 【解析】 由题()()()()1-ti 1-i 1-ti 1-t 1+t z= ==-i 1+i 1+i 1-i 22 .又对应复平面的点在第四象限,可知110022 t t 且-+>-<,解得11t -<<.故本题答案选B . 3.(2019·河南高三月考(理))若1312i i -+与1 ()2 i a ai -的虚部互为相反数,则实数a 的值为( ) A .2- B .2 C .1- D .1 【答案】D 【解析】分别对两个复数进行四则运算化成复数的标准形式,分别得到得复数的虚部,再相加等于0,从而求得a 的值. 【详解】

高二数学:复数的向量表示(教学实录)

高中数学标准教材 高二数学:复数的向量表示(教 学实录) Mathematics is the door and key to science. Learning mathematics is a very important measure to make yourself rational. 学校:______________________ 班级:______________________ 科目:______________________ 教师:______________________

--- 专业教学设计系列下载即可用 --- 高二数学:复数的向量表示(教学实录) 教学目标 (1)把握向量的有关概念:向量及其表示法、向量的模、向量的 相等、零向量; (2)理解并把握复数集、复平面内的点的集合、复平面内以原点为起点的向量集合之间的一一对应关系; (3)把握复数的模的定义及其几何意义; (4)通过学习复数的向量表示,培养学生的数形结合的数学思想; (5)通过本节内容的学习,培养学生的观察能力、分析能力,帮助学生逐步形成科学的思维习惯和方法. 教学建议

一、知识结构 本节内容首先从物理中所碰到的一些矢量出发引出向量的概念,介绍了向量及其表示法、向量的模、向量的相等、零向量的概念,接着介绍了复数集与复平面内以原点为起点的向量集合之间的一一对应关系,指出了复数的模的定义及其计算公式. 二、重点、难点分析 本节的重点是复数与复平面的向量的一一对应关系的理解;难 点是复数模的概念.复数可以用向量表示,二者的对应关系为什么只能说复数集与以原点为起点的向量的集合一一对应关系,而不能说 与复平面内的向量一一对应,对这一点的理解要加以重视.在复数向量的表示中,从复数集与复平面内的点以及以原点为起点的向量之 间的一一对应关系是本节教学的难点.复数模的概念是一个难点,首先要理解复数的绝对值与实数绝对值定义的一致性质,其次要理解 它的几何意义是表示向量的长度,也就是复平面上的点到原点的距离. 三、教学建议

(2)(教师版)考点专题二_平面向量与复数

考点专题二平面向量与复数(2) 【考情分析】 从近四年高考试卷分析来看,本专题知识理科每年考查 1 —2题,所占分值比例约为4.8%, 难易度以容易题、中等题为主,文科每年考查 1 —2题,所占分值比例约为4.5%,难易度以容易题为主,此知识是高考中的必考容 此知识在近四年常以填空题、选择题、解答题的形式在高考题中出现,主要考查复数的四则运算,复平面等相关知识?复数在高考试卷中的考查形式比较单一 【知识梳理】 [重难点] 1.复数的相等:两个复数乙a bi(a,b R), z2 c di(c,d R),当且仅当a c且 b d时,z i Z2.特别地,当且仅当a b 0时,a bi 0. 2.复数的模:复数Z i a bi (a, b R)的模记作z或a bi ,有 z l a bi b2. 3.共轭复数:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做共轭复数.复数 Z的共轭复数记作乙Z、Z互为共轭复数. 如果Z a bi,Z a bi(a,b R),则有Z R的充要条件是Z Z; Z是纯虚数的充要条件是z z且z 0. 4.复平面 在平面直角坐标系中,可以用点Z(a,b)表示复数Z1 a bi(a,b R),建立直角坐标系来 表示复数的平面叫做复平面,在复平面上,称x、y轴分别为实轴和虚轴,并且复数集C和复平面所有的点构成的集合建立-- 对应关系 5.实系数一元二次方程 实系数一元二次方程在复数集中恒有解,当判别式b2 4ac 0时,实系数一元二次方 程ax2 bx c 0(a,b,c R且a 0)在复数集中有一对互相共轭的虚数根b V4ac b2 . x i. 2a 2a [易错点]

复数与平面向量系

课 题:研究性学习课题:复数与平面向量的联系 教学目的: 1. 理解复数与从原点出发的向量的对应关系 2. 了解复数加减法运算的几何意义 教学重点:复数与从原点出发的向量的对应关系. 教学难点:复数加减法运算的几何意义 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.若(,)A x y ,(0,0)O ,则(),OA x y = 2. 若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=, b a -),(2121y y x x --= 两个向量和与差的坐标分别等于这两个向量相应坐标的和与差3. 若),(11y x A ,),(22y x B ,则()1212,y y x x --= 一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标 即 =-=( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1) 4.复平面、实轴、虚轴:复数z =a +bi (a 、b ∈R )与有序实数对(a ,b )是一一对应关系这是因为对于任何一个复数z =a +bi (a 、b ∈R ),由复数相等的定义可知,可以由一个有序实数对(a ,b )惟一确定,如z =3+2i 可以由有序实数对(3,2)确定,又如z =-2+i 可以由有序实数对(-2,1)来确定;又因为有序实数对(a ,b )与平面直角坐标系中的点是一一对应的,如有序实数对(3,2)它与平面直角坐标系 中的点A ,横坐标为3,纵坐标为2,建立了一一对应的关系 由此可知,复数集与平面直角坐标系中 的点集之间可以建立一一对应的关系. 点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可用点Z (a ,b )表示,这个建立了直角坐标系 来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴 实轴上的点都表示实数 对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所

复数的向量表示教案

复数的向量表示 教学目标 (1)掌握向量的有关概念:向量及其表示法、向量的模、向量的相等、零向量; (2)理解并掌握复数集、复平面内的点的集合、复平面内以原点为起点的向量集合之间的一一对应关系; (3)掌握复数的模的定义及其几何意义; (4)通过学习复数的向量表示,培养学生的数形结合的数学思想; (5)通过本节内容的学习,培养学生的观察能力、分析能力,帮助学生逐步形成科学的思维习惯和方法.教学建议 一、知识结构 本节内容首先从物理中所遇到的一些矢量出发引出向量的概念,介绍了向量及其表示法、向量的模、向量的相等、零向量的概念,接着介绍了复数集与复平面内以原点为起点的向量集合之间的一一对应关系,指出了复数的模的定义及其计算公式. 二、重点、难点分析 本节的重点是复数与复平面的向量的一一对应关系的理解;难点是复数模的概念.复数可以用向量表示,二者的对应关系为什么只能说复数集与以原点为起点的

向量的集合一一对应关系,而不能说与复平面内的向量一一对应,对这一点的理解要加以重视.在复数向量的表示中,从复数集与复平面内的点以及以原点为起点的向量之间的一一对应关系是本节教学的难点.复数模的概念是一个难点,首先要理解复数的绝对值与实数绝对值定义的一致性质,其次要理解它的几何意义是表示向量的长度,也就是复平面上的点到原点的距离. 三、教学建议 1.在学习新课之前一定要复习旧知识,包括实数的绝对值及几何意义,复数的有关概念、现行高中物理课本中的有关矢量知识等,特别是对于基础较差的学生,这一环节不可忽视. 2.理解并掌握复数集、复平面内的点集、复平面内以原点为起点的向量集合三者之间的关系 如图所示,建立复平面以后,复数与复平面内的点形成—一对应关系,而点又与复平面的向量构成—一对应关系.因此,复数集与复平面的以为起点,以为终点的向量集形成—一对应关系.因此,我们常把复数说成点Z或说成向量.点、向量是复数的另外两种表示形式,它们都是复数的几何表示. 相等的向量对应的是同一个复数,复平面内与向量相等的向量有无穷多个,所以复数集不能与复平面上所有

高考数学复数的概念及向量表示

复数的概念及向量表示 一. 教学内容: 复数 数的概念的发展 复数的有关概念 复数的向量表示 二. 重点、难点: 1. 数的概念的发展: 数的概念的产生、发展源自社会实践的需要,且经历了漫长的历程。最早,由于计数的需要,人们建立起了自然数的概念(自然数的全体构成了自然数集N ),为了表示各种具有相反意义的量以及满足记数法的要求,人们又引进了零以及负数。(此时,自然数被看成正整数,而把正整数、零、负整数合并在一起,构成了整数集Z ) 为了解决测量、分配中遇到的把某些量等分的问题,人们又引进了分数,即形如()m n n N m Z Q ∈∈,的数,人们把这样的数连同整数统称为有理数。(有理数的全体构成了有理数集。) 为了解决有些量与量之间的比值不能用分数(即有理数)来表示的矛盾,人们又引进了无理数。例如正方形的对角线与其边长之比为。而易证不是有理数。(反证法)。这样以来,数的概念又得到了发展,原有的有理数与新引进的无理数统称为实数。(而把实数的全集称为实数集) 2122:=R 数的概念的发展远未停止。 为了满足研究方程的需要,(数学的内部需要),人们又引进了一种新的数——虚数。事实上,解方程的需要也是促进数的概念不断发展的重要动力。例如,方程x+5=3在自然数集N 中无解,而在扩充后的整数集Z 中则有解;方程2x=5在整数集Z 中无解,而在扩充后的有理数集Q 中则有解;方程x 2 = 2在有理数集Q 中无解,但在实数集R 中则有解。 新的问题:x 2 + 1 = 0在实数集R 中无解,为解决这个方程有解的问题,人们引进了一个新数i ,(虚数单位),对i 作出如下规定: (1)i 2 = -1;(2)实数与i 可进行四则运算,且进行四则运算时,原有的加法,乘法算律仍然成立。如此以来,就出现了a +bi (a ,b ∈R )的数。人们就把形如a +bi 的数叫做复数。而全体复数构成的集合称为复数集。记作C 。(英文Complex number 的第一个字母) 至此,复数的引入已很好地解决了实数集内一元二次方程无解的矛盾。 2. 复数的有关概念: (1)a +bi (a ,b ∈R )中,a 称为复数的实部,b 称为虚部。(注意:虚部所指的是一个实数,而非bi 。) (2)a +bi (a ,b ∈R )中,若b ≠0,则称数a +bi 为虚数;若b =0,则a bi a R a 0b 02i +=就是实数;而若=且≠,则称这样的数为纯虚数。如,,都是 ∈-1 23i i 纯虚 数,其实部为0。 (3)复数相等:若两个复数的实数与虚部分别相等,则称这两个复数相等。即a ,b ,c ,d

复数与向量的关系

重视复平面上复数与向量得联系作用 平面向量与复数就是高中数学得重要内容,联系紧密,联系就是在复平面进行得。随着知识得发展,相互对应相互促进就是联系得主要体现。复数中得概念、运算等在向量中可以作出几何解释;向量得运算,可以对应有关得复数运算、复数与向量得这种联系,只要我们需要,可以将它们组合起来,在计算推理中发挥它们得联系作用,将就是一件高效快乐得事情、一复数商与内积得联系 复数运算,向量运算之间得许多联系,在现有课本里就是可以学习到得,下面我们来瞧复数商与内积得联系、 例 1 复数z=a+bi,z=a+bi,它们得三角式分别为z=|z|(cosθ+isinθ), z=|z|(cosθ+isinθ),对应得向量分别就是=(a,b)、=(a,b)、 然后复数作商: 代数式作商:=;-------------(1) 三角式作商:=[cos(θ-θ)+isin(θ-θ)],------(2) 比较(1)(2)式,可得 [cos(θ-θ)]=, (3) [sin(θ-θ)]= (4) 则从中可得下列变式: (1)复数对应向量间得夹角余弦公式: cos(θ-θ)= ,(我們总可以适当选择θ、θ得主值范围,使得|θ-θ|∈,所以与得夹角就就是|θ-θ|)、 (2) 向量内积: ·=aa+bb=||·||cos(θ-θ)、 若对(4)取绝对值得到:|×|=|ab-ab|=||·|sin(θ-θ)|,这就是空间平面上向量叉积得绝对值,就是以线段oz、oz为邻边得平行四边形得面积公式、 复数商运算式中,隐含着向量间得夹角公式,向量得内积,平行四边形面积得公式、 若复数代数式得三角式分别就是, 然后,将它们得代数式,三角式分别相乘,比较结果,同样可以得到上面得三个式子、数学中得这种相互包容联系,真就是体现了数学中得统一与谐之美、 二复数向向量表示上得转化联系 利用复数与向量得联系,复数可以向向量表示上得转化,使有些复数得问题转化为向量问题或构造向量图像去处理,借向量之力去解决复数问题、 例2 已知复数z、z得模为1,z+z,求复数、 解:根据题意,设复数对应得向量为,以这两个向量为邻边,边长为1,构作一个平行四边形,并建如图1得直角坐标系、记,对应向量、 ∵对应得复数就是 x∴,∠zoz=60 , ? 本题在解题得思路上借助了复数向向量转化得作用、复数向向量转化就是较常用得思想方法、此题纯粹用代数方法去做,计算量就是较大得、 例3复平面内,已知动点A,B所对应得复数得辐角为定值,分别θ、-θ,,O为原点,ΔAOB得面积就是定值S,求ΔAOB得重心M所对应得复数模得最小值、图2、解:根据题设,设向量对应复数且

向量复数【知识点】

第一节平面向量的概念及其线性运算 一、向量的有关概念 1.向量:既有大小又有方向的量叫向量;向量的大小叫做向量的模. 2.零向量:长度等于0的向量,其方向是任意的. 3.单位向量:长度等于1个单位的向量. 4.平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线. 5.相等向量:长度相等且方向相同的向量. 6.相反向量:长度相等且方向相反的向量. 二、向量的线性运算 三角形法则 平行四边形法则 三角形法则 1.定义:实数λ与向量a的积是一个向量,这种运算叫向量的数乘,记作λa,它的长度与方向规定如下: ①|λa|=|λ||a|; ②当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0. 2.运算律:设λ,μ是两个实数,则: ①λ(μa)=(λμ)a;②(λ+μ)a=λ a+μ a;③λ(a+b)=λa+λb. 四、共线向量定理 向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使得b=λa. 第二节平面向量的基本定理及坐标表示 一、平面向量基本定理及坐标表示 1.平面向量基本定理 如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2. 其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.

2.平面向量的正交分解 把一个向量分解为两个互相垂直的向量,叫做把向量正交分解. 3.平面向量的坐标表示 (1)在平面直角坐标系中,分别取与x 轴,y 轴方向相同的两个单位向量i ,j 作为基底.对于平面内的一个向量a ,有且只有一对实数x ,y ,使a =x i +y j ,把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ),其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标. (2)设=x i +y j ,则向量的坐标(x ,y )就是终点A 的坐标,即若=(x ,y ),则A 点坐标为(x ,y ),反之亦成立.(O 是坐标原点) 二、平面向量坐标运算 1.向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1). 2.向量坐标的求法 (1)若向量的起点是坐标原点,则终点坐标即为向量的坐标. (2)设A (x 1,y 1),B (x 2,y 2),则=(x 2-x 1,y 2-y 1),||=(x 2-x 1)2+(y 2-y 1)2. 三、平面向量共线的坐标表示 设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.若a ∥b ?x 1y 2-x 2y 1=0. 第三节 平面向量的数量积 一、两个向量的夹角 1.定义 已知两个非零向量a 和b ,作=a ,=b ,则∠AOB =θ叫做向量a 与b 的夹角. 2.范围 向量夹角θ的范围是0°≤θ≤180°,a 与b 同向时,夹角θ=0°;a 与b 反向时,夹角θ=180°. 3.向量垂直 如果向量a 与b 的夹角是90°,则a 与b 垂直,记作a ⊥b . 二、平面向量数量积 1.已知两个非零向量a 与b ,则数量|a ||b |·cos θ叫做a 与b 的数量积,记作a ·b ,即a ·b =|a ||b |cos θ,其中θ是a 与b 的夹角. 规定0·a =0. 当a ⊥b 时,θ=90°,这时a ·b =0. 2.a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 三、向量数量积的性质 1.如果e 是单位向量,则a ·e =e ·a . 2.a ⊥b ?a ·b =0. 3.a ·a =|a |2,|a |=a ·a . 4.cos θ=a ·b |a ||b | .(θ为a 与b 的夹角) 5.|a ·b |≤|a ||b |. 四、数量积的运算律 1.交换律:a ·b =b ·a . 2.分配律:(a +b )·c =a ·c +b ·c . 3.对λ∈R ,λ(a ·b )=(λa )·b =a ·(λb ). OA u u u r OA u u u r OA u u u r AB u u u r AB u u u r OA u u u r OB u u u r

相关文档