文档库 最新最全的文档下载
当前位置:文档库 › 上海大学数学分析历年考研真题

上海大学数学分析历年考研真题

上海大学数学分析历年考研真题
上海大学数学分析历年考研真题

上海大学2000年度研究生入学考试试题

数学分析

1、 设

122(1)n n x x nx y n n +++=

+,若lim n n x a →∞=,证明:(1)当a 为有限数时,lim 2

n n a

y →∞=;

(2)当a =+∞时,lim n n y →∞

=+∞.

2、设()f x 在[]0,1上有二阶导数(端点分别指左、右导数),(0)(1)0f f ==,且

[]

0,1min ()1f x =-

证明:[]

0,1max ()8f x ''≥

3、 证明:黎曼函数[]1

, x= (0,,)()0,10,p q p q q q R x ?>?

=???

当为互质整数在上可积当x 为无理数.

4、 证明:1

2210

()

lim (0),t tf x dx f t x π+

-→=+?其中()f x 在[]1,1-上连续.

5、 设()1ln 11n n p a n ?

?=+- ???,讨论级数2

n n a +∞

=∑的收敛性.

6、 设

()f x dx +∞

?

收敛且()f x 在[]0,+∞上单调,证明:0

1

lim ()()h n h f nh f x dx +

+∞

+∞

→==∑?.

7、 计算曲面2

2

2

2

x y z a ++=包含在曲面22

221(0)x y b a a b

+=<≤内的那部分的面积.

8、 将函数()f x x =在[]0,2π上展成Fourier 级数,并计算级数

1

sin k k

k +∞

=∑的值. 上海大学2001年度研究生入学考试试题

数学分析

1、 计算下列极限、导数和积分:

(1) 计算极限1

lim ();x

x x +

→ (2) 计算

2

()()x x f t dt ?=?的导数()x ?',其中()f x 2

,(1)

.1,(1)

t t t t ≤

?=?

+>

? (3) 已知)

211sin x x

'

?=?+?,求积分2011sin I dx x π=+?. (4) 计算()()2222

2

()0x y z t f t xyz dxdydz t ++≤=

>???的导数()f t '(只需写出()f t '的积分表达

式).

2、 设()f x 在[],a b 上连续,在(),a b 上可导,若()()0f a f b >且(

)02

a b

f +=,试证明必存在(),a b ξ∈使得()0f ξ'=. 3、 令(),1y F x y y xe =+-

(1)、证明:111311,0,,;,0,,.2121221212F x x F x x ????????

<∈-

>∈- ? ? ???????????

(2)、证明:对任意的11,1212x ??∈- ???,方程(),0F x y >在13,22y ??

∈ ???

中存在唯一的解()y x . (3)、计算(0)y '和(0)y ''. 4、一致连续和一致收敛性

(1)、函数2

()f x x =在[]0,1上是一致连续的,对2

10ε-=,试确定

0δ>,使得当

1201x x ≤<≤,且12x x δ-<时有3321210x x --<.

(2)、设[]2231

(),0,1,1,2,,2n n x f x x n n x

+=

∈=+证明: ()n f x 在[]0,1上是内闭一致收敛的,

但不是一致收敛的.

5、曲线积分、格林公式和原函数. (1)计算第二型曲线积分()221,2L xdy ydx

I x y π-=

+?其中L 是逐段光滑的简单闭曲线,原点属于

L 围成的内部区域,(L)的定向是逆时针方向.

(2) 设(),p x y ,(),q x y 除原点外是连续的,且有连续的偏导数,若

()(),,0,0p q

x y y x

??=≠??

()

0,L pdy qdx c +=≠?其中(L)的参数方程cos ,(02)sin x t

t y t

π=?≤≤?=? 证明:存在连续可微函数()()(),,,0,0F x y x y ≠,使得

()()2222,,,22F c y F c x

p x y q x y x x y y x y

ππ??=+=-?+?+. 上海大学2002年度研究生入学考试题

数学分析

《数学分析III》期中考试试题及参考答案

数学分析下册期末试题(模拟) 一、填空题(每小题3分,共24分) 1 、重极限 22(,)lim x y →=___________________ 2、设(,,)x yz u x y z e +=,则全微分du =_______________________ 3、设(sin ,)x z f x y y e =+,则 z x ?=?___________________ 4、设L 是以原点为中心,a 为半径的上半圆周,则 2 2()L x y ds +=?________. 5、曲面222 239x y z ++=和2 2 2 3z x y =+所截出的曲线在点(1,1,2)-处的 法平面方程是___________________________. 6 、已知12??Γ= ???32?? Γ-= ??? _____________. 7、改变累次积分的顺序,2 1 20 (,)x dx f x y dy =?? ______________________. 8、第二型曲面积分 S xdydz ydzdx zdxdy ++=??______________,其中S 为 球面2 2 2 1x y z ++=,取外侧. 二、单项选择题(每小题2分,共16分) 1、下列平面点集,不是区域的是( ) (A )2 2 {(,)14}D x y x y =<+≤ (B ){(,)01,22}D x y x y =<≤-≤≤ (C ){(,)01,1}D x y x y x =≤≤≤+ (D ){(,)0}D x y xy => 2、下列论断,正确的是( ) (A )函数(,)f x y 在点00(,)x y 处的两个累次极限都不存在,则该函数在 00(,)x y 处重极限必定不存在.

上海大学数学研究分析历年考研真题

上海大学数学分析历年考研真题

————————————————————————————————作者:————————————————————————————————日期:

上海大学2000年度研究生入学考试试题 数学分析 1、 设 122(1)n n x x nx y n n +++= +L ,若lim n n x a →∞=,证明:(1)当a 为有限数时,lim 2 n n a y →∞=; (2)当a =+∞时,lim n n y →∞ =+∞. 2、设()f x 在[]0,1上有二阶导数(端点分别指左、右导数),(0)(1)0f f ==,且 [] 0,1min ()1f x =- 证明:[] 0,1max ()8f x ''≥ 3、 证明:黎曼函数[]1 , x= (0,,)()0,10,p q p q q q R x ?>? =??? 当为互质整数在上可积当x 为无理数. 4、 证明:1 2210 () lim (0),t tf x dx f t x π+ -→=+?其中()f x 在[]1,1-上连续. 5、 设()1ln 11n n p a n ? ?=+- ???,讨论级数2 n n a +∞ =∑的收敛性. 6、 设 ()f x dx +∞ ? 收敛且()f x 在[]0,+∞上单调,证明:0 1 lim ()()h n h f nh f x dx + +∞ +∞ →==∑?. 7、 计算曲面2 2 2 2 x y z a ++=包含在曲面22 221(0)x y b a a b +=<≤内的那部分的面积. 8、 将函数()f x x =在[]0,2π上展成Fourier 级数,并计算级数 1 sin k k k +∞ =∑的值. 上海大学2001年度研究生入学考试试题 数学分析 1、 计算下列极限、导数和积分: (1) 计算极限1 lim ();x x x + → (2) 计算 2 ()()x x f t dt ?=?的导数()x ?',其中()f x 2 ,(1) .1,(1)t t t t ≤?=? +>? (3) 已知( ) 21 1arctan 2tan 1sin 2 x x ' ??=??+??,求积分2011sin I dx x π=+?.

数学分析试题及答案解析

2014 ---2015学年度第二学期 《数学分析2》A 试卷 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为()C dt t f x a +?( ). 2.若()()x g x f ,为连续函数,则()()()[]()[]????= dx x g dx x f dx x g x f ( ). 3. 若()?+∞a dx x f 绝对收敛,()?+∞a dx x g 条件收敛,则()()?+∞ -a dx x g x f ][必然条件收敛( ). 4. 若()?+∞ 1dx x f 收敛,则必有级数()∑∞=1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ). 6. 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发散 于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到 的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C.可微 D.不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相 等,则( )

A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C. ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D. ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞=--+12111n n n n A.发散 B.绝对收敛 C.条件收敛 D. 不确定 4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞→n n u ,则级数∑ n u 一定收敛; B. 若1lim 1<=+∞→ρn n n u u ,则级数∑n u 一定收敛; C. 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛; D. 若1,1>>?+n n u u N n N ,时有当,则级数∑n u 一定发散; 5.关于幂级数∑n n x a 的说法正确的是( ) A. ∑n n x a 在收敛区间上各点是绝对收敛的; B. ∑n n x a 在收敛域上各点是绝对收敛的; C. ∑n n x a 的和函数在收敛域上各点存在各阶导数; D. ∑n n x a 在收敛域上是绝对并且一致收敛的;

上海大学历年考研真题

2003年传播学理论考研试题 一、解释(3*10=30分) 1.劝服论 2.舆论 3.传播媒介 4.内向传播 5.维模原理 6.知晓权 7.近体 8.沉默的螺旋 9.文化规范论 10.多视觉新闻学 二、简答(5*12=60) 1.传播学包括哪些基本内容? 2.简介传播学4位奠基人的主要理论贡献与论著 3.冷媒介与热媒介 4.简述梁启超的新闻传播思想 5.提高宣传效果应注意的问题 三、论述(60分) 1.联系实际,辨证分析传播的功能(40分) 2.多网络传播的特点及与传统媒体的关系(20分)

2003年传播学研究方法考研试题 一、名词解释(4*10) 1.定量研究 2.经验社会学 3.连续变量 4.抽样 5.名目尺度 6.多因素设计 7.个案研究 8.抽样误差 9.信度 10.相关分析 二、简答题(60分) 1.实地访问的重要类型 2.内容分析的方**原则 3.实验的控制主要应把握的两个方面 三、论述题(50分) 问卷的结构分析 2004年试题 R检验 描述性统计分析 定量

简单随机抽样 内容分析 经济传播 信息污染 文化分层 议程设置 铅版 定量与定性的区别和联系(论述)上大05年传播学理论试题 一、名词解释 1.莱温 2.传播者 3.媒介情景非真实化 4.内向传播 5.新闻 6.文化传播的“维模”原理 7.知晓权 8.集权主义理论 9.申报 二、简答题 1.结构功能理论 2.宣伟伯模式

3.议程设计理论 三、论述题 1.麦克鲁汉的媒介理论 2.陈独秀的新闻思想 2005年传播学研究方法 一、名词解释(8*5) 1.信度、效度 2.内容分析 3.分层抽样 4.个案研究 5.控制实验 6.R检验 7.假设 8.答案的穷尽性 二、简答题(4*15) 1.问卷设计中常见的错误有哪些? 2.定量研究方法的具体步骤并图示 3.科学的研究设计包括哪几项? 4.问题设计的原则 三、论传播学研究的交叉性(50)

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =在点(0,0)处的二次极限与二重极限. 解: 11 (,)f x y y x = +=, 因此二重极限为0.……(4分) 因为011x y x →+ 与011 y y x →+均不存在, 故二次极限均不存 在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(),(,,)0 z xf x y F x y z =+??=?所确定的隐函数,其中f 和F 分别 具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。?解此方程组并整理得 ()()() ()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-= '++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-====。 ……(4 分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 222 2w w w μμν??+=???。 ……(9分) 4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省? ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =+在点(0,0)处的二次极限与二重极限. 解: 11 (,)f x y y x ==+ ,因此二重极限为0.……(4 分) 因为011x y x →+ 与011 y y x →+均不存在, 故二次极限均不存在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(), (,,)0 z xf x y F x y z =+??=?所确定的隐函数,其中f 和F 分别具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。 解此方程组并整理得 ()()() ()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-= '++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-====。 ……(4分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 2222w w w μμν ??+ =???。 ……(9分) ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

上海大学-离散数学2-图部分试题

离散数学图论部分综合练习 一、单项选择题 1.设无向图G 的邻接矩阵为 ??????? ? ??? ?? ???010 1010010000 011100100110 则G 的边数为( ). A .6 B .5 C .4 D .3 2.已知图G 的邻接矩阵为 , 则G 有( ). A .5点,8边 B .6点,7边 C .6点,8边 D .5点,7边 3.设图G =,则下列结论成立的是 ( ). A .deg(V )=2 E B .deg(V )=E C .E v V v 2)deg(=∑∈ D .E v V v =∑∈)deg( 4.图G 如图一所示,以下说法正确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集 5.如图二所示,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集 6.如图三所示,以下说法正确的是 ( ) . ο ο ο ο ο c a b e d ο f 图一 图二

A.{(a, e)}是割边B.{(a, e)}是边割集 C.{(a, e) ,(b, c)}是边割集D.{(d, e)}是边割集 图三 7.设有向图(a)、(b)、(c)与(d)如图四所示,则下列结论成立的是( ). 图四 A.(a)是强连通的B.(b)是强连通的 C.(c)是强连通的D.(d)是强连通的 应该填写:D 8.设完全图K n 有n个结点(n≥2),m条边,当()时,K n 中存在欧拉 回路. A.m为奇数B.n为偶数C.n为奇数D.m为偶数9.设G是连通平面图,有v个结点,e条边,r个面,则r= ( ). A.e-v+2 B.v+e-2 C.e-v-2 D.e+v+2 10.无向图G存在欧拉通路,当且仅当( ). A.G中所有结点的度数全为偶数 B.G中至多有两个奇数度结点 C.G连通且所有结点的度数全为偶数 D.G连通且至多有两个奇数度结点 11.设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G的一棵生成树. A.1 m n-+B.m n-C.1 m n++D.1 n m -+ 12.无向简单图G是棵树,当且仅当( ). A.G连通且边数比结点数少1 B.G连通且结点数比边数少1

数学分析试卷及答案6套(新)

数学分析-1样题(一) 一. (8分)用数列极限的N ε- 定义证明1n =. 二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x a g x b →=; (2) 0()x U a ?∈,有0 ()()g x U b ∈ (3) 用ε三 (n x n n = ++ ?+四()f x x = 在五六七八九. )b ,使 (f ''数学分析-1样题(二) 一. (10分)设数列{}n a 满足: 1a =, 1()n a n N +=∈, 其中a 是一给定的正常 数, 证明{}n a 收敛,并求其极限. 二. (10分)设0 lim ()0x x f x b →=≠, 用εδ-定义证明0 11 lim ()x x f x b →=.

三. (10分)设0n a >,且1 lim 1n n n a l a →∞+=>, 证明lim 0n n a →∞ =. 四. (10分)证明函数()f x 在开区间(,)a b 一致连续?()f x 在(,)a b 连续,且 lim ()x a f x + →,lim ()x b f x - →存在有限. 五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理. 六. (12分)证明:若函数在连续,且()0f a ≠,而函数2 [()]f x 在a 可导,则函数()f x 在a 可导. 七. 八. ,都有 f 九. 一.(各1. x ?3. ln 0 ? 二.(10三. (10四. (15分)证明函数级数 (1)n x x =-在不一致收敛, 在[0,](其中)一致收敛. 五. (10分)将函数,0 (),0x x f x x x ππππ + ≤≤?=? - <≤?展成傅立叶级数. 六. (10分)设22 22 0(,)0,0 xy x y f x y x y ? +≠?=?? +=?

上海大学2009年数学分析考研试题

上海大学2009年度研究生入学考试题 数学分析 1. 1222lim 0,lim 0n n n n a a na a n →∞→∞++== 求 2.叙述一致连续定义。问()22cos cos g x x x =+是否是周期函数?证之 3. ()f x 在[)1,+∞可导,()()() 22111,f f x x f x ′==+且证()lim x f x →+∞存在且极限小于14π + 41 2 0sin ,x I dx x = ∫误差<0.0005 5.()()(0,)13,,0, f x C f x y ∈+∞ = >当()()()111,xy y x f t dt x f t dt y f t dt =+∫∫∫()f x 求 6. ()f x 在[],a b 可积. ()[][]0,,,b a f x dx a b αβ≠ ?∫是否存在,[](),f x αβ 使上为恒正或者恒负。证之 7. }{()1lim 01n n n n n n x x x ∞→+∞== ?∑在的条件下,试问收敛吗?证之 8. ()f x 在[)1,+∞单减连续可微,()lim 0,x f x →+∞ = ()()1lim 0x xf x dx xf x +∞→∞ =∫证明:当收敛,则 9.证明: ()1,2n n f x x n = =,,…在[)0,1非一致收敛,但()()[)S 1,20,1n n g x x x n = =,,…在上一致收敛,其中()S x 在[)0,1上连续且()S 1=0 10()[]01f x C ∈ ,,证明:()()()10lim 11n x n x f x dx f →+∞+=∫ 11a>>>任取一点做切平面,求该切平面截三坐标轴所得三线段长度之和 13.中心在原点的2222221Ax By Cz Dxy Eyz Fxz +++++=的长半轴l 是下行列式的最大

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =在点(0,0)处的二次极限与二重极限. 解:11 (,)f x y y x = +=,因此二重极限为0.……(4分) 因为011x y x →+ 与011 y y x →+均不存在, 故二次极限均不存在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(),(,,)0z xf x y F x y z =+??=? 所确定的隐函数,其中f 和F 分别 具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。解此方程组并整理得()()()()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-='++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-==== 。 ……(4分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 2222w w w μμν??+=???。 ……(9分) 4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省? 解: 设圆桶底面半径为r ,高为h ,则原问题即为:求目标函数在约束条件下的最小值,其中 目标函数: 222S rh r ππ=+表, ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

数学分析三试卷及答案

数学分析三试卷及答案-CAL-FENGHAI.-(YICAI)-Company One1

《数学分析》(三)――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =在点(0,0)处的二次极限与二重极限. 解: 11 (,)f x y y x = =,因此二重极限为0.……(4分) 因为11x y x →+ 与11 y y x →+均不存在, 故二次极限均不存在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(),(,,)0z xf x y F x y z =+??=? 所确定的隐函数,其中f 和F 分别 具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。 解此方程组并整理得 ()()() ()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-= '++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-==== 。 ……(4分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 2222w w w μμν ??+ =???。 ……(9分) 4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省? 5. 解: 设圆桶底面半径为r ,高为h ,则原问题即为:求目标函数在约束条件下的最小值,其中 ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

上海大学_王培康_数值分析大作业

数值分析大作业(2013年5月) 金洋洋(12721512),机自系 1.下列各数都是经过四舍五入得到的近似值,试分别指出它 们的绝对误差限, 相对误差限和有效数字的位数。 X1 =5.420, x 2 =0.5420, x 3=0.00542, x 4 =6000, x 5=50.610? 解:根据定义:如果*x 的绝对误差限 不超过x 的某个数位的半个单位,则从*x 的首位非零数字到该位都是有效数字。 显然根据四舍五入原则得到的近视值,全部都是有效数字。 因而在这里有:n1=4, n2=4, n3=3, n4=4, n5=1 (n 表示x 有效数字的位数) 对x1:有a1=5, m1=1 (其中a1表示x 的首位非零数字,m1表示x1的整数位数) 所以有绝对误差限 143 11 (1)101022 x ε--≤ ?=? 相对误差限 31() 0.510(1)0.00923%5.4201 r x x x εε-?= == 对x2:有a2=5, m2=0 所以有绝对误差限 044 11 (2)101022 x ε--≤ ?=? 相对误差限 42() 0.510(2)0.00923%0.54202 r x x x εε-?= == 对x3:有a3=5, m3=-2 所以有绝对误差限 235 11 (3)101022 x ε---≤ ?=? 相对误差限 53() 0.510(3)0.0923%0.005423 r x x x εε-?= == 对x4:有a4=0, m4=4 所以有绝对误差限 4411(4)1022 x ε-≤?= 相对误差限 4() 0.5 (4)0.0083%6000 4 r x x x εε= = = 对x5:有a5=6, m5=5 所以有绝对误差限 514 11(5)101022 x ε-≤ ?=? 相对误差限 45() 0.510(5)8.3%600005 r x x x εε?= ==

(汇总)数学分析3试卷及答案.doc

数学分析(3)期末试卷 2005年1月13日 班级_______ 学号_________ 姓名__________ 考试注意事项: 1.考试时间:120分钟。 2.试卷含三大题,共100分。 3.试卷空白页为草稿纸,请勿撕下!散卷作废! 4.遵守考试纪律。

一、填空题(每空3分,共24分) 1、 设z x u y tan =,则全微分=u d __________________________。 2、 设32z xy u =,其中),(y x f z =是由xyz z y x 3333=++所确定的隐函数,则 =x u _________________________。 3、 椭球面14222=-+z y x 在点)1,1,2(M 处的法线方程是__________________。 4、 设,d ),()(sin 2y y x f x F x x ? =),(y x f 有连续偏导数,则=')(x F __________________。 5、 设L 是从点(0,0)到点(1,1)的直线段,则第一型曲线积分?=L s x yd _____________。 6、 在xy 面上,若圆{} 12 2≤+=y x y x D |),(的密度函数为1),(=y x ρ,则该圆关 于原点的转动惯量的二重积分表达式为_______________,其值为_____________。 7、 设S 是球面1222=++z y x 的外侧,则第二型曲面积分=??dxdy z S 2 _______。 二、计算题(每题8分,共56分) 1、 讨论y x y x y x f 1 sin 1sin )(),(-=在原点的累次极限、重极限及在R 2上的连续性。

上海大学数学分析历年考研真题

上海大学2000年度研究生入学考试试题 数学分析 1、 设 122(1)n n x x nx y n n +++= +,若lim n n x a →∞=,证明:(1)当a 为有限数时,lim 2 n n a y →∞=; (2)当a =+∞时,lim n n y →∞ =+∞. 2、设()f x 在[]0,1上有二阶导数(端点分别指左、右导数),(0)(1)0f f ==,且 [] 0,1min ()1f x =- 证明:[] 0,1max ()8f x ''≥ 3、 证明:黎曼函数[]1 , x= (0,,)()0,10,p q p q q q R x ?>? =??? 当为互质整数在上可积当x 为无理数. 4、 证明:1 2210 () lim (0),t tf x dx f t x π+ -→=+?其中()f x 在[]1,1-上连续. 5、 设()1ln 11n n p a n ? ?=+- ???,讨论级数2 n n a +∞ =∑的收敛性. 6、 设 ()f x dx +∞ ? 收敛且()f x 在[]0,+∞上单调,证明:0 1 lim ()()h n h f nh f x dx + +∞ +∞ →==∑?. 7、 计算曲面2 2 2 2 x y z a ++=包含在曲面22 221(0)x y b a a b +=<≤内的那部分的面积. 8、 将函数()f x x =在[]0,2π上展成Fourier 级数,并计算级数 1 sin k k k +∞ =∑的值. 上海大学2001年度研究生入学考试试题 数学分析 1、 计算下列极限、导数和积分: (1) 计算极限1 lim();x x x + → (2) 计算 2 ()()x x f t dt ?=?的导数()x ?',其中()f x 2 ,(1) .1,(1)t t t t ≤? =? +> ? (3) 已知) 211sin x x ' ?=?+?,求积分2011sin I dx x π=+?.

数学分析试题及答案

(二十一)数学分析期终考试题 一 叙述题:(每小题5分,共15分) 1 开集和闭集 2 函数项级数的逐项求导定理 3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分) 1、 ? -9 1 31dx x x 2、求)0()(2 2 2 b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积 3、求幂级数 n n n x n ∑∞ =+1 2)11(的收敛半径和收敛域 4、1 1lim 2 2220 0-+++→→y x y x y x 5、2 2 ),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分) 1、已知?? ???==≠+++=0 ,0001sin )(),(222 2 2 2y x y x y x y x y x f ,验证函数的偏导数在原点不连续, 但它在该点可微 2、讨论级数∑∞ =-+1 2211 ln n n n 的敛散性。 3、讨论函数项级数]1,1[)1( 1 1 -∈+-∑∞ =+x n x n x n n n 的一致收敛性。 四 证明题:(每小题10分,共20分) 1 若 ? +∞ a dx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞ →x f x 2 设二元函数),(y x f 在开集2R D ? 内对于变量x 是连续的,对于变量y 满足Lipschitz 条件: ''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,('''∈为常数证明),(y x f 在D 内连续。 参考答案 一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。

上海大学高等代数历年考研真题

2000上海大学 高等代数 (一) 计算行列式:a c c c b a c c b b a c b b b a ????????? (二) 把二次型414332214321),,,(x x x x x x x x x x x x f +++=用非退化线性替换化成平方 和. (三) B A ,分别为m n ?和m n ?矩阵, n I 表示n n ?单位矩阵.证明: m n ?阶矩阵 n A I X B ?? = ??? 可逆当且仅当B A 可逆,可逆时求出X 的逆. (四) 设12,n e e e ???是n 维线性空间n V 的一组基,对任意n 个向量12,n a a a ???n V ∈,证明: 存在唯一的线性变换A ,使得(),1,2i i A e a i n ==?? (五) 设A 是n 维线性空间V 的线性变换,求证: 1 (0)V A V A -=⊕当且仅当若12,r a a a ???为A V 的一组基则12,r A a A a A a ???是2 ()A V 的一组基. (六) 设A 为2级实方阵,适合2100 1A -??= ?-??,求证:A 相似于011 0-?? ??? . (七) 已知,f g 均为线性空间V 上线性变换,满足2 2 ,f f g g ==试证: (1)f 与g 有相同的值域?,fg g g f f ==. (2)f 与g 有相同的核?,fg f g f g ==. 2001上海大学 高等代数 (一)计算行列式:231 21 21 2 3 n n n x a a a a x a a a a x a a a a x (二)设A 为3阶非零方阵,且2 0A =.

数学分析试卷及答案6套

一. (8分)用数列极限的N ε-定义证明1n =. 二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x a g x b →=; (2) 0()x U a ?∈,有0 ()()g x U b ∈ (3) lim ()u b f u A →= 用εδ-定义证明, lim [()]x a f g x A →=. 三. (10分)证明数列{}n x : cos1cos 2 cos 1223 (1) n n x n n = +++ ???+收敛. 四. (12分)证明函数1 ()f x x = 在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点. 七. (12分)确定,a b 使lim )0x ax b →+∞ -=. 八. (14分)求函数32()2912f x x x x =-+在15 [,]42 -的最大值与最小值. 九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使 2 4 ()()()() f f b f a b a ζ''≥ --.

一. (10分)设数列{}n a 满足 : 1a = , 1()n a n N +=∈, 其中a 是一给定的 正常数, 证明{}n a 收敛,并求其极限. 二. (10分)设0 lim ()0x x f x b →=≠, 用εδ-定义证明0 11 lim ()x x f x b →=. 三. (10分)设0n a >,且1 lim 1n n n a l a →∞+=>, 证明lim 0n n a →∞ =. 四. (10分)证明函数()f x 在开区间(,)a b 一致连续?()f x 在(,)a b 连续,且 lim ()x a f x + →,lim ()x b f x - →存在有限. 五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理. 六. (12分)证明:若函数在连续,且()0f a ≠,而函数2 [()]f x 在a 可导,则函数()f x 在 a 可导. 七. (12分)求函数()1f x x x α αα=-+-在的最大值,其中01α<<. 八. (12分)设f 在上是凸函数,且在(,)a b 可微,则对任意1x ,2x (,)a b ∈, 12x x <,都有 12()()f x f x ''≤. 九. (12分)设() ,0()0,0 g x x f x x x ? ≠? =?? =? 且(0)(0)0g g '==, (0)3g ''=, 求(0)f '.

数学分析试题与答案

2014 ---2015学年度第二学期 《数学分析2》A 试卷 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为()C dt t f x a +?( ). 2.若()()x g x f ,为连续函数,则()()()[]()[]????=dx x g dx x f dx x g x f ( ). 3. 若()? +∞ a dx x f 绝对收敛,()?+∞ a dx x g 条件收敛,则()()?+∞-a dx x g x f ][必然条件收敛( ). 4. 若()? +∞1 dx x f 收敛,则必有级数()∑∞ =1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ). 6. 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发散于 正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C.可微 D.不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相等,则( )

A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C. ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D. ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞ =--+1 21 11n n n n A .发散 B.绝对收敛 C.条件收敛 D. 不确定 4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞ →n n u ,则级数∑ n u 一定收敛; B . 若1lim 1 <=+∞→ρn n n u u ,则级数∑n u 一定收敛; C. 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛; D. 若1,1>>?+n n u u N n N ,时有当,则级数∑n u 一定发散; 5.关于幂级数∑n n x a 的说法正确的是( ) A . ∑n n x a 在收敛区间上各点是绝对收敛的; B. ∑n n x a 在收敛域上各点是绝对收敛的; C. ∑n n x a 的和函数在收敛域上各点存在各阶导数; D. ∑n n x a 在收敛域上是绝对并且一致收敛的;

上海大学数学分析历年考研真题

上海大学2000年度研究生入学考试试题 数学分析 1、 设 122(1)n n x x nx y n n +++= +,若lim n n x a →∞=,证明:(1)当a 为有限数时,lim 2 n n a y →∞=; (2)当a =+∞时,lim n n y →∞ =+∞. 2、设()f x 在[]0,1上有二阶导数(端点分别指左、右导数),(0)(1)0f f ==,且[] 0,1min ()1f x =- 证明:[] 0,1max ()8f x ''≥ 3、 证明:黎曼函数[]1 , x= (0,,)()0,10,p q p q q q R x ?>?=??? 当为互质整数在上可积当x 为无理数. 4、 证明:1 2210 () lim (0),t tf x dx f t x π+ -→=+?其中()f x 在[]1,1-上连续. 5、 设()1ln 11n n p a n ? ?=+- ???,讨论级数2 n n a +∞ =∑的收敛性. 6、 设 ()f x dx +∞ ? 收敛且()f x 在[]0,+∞上单调,证明:0 1 lim ()()h n h f nh f x dx + +∞ +∞ →==∑?. 7、 计算曲面2 2 2 2 x y z a ++=包含在曲面22 221(0)x y b a a b +=<≤内的那部分的面积. 8、 将函数()f x x =在[]0,2π上展成Fourier 级数,并计算级数 1 sin k k k +∞ =∑的值. 上海大学2001年度研究生入学考试试题 数学分析 1、 计算下列极限、导数和积分: (1) 计算极限1 lim();x x x + → (2) 计算 2 ()()x x f t dt ?=?的导数()x ?',其中()f x 2 ,(1) .1,(1) t t t t ≤? =? +> ? (3) 已知) 211sin x x ' ?=?+? ,求积分2011sin I dx x π=+?. (4) 计算()()2222 2 ()0x y z t f t xyz dxdydz t ++≤= >???的导数()f t '(只需写出()f t '的积分表达

上海大学数值分析历届考题

数值分析历届考题 03-04学年秋季学期 一. 简答题(每小题5分) 1. 数值计算中要注意哪些问题。 答:第一、两个相近的数应避免相减。 第二、绝对值很小的数应避免作除数。 第三、注意选取适当的算法减少运算次数。 第四、两个绝对值相差很大的数运算时,注意“机器零”的问题。 第五、注意算法的收敛性和稳定性。 2. 用迭代法求解非线性方程0)(=x f 时,迭代收敛的条件是什么,可以用什么方法来确定初值0x 。 答:对于非线性方程0)(=x f (其迭代格式为)(x g x =),如果满足: (1) 当],[b a x ∈时,],[)(b a x g ∈; (2) )(x g '在],[b a 上连续,且对任意的],[b a x ∈都有1)(<≤L x g 。 则有结论:对任意给定的],[0b a x ∈,由迭代格式)(1k k x g x =+,k=0,1,2,…产生的序列{} k x 收敛于*x ,即迭代收敛。 可以用二分法来确定初值0x 。 3. 用消元法求解线性方程组时,为什么要选主元。 答: 因为用简单高斯消元法求得的近似解与精确解相差甚远,其主要原因是绝对值很小的数作除数,导致了误差的快速增长。为了避免这种情况的发生,我们可以通过行交换,在需要消元的列中,取绝对值最大者作为主对角线元素(即主元),计算效果将得到改善。 4. 矩阵的条件数是什么,它对求解线性方程组有什么影响。 答:对于n 阶可逆方阵A ,正实数||A ||||1-A ||称为A 的条件数,记为cond(A)。 条件数对于线性方程组Ax=b 的影响如下: b b A cond x x ?≤?)(,其中b ?为A 精确时b 产生的误差; A A A cond x x ?≤?) ( ,其中A ?为b 精确时A 产生的误差。

上海大学数学分析历年考研真题

上海大学2000年度研究生入学考试试题 数学分析 1、 设 122(1)n n x x nx y n n +++= +,若lim n n x a →∞=,证明:(1)当a 为有限数时,lim 2 n n a y →∞=; (2)当a =+∞时,lim n n y →∞ =+∞. 2、设()f x 在[]0,1上有二阶导数(端点分别指左、右导数),(0)(1)0f f ==,且 [] 0,1min ()1f x =- 证明:[] 0,1max ()8f x ''≥ 3、 证明:黎曼函数[]1 , x= (0,,)()0,10,p q p q q q R x ?>? =??? 当为互质整数在上可积当x 为无理数. 4、 证明:1 2210 () lim (0),t tf x dx f t x π+ -→=+?其中()f x 在[]1,1-上连续. 5、 设()1ln 11n n p a n ? ?=+- ???,讨论级数2 n n a +∞ =∑的收敛性. 6、 设 ()f x dx +∞ ? 收敛且()f x 在[]0,+∞上单调,证明:0 1 lim ()()h n h f nh f x dx + +∞ +∞ →==∑?. 7、 计算曲面2 2 2 2 x y z a ++=包含在曲面22 221(0)x y b a a b +=<≤内的那部分的面积. 8、 将函数()f x x =在[]0,2π上展成Fourier 级数,并计算级数 1 sin k k k +∞ =∑的值. 上海大学2001年度研究生入学考试试题 数学分析 1、 计算下列极限、导数和积分: (1) 计算极限1 lim ();x x x + → (2) 计算 2 ()()x x f t dt ?=?的导数()x ?',其中()f x 2 ,(1) .1,(1) t t t t ≤ ?=? +> ? (3) 已知) 211sin x x ' ?=?+?,求积分2011sin I dx x π=+?. (4) 计算()()2222 2 ()0x y z t f t xyz dxdydz t ++≤= >???的导数()f t '(只需写出()f t '的积分表达

相关文档
相关文档 最新文档